1
|
Lin Z, Ruan C, Xia R, Liao J, Zhu L, Wang D, Alvarez PJJ, Yu P. Bacterium-Phage Interactions Enhance Biofilm Resilience during Membrane Filtration Biofouling under Oxidative and Hydraulic Stresses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8614-8628. [PMID: 40145670 DOI: 10.1021/acs.est.5c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Microbial interactions on membrane surfaces can facilitate biofilm formation and biofouling, which poses a significant challenge for pressure-driven membrane filtration systems. This multiomics study investigates the adaptive responses of bacterium-phage interactions under varying oxidative and hydraulic stress during membrane backwashing and their biological contributions to biofouling. Oxidative and hydraulic stress distinctly shaped bacteria and phage diversity and community composition. Under moderate oxidative backwashing (300 ppm of NaClO), diversity was maintained, with increased antioxidant enzyme activities, extracellular polymeric substance (EPS) production, and quorum sensing (QS) signaling, promoting bacterial resilience and biofilm formation. In contrast, excessive oxidative stress (600 ppm of NaClO) reduced bacteria and phage diversity, disrupted antioxidant responses, and increased microbial sensitivity. Hydraulic stress predominantly influenced viral diversity and co-occurrence network topology, favoring the expansion of broad host-range phages and lysogenic lifestyles under combined stresses. Phage-bacterium interaction analyses highlighted phages' adaptive preferences for hosts with high network centrality and broad ecological niches, which enhanced microbial interactions and resilience. Transcriptomic profiling demonstrated the early enrichment of genes associated with energy metabolism, ROS detoxification, and biofilm formation, followed by stabilization as biofilms matured. Phage-encoded auxiliary metabolic genes were involved in DNA repair, QS, and EPS biosynthesis, contributing to microbial adaptation through oxidative stress resistance and biofilm stabilization. Overall, these findings provide mechanistic insights into biofouling dynamics and highlight the need to optimize chlorine dosing to prevent suboptimal levels of microbial adaptation and biofouling.
Collapse
Affiliation(s)
- Zijun Lin
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chujin Ruan
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Rong Xia
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Liang Zhu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Dongsheng Wang
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering and Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
2
|
Srinivas Ravi M, Padikasan IA. Augmenting Cr(VI) phytoremediation potential of Ricinus communis through rhizospheric crosstalk with multi stress tolerant plant growth promoting Bacillus altitudinis M1. World J Microbiol Biotechnol 2025; 41:138. [PMID: 40289221 DOI: 10.1007/s11274-025-04357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/06/2025] [Indexed: 04/30/2025]
Abstract
Plant growth promoting rhizobacteria are cost-effective and eco-friendly alternative for bioremediation of Cr(VI). This study investigated the effects of rhizobacterial strain Bacillus altitudinis M1 on Cr(VI) reduction, plant growth promotion and Cr(VI) stress mitigation in Ricinus communis. Biosorption and bioreduction of Cr(VI) up to 300 mg/l by the strain M1 was confirmed by FTIR, Raman Spectrum and TEM-EDX analysis. Moreover, the strain M1 exhibited high tolerance to temperature (up to 40 °C), pH (up to 8.0), NaCl (up to 6%) and various heavy metals (Pb, Cd, Ni, Cu, Mn and Zn). The strain M1 produced significant IAA, ammonia and EPS under higher concentration of Cr(VI). The strain improved the growth and development of test crop R. communis under higher Cr(VI) concentration. Inoculation of the strain M1 alleviated Cr(VI)-induced oxidative stress in roots and leaves of R. communis by decreasing proline (up to 24 and 33%), H2O2 (up to 56 and 43%), and MDA (up to 42 and 40%) by regulating the activity of antioxidant enzymes. These findings suggest that the strain M1 promotes plant growth under Cr(VI) stress through multiple mechanisms, including phytohormone production, nutrient mobilization, stress metabolite modulation, and antioxidant defense system regulation. Thus the application of the strain M1 potentially reduces Cr(VI) bioavailability, making it a promising candidate for Cr(VI) bioremediation.
Collapse
Affiliation(s)
- Manoj Srinivas Ravi
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Indra Arulselvi Padikasan
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
3
|
Zhang Z, Ren X, Liu Y, Song S, Ren Y, Li L, Pang H, Yang J, Lu J. Enhancing sulfide mitigation via the synergistic dosing of calcium peroxide and ferrous ions in gravity sewers: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137285. [PMID: 39847929 DOI: 10.1016/j.jhazmat.2025.137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Chemical dosing constitutes an effective strategy for sulfide control in sewers; however, its efficacy requires further optimization and enhancement. In this study, a novel dosing strategy using the synergistic dosing of calcium peroxide (CaO2) and ferrous ions (Fe2+) for sulfide control was proposed, and its efficacy in controlling sulfides was evaluated using a long-term laboratory-scale reactor. The results showed that adding CaO2-Fe2+ improves the effect of sulfide control. When the ratio of the agent to the sewage (w/v) was 0.30 %, the RT50 of sulfide production rate was 8.34 days. The analysis of microbial communities in sewage biofilm revealed that the relative abundances of sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) demonstrated an overall downward tendency, suggesting that the potent oxidizing •OH generated by the synergism of CaO2 and Fe2+ could indiscriminately restrain the growth of microorganisms. Additionally, intracellular metabolic pathways, along with enzyme activities and the relative abundances of genes associated with sulfide metabolism, were significantly impaired. The cost of CaO2-Fe2+ synergistic dosing is 31.3 % of CaO2 and 63.4 % of Fe2+ alone addition. It can be reasonably proposed that the addition of CaO2-Fe2+ may provide an efficacious and cost-effective method for the mitigation of sulfide in sewer systems.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaowei Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuxin Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shanshan Song
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yating Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linjun Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China.
| |
Collapse
|
4
|
Ma X, Liu D, Chu X, Huang J, Shu Z, Li Y, Jin Y. Effects of exogenous signaling molecules on anaerobic sludge digestion: Quorum sensing and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2024; 414:131624. [PMID: 39395605 DOI: 10.1016/j.biortech.2024.131624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Regulating quorum sensing (QS) signaling molecules could improve wastewater treatment but might increase antibiotic resistance. This study investigated the effects of exogenous C6-HSL on anaerobic sludge under oxytetracycline stress, with a focus on antibiotic resistance genes (ARGs) and the QS response. The results revealed that exogenous oxytetracycline increased the copy number of ARGs by more than 68.8 %. It also facilitated a 3.04-fold increase in the concentration of signaling molecules and increased the abundance of QS genes. Further addition of the C6-HSL accelerated oxytetracycline degradation, and reduced its residual concentration by 70.9 %, alleviating oxytetracycline stress on microbial communities, and correspondingly reducing stress release from AHL by 75.4 %. Importantly, this did not exacerbate antibiotic resistance, with no significant difference (p > 0.05) in the ARG abundance. These findings may provide valuable insights into the relationship between QS process and antibiotic resistance.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dandan Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450000, PR China
| | - Xu Chu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Jianli Huang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhifei Shu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yangyang Li
- Zhejiang Jiaxing Green Energy Environmental Protection Technology Co. LTD, Jiaxing 314000, PR China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Xiao Y, Li Q, Yang Y, Zhang Y, Shen Y, Liu J, Lei N, Zhang W, Wang Q. Unravelling the mechanisms of PFAS toxicity to submerged macrophytes and epiphytic biofilms at metabolic and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175726. [PMID: 39181257 DOI: 10.1016/j.scitotenv.2024.175726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are an emerging class of persistent organic pollutants that are widespread in aquatic ecosystems and pose a serious threat to aquatic organisms. It is thus crucial to explore the toxicity mechanisms of PFAS to submerged macrophytes and biofilms. In this study, Vallisneria natans (V. natans) was exposed to environmentally relevant concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS). Results showed that PFAS induced the excessive production of reactive oxygen species, triggering antioxidant responses. V. natans exhibited an improved stress tolerance by altering the biosynthesis of several plant secondary metabolites and the histidine, arginine, proline pathways in response to PFAS exposure. Moreover, PIP1-1, PIP2-2, SLAH1 and SLAH2 genes were upregulated, indicating the activation of aquaporins and slow-type anion channels. The uptake of PFOA and PFOS by V. natans was 41.74 % and 52.31 %, respectively. Notably, PFAS bound to functional proteins (GSTF10), promoting the detoxification of plants. Exposure to PFAS also altered the structure of biofilms by inducing the synthesis of large amounts of polysaccharides and proteins. The diversity and richness of the microbial community within periphytic biofilms changed significantly. These results provide a comprehensive description of the responses of aquatic plants and periphytic biofilms to PFAS and the removal mechanism of PFAS, contributing to the environmental risk assessments and removal of PFAS in aquatic ecosystems.
Collapse
Affiliation(s)
- Yunxing Xiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qi Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yumiao Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yifan Shen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | | |
Collapse
|
6
|
Wang L, Zhou Y, Min Q, Si Y. Vanadium (V) reduction and the performance of electroactive biofilms in microbial fuel cells with Shewanella putrefaciens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122592. [PMID: 39305862 DOI: 10.1016/j.jenvman.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The electron transfer ability of biofilms significantly influences the electrochemical activity of microbial fuel cells (MFCs). However, there is limited understanding of pentavalent vanadium (V(V)) bioreduction and microbial response characteristics in MFCs. In this study, the effect of gradient concentrations of V(V) on the performance of EABs with Shewanella putrefaciens in MFCs was investigated. The results showed that as V(V) concentration increased (0-100 mg/L), the voltage output, power densities, polarization, and electrode potential decreased. V(V) was found to act as an electron acceptor and was reduced during MFCs operation, with a yield of 83.16% being observed at 25 mg/L V(V). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated declining electrochemical performance of the MFCs with escalating V(V) concentration. The content of protein and polysaccharide from extracellular polymeric substances (EPS) in anodic biofilms increased to 66.75 and 49.15 mg/L at 75 mg/L V(V), respectively. Three-dimensional fluorescence spectroscopy confirmed increased humic substances in EPS extraction with V(V) exposure. The functional genes narG, nirK, and gor involved in V(V) reduction were upregulated with rising V(V) concentration through quantitative polymerase chain reaction (qPCR) analysis. Additionally, riboflavin, cytochrome c, nicotinamide adenine dinucleotide (NADH), and electron transport system activity (ETSA), key indicators for assessing electron transfer behavior, exhibited a negative correlation with various V(V) concentrations, decreasing by 31.81%, 57.14%, 67.39%, and 51.41%, respectively, at a concentration of 100 mg/L V(V) compared to the blank control. These findings contribute valuable insights into the response of EABs to V(V) exposure, presenting potential strategies for enhancing their effectiveness in the treatment of vanadium-contaminated wastewater.
Collapse
Affiliation(s)
- Lili Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Min
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
He J, Zhang B, Tan C, Tang Y, Shen Z, Wu S, Zhou S. Distinguishing contributions of diverse sediment components to vanadium transport, immobilization and transformation in aquifer. WATER RESEARCH 2024; 265:122248. [PMID: 39142071 DOI: 10.1016/j.watres.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Vanadium (V) occurs in environment naturally and anthropogenically, but little has been understood about its environmental behavior in groundwater aquifer with sediments. This study investigated the pentavalent V [V(V)] transport and transformation under the influence of different sediment components (minerals, organic matter, and microorganisms) through column experiments. All these components played pivotal roles in V immobilization. The synergistic effects of sediment components enhanced V retention compared to individual component. Mineral components, particularly those containing carbonates and metal oxides, predominantly influenced V(V) transport as indicated by XRD analysis. Organic matter, especially under low pH conditions, induced particle aggregation, thereby inhibiting the transport of V(V). The V K-edge X-ray absorption near-edge structure spectroscopy revealed the formation of tetravalent V[V(IV)] in treatments involving organic matter and microorganisms. Notably, organic matter exhibited the capability to directly reduce V(V). The introduction of microorganisms restricted V(V) transfer. V(V) reducing genera (e.g., Brevundimonas, Arenimonas, Xanthobacter) were detected, achieving V(V) reduction to insoluble V(IV). V(V) bioreduction was improved by minerals that promote microbial metabolism with enhanced electron transfer, or by organic matter that increases levels of intracellular nicotinamide adenine dinucleotide and extracellular polymeric substances. This study specifies the contributions of different sediment components to the transportation and transformation of V, deepening our understanding of V biogeochemistry in groundwater aquifer.
Collapse
Affiliation(s)
- Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China.
| | - Cong Tan
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Yang Tang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Zhongjun Shen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P R China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P R China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P R China
| |
Collapse
|
8
|
Xu N, Zhang X, Guo PC, Xie DH, Sheng GP. Biological self-protection inspired engineering of nanomaterials to construct a robust bio-nano system for environmental applications. SCIENCE ADVANCES 2024; 10:eadp2179. [PMID: 39292775 PMCID: PMC11409965 DOI: 10.1126/sciadv.adp2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Nanomaterials can empower microbial-based chemical production or pollutant removal, e.g., nano zero-valent iron (nZVI) as an electron source to enhance microbial reducing pollutants. Constructing bio-nano interfaces is critical for bio-nano system operation, but low interfacial compatibility due to nanotoxicity challenges the system performance. Inspired by microorganisms' resistance to nanotoxicity by secreting extracellular polymeric substances (EPS), which can act as electron shuttling media, we design a highly compatible bio-nano interface by modifying nZVI with EPS, markedly improving the performance of a bio-nano system consisting of nZVI and bacteria. EPS modification reduced membrane damage and oxidative stress induced by nZVI. Moreover, EPS alleviated nZVI agglomeration and probably reduced bacterial rejection of nZVI by wrapping camouflage, contributing to the bio-nano interface formation, thereby facilitating nZVI to provide electrons for bacterial reducing pollutant via membrane-anchoring cytochrome c. This work provides a strategy for designing a highly biocompatible interface to construct robust and efficient bio-nano systems for environmental implication.
Collapse
Affiliation(s)
- Nuo Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Can Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Gao H, Zhao R, Ye J, Zhan M, Yu R. Enhancement of Biological Nitrogen Removal System Resilience to Chronic Exposure of Zinc Oxide Nanoparticles by Quorum Sensing Modulation: Physiochemical, Microbial, and Metabolic Insights. BIORESOURCE TECHNOLOGY 2024; 408:131136. [PMID: 39033827 DOI: 10.1016/j.biortech.2024.131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The effects of three typical N-acyl-homoserine lactones (AHLs) on the tolerance of biological nitrogen removal (BNR) system to chronic exposure of zinc oxide nanoparticles (NPs) were investigated. C4-HSL successfully delayed the crash time of nitrogen removal performances in the NP-stressed system, while C6-HSL and C10-HSL maintained total nitrogen removal efficiencies throughout the 90-day NP exposure. All three AHLs increased NPs' contents captured in extracellular polymeric substances, alleviating membrane damage and preserving floc structure. The activities of tricarboxylic acid cycle-related enzymes and the relative abundances of BNR-related functional genes and genera were significantly enhanced. Besides, C6-HSL and C10-HSL augmented antioxidant enzyme activities and the abundances of functional genes and metabolites related to antioxidation, flagellar assembly, and chemotaxis, which synergistically reduced the reactive oxygen species' excessive accumulation. The tested AHLs effectively enhanced BNR systems' tolerance to chronic NP exposure, providing inspiration for quorum sensing applications in emerging contaminant removal.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu, 210013, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
10
|
Wang J, Chen M, Zhang J, Sun X, Li N, Wang X. Dynamic membrane filtration accelerates electroactive biofilms in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100375. [PMID: 38283869 PMCID: PMC10821169 DOI: 10.1016/j.ese.2023.100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Bioelectrochemical systems (BES) have emerged as a dual-function technology for treating wastewater and recovering energy. A vital element of BES is the rapid formation and maintenance of electroactive biofilms (EABs). Previous attempts to accelerate EAB formation and improve electroactivities focused on enhancing the bacterial adhesion process while neglecting the rate-limiting step of the bacterial transport process. Here, we introduce membrane filtration into BES, establishing a dynamic membrane filtration system that enhances overall performance. We observed that optimal membrane flux considerably reduced the startup time for EAB formation. Specifically, EABs established under a 25 L m-2 h-1 flux (EAB25 LMH) had a formation time of 43.8 ± 1.3 h, notably faster than the 51.4 ± 1.6 h in the static state (EAB0 LMH). Additionally, EAB25 LMH exhibited a significant increase in maximum current density, approximately 2.2 times higher than EAB0 LMH. Pearson correlation analysis indicated a positive relationship between current densities and biomass quantities and an inverse correlation with startup time. Microbial analysis revealed two critical findings: (i) variations in maximum current densities across different filtration conditions were associated with redox-active substances and biomass accumulation, and (ii) the incorporation of a filtration process in EAB formation enhanced the proportion of viable cells and encouraged a more diverse range of electroactive bacteria. Moreover, the novel electroactive membrane demonstrated sustained current production and effective solid-liquid separation during prolonged operation, indicating its potential as a viable alternative in membrane-based systems. This approach not only provides a new operational model for BES but also holds promise for expanding its application in future wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinning Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jiayao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xinyi Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
11
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
12
|
Feng C, Li J, Yang W, Chen Z. Study on the inactivation effect and mechanism of EGCG disinfectant on Bacillus subtilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124364. [PMID: 38878811 DOI: 10.1016/j.envpol.2024.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The widespread use of chlorine-based disinfectants in drinking water treatment has led to the proliferation of chlorine-resistant bacteria and the risk of disinfection byproducts (DBPs), posing a serious threat to public health. This study aims to explore the effectiveness and potential applications of epigallocatechin gallate (EGCG) against chlorine-resistant Bacillus and its spores in water, providing new insights for the control of chlorine-resistant bacteria and improving the biological stability of distribution systems. The inactivation effects of EGCG on Bacillus subtilis (B. subtilis) and its spores were investigated using transmission electron microscopy, ATP measurement, and transcriptome sequencing analysis to determine changes in surface structure, energy metabolism, and gene expression levels, thereby elucidating the inactivation mechanism. The results demonstrate the potential application of EGCG in continuously inhibiting chlorine-resistant B. subtilis in water, effectively improving the biological stability of the distribution system. However, EGCG is not suitable for treating raw water with high spore content and is more suitable as a supplementary disinfectant for processes with strong spore removal capabilities, such as ozone, ultraviolet, or ultrafiltration. EGCG exhibits a disruptive effect on the morphological structure and energy metabolism of B. subtilis and suppresses the synthesis of substances, energy metabolism, and normal operation of the antioxidant system by inhibiting the expression of multiple genes, thereby achieving the inactivation of B. subtilis.
Collapse
Affiliation(s)
- Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Jing Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Weiqi Yang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zexin Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
13
|
Sun H, Zhou ZJ, Wen HQ, Chen FF, Pan Y, Tang Q, Yu HQ. Deciphering the Roles of Extracellular Polymeric Substances (EPS) in Shaping Disinfection Kinetics through Permanent Removal via Genetic Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6552-6563. [PMID: 38571383 DOI: 10.1021/acs.est.4c01612] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.
Collapse
|
14
|
Park H, Kim HS, Abassi S, Bui QTN, Ki JS. Two novel glutathione S-transferase (GST) genes in the toxic marine dinoflagellate Alexandrium pacificum and their transcriptional responses to environmental contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169983. [PMID: 38215848 DOI: 10.1016/j.scitotenv.2024.169983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The present study identified two novel glutathione S-transferase (GST) genes from the toxic dinoflagellate Alexandrium pacificum and examined their molecular characteristics and transcriptional responses to algicides and environmental contaminants. Bioinformatic analysis revealed that both ApGSTs are cytosolic, belonging to the chi-like class (ApGST1) and an undefined class (ApGST2). The overall expression of ApGSTs showed similar patterns depending on the exposed contaminants, while they were differently regulated by polychlorinated biphenyl (PCB). Copper treatments (CuCl2 and CuSO4) did not significantly induce the expression of ApGSTs. The highest up-regulations of ApGST1 and ApGST2 were under 6-h treatments of 0.10 and 0.50 mg L-1 NaOCl. Interestingly, only ApGST1 increased significantly after 0.10, 0.50, and 1.00 mg L-1 of PCB exposure (6 h). Intracellular reactive oxygen species (ROS) increased considerably under NaOCl; however, it was not significantly higher in the PCB-treated cells. GST activity was increased by NaOCl and PCB treatments, but only PCB caused apoptosis. These results suggest that GSTs are involved in the first line of phase II detoxification, protecting dinoflagellate cells against oxidative damage.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea; Department of Biotechnology, Sangmyung University, Seoul, South Korea.
| |
Collapse
|
15
|
Liu Y, Kang Z, Wang Q, Wang T, Song N, Yu H. One-step synthesis of ferrous disulfide and iron nitride modified hydrochar for enhanced adsorption and reduction of hexavalent chromium in Bacillus LD513 by promoting electron transfer and microbial metabolism. BIORESOURCE TECHNOLOGY 2024; 396:130415. [PMID: 38316228 DOI: 10.1016/j.biortech.2024.130415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Microbial immobilization technology is effective in improving bioremediation efficiency and heavy metal pollution. Herein, Bacillus LD513 with hexavalent chromium (Cr(VI)) tolerance was isolated and immobilized on a novel ferrous disulfide (FeS2)/iron nitride (FeN) modified hydrochar (Fe3-SNHC) prepared from waste straws. The prepared Fe3-SNHC-based LD513 (FeLD) significantly improves Cr(VI) adsorption and reduction by 31.4 % and 15.7 %, respectively, compared to LD513 alone. Furthermore, the FeLD composite system demonstrates efficient Cr(VI) removal efficiency and good environmental adaptability under different culture conditions. Microbial metabolism and electrochemical analysis indicate that Fe3-SNHC is an ideal carrier for protecting LD513 activity, promoting extracellular polymer secretion, and reducing oxidative stress. Additionally, the carrier serves as an electron shuttle that accelerates electron transfer and promotes Cr(VI) reduction. Overall, FeLD is an environmentally friendly biocomposite that shows good promise for reducing Cr(VI) contamination in wastewater treatment.
Collapse
Affiliation(s)
- Yuxin Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Ningning Song
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| |
Collapse
|
16
|
Zhuo M, Quan X, Yin R, Lv K. Enhancing methane production and interspecies electron transfer of anaerobic granular sludge by the immobilization of magnetic biochar. CHEMOSPHERE 2024; 352:141332. [PMID: 38296206 DOI: 10.1016/j.chemosphere.2024.141332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Supplementation of conductive materials has been proved to be a promising approach for enhancing microbial interspecies electron transfer (IET) in anaerobic digestion systems. In this study, magnetic bamboo-based biochar was prepared at temperatures of 400-800 °C via a ball milling/carbonization method, and it immobilized in mature anaerobic granular sludge (AGS) aimed to enhance methane production by improving the IET process between syntrophic microbial communities in the AGS. Results showed that the AGS with magnetic biochar immobilization demonstrated increased glucotrophic and acetotrophic methane production by 69.54-77.56 % and 39.96-54.92 %, respectively. Magnetic biochar prepared at 800 °C with a relatively higher Fe content (0.37 g/g magnetic biochar) displayed a stronger electron charge/discharge capacity (36.66 F/g), and its immobilization into AGS promoted methane production most. The conductivity of AGS increased by 52.13-87.32 % after incorporating magnetic biochar. Furthermore, the extracellular polymeric substance (EPS) of AGS showed an increased capacitance and decreased electron transfer resistance possibly due to the binding of magnetic biochar and more riboflavin secretion in EPS, which could contribute to the accelerated IET process in the inner AGS. In addition, the immobilization of magnetic biochar could promote the production of volatile fatty acids by 15.36-22.50 %. All these improvements may jointly lead to the enhanced methane production capacity of AGS. This study provided a fundamental understanding of the role of incorporated magnetic biochar in AGS in promoting anaerobic digestion performance.
Collapse
Affiliation(s)
- Meihui Zhuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ruoyu Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Lv
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Zaffar R, Nazir R, Rather MA, Dar R. Biofilm formation and EPS production enhances the bioremediation potential of Pseudomonas species: a novel study from eutrophic waters of Dal lake, Kashmir, India. Arch Microbiol 2024; 206:89. [PMID: 38308703 DOI: 10.1007/s00203-023-03817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024]
Abstract
The present study was conducted with the aim of isolation and identification of the biofilm-forming denitrifying Pseudomonas bacterial strains from eutrophic waters of Dal lake, India, followed by the study of inter-relation of biofilm formation and denitrification potential of Pseudomonas strains. The bacterial strains were characterized by morphological observations and identified using 16S rDNA sequencing followed by the quantification of biofilm formation of these st by crystal violet (CV) assay using 96-well microtiter plate and extracellular polymeric substance (EPS) extraction. Lastly, the nitrate-reducing potential of all Pseudomonas species was studied. Our evaluation revealed that four different Pseudomonas species were observed to have the biofilm-forming potential and nitrate-reducing properties and the species which showed maximum biofilm-forming potential and maximum EPS production exhibited higher nitrate-removing capacity. Moreover, P. otitis was observed to have the highest denitrification capacity (89%) > P. cedrina (83%) > P. azotoform (79%) and the lowest for P. peli (70%). These results clearly signify a positive correlation of biofilm-forming capacity and nitrate-removing ability of Pseudomonas species. This study has for the first time successfully revealed the bioremediation potential of P. otitis, P. cedrina, P. azotoform, and P. peli species, thus contributing to the growing list of known nitrate-reducing Pseudomonas species. Based upon the results, these strains can be extrapolated to nitrate-polluted water systems for combating water pollution.
Collapse
Affiliation(s)
- Riasa Zaffar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India.
| | - Mushtaq Ahmad Rather
- Energy Engineering Lab, Department of Chemical Engineering, National Institute of Technology (NIT), Srinagar, J&K, India
| | - Rubiya Dar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| |
Collapse
|
18
|
Kim Y, Choi PJ, Jang A. Effect of NaOCl and ClO 2 on seawater desalination using reverse osmosis with cartridge filtration as the pretreatment during the algal bloom. CHEMOSPHERE 2024; 349:140944. [PMID: 38096989 DOI: 10.1016/j.chemosphere.2023.140944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Increased seawater temperature leads to harmful algal blooms (HABs), which releases toxic materials and extracellular polymeric substances (EPS) that are harmful to both humans and the environment. Reverse osmosis (RO) with cartridge filter (CF) as the pretreatment process is often used for desalination process. However, the EPS causes severe fouling on the CF, and RO membrane. Disinfectants, such as NaOCl and ClO2, are commonly used to remove biofouling, because they can oxidize and kill microorganisms. Therefore, our study aims to utilize NaOCl and ClO2 during the CF-RO process to minimize the algal growth within the system and minimize the fouling induced by EPS. Results from this study show that CF can remove more than 50% of protein and 14% of polysaccharides but is not effective in removing toxins. However, with disinfectants, toxic materials were completely oxidized. Improved removal of EPS with CF improved overall performance. The flux reduction in RO process without disinfection was over 60%, however, the flux decline was about 44% and 10% with NaOCl and ClO2, respectively. Both disinfectants were found to be effective, however use of ClO2 is recommended because it is less damaging the membrane, yet more effective in enhancing the performance.
Collapse
Affiliation(s)
- Youjin Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Paula Jungwon Choi
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
19
|
Chen Y, Zhang B, Zhang P, Shi G, Liang H, Cai W, Gao J, Zhuang S, Luo K, Zhu J, Chen C, Ma K, Chen J, Hu C, Xing X. Synergistic effects of trace sulfadiazine and corrosion scales on disinfection by-product formation in bulk water of cast iron pipe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122866. [PMID: 37926409 DOI: 10.1016/j.envpol.2023.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The effects of trace sulfadiazine (SDZ) and cast-iron corrosion scales on the disinfection by-product (DBP) formation in drinking water distribution systems (DWDSs) were investigated. The results show that under the synergistic effect of trace SDZ (10 μg/L) and magnetite (Fe3O4), higher DBP concentration occurred in the bulk water with the transmission and distribution of the drinking water. Microbial metabolism-related substances, one of the important DBP precursors, increased under the SDZ/Fe3O4 condition. It was found that Fe3O4 induced a faster microbial extracellular electron transport (EET) pathway, resulting in a higher microbial regrowth activity. On the other hand, the rate of chlorine consumption was quite high, and the enhanced microbial EET based on Fe3O4 eliminated the need for microorganisms to secrete excessive extracellular polymeric substances (EPS). More importantly, EPS could be continuously secreted due to the higher microbial activity. Finally, high reactivity between EPS and chlorine disinfectant resulted in the continuous formation of DBPs, higher chlorine consumption, and lower EPS content. Therefore, more attention should be paid to the trace antibiotics polluted water sources and cast-iron corrosion scale composition in the future. This study reveals the synergistic effects of trace antibiotics and corrosion scales on the DBP formation in DWDSs, which has important theoretical significance for the DBP control of tap water.
Collapse
Affiliation(s)
- Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Boxuan Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pojun Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Guogui Shi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Hao Liang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Wu Cai
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jingyu Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Sumin Zhuang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Kaiyin Luo
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiaqi Zhu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd, Guangzhou, 510000, China
| | - Kunyu Ma
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd, Guangzhou, 510000, China
| | - Jinrong Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd, Guangzhou, 510000, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Qin R, Dai X, Xian Y, Zhou Y, Su C, Chen Z, Lu X, Ai C, Lu Y. Assessing the effect of sulfate on the anaerobic oxidation of methane coupled with Cr(VI) bioreduction by sludge characteristic and metagenomics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119398. [PMID: 37897905 DOI: 10.1016/j.jenvman.2023.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Methane-driven hexavalent chromium (Cr(VI)) reduction in a microbial fuel cell (MFC) has attracted much attention. However, whether the presence of sulfate (SO42-) affects the reduction of Cr(VI) is still lacking in systematic studies. This study involved constructing a MFC-granular sludge (MFC-GS) coupling system with dissolved methane (CH4) was used as the electron donor to investigate the effect of SO42- on Cr(VI) bioreduction, sludge characteristic, and functional metabolic mechanisms. When the SO42- concentration was 10 mg/L, the average removal rate of Cr(VI) in the anaerobic stage decreased to the lowest value (22.25 ± 2.06%). Adding 10 mg/L SO42- obviously inhibited the electrochemical performance of the system. Increasing SO42- concentration weakened the fluorescence peaks of tryptophan and aromatic proteins in the extracellular polymeric substance of sludge. Under the influence of SO42-, Methanothrix_soehngenii decreased from 14.44% to 5.89%. The relative abundance of methane metabolic was down-regulated from 1.47% to 0.98%, while the sulfur metabolic was up-regulated from 0.09% to 0.21% when SO42- was added. These findings provided some reference for the treatment of wastewater containing Cr(VI) and SO42- complex pollutants in the MFC-GS coupling system.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xiaoyun Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chenbing Ai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
21
|
Bai Y, Ji B. Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater. World J Microbiol Biotechnol 2023; 40:40. [PMID: 38071273 DOI: 10.1007/s11274-023-03819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
22
|
Wang J, Chen W, Wang T, Reid E, Krall C, Kim J, Zhang T, Xie X, Huang CH. Bacteria and Virus Inactivation: Relative Efficacy and Mechanisms of Peroxyacids and Chlor(am)ine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18710-18721. [PMID: 36995048 PMCID: PMC10690719 DOI: 10.1021/acs.est.2c09824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Peroxyacids (POAs) are a promising alternative to chlorine for reducing the formation of disinfection byproducts. However, their capacity for microbial inactivation and mechanisms of action require further investigation. We evaluated the efficacy of three POAs (performic acid (PFA), peracetic acid (PAA), and perpropionic acid (PPA)) and chlor(am)ine for inactivation of four representative microorganisms (Escherichia coli (Gram-negative bacteria), Staphylococcus epidermidis (Gram-positive bacteria), MS2 bacteriophage (nonenveloped virus), and Φ6 (enveloped virus)) and for reaction rates with biomolecules (amino acids and nucleotides). Bacterial inactivation efficacy (in anaerobic membrane bioreactor (AnMBR) effluent) followed the order of PFA > chlorine > PAA ≈ PPA. Fluorescence microscopic analysis indicated that free chlorine induced surface damage and cell lysis rapidly, whereas POAs led to intracellular oxidative stress through penetrating the intact cell membrane. However, POAs (50 μM) were less effective than chlorine at inactivating viruses, achieving only ∼1-log PFU removal for MS2 and Φ6 after 30 min of reaction in phosphate buffer without genome damage. Results suggest that POAs' unique interaction with bacteria and ineffective viral inactivation could be attributed to their selectivity toward cysteine and methionine through oxygen-transfer reactions and limited reactivity for other biomolecules. These mechanistic insights could inform the application of POAs in water and wastewater treatment.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wensi Chen
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elliot Reid
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline Krall
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tianqi Zhang
- School
of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique FÉdÉrale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xing Xie
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Wang Y, Ning W, Li S, Gao C, Cui R, Guo W, Chang JS, Ho SH. Metabonomics analysis of microalga Scenedesmus obliquus under ciprofloxacin stress. ENVIRONMENTAL RESEARCH 2023; 237:116974. [PMID: 37625537 DOI: 10.1016/j.envres.2023.116974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Weihao Ning
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Changfei Gao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Rong Cui
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, China; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
24
|
Gao Y, Guo T, Shi W, Lu C, Song Y, Hou Y, Liu W, Guo J. Multifaceted synergistic facilitation mechanism of conductive polymers in promoting selenite bioreduction and biological detoxification. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132470. [PMID: 37683341 DOI: 10.1016/j.jhazmat.2023.132470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Here, polypyrrole (PPY) was first used to the bioreduction of toxic selenite, while the acceleration effect and mechanism were explored. Experiment results suggested that PPY could enhance the selenite bioreduction from 0.42 to 1.04 mg/(L·h). The tests of electrochemical analysis and cytochrome c (cyt-c) content confirmed that PPY promoted the intracellular/intracellular electron transfer of Shewanella oneidensis·MR-1 in selenite bioreduction process. The enhancement of metabolic activity by PPY contributed to biological detoxification, which was manifested in the increased extracellular polymeric substances (EPS), adenosine triphosphate (ATP), electron transfer system activity (ETSA), membrane permeability and enzyme activity. Transcriptome analysis of DEGs, KEGG pathway enrichment and GO functional classification verified that the environmental adaptability of Shewanella oneidensis·MR-1 was enhanced with the addition of PPY. The transmission electron microscopy (TEM) images indicated that PPY promoted the biosynthesis of selenium nanoparticles (SeNPs), which was beneficial to reduce cell damage. Combined with the above results, a multifaceted synergistic facilitation mechanism based on "conductive cross-linking network" was elaborated from electron transfer, microbial metabolism and environmental adaptability. This study shed light the effect of conductive polymers (CPs) on selenite bioreduction and provided new insights into the bioremediation of toxic pollutants.
Collapse
Affiliation(s)
- Ying Gao
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Wenda Shi
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Caicai Lu
- Experimental and practical innovation education center, Beijing Normal University, Jinfeng Road 18, Zhuhai 519000, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Wenli Liu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
25
|
Zhang W, Li Q, Yang Y, Yu Y, Li S, Liu J, Xiao Y, Wen Y, Wang Q, Lei N, Gu P. Joint toxicity mechanisms of perfluorooctanoic acid and sulfadiazine on submerged macrophytes and periphytic biofilms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131910. [PMID: 37390681 DOI: 10.1016/j.jhazmat.2023.131910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Hazardous chemicals, such as perfluoroalkyl substances (PFASs) and antibiotics, coexist in aquatic environments and pose a severe threat to aquatic organisms. However, research into the toxicity of these pollutants on submerged macrophytes and their periphyton is still limited. To assess their combined toxicity, Vallisneria natans (V. natans) was exposed to perfluorooctanoic acid (PFOA) and sulfadiazine (SD) at environmental concentrations. Photosynthetic parameters such as chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were lower in the SD exposure group, indicating that SD had a significant effect on the photosynthesis of aquatic plants. Single and combined exposures effectively induced antioxidant responses, with increases in superoxide dismutase, peroxidase activities, and ribulose-1,5-bisphosphate carboxylase concentrations, as well as malondialdehyde content. Accordingly, antagonistic toxicity was assessed between PFOA and SD. Furthermore, metabolomics revealed that V. natans improved stress tolerance through changes in enoic acid, palmitic acid, and palmitoleoyloxymyristic acid related to the fatty acid metabolism pathway responding to the coexisting pollutants. Additionally, PFOA and SD in combination induced more effects on the microbial community of biofilm. The alternation of α- and β-D-glucopyranose polysaccharides and the increased content of autoinducer peptides and N-acylated homoserine lactones indicated that PFOA and SD changed the structure and function of biofilm. These investigations provide a broader perspective and comprehensive analysis of the responses of aquatic plants and periphyton biofilms to PFAS and antibiotics in the environment.
Collapse
Affiliation(s)
- Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yangjinzhi Yu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuang Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yunxing Xiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yuelin Wen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | | | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
26
|
Peng SM, Luo HC, Wang ZH, Yang SS, Guo WQ, Ren NQ. Enhanced in-situ sludge reduction of the side-stream process via employing micro-aerobic approach in both mainstream and side-stream. BIORESOURCE TECHNOLOGY 2023; 377:128914. [PMID: 36940881 DOI: 10.1016/j.biortech.2023.128914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Side-stream reactor (SSR), as an in-situ sludge reduction process with high sludge reduction efficiency (SRE) and less negative impact on effluent, has been widely researched. In order to reduce cost and promote large-scale application, the anaerobic/anoxic/micro-aerobic/oxic bioreactor coupled with micro-aerobic SSR (AAMOM) was used to investigate nutrient removal and SRE under short hydraulic retention time (HRT) of SSR. When HRT of SSR was 4 h, AAMOM system achieved 30.41% SRE, while maintaining carbon and nitrogen removal efficiency. Micro-aerobic in mainstream accelerated the hydrolysis of particulate organic matter (POM) and promoted denitrification. Micro-aerobic in side-stream increased cell lysis and ATP dissipation, thus increasing SRE. Microbial community structure indicated that the cooperative interactions among hydrolytic, slow growing, predatory and fermentation bacteria played key roles in improving SRE. This study confirmed that SSR coupled micro-aerobic was a promising and practical process, which could benefit nitrogen removal and sludge reduction in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Si-Mai Peng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hai-Chao Luo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
27
|
Zhou Y, Li X, Chen J, Wang F. Treatment of antibiotic-containing wastewater with self-suspended algae-bacteria symbiotic particles: Removal performance and reciprocal mechanism. CHEMOSPHERE 2023; 323:138240. [PMID: 36841454 DOI: 10.1016/j.chemosphere.2023.138240] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants such as antibiotics in wastewater have posed a challenge on conventional biological treatment processes. Algae-bacteria symbiotic mode could improve the performance of biological treatment processes. Self-suspended algae-bacteria symbiotic particles (ABSPs) were prepared with Chlorella vulgaris and Bacillus subtilis using the sol-gel method and hollow glass microspheres in this study. The removal effect of nitrogen and phosphorus as well as the feedback mechanism of ABSPs under tetracycline stress were investigated through three-cycles wastewater treatment experiments. The antioxidant enzyme activity and phycosphere extracellular polymeric substance (EPS) content were identified as well. The results indicated that the removal rates of NH4+-N, TP, COD, and tetracycline in the ABSPs group finally reached 96.18%, 95.44%, 81.36%, and 74.20%, respectively, which were higher than the single algae group apparently. The phycosphere EPS content increased by 20.41% and algae cell structure maintained integrity in ABSPs group as compared with that in single algae group. This study demonstrates that the self-suspended ABSPs can improve contaminants removal performance and alleviate the antioxidant stress response of algae through algal-bacterial reciprocity mechanism.
Collapse
Affiliation(s)
- Yuhang Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinjie Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaqi Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
28
|
Liu J, Xia L, Xu Z, Wu W, Gao X, Lin L. Applying lysozyme, alkaline protease, and sodium hypochlorite to reduce bioclogging during managed aquifer recharge: A laboratory study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117371. [PMID: 36739770 DOI: 10.1016/j.jenvman.2023.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Alleviating bacterial-induced clogging is of great importance to improve the efficiency of managed aquifer recharge (MAR). Enzymes (lysozyme and alkaline protease) and sodium hypochlorite (NaClO) are common biological and chemical reagents for inhibiting bacterial growth and activity. To investigate the applicability of these reagents to reduce bioclogging, percolation experiments were performed to simulate a weak alkaline recharge water infiltration through laboratory-scale sand columns, with adding 10 mg/L lysozyme, alkaline protease, and NaClO, respectively. The results showed that, with the addition of lysozyme, alkaline protease, and NaClO, the average clogging rates (the reduced percentages of relative saturated hydraulic conductivity of the sand columns per hour during the percolation experiments) were 0.53%/h, 0.32%/h and 0.06%/h, respectively, which were much lower than that in the control group (0.99%/h). This implied that bioclogging could be alleviated to some extent following the treatments. For further analyzing the mechanisms of the regents on alleviating bioclogging, the bacterial cell amount and extracellular polymeric substances (EPS) concentration were also measured to study the effects of lysozyme, alkaline protease, and NaClO on bacterial growth and EPS secretion. Lysozyme and alkaline protease could disintegrate bacterial EPS by hydrolyzing polysaccharides and proteins, respectively, while they had little effect on the bacterial cell amount. The addition of NaClO significantly decreased the bacterial cell amount (P < 0.05) and thus greatly alleviated bioclogging. Although the lowest average clogging rate was achieved in the NaClO group, it can generate disinfection by-products that are potentially harmful to the environment and human health. Therefore, the biological-based method, i.e., enzyme treatment, could be a promising option for bioclogging control. Our results provide insights for understanding the mechanisms of lysozyme, alkaline protease, and NaClO to alleviate bioclogging, which is of great importance for addressing the clogging problem during MAR activities and achieving groundwater resources sustainable utilization.
Collapse
Affiliation(s)
- Jinhui Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Lu Xia
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zilin Xu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Wenli Wu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaobing Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Lei Lin
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
29
|
Wang A, Hou J, Tao C, Miao L, Wu J, Xing B. Performance Enhancement of Biogenetic Sulfidated Zero-Valent Iron for Trichloroethylene Degradation: Role of Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3323-3333. [PMID: 36729963 DOI: 10.1021/acs.est.2c07289] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical sulfidation has been considered as an effective strategy to improve the reactivity of zero-valent iron (S-ZVI). However, sulfidation is a widespread biogeochemical process in nature, which inspired us to explore the biogenetic sulfidation of ZVI (BS-ZVI) with sulfate-reducing bacteria (SRB). BS-ZVI could degrade 96.3% of trichloroethylene (TCE) to acetylene, ethene, ethane, and dichloroethene, comparable to S-ZVI (97.0%) with the same S/Fe ratio (i.e., 0.1). However, S-ZVI (0.21 d-1) exhibited a faster degradation rate than BS-ZVI (0.17 d-1) based on pseudo-first-order kinetic fitting due to extracellular polymeric substances (EPSs) excreted from SRB. Organic components of EPSs, including polysaccharides, humic acid-like substances, and proteins in BS-ZVI, were detected with 3D-EEM spectroscopy and FT-IR analysis. The hemiacetal groups and redox-activated protein in EPS did not affect TCE degradation, while the acetylation degree of EPS increased with the concentration of ZVI and S/Fe, thus inhibiting the TCE degradation. A low concentration of HA-like substances attached to BS-ZVI materials promoted electron transport. However, EPS formed a protective layer on the surface of BS-ZVI materials, reducing its TCE reaction rate. Overall, this study showed a comparable performance enhancement of ZVI toward TCE degradation through biogenetic sulfidation and provided a new alternative method for the sulfidation of ZVI.
Collapse
Affiliation(s)
- Anqi Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - ChunMei Tao
- Lianyungang Water Conservancy Bureau (Director of Engineering Technology Center), 9 Lingzhou East Road, Haizhou District, Lianyungang22206, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts01003, United States
| |
Collapse
|
30
|
Liu HH, Yang L, Guo LK, Tu LX, Li XT, Wang J, Ren YX. The nutrient removal and tolerance mechanism of a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 under metal oxide nanoparticles stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28227-28237. [PMID: 36399297 DOI: 10.1007/s11356-022-24055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of metal oxide nanoparticles (NPs) in wastewater treatment plants (WWTPs) has raised great concerns about their adverse impacts on nitrification performance. In this study, a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 showed strong resistance against TiO2 and NiO NPs. Under 5-50 mg/L NP stress, cell viability was still normal, and the final nutrient removal rates, always higher than 80%, were slightly inhibited. Correspondingly, the PO43--P removal rates were almost the same as those observed in the control test. Although the enzyme assay demonstrated ammonia monooxygenase and hydroxylamine oxidoreductase activities markedly decreased caused by increased reactive oxygen species (ROS) level under 50 mg/L NPs stress. The total antioxidant capability of NP5 could eliminate excess ROS to maintain a balance between oxidants and antioxidants. Besides, in response to the escalating burden of NPs, strain NP5 tended to secrete more extracellular polymeric substances (EPS), which could protect cell from being damaged by binding to ions and coating. Thus, the strong NP resistance of NP5 would help to overcome the vulnerability of the nitrification process in WWTPs.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li-Xin Tu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiao-Tong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jia Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
31
|
Zhao W, You J, Yin S, Yang H, He S, Feng L, Li J, Zhao Q, Wei L. Extracellular polymeric substances-antibiotics interaction in activated sludge: A review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100212. [PMID: 36425126 PMCID: PMC9678949 DOI: 10.1016/j.ese.2022.100212] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 05/09/2023]
Abstract
Antibiotics, the most frequently prescribed drugs, have been widely applied to prevent or cure human and veterinary diseases and have undoubtedly led to massive releases into sewer networks and wastewater treatment systems, a hotspot where the occurrence and transformation of antibiotic resistance take place. Extracellular polymeric substances (EPS), biopolymers secreted via microbial activity, play an important role in cell adhesion, nutrient retention, and toxicity resistance. However, the potential roles of sludge EPS related to the resistance and removal of antibiotics are still unclear. This work summarizes the composition and physicochemical characteristics of state-of-the-art microbial EPS, highlights the critical role of EPS in antibiotics removal, evaluates their defense performances under different antibiotics exposures, and analyzes the typical factors that could affect the sorption and biotransformation behavior of antibiotics. Next, interactions between microbial EPS and antibiotic resistance genes are analyzed. Future perspectives, especially the engineering application of microbial EPS for antibiotics toxicity detection and defense, are also emphatically stressed.
Collapse
|
32
|
Zhang X, Ma J, Guo Y, Luo Y, Li F, Wang Z. Induced mazEF-mediated programmed cell death contributes to antibiofouling properties of quaternary ammonium compounds modified membranes. WATER RESEARCH 2022; 227:119319. [PMID: 36368087 DOI: 10.1016/j.watres.2022.119319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Functionalized antibiofouling membranes have attracted increasing attention in water and wastewater treatment. Among them, contact-killing antibiofouling membranes deliver a long-lasting effect with no leaching or release, thus providing distinctive advantages. However, the antibiofouling mechanism especially in the vicinity of the membrane surface remains unclear. Herein, we demonstrate that mazEF-mediated programmed cell death (PCD) is critical for the antibiofouling behaviors of quaternary ammonium compounds modified membranes (QM). The viability of wild type Escherichia coli (WT E. coli) upon exposure to QM for 1 h was decreased dramatically (31.5 ± 1.4% of the control). In contrast, the bacterial activity of E. coli with the knockout of mazEF gene (KO E. coli) largely remained (85.8 ± 5.2%). Through addition of quorum sensing factor, i.e., extracellular death factor (EDF), the antibacterial activity was significantly enhanced in a dilute culture, indicating that the density-dependent bacterial communication played an important role in the mazEF-mediated PCD system in biofouling control. Long-term study further showed that QM exhibited a better antibiofouling performance to treat feedwater containing WT E. coli, especially when EDF was dosed. Results of this study suggested that the bacteria on the membrane surface subject to contact killing could modulate the population growth in the vicinity via quorum-sensing mazEF-mediated PCD, paving a way to develop efficient antibiofouling materials based on contact-killing scenarios.
Collapse
Affiliation(s)
- Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Textile pollution controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Guo
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yi Luo
- College of Environmental Science and Engineering, Textile pollution controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Fang Li
- College of Environmental Science and Engineering, Textile pollution controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
33
|
He H, Choi Y, Wu SJ, Fang X, Anderson AK, Liou SY, Roberts MC, Lee Y, Dodd MC. Application of Nucleotide-Based Kinetic Modeling Approaches to Predict Antibiotic Resistance Gene Degradation during UV- and Chlorine-Based Wastewater Disinfection Processes: From Bench- to Full-Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15141-15155. [PMID: 36098629 DOI: 10.1021/acs.est.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorine─with the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to ∼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided ∼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.
Collapse
Affiliation(s)
- Huan He
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sean J Wu
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Xuzhi Fang
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Annika K Anderson
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sin-Yi Liou
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| |
Collapse
|
34
|
Qiao Z, Guo Y, Wang Z, Hu G. A chemically enhanced backwash model for predicting the instantaneous transmembrane pressure of flat sheet membranes in constant flow rate mode. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Wang Z, Chu Y, Chang H, Xie P, Zhang C, Li F, Ho SH. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects. CHEMOSPHERE 2022; 307:136117. [PMID: 35998727 DOI: 10.1016/j.chemosphere.2022.136117] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics abuse has triggered a growing environmental problem, posing a major threat to both ecosystem and human health. Unfortunately, there are still several shortcomings to current antibiotics removal technologies. Microalgae-bacteria consortia have been shown to be a promising antibiotics treatment technology owing to advantages of high antibiotics removal efficiency, low operational cost, and carbon emission reduction. This review aims to introduce the removal mechanisms, influencing factors, and future research perspectives for using microalgae-bacteria consortia to remove antibiotics. The interaction mechanisms between microalgae and bacteria are comprehensively revealed, and their exclusive advantages have been summarized in a "Trilogy" strategy, including "reinforced physical contact", "upgraded substance utilization along with antibiotics degradation", and "robust biological regulation". What's more, the relationship between different interaction mechanisms is emphatically analyzed. The important influencing factors, including concentration and classes of antibiotics, environmental conditions, and operational parameters, of antibiotics removal were also assessed. Three innovative treatment systems (microalgae-bacteria fuel cells (MBFCs), microalgae-bacteria membrane photobioreactors (MB-MPBRs), and microalgae-bacteria granular sludge (MBGS)) along with three advanced techniques (metabolic engineering, machine learning, and molecular docking and dynamics) are then introduced. In addition, concrete implementing schemes of the above advanced techniques are also provided. Finally, the current challenges and future research directions in using microalgae-bacteria consortia to remove antibiotics have been summarized. Overall, this review addresses the current state of microalgae-bacteria consortia for antibiotics treatment and provides corresponding recommendations for enhancing antibiotics removal efficiency.
Collapse
Affiliation(s)
- Zeyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
36
|
Zhang Z, Zhang H, Al-Gabr HM, Jin H, Zhang K. Performances and enhanced mechanisms of nitrogen removal in a submerged membrane bioreactor coupled sponge iron system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115505. [PMID: 35753132 DOI: 10.1016/j.jenvman.2022.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Sponge iron is a potential material for nitrogen removal, but lack of a study about nitrogen removal in a membrane bioreactor (MBR) coupled with sponge iron. The performances and mechanisms of nitrogen removal of SI-MBR were investigated and compared it with that in GAC-MBR. The results showed that the average rate of organic matter removal in the SI-MBR was 92.74%, which was higher than that in the GAC-MBR (87.48%). And the average effluent NO2--N and NO3--N concentration in the SI-MBR (0.02 mg/L and 3.73 mg/L) was lower than that in the GAC-MBR (0.05 mg/L and 7.51 mg/L). Meanwhile, the highest nitrification rate and denitrification rate was respectively 3.544 ± 0.25 mg/(g VSS·h) and 6.643 ± 0.2 mg/(g VSS·h) in the SI-MBR, which was higher than that (3.094 ± 0.25 mg/(g VSS·h) and (6.376 ± 0.2 mg/(g VSS·h)) in the GAC-MBR. Additionally, the bacterial activities (e.g., DHA activity and respiratory activity) were obviously enhanced through the iron ion from sponge iron. The bacterial community in the SI-MBR system was more richness and diverse than that in the GAC-MBR. Ultimately, the mechanisms of enhanced biological nitrogen removal with sponge iron in MBR were analyzed. On the surface of sponge iron, the DIRB and FOB could use the iron ion from sponge iron as the electron transfer to improve the nitrogen and organic removal. With sponge iron, there is not only the nitrification bacteria and heterotrophic denitrifying microorganism enriched, but also the autotrophic denitrifying bacteria abounded obviously. The autotrophic denitrifying bacteria could use Fe(II) as an electron donor to achieve denitrification and enhance the nitrogen removal.
Collapse
Affiliation(s)
- Zhuowei Zhang
- NingboTech University, 315000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | |
Collapse
|
37
|
Li Y, Wang H, Xu C, Sun SH, Xiao K, Huang X. Two strategies of stubborn biofouling strains surviving from NaClO membrane cleaning: EPS shielding and/or quorum sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156421. [PMID: 35660590 DOI: 10.1016/j.scitotenv.2022.156421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The declined performance of repeated chemically-enhanced-backwashing (CEB) seriously hampered the sustainable operation of membrane bioreactor (MBR) in long-term, and could be partially attributed to the strengthened anti-cleaning properties of residual stubborn microbes. Although plenty of research has been done towards either the model strains or the whole post-CEB microbial community, little was known about the resisting behavior of practical stubborn strains when confronting oxidative stresses induced by NaClO. Hence, this study isolated 21 strains from samples in a large-scale MBR plant with routine CEB treatment. To unravel how they survive and affect membrane fouling, their anti-oxidation ability, fouling potential and quorum sensing (QS) effect before and after NaClO stimuli were evaluated. The composition and molecular weight distribution of extracellular polymeric substance (EPS) were also investigated to understand their roles during the anti-CEB process. It was found that typical stubborn strains tended to secrete more EPS as protective shields, where polysaccharides (especially the ones >1 kDa) made major contribution. However, sometimes EPS could not well resist the stimuli, with consequent low survival rate and high intracellular ROS level. Under such circumstances, stubborn strains would rather choose to be sensitive with surged QS level and quick population regrowth to maintain vitality under the oxidative stresses. Both strategies aggravated biofouling and eventually enhanced the anti-cleaning properties of biofilm.
Collapse
Affiliation(s)
- Yufang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing OriginWater Membrane Technology Co., Ltd., Product and Technology Center, Beijing 101407, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shih-Han Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Xu X, Cao R, Li K, Wan Q, Wu G, Lin Y, Huang T, Wen G. The protective role and mechanism of melanin for Aspergillus niger and Aspergillus flavus against chlorine-based disinfectants. WATER RESEARCH 2022; 223:119039. [PMID: 36084430 DOI: 10.1016/j.watres.2022.119039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Melanin is a critical component of fungal cell wall which protect fungi from adverse environmental tress. However, the role of melanin for fungi during the disinfection with chlorine-based disinfectants has not been elucidated. The results showed that the inactivation rate constants of Aspergillus niger with chlorine and chlorine dioxide decreased from 0.08 to 2.10 min-1 to 0 after addition of 0.32 mg/L melanin. The results indicated addition of extracted fungal melanin inhibited the inactivation efficiency of chlorine and chlorine dioxide. In contrast, the k of Aspergillus niger after inactivation with monochloramine ranged from 1.50 to 1.78 min-1 after addition of melanin which indicated effect of melanin on the inactivation efficiency of monochloramine was negligible. In addition, the extracted fungal melanin exhibited high reactivity with chlorine and chlorine dioxide but very low reactivity with monochloramine. The different inactivation mechanisms of chlorine-based disinfectants and different reactivity of melanin with chlorine-based disinfectants led to the different protective mechanism of melanin for A. niger and A. flavus spores against disinfection with chlorine-based disinfectants. The chlorine and chlorine dioxide appeared to react with functional groups of melanin in cell wall of spores, so sacrificial reactions between melanin and disinfectants decreased the available disinfectants and limited the diffusion of disinfectants to the reactive site on cell membrane, which led to the decrease of the disinfection efficiency for chlorine and chlorine dioxide. The monochloramine could penetrate into cell and damage DNA without the effect of melanin due to its strong penetration and low reactivity with melanin. Our results systematically demonstrate the protective roles of melanin on the fungal spores against chlorine-based disinfectants and the underlying mechanisms in resisting the environmental stress caused by chlorine-based disinfectants, which provides important implications for the control of fungi, especially for fungi producing melanin.
Collapse
Affiliation(s)
- Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhao Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architectur and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
39
|
Zhang Y, Yang G, Lu C, Xu H, Wu J, Zhou Z, Song Y, Guo J. Insight into the enhancing mechanism of silica nanoparticles on denitrification: Effect on electron transfer and microbial metabolism. CHEMOSPHERE 2022; 300:134510. [PMID: 35398075 DOI: 10.1016/j.chemosphere.2022.134510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Although silica nanoparticles (SiNPs) are produced in large numbers for industrial manufacturing and engineering applications, the effect of SiNPs on biotransformation in the environment is still not clear. In the current study, the effect of SiNPs in enhancing denitrification was investigated, and its mechanism was explored from the perspectives of electron transfer, microbial metabolism and bacterial community structure for the first time. Batch experiments showed that a concentration of SiNPs ranging from 0.05 to 5 g/L enhanced the bioreduction of nitrate. The mechanism study showed that SiNPs accelerated the extracellular electron transfer in the denitrification process due to their electron donating capacity, bonding action, and the secretion of more electron shuttles. During the denitrification process, SiNPs promoted metabolic activity, which mainly consists of promoting enzyme activities and electron transport system activity; these metabolic activity assays were positively correlated with SiNPs according to the structural equation modeling analysis. Moreover, SiNPs affected the composition of the microbial community, including denitrifying functional bacteria, silicon-activating bacteria and electron transfer active bacteria exhibiting a synergistic symbiosis. In addition, it was shown, by investigating two functional group-modified SiNPs, that the carboxyl modified SiNPs had the potential to be applied in nitrogen removal due to their performance and non-toxicity. This study presented a better insight into the role of SiNPs in biological transformation.
Collapse
Affiliation(s)
- Ying Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Ge Yang
- Zhuhai Orbita Aerospace Science & Technology Co., LTD, Baisha Road 1, Zhuhai, 519000, China
| | - Caicai Lu
- Experimental and Practical Innovation Education Center, Beijing Normal University, Jinfeng Road 18, Zhuhai, 519000, China; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Hong Xu
- Zhuhai Orbita Aerospace Science & Technology Co., LTD, Baisha Road 1, Zhuhai, 519000, China
| | - Jiaqi Wu
- Zhuhai Orbita Aerospace Science & Technology Co., LTD, Baisha Road 1, Zhuhai, 519000, China
| | - Ziyuan Zhou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Jianbo Guo
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
40
|
Zhao N, Liu Y, Zhang Y, Li Z. Pyrogenic carbon facilitated microbial extracellular electron transfer in electrogenic granular sludge via geobattery mechanism. WATER RESEARCH 2022; 220:118618. [PMID: 35609427 DOI: 10.1016/j.watres.2022.118618] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Electroactive pyrogenic carbon (PC) is an intriguing candidate for realizing the ambitious goals of large-scale applications of microbial electrochemical technologies (METs). In this study, PC was employed to promote the extracellular electron transfer (EET) within the electrogenic granular sludge (EGS) by acting as an electron conduit. The pecan shell-derived PC prepared at three temperatures (600, 800, and 1000 ˚C) contained rich oxygenated-functional moieties (mainly quinone) on the surface, endowing a good electron transfer capacity (EEC). The maximum current density (Jmax) of EGS with PC amendment outperformed the control EGS without PC amendment, i.e., 100-132 times higher than Jamx of EGS in the absence of PC. Among various pyrolysis temperatures, the PC derived from 600 ˚C produced the highest Jmax (0.40 A/ m2), 0.67-times, and 0.33-times higher than that of PC derived from 800 and 1000 ˚C, respectively. Furthermore, more polysaccharides were secreted in extracellular polymeric substance with PC amendments. The microbial community analysis demonstrated that the PC favored the growth of electroactive bacteria over methanogens. The metabolic pathway revealed that PC induced more functional enzymes in the quinone biosynthesis and cytochrome c and heme synthesis, resulting in an enhanced EET. The EEC of PC was responsible for the EET enhancement effect via PC acting as a geobattery to wire up the EGS and electrodes. Overall, this study pinpoints the finding of PC role in a mixed electroactive biofilm and provides a wide scenario of the PC applications in MET at large scales.
Collapse
Affiliation(s)
- Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuhang Liu
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
41
|
Luo X, Zhou X, Peng C, Shao P, Wei F, Li S, Liu T, Yang L, Ding L, Luo X. Bioreduction performance of Cr(VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128822. [PMID: 35390619 DOI: 10.1016/j.jhazmat.2022.128822] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Extracellular polymeric substances (EPS) have exhibited promising advantages in mitigating heavy metal contamination, e.g., single-valent silver (Ag(I)), trivalent gold (Au(III)), and hexavalent chromium (Cr(VI)). However, knowledge of the specific substrate in EPSs that supports Cr(VI) reduction has remained elusive. Here, we isolated a novel Cr(VI)-reducing strain with self-mediating properties in an aquatic environment with various pH values to investigate the mechanisms. After analysis by a batch assay coupled with X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) spectroscopic techniques, it was found that Cr(VI) was reduced by the strain and soluble-EPS (S-EPS), and then, organo-trivalent chromium (organo-Cr(III)) was successfully formed. In addition, compared with other components of the strain, the strain and S-EPS completely removed Cr(VI), and the S-EPS exhibited a positive effect on Cr(VI) reduction with a strong monotonic correlation (R2 = 0.999, p = 9.03 × 10-5), indicating that the reduction is an EPS-dependent process. Specifically, the Cr(VI) reduction efficiency was enhanced to 48.85% and 99.4% after EPS and EPS plus tryptophan were added; their respective efficiencies were 3.94 and 8.02 times higher than that of the control assay in which the reductant was depleted. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed that the tryptophan concentration concomitantly decreased by 61.54%. These findings highlighted the importance of S-EPS and tryptophan and improved our understanding of EPS for Cr(VI) reduction, which might provide a novel strategy for decontaminating targeted heavy metals in future applications.
Collapse
Affiliation(s)
- Xianxin Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaoyu Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chengyi Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Feng Wei
- Jiangxi Hongcheng Environment Co., Ltd, Nanchang 330038, PR China
| | - Shujing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
42
|
Garcia Mendez DF, Rengifo Herrera JA, Sanabria J, Wist J. Analysis of the Metabolic Response of Planktonic Cells and Biofilms of Klebsiella pneumoniae to Sublethal Disinfection with Sodium Hypochlorite Measured by NMR. Microorganisms 2022; 10:1323. [PMID: 35889041 PMCID: PMC9323045 DOI: 10.3390/microorganisms10071323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a pathogenic agent able to form biofilms on water storage tanks and pipe walls. This opportunistic pathogen can generate a thick layer as one of its essential virulence factors, enabling the bacteria to survive disinfection processes and thus develop drug resistance. Understanding the metabolic differences between biofilm and planktonic cells of the K. pneumoniae response to NaClO is key to developing strategies to control its spread. In this study, we performed an NMR metabolic profile analysis to compare the response to a sublethal concentration of sodium hypochlorite of biofilm and planktonic cells of K. pneumoniae cultured inside silicone tubing. Metabolic profiles revealed changes in the metabolism of planktonic cells after a contact time of 10 min with 7 mg L-1 of sodium hypochlorite. A decrease in the production of metabolites such as lactate, acetate, ethanol, and succinate in this cell type was observed, thus indicating a disruption of glucose intake. In contrast, the biofilms displayed a high metabolic heterogeneity, and the treatment did not affect their metabolic signature.
Collapse
Affiliation(s)
- David Felipe Garcia Mendez
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| | - Julián Andrés Rengifo Herrera
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J.J. Ronco” (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, UNLP-CCT La Plata, CONICET, 47 No. 257, La Plata 1900, Argentina;
| | - Janeth Sanabria
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
- Environmental Microbiology and Biotechnology Laboratory, Engineering Faculty, Engineering School of Environmental & Natural Resources, Universidad del Valle—Meléndez Campus, Cali 13 # 100-00, Colombia
| | - Julien Wist
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
43
|
Zhang X, Yu T, Liu C, Fan X, Wu Y, Wang M, Zhao C, Chen Y. Cysteine reduced the inhibition of CO 2 on heterotrophic denitrification: Restoring redox balance, facilitating iron acquisition and carbon metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154173. [PMID: 35240182 DOI: 10.1016/j.scitotenv.2022.154173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The direct effect of CO2 on denitrification has attracted great attention currently. Our previous studies have confirmed that CO2 inhibited heterotrophic denitrification and caused high nitrite accumulation and nitrous oxide emission. Cysteine is a widely reported bio-accelerator; however, its effect on denitrification under CO2 exposure remains unknown. In this paper, the effect of cysteine on heterotrophic denitrification and its mechanisms under CO2 exposure were explored with the model denitrifier, Paracoccus denitrificans. We observed that total nitrogen removal increased from 17.9% to 90.4% as cysteine concentration increased from 0 to 50 μM, probably due to restoration of cell growth and viability. Further study showed that cysteine reduced the inhibition of CO2 on denitrification due to multiple positive influences: (1) regulating glutathione metabolism to eliminate intracellular reactive nitrogen species (RNS), while reducing extracellular polymeric substances (EPS) levels and altering its composition, ultimately restoring cell membrane integrity (2) facilitating the transport and metabolism of carbon sources to increase NADH production, and (3) increasing intracellular iron and up-regulating the expression of key iron transporters genes (AfuA, AfuB, ExbB and TonB) to restore the transport and consumption of electron. This study suggests that cysteine can be added to recover heterotrophic denitrification performance after inhibition by elevated CO2.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyun Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
44
|
Wang Y, Li J, Lei Y, Li X, Nagarajan D, Lee DJ, Chang JS. Bioremediation of sulfonamides by a microalgae-bacteria consortium - Analysis of pollutants removal efficiency, cellular composition, and bacterial community. BIORESOURCE TECHNOLOGY 2022; 351:126964. [PMID: 35272036 DOI: 10.1016/j.biortech.2022.126964] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics in wastewaters (e.g., sulfonamides (SAs)) are not effectively removed by the conventional bacterial processes. In this study, a microalgae (Scenedesmus obliquus)-based process was evaluated for the removal of SAs. The maximum removal efficiency of sulfadiazine (SDZ) and sulfamethoxazole (SMX) by the consortium was 5.85% and 40.84%, respectively. The lower SDZ biodegradation efficiency could be due to the difference in the lipophilic degree related to cell binding. The presence of SAs did not significantly inhibit the biomass production of the consortium (1311-1952 mg/L biomass) but led to a 36-51% decrease in total polysaccharide content and an increase in microalgae's protein content, which caused granule formation. The presence of SMX and SDZ resulted in an increase in lipid peroxidation activity with a 6.2 and 23.5-fold increase in malondialdehyde content, respectively. Rhodobacter and Phreatobacter were abundant in the consortium with SAs' presence, while alinarimonas, Catalinimonas and Cecembia were seen in their absence.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Jinghua Li
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Yao Lei
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
45
|
Zhang J, Huang D, Deng H, Zhang J. Responses of submerged plant Vallisneria natans growth and leaf biofilms to water contaminated with microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151750. [PMID: 34808184 DOI: 10.1016/j.scitotenv.2021.151750] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microplastics pose a serious threat to ecological processes and environmental health. To evaluate the toxic effects of the exposure of microplastics on submerged plants and biofilms, eel grass (Vallisneria natans) was exposed to different concentrations of microplastics (10-50 mg L-1). The changes in microbial community on leaf biofilms were also tested. The results showed that the ratio of variable fluorescence to maximum fluorescence was largely unchanged, but the contents of chlorophyll a and b increased by 56.5% and 23.0% respectively. Different concentrations of exposure to microplastics effectively induced antioxidant responses, such as increasing the activities of superoxide dismutase, peroxidase and catalase, as well as increasing the activity of glutathione S-transferase and the contents of glutathione and malondialdehyde. In addition, the leaf flesh cells of Vallisneria natans showed some degree of organelle damage when examined by transmission electron microscopy. Moreover, a high-throughput sequencing analysis showed that the abundances and structure of the microbial community on the leaf biofilms were altered by exposure to microplastics. These results demonstrated that environmentally relevant concentrations of microplastics could disrupt homeostasis, induce effective defense mechanisms of Vallisneria natans and alter the biofilms in aquatic ecosystems.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Hong Deng
- School of Ecological and Environmental Science, East China Normal University, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Institute of Eco-Chongming, Shanghai 200241, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
46
|
Qi P, Li T, Hu C, Li Z, Bi Z, Chen Y, Zhou H, Su Z, Li X, Xing X, Chen C. Effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation in drinking water distribution systems via interaction among iron particles, biofilms, and chlorine. CHEMOSPHERE 2022; 292:133364. [PMID: 34933025 DOI: 10.1016/j.chemosphere.2021.133364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation (N-DBPs) in drinking water distribution systems (DWDSs) were investigated. The results verified that in the effluent of corroded DWDSs simulated by annular reactors with corroded cast iron coupons, typical N-DBPs, including haloacetamides, halonitromethanes, and haloacetonitriles, increased significantly compared with the influent of DWDSs. In addition, more dissolved organic carbon, adenosine triphosphate, and iron particles were simultaneously detected in the bulk water of corroded DWDSs, thereby indicating that abundant iron particles acted as a "protective umbrella" for microorganisms. Under the condition of corroded DWDSs, the extracellular polymeric substances gradually exhibited distinct characteristics, including a higher content and lower flocculation efficiency, thereby resulting in a large supply of N-DBPs precursors. Corroded cast iron pipes, equivalent to a unique microbial interface, induced completely distinct microbial community structures and metabolic functions in DWDSs, thereby enhancing the formation of N-DBPs. This is the first study to successfully reveal the interactions among iron particles, biofilms, and chlorine in DWDSs, which may help to fully understand the biofilm transformation and microbial community succession in DWDSs.
Collapse
Affiliation(s)
- Peng Qi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zesong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhihao Bi
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Youyi Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Huishan Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ziliang Su
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xinjun Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Chaoxiang Chen
- Nanzhou Waterworks of Guangzhou Water Supply Co. Ltd., Guangzhou, 510000, China
| |
Collapse
|
47
|
Wang H, Fan Y, Zhou M, Wang W, Li X, Wang Y. Function of Fe(III)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses. WATER RESEARCH 2022; 210:117998. [PMID: 34968878 DOI: 10.1016/j.watres.2021.117998] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Iron is a recognized physiological requirement for microorganisms but, for anaerobic ammonium oxidation (anammox) bacteria, its role extends well beyond that of a nutritional necessity. In this study, the function of two typical Fe(III)-minerals (ferrihydrite and magnetite) in anammox processes was evaluated in the absence/presence of Fe(II) by integrated network and metagenomics analyses. Results showed that Fe-(III) minerals addition increased the activity of cellular processes and pathways associated with granule formation, enabling the peak values of particle size to increase by 144% and 115%, respectively. Notably, ferrihydrite (5 mM) enhanced nitrogen removal by 4.8% and 4.1%, respectively, in the short-term and long-term absence of Fe(II). Ferrihydrite also promoted the retention of anammox bacteria affiliated with phylum Planctomycetes in the reactor, contributing to an 11% higher abundance with ferrihydrite amendment when compared with the control (without iron additions) in the short-term absence of Fe(II). Network-based analyses revealed that ferrihydrite facilitated the microbial community to form densely clustered and complex topologies to improve resistance to environmental disturbance (i.e., Fe(II) deficiency), and effectively increased the underlying cooperation and facilitation in the community. Metagenomic analysis revealed that there was limited promotion of anammox central metabolism by the extra addition of Fe(III)-minerals in the presence of Fe(II), highlighting the poor utilization of Fe(III)-minerals by anammox bacteria under Fe(II) sufficiency. This study deepens our understanding of the function of Fe(III)-minerals in anammox systems at the community and functional level, and provides a fundamental basis for developing Fe-based anammox enhancement technologies.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Yufei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China.
| |
Collapse
|
48
|
Hao L, He Y, Wang X, Wang B, Hao X. Optimizing the added ratio of mixed auxiliary packings for enhancing the biological vanadium (V) removal. BIORESOURCE TECHNOLOGY 2022; 346:126670. [PMID: 34995781 DOI: 10.1016/j.biortech.2021.126670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Developing sustainable and low-cost bio-reduction technologies is essential for vanadium (V) bioremediation in groundwater. With both agricultural waste (wheat stalk) being a solid carbon source and ceramsite and medical stone being auxiliary packings, V(V) removal was confirmed and optimized in this study. The ratio of ceramsite to medical stone was maintained at 1:3 in Group I, which accomplished a V(V) removal efficiency up to 97.5% within 120 h and an average removal rate was around 0.305 mg/(L·h). The dissolution and utilization of carbon and trace elements (Mg, Fe, Mo and Ni) by microbes also contributed to the V(V) bio-reduction enhancement. The main components of DOM (tryptophan and humic acid-like substances) were vital in the V(V) binding and electron transfer processes. This study could promote the current knowledge on the sustainable V(V) bioremediation by using agricultural waste and auxiliary packings.
Collapse
Affiliation(s)
- Liting Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Yuanyuan He
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xinli Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Bangyan Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
49
|
Zhou Y, Li R, Guo B, Xia S, Liu Y, Rittmann BE. The influent COD/N ratio controlled the linear alkylbenzene sulfonate biodegradation and extracellular polymeric substances accumulation in an oxygen-based membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126862. [PMID: 34416689 DOI: 10.1016/j.jhazmat.2021.126862] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
This work evaluated the fates of linear alkylbenzene sulfonate (LAS), chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) when treating greywater (GW) in an oxygen-based membrane biofilm reactor (O2-MBfR). An influent ratio of chemical oxygen demand to total nitrogen (COD/TN) of 20 g COD/g N gave the best removals of LAS, COD, NH4+-N and TN, and it also had the greatest EPS accumulation in the biofilm. Higher EPS and improved performance were linked to increases in the relative abundances of bacteria able to biodegrade LAS (Zoogloea, Pseudomonas, Parvibaculum, Magnetospirillum and Mycobacterium) and to nitrify (Nitrosomonas and Nitrospira), as well as to ammonia oxidation related enzyme (ammonia monooxygenase). The EPS was dominated by protein, which played a key role in adsorbing LAS, achieving short-time protection from LAS toxicity and allowed LAS biodegradation. Continuous high-efficiency removal of LAS alleviated LAS toxicity to microbial physiological functions, including nitrification, nitrate respiration, the tricarboxylic acid (TCA) cycle, and adenosine triphosphate (ATP) production, achieving the stable high-efficient simultaneous removal of organics and nitrogen in the O2-MBfR.
Collapse
Affiliation(s)
- Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9
| | - Ran Li
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9; College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi Province, China
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9; Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States
| |
Collapse
|
50
|
Wang H, Qu G, Gan Y, Zhang Z, Li R, Wang T. Elimination of Microcystis aeruginosa in water via dielectric barrier discharge plasma: Efficacy, mechanism and toxin release. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126956. [PMID: 34449344 DOI: 10.1016/j.jhazmat.2021.126956] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Microcystis aeruginosa (M. aeruginosa), as the representative hazardous algae in cyanobacteria blooms, has long posed a threat to aquatic ecosystems. Here, a self-cooling dielectric barrier discharge plasma (DBDP) reactor was used to eliminate M. aeruginosa in water. The removal efficiency and mechanism of DBDP for M. aeruginosa and its toxin release during the treatment process was investigated. The results showed that over 99% of M. aeruginosa cells were removed by DBDP over 60 min under optimal conditions, and treated M. aeruginosa lost their ability to reproduce entirely. Reactive species generated in the self-cooling DBDP reactor damaged the membrane of M. aeruginosa, leading to leakage and degradation of dissolved organic matter. Increased intracellular reactive oxygen species accelerated the breakdown of protein and enzyme, and causes cell cytolysis. Eventually, M. aeruginosa was mineralized and lost its activity. The ·OH, 1O2 and ·O2- were crucial for inactivating M. aeruginosa. During the treatment process, the toxin microcystin-LR increased in the first 20 min, but declined over time: its concentration fell below 1 μg·mL-1 after 60 min. This study provides insight into M. aeruginosa' s elimination in water by DBDP and has significant implications for developing a plasma technique to curtail cyanobacteria bloom.
Collapse
Affiliation(s)
- Hui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yanshun Gan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| |
Collapse
|