1
|
Falahudin D, Arifin Z, Yogaswara D, Edward E, Wulandari I, Dharmawan IWE, Sudaryanto A, Hoang AQ, Takahashi S. Halogenated organic compounds in mangrove sediments from Bintan Island, Indonesia: Occurrence, profiles, sources, and potential ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125667. [PMID: 39793644 DOI: 10.1016/j.envpol.2025.125667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The first comprehensive analysis of halogenated organic compounds (HOCs), including 209 full congeners of polychlorinated biphenyls (PCBs), 26 organochlorinated pesticides (OCPs), 41 polybrominated diphenyl ethers (PBDEs), and four other brominated flame retardants (BFRs), was performed on surface mangrove sediments from Bintan Island, Province of the Riau Archipelago, Indonesia. Among the measured HOC contaminants, the mean concentration of ∑209PCBs (2.3 ± 0.96 ng g-1 dw) was higher than that of p,p'-DDE (1.8 ± 0.70 ng g-1 dw), ∑41PBDEs (1.8 ± 1.1 ng g-1 dw), trans-nonachlor (0.42 ± 0.13 ng g-1 dw), and other BFRs (0.20 ± 0.29 ng g-1 dw), while other OCP related compounds less than 0.2 ng g-1 dw. In addition, concentrations of unintentionally produced PCBs such as PCB-11 and PCB-47/48/75 ranged from 0.57 to 1.5 ng g-1 dw. Variations in HOCs accumulation and profiles among mangrove habitats and species indicate different anthropogenic stressors and species-specific accumulations. The ecological risk estimation from HOCs exposure on dwelling sediment biota in mangrove sediments varied from no risk to potentially causing adverse effects in several locations. Overall, this study provides fundamental information on the function of mangrove ecosystems as an accumulation zone for HOCs in tropical regions.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Edward Edward
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Ita Wulandari
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - I Wayan Eka Dharmawan
- Research Center for Oceanography, National Research and Innovation Agency, Jl Pasir Putih 1, Ancol Timur, Jakarta Utara, Indonesia
| | - Agus Sudaryanto
- Research Center for Environment and Clean Technology, National Research and Innovation Agency, Puspitek, Serpong, 15314, Banten, Indonesia
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
2
|
Takaguchi K, Nagano Y, Mizukawa H, Nakatsu S, Nomiyama K. Species- and tissue-specific profiles and potential risks of polychlorinated biphenyls (PCBs) and their metabolites in dogs and cats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177965. [PMID: 39671934 DOI: 10.1016/j.scitotenv.2024.177965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
In recent years, there has been growing concern about the long-term health effects of chemical exposure in pets, particularly dogs and cats, from sources such as pet food and house dust. Domestic cats (Felis silvestris catus) and dogs (Canis lupus familiaris) are continuously exposed to polychlorinated biphenyls (PCBs), with particular attention being paid to the toxicity of their metabolites, hydroxylated PCBs (OH-PCBs) and methylsulfonyl PCBs (MeSO2-PCBs). However, the tissue distribution and species-specific differences of these PCB metabolites in domestic animals have not been fully elucidated. This study investigates the tissue-specific profiles of PCBs, OH-PCBs, and MeSO2-PCBs by analyzing blood, brain, liver, and bile samples from dogs and cats. The analysis revealed that hexa- to octa-chlorinated OH-PCBs were the predominant congeners in the brain, liver and bile of dogs. In contrast, tri- to penta-chlorinated OH-PCBs were more prevalent in cats, with lower-chlorinated OH-PCBs tending to accumulate due to limited UDP-glucuronosyltransferase activity. In cats, OH-PCBs are more readily excreted in the bile than in dogs, probably because there are fewer higher-chlorinated thyroxine-like OH-PCBs, which are known to bind to and persist in proteins in the liver and blood. MeSO2-PCBs were detected at lower concentrations than parent PCBs and OH-PCBs and primarily accumulated in the liver due to their lipophilic nature. The consistent concentrations of MeSO2-PCBs across species, despite variations in parent PCB and OH-PCB levels, underscore species-specific differences in metabolic capacity and excretion pathways. In addition, some OH-PCB concentrations in both dog and cat brains exceeded levels known to affect neurons, suggesting the potential for neurotoxicity in these species. Therefore, continued biomonitoring and further investigation of the toxic effects of these compounds in pets is imperative.
Collapse
Affiliation(s)
- Kohki Takaguchi
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yasuko Nagano
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-5, Shorinjichonishi, Sakai-ku, Sakai-shi, Osaka 590-0960, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
3
|
Gourronc FA, Bullert AJ, Helm-Kwasny BK, Adamcakova-Dodd A, Wang H, Jing X, Li X, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Exposure to PCB52 (2,2',5,5'-tetrachlorobiphenyl) blunts induction of the gene for uncoupling protein 1 (UCP1) in white adipose. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104612. [PMID: 39674530 PMCID: PMC11717591 DOI: 10.1016/j.etap.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Polychlorinated biphenyls (PCBs) are linked to cancer, learning disabilities, liver and cardiovascular disease, and diabetes. Older schools often contain high levels of PCBs, and inhalation is a major source of exposure. Technical PCB mixtures, called Aroclors, and individual dioxin-like PCBs impair adipocyte function, which can lead to type II diabetes. To determine how PCB52, a non-dioxin like PCB congener found in school air, affects adipose, adolescent male and female rats were exposed to PCB52 by nose-only inhibition for 4 h per day for 28 consecutive days. Transcriptomic analysis of white adipose revealed sex-specific differences in gene expression between PCB52- and sham-exposed males and females. Exposed females showed mitochondrial gene changes, including downregulation of the thermogenic uncoupling gene, Ucp1. Human preadipocytes/adipocytes exposed to PCB52 or its main metabolite, 4-OH-PCB52, also showed reduced norepinephrine-induced UCP1 expression. These findings suggest that PCB52 inhalation disrupts thermogenesis in adipose tissue, potentially contributing to metabolic syndrome.
Collapse
Affiliation(s)
- Francoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Amanda J Bullert
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | | | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
4
|
Dong J, Zhao X, Dai R, Guo R, Liu C, Cui X, Liu Y, Wang H, Zheng B. Spatial patterns, source apportionment, and risk assessment of polychlorinated biphenyls (PCBs) in the surface sediments of eastern China lakes along a latitudinal gradient: Insights guided by full-congener analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136187. [PMID: 39427353 DOI: 10.1016/j.jhazmat.2024.136187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Understanding the occurrence, sources, and ecological risks of polychlorinated biphenyls (PCBs), which are universal persistent organic pollutants, is critical for improving the sustainability and ecological safety of lake systems. Herein, to determine PCB contamination levels and formulate control strategies in lake sediments, 210 sediment samples were collected from 21 lakes along a latitudinal gradient (18-45°N, ∼3000 km) across eastern China and were analyzed for all 209 PCB congeners. The results showed that the total PCB concentration varied greatly from 0.26 to 163.82 ng/g dry weight and exhibited a latitudinal trend of central > north/south. Spatial variations were affected mainly by the organic carbon fraction and local population density. Most lakes had similar PCB profiles, with lower chlorinated PCBs dominating. Notably, non-Aroclor PCB 11 was the most abundant congener. Moreover, unintentionally produced PCBs (UP-PCBs) accounted for ∼31 % of all PCBs. These findings highlight that the significance of UP-PCBs has been overlooked in past studies and that full-congener analysis is necessary for future monitoring. According to the ecological risk assessment of PCBs, zero to moderate risk existed in lake sediments. Therefore, effective strategies are needed to mitigate the impact of PCBs (especially UP-PCBs) from multiple sources on lakes.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xingru Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Ran Dai
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Rui Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Chengyou Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xiaoai Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yaqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Binghui Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| |
Collapse
|
5
|
Ulanova E, Martí Ibáñez R, Domínguez-García P, Díaz-Ferrero J, Gomez-Canela C, Ortiz Almirall X. Impact of legacy and unintentionally produced polychlorinated biphenyls (PCBs) in effluents from two wastewater treatment plants in rivers near Barcelona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175095. [PMID: 39074743 DOI: 10.1016/j.scitotenv.2024.175095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a family of 209 congeners listed as Persistent Organic Pollutants in the Stockholm Convention. Although there has been a lot of focus on those congeners present in the Aroclor or Clophen technical mixtures commercialized in the past (legacy PCBs), other industrial processes such as paint and pigment production can generate other congeners as byproducts (Unintentionally Produced PCBs or UP-PCBs). The present study focuses on the analysis of 72 PCB congeners (including 42 UP-PCBs) in the two major rivers surrounding the city of Barcelona -Llobregat and Besós rivers-, and their levels in two wastewater treatment plants during the production of effluents and reclaimed water. It was observed that WWTP can efficiently remove PCBs from untreated water during sludge production where concentrations are six orders of magnitude higher than in water (in the ng g-1 and pg L-1 ranges, respectively). Although PCB levels in the effluent and reclaimed water replenishing the rivers are not negligible, these do not significantly increase the concentrations already found in the studied rivers, and in most cases PCB concentrations in river water are reduced after merging with the reclaimed water due to dilution effect. The presence of UP-PCB-11 (not present in the Aroclor technical mixtures) in the analyzed water and sludge samples is significant (ranging from 22 to 25 % of the total PCB amount in the Besós river), being often one of the most abundant PCB congeners.
Collapse
Affiliation(s)
- Elena Ulanova
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ramon Martí Ibáñez
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Pol Domínguez-García
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Cristian Gomez-Canela
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xavier Ortiz Almirall
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
6
|
Hammel SC, Schlünssen V, Hope D, Dereviankin M, Sandau CD, Hougaard KS, Meyer HW, Kines P, Jensen KA, Frederiksen M. Lower chlorinated PCBs accumulate in demolition workers while working on a contaminated worksite. ENVIRONMENT INTERNATIONAL 2024; 193:109076. [PMID: 39542766 DOI: 10.1016/j.envint.2024.109076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Several buildings in a Danish social housing estate exceeded indoor air guidance values for polychlorinated biphenyls (PCBs), leading to their demolition. Here, we conducted a biomonitoring study among the workers on-site (n = 24) to evaluate their exposure to all 209 PCBs across the two-year demolition. We compared their PCB serum concentrations and accumulation to those of demolition workers at other worksites (n = 21) and office workers (n = 17). Demolition workers were provided with personal protective equipment according to risk assessments for PCB-related work. Serum PCBs were measured from baseline and up to two annual follow-up visits using gas chromatography high-resolution mass spectrometry. Forty-six peaks representing 58 PCBs were detected in > 60 % of serum samples; eight congeners were found in every sample. PCB-153 was the most abundant congener (median = 22.1 ng/g lipid). After adjusting for age and smoking status, demolition workers after one year on the contaminated site experienced more than a four-fold increase in all lower chlorinated PCBs compared to office workers at baseline, with increases most prominent for tri- and tetra-CBs (10β = 6.2 and 9.2, p < 0.01). Nine PCBs were significantly elevated from baseline to year 1 in only contaminated-site demolition workers, with the largest increase observed for PCB-66/80. For higher chlorinated PCBs, levels remained consistent or decreased slightly over the three samples from these workers. Those who worked in active demolition for at least 4 years at baseline experienced a 40 % increase (95 % CI: 10 %, 90 %) in the WHO-12 PCB sum. Age significantly predicted increases in PCBs, which tracked closely with logKow values. Our study showed that despite safety measures, demolition workers who worked on a PCB-contaminated site experienced increased and accumulating internal exposure to lower chlorinated PCBs compared to general demolition and office workers. Consequently, workers' safety should be carefully considered to reduce exposures among this high risk group.
Collapse
Affiliation(s)
- Stephanie C Hammel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, 8000 Aarhus, Denmark
| | - David Hope
- Pacific Rim Laboratories Inc., Surrey, BC, Canada
| | | | - Courtney D Sandau
- Chemistry Matters Inc., Calgary, Canada; Mount Royal University, Department of Earth and Environmental Sciences, Calgary, Canada
| | - Karin Sørig Hougaard
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Harald W Meyer
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Pete Kines
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Keld Alstrup Jensen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
7
|
Wania F, McLachlan MS. The Stockholm Convention at a Crossroads: Questionable Nominations and Inadequate Compliance Threaten Its Acceptance and Utility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13587-13593. [PMID: 39042050 PMCID: PMC11308522 DOI: 10.1021/acs.est.4c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Twenty years since coming into force, the Stockholm Convention has become a "living" global agreement that has allowed for the addition of substances that are likely, as a result of their long-range environmental transport (LRET), to lead to significant adverse effects. The recent listing of the phenolic benzotriazole UV-328 in Annex A and a draft nomination of three cyclic volatile methylsiloxanes (cVMS) for Annex B draw attention to the fact that many chemicals are subject to LRET and that this can lead to questionable nominations. The nomination of UV-328 and the draft nomination of cVMS also raise the spectre of regrettable substitutions. At the same time, atmospheric monitoring across the globe reveals that environmental releases of several unintentionally produced POPs listed in Annex C, such as hexachlorobenzene and hexachlorobutadiene, are continuing unabated, highlighting shortcomings in the enforcement of the minimum measures required under Article 5. There is also no evidence of efforts to substitute a chemical whose use has been known for three decades to unintentionally produce polychlorinated biphenyls. These developments need to be rectified to safeguard the long-term viability and acceptance of a global treaty of undeniable importance.
Collapse
Affiliation(s)
- Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Michael S. McLachlan
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Xie C, Yang S, Li Y, Zhang M, Xu Q, Wan Z, Song L, Lv Y, Luo D, Li Q, Wang Y, Chen H, Mei S. Associations of exposure to organochlorine pesticides and polychlorinated biphenyls with chronic kidney disease among adults: the modifying effects of lifestyle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45192-45203. [PMID: 38961018 DOI: 10.1007/s11356-024-34201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Exposure to organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) has been reported to be associated with renal impairment and chronic kidney disease (CKD). Nevertheless, the research results thus far have exhibited inconsistency, and the effect of lifestyle on their association is not clear. In this study, we assessed the correlation between serum OCPs/PCBs and CKD and renal function indicators including estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR) among 1721 Chinese adults. In order to further investigate the potential impact of lifestyle, we conducted joint associations of lifestyle and OCPs/PCBs on CKD. We found a negative correlation between p,p'-DDE and eGFR, while logistic regression results showed a positive correlation between PCB-153 and CKD (OR, 1.92; 95% CI, 1.21, 3.06). Quantile g-computation regression analyses showed that the association between co-exposure to OCPs/PCBs and CKD was not significant, but p,p'-DDE and PCB-153 were the main contributors to the negative and positive co-exposure effects of eGFR and CKD, respectively, which is consistent with the regression results. Participants with both relatively high PCB-153 exposure and an unhealthy lifestyle had the highest risk of CKD, in the joint association analysis. The observed associations were generally supported by the FAS-eGFR method. Our research findings suggest that exposure to OCPs/PCBs may be associated with decreased eGFR and increased prevalence of CKD in humans, and a healthy lifestyle can to some extent alleviate the adverse association between PCB-153 exposure and CKD.
Collapse
Affiliation(s)
- Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Sijie Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Luo
- Analytical Application Center, Shimadzu (China) Co., LTD., Wuhan Branch, No 96 Linjiang Avenue, Wuhan, 430060, China
| | - Qiang Li
- Analytical Application Center, Shimadzu (China) Co., LTD., Wuhan Branch, No 96 Linjiang Avenue, Wuhan, 430060, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
10
|
Chitsaz M, Al Hello M, Burris DR, Francisco KL, Rodenburg LA. Source apportionment of polychlorinated biphenyls in the sediment of the Newtown Creek superfund site. CHEMOSPHERE 2024; 357:141928. [PMID: 38615951 DOI: 10.1016/j.chemosphere.2024.141928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a primary contaminant of potential concern at the Newtown Creek superfund site. Measurements of PCBs in hundreds of samples of sediment (surface and cores) within Newtown Creek and at nearby reference locations were obtained from the Remedial Investigation (RI) databases. This data set was analyzed using Positive Matrix Factorization (PMF). A weight-of-evidence approach was used to attribute the PMF-generated fingerprints to sources. The PMF analysis generated eight factors (fingerprints or sources) that represent primary sources, such as Aroclors, as well as secondary sources, including the East River and Combined Sewer Outfalls (CSOs). In addition to the high-production volume Aroclors (1016/1242, 1248, 1254, and 1260), some less-widely used Aroclors (1232 and 1268) were found in Newtown Creek sediment. Aroclor 1268 is disproportionately abundant in the deepest sediments, while PCBs likely from CSOs are relatively more abundant in surface sediment.
Collapse
Affiliation(s)
- Mahdi Chitsaz
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA.
| | - Mohson Al Hello
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA; Marine Sciences Center, University of Basrah, Iraq.
| | | | - Kelly L Francisco
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA.
| | - Lisa A Rodenburg
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA.
| |
Collapse
|
11
|
Megson D, Idowu IG, Sandau CD. Is current generation of polychlorinated biphenyls exceeding peak production of the 1970s? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171436. [PMID: 38447728 DOI: 10.1016/j.scitotenv.2024.171436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Polychlorinated biphenyls (PCBs) are man-made chemicals that were once widely produced as commercial mixtures for various industrial applications. PCBs were later recognized as environmental pollutants and health hazards, leading to their global phase-out and strict regulations on their production, use, and disposal. Most investigations on PCBs focus on measuring the specific PCBs present in commercial mixtures or marker compounds representing those mixtures. However, there are new sources of PCBs that are gaining more attention. These 'by-product PCBs' are inadvertently produced in certain chemical and product formulations. Our estimates show that U.S. legislation currently permits the generation of more by-product PCBs (~100 million lb. (~45,000 Tonnes) per year) than during peak commercial production of the 1970s (85 million lb. (~39,000 Tonnes) per year). These PCBs are currently going un-detected in most investigations. Therefore, they may be a posing a growing, unmonitored environmental and human health risk. Most people assume PCBs to be legacy pollutants from historically formulated commercial mixtures. However, our research suggests that due to the emergence of by-product PCBs they may need to be reconsidered as an emerging pollutant of concern.
Collapse
Affiliation(s)
- David Megson
- Chemistry Matters Inc., Calgary, Canada; Manchester Metropolitan University, Manchester, UK.
| | | | - Courtney D Sandau
- Chemistry Matters Inc., Calgary, Canada; Mount Royal University, Calgary, Canada
| |
Collapse
|
12
|
Hammel SC, Frederiksen M. Quantifying 209 Polychlorinated Biphenyl Congeners in Silicone Wristbands to Evaluate Differences in Exposure among Demolition Workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6499-6508. [PMID: 38572580 PMCID: PMC11025118 DOI: 10.1021/acs.est.3c10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
A social housing estate in Denmark was designated for demolition due to exceedance of guidance values for polychlorinated biphenyls (PCBs) in indoor air. Here, we deployed precleaned silicone wristbands (n = 46) among demolition workers of these contaminated buildings during single workdays while conducting various work tasks. We established a method to analyze all 209 PCBs in wristbands to identify prominent congeners of exposure and evaluate differences between tasks. Wristbands were extracted using microwave-assisted extraction and then concentrated for gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Twenty-nine chromatographic peaks representing 37 congeners were detected in every wristband, and tetra-CBs were the dominant homologue group. PCB-66, -44, and -70 were the most abundant congeners measured in worker wristbands, none of which are included within the typical seven indicator or WHO 12 PCBs. Workers who cut PCB-containing sealants had wristbands with the highest PCB concentrations (geometric mean ∑209PCBs = 1963 ng/g wristband), which were followed by those handling concrete elements on the building roof. Additionally, wristbands captured a broader range of PCBs than has been previously measured in air and serum samples. Taken together, our results highlight the importance of total congener analysis in assessing current PCB exposure in demolition work and the utility of wristbands for assessing these exposures.
Collapse
Affiliation(s)
- Stephanie C. Hammel
- National Research Centre
for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Marie Frederiksen
- National Research Centre
for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
13
|
Schettgen T, Belov V, Kraus T, Ziegler P. A novel method for the accurate quantification of two isomeric mercapturic acids of 1,3-dichlorobenzene in human urine using isotope dilution online-SPE-LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124034. [PMID: 38306955 DOI: 10.1016/j.jchromb.2024.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
1,3-dichlorobenzene (1,3-DCB) is an aromatic solvent that might be formed during thermal decomposition of bis(2,4-dichlorobenzoyl)peroxide used as initiator in silicone rubber production with many workers exposed worldwide. During metabolism of 1,3-DCB, two isomeric mercapturic acids can be formed from ring oxidation of 1,3-DCB in the liver, namely 2,4-dichlorophenylmercapturic acid (24CPhMA) and 3,5-dichlorophenylmercapturic acid (35CPhMA). These urinary mercapturic acids might serve as biomarkers of the toxicologically relevant absorbed dose of 1,3-DCB and have not been determined so far. Thus, we were aimed to develop an analytical method for quantification of these biomarkers. Authentic standards of both mercapturic acids as well as deuterium-labelled analogues were self-synthesized. A method for the quantification of both CPhMAs in human urine using online-SPE LC/MS/MS was developed and validated with an LOQ of 0.1 ng mL-1 for both CPhMAs. The analytes were extracted from urine by online-SPE on a restricted access material phase, transferred to the analytical column and quantified by tandem mass spectrometry. Interday (n = 6) and Intraday (n = 10) precision for both CPhMAs ranged from 1.7 to 4.3 % with accuracies between 99.4 and 109.9 % at concentrations of 0.6 and 3 ng mL-1. We applied the method on post-shift urine samples of 16 workers of the silicone rubber industry with occupational exposure to 1,3-DCB. Both CPhMAs were above LOQ in 15 of 16 urine samples with median levels (range) for 24CPhMA and 35CPhMA of 1.64 ng mL-1 (<0.1 - 8.2 ng mL-1) and 3.98 ng mL-1 (0.36 - 24.1 ng mL-1), respectively. This is the first report on specific urinary mercapturic acids of 1,3-DCB in humans. Our results show that ring oxidation of 1,3-DCB is considered to be a toxicologically relevant metabolic pathway in humans. This might improve risk assessment of 1,3-DCB-emissions in silicone rubber industry.
Collapse
Affiliation(s)
- T Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - V Belov
- Max Planck Institute for Multidisciplinary Sciences, Facility for Synthetic Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - T Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - P Ziegler
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
14
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
15
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted versus observed activity of PCB mixtures toward the ryanodine receptor. Neurotoxicology 2024; 100:25-34. [PMID: 38065417 PMCID: PMC10842331 DOI: 10.1016/j.neuro.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs and similar compounds toward RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erika B Holland
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA.
| |
Collapse
|
16
|
Yu H, Lin T, Hu L, Lammel G, Zhao S, Sun X, Wu X, Guo Z. Sources of polychlorinated biphenyls (PCBs) in sediments of the East China marginal seas: Role of unintentionally-produced PCBs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122707. [PMID: 37816403 DOI: 10.1016/j.envpol.2023.122707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
The production and use of intentionally-produced polychlorinated biphenyls (PCBs) in China have a short history compared with countries of North America and Europe, where technical PCB mixtures were manufactured in large amounts for decades before being banned. Unintentionally-produced PCB emissions increased dramatically in China, leading to unique profiles of PCB burdens. This study first time evaluated 208 individual PCB congeners at 94 sites from surface sediments of the East China Marginal Seas (ECMSs) and explored their sources. Non-technical PCBs transported from atmospheric transport and river discharge played a dominant role in most areas of the ECMSs, while historical residuals of technical PCBs occupied the fine-grained sediments in muddy areas of the central Yellow Sea (YS), regarding to the low sedimentation rate in the central YS. Furthermore, emissions from Taizhou located on the coast of the East China Sea (ECS), which is an important electronic waste dismantling site in East China, contributed additional technical PCBs to the inner shelf of the ECS. Our results indicate that non-technical PCBs have become the dominant PCB species in the ECMSs, and emphasize the synergistic effects of large riverine input, long-range atmospheric transport, and muddy shelf deposition on PCB source and sink of in marginal seas.
Collapse
Affiliation(s)
- Huimin Yu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Limin Hu
- Key Laboratory of Submarine Geosciences and Technology, MOE, Ocean University of China, Qingdao, 266100, China
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany; RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xueshi Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiao Wu
- Key Laboratory of Submarine Geosciences and Technology, MOE, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| |
Collapse
|
17
|
Krause T, Moenning JL, Lamp J, Maul R, Schenkel H, Fürst P, Pieper R, Numata J. Transfer of polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) from oral exposure into cow's milk - Part I: state of knowledge and uncertainties. Nutr Res Rev 2023; 36:448-470. [PMID: 36089770 DOI: 10.1017/s0954422422000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polychlorinated dibenzo-para-dioxins (PCDDs) and dibenzofurans (PCDFs) (collectively and colloquially referred to as 'dioxins') as well as polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental contaminants that may unintentionally enter and accumulate along the food chain. Owing to their chronic toxic effects in humans and bioaccumulative properties, their presence in feed and food requires particular attention. One important exposure pathway for consumers is consumption of milk and dairy products. Their transfer from feed to milk has been studied for the past 50 years to quantify the uptake and elimination kinetics. We extracted transfer parameters (transfer rate, transfer factor, biotransfer factor and elimination half-lives) in a machine-readable format from seventy-six primary and twenty-nine secondary literature items. Kinetic data for some toxicologically relevant dioxin congeners and the elimination half-lives of dioxin-like PCBs are still not available. A well-defined selection of transfer parameters from literature was statistically analysed and shown to display high variability. To understand this variability, we discuss the data with an emphasis on influencing factors, such as experimental conditions, cow performance parameters and metabolic state. While no universal interpretation could be derived, a tendency for increased transfer into milk is apparently connected to an increase in milk yield and milk fat yield as well as during times of body fat mobilisation, for example during the negative energy balance after calving. Over the past decades, milk yield has increased to over 40 kg/d during high lactation, so more research is needed on how this impacts feed to food transfer for PCDD/Fs and PCBs.
Collapse
Affiliation(s)
- Torsten Krause
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Jan-Louis Moenning
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Julika Lamp
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Ronald Maul
- Department of Safety and Quality of Milk and Fish, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103Kiel, Germany
| | - Hans Schenkel
- Department of Animal Nutrition, University of Hohenheim, Emil-Wolff-Str. 10, 70599 Stuttgart, Germany
| | - Peter Fürst
- Chemical and Veterinary Analytical Institute Münsterland-Emscher-Lippe (CVUA-MEL), Joseph-König-Straße 40, 48147 Münster, Germany
| | - Robert Pieper
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jorge Numata
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
18
|
Idowu IG, Megson D, Tiktak G, Dereviankin M, Sandau CD. Polychlorinated biphenyl (PCB) half-lives in humans: A systematic review. CHEMOSPHERE 2023; 345:140359. [PMID: 37832892 DOI: 10.1016/j.chemosphere.2023.140359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
This manuscript presents a systematic review of PCB half-lives reported in the scientific literature. The review was completed in accordance with PRISMA guidelines and included a review of almost 1000 peer-reviewed publications. In total, 26 articles were found to report half-lives in humans, with the majority of data coming from studies performed in North America on individuals suspected to have been exposed to PCBs. Terminology for reporting PCB half-lives was inconsistent, so we have attempted to consolidate this and recommend using either "apparent half-life" or "intrinsic half-life" in future studies. Within the literature, values for reported half-lives varied considerably for different PCBs. Less chlorinated PCBs generally have shorter half-lives than more chlorinated PCBs. It was interesting to note the large variability of half-lives reported for the same PCB. For example, the reported half-life for PCB 180 varied by nearly 3 orders of magnitude (0.34 years-300 years). Our review identified that the half-lives estimated were largely dependent on the studied cohort. We discuss the importance of PCB body burden, degree of chlorination and PCB structure, gender, age, breastfeeding, BMI, and smoking status on half-life estimations. We also identified significantly shorter half-lives for some PCBs in occupationally exposed individuals compared to results reported from the general population. PCB half-lives are not the same for every PCB or every individual. Therefore, careful consideration is needed when these values are used in human exposure studies.
Collapse
Affiliation(s)
| | - David Megson
- Chemistry Matters Inc, Calgary, Canada; Manchester Metropolitan University, Department of Natural Science, Ecology and Environment Research Centre, Manchester, M1 5GD, UK
| | - Guuske Tiktak
- Manchester Metropolitan University, Department of Natural Science, Ecology and Environment Research Centre, Manchester, M1 5GD, UK
| | | | - Courtney D Sandau
- Chemistry Matters Inc, Calgary, Canada; Mount Royal University, Department of Earth and Environmental Sciences, Calgary, Canada.
| |
Collapse
|
19
|
Hua JX, Marek RF, Hornbuckle KC. Polyurethane Foam Emission Samplers to Identify Sources of Airborne Polychlorinated Biphenyls from Glass-Block Windows and Other Room Surfaces in a Vermont School. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14310-14318. [PMID: 37713326 PMCID: PMC10537452 DOI: 10.1021/acs.est.3c05195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
We hypothesized that emissions of polychlorinated biphenyls (PCBs) from Aroclor mixtures present in building materials explain their concentrations in school air. Here, we report a study of airborne concentrations and gas-phase emissions in three elementary school rooms constructed in 1958. We collected airborne PCBs using polyurethane foam passive air samplers (PUF-PAS, n = 6) and PCB emissions from building materials using polyurethane foam passive emission samplers (PUF-PES, n = 17) placed over flat surfaces in school rooms, including vinyl tile floors, carpets, painted bricks, painted drywall, and glass-block windows. We analyzed all 209 congeners represented in 173 chromatographic separations and found that the congener distribution in PUF-PES strongly resembled the predicted diffusive release of gas-phase PCBs from a solid material containing Aroclor 1254. Concentrations of airborne total PCBs ranged from 38 to 180 ng m-3, a range confirmed by an independent laboratory in the same school. These levels exceed action levels for all aged children set by the State of Vermont and exceed guidance levels set by the U.S. EPA for children under age 3. Emissions of PCBs from the glass-block windows (30,000 ng m-2 d-1) greatly exceeded those of all other surfaces, which ranged from 35 to 2700 ng m-2 d-1. This study illustrates the benefit of the direct measurement of PCB emissions to identify the most important building remediation needed to reduce airborne PCB concentrations in schools.
Collapse
Affiliation(s)
- Jason
B. X. Hua
- Department of Civil and Environmental
Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Rachel F. Marek
- Department of Civil and Environmental
Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Department of Civil and Environmental
Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
20
|
Bannavti M, Marek RF, Just CL, Hornbuckle KC. Congener-Specific Emissions from Floors and Walls Characterize Indoor Airborne Polychlorinated Biphenyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:762-767. [PMID: 37719204 PMCID: PMC10501191 DOI: 10.1021/acs.estlett.3c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/17/2023]
Abstract
To reconcile the federal regulation of material polychlorinated biphenyl (PCB) concentrations with recently implemented state regulations of airborne PCBs, there is a need to characterize the relationship between PCB emissions from surfaces and air concentrations. We hypothesized that the magnitude and congener distribution of emissions from floors and walls fully account for the airborne PCBs measured in rooms constructed during the height of PCB production and sales. We measured emissions of PCB congeners from various wall and floor materials using polyurethane foam passive emission samplers before and after hexane wiping. Our results revealed that PCB emissions from flooring adequately predicted the magnitude and congener distribution of PCBs observed in the room air. Emissions varied by material within a single building (5 × 103 ng m-2 day-1 from wood panel walls to 3 × 104 ng m-2 day-1 from vinyl tile) and within the same room. Yet congener distributions between material emission PCB profiles and room air PCB profiles were statistically similar. Hexane wiping significantly reduced PCB emissions (>60%), indicating the importance of surface films as an ongoing source of airborne PCBs. The magnitude and congener distribution of material bulk concentrations did not explain that of material emissions or air concentrations. Passive measurements of polychlorinated biphenyl emissions from floors in a university building predict the concentrations of PCBs in room air.
Collapse
Affiliation(s)
- Moala
K. Bannavti
- Department of Civil and Environmental
Engineering, IIHR−Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Rachel F. Marek
- Department of Civil and Environmental
Engineering, IIHR−Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Craig L. Just
- Department of Civil and Environmental
Engineering, IIHR−Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Department of Civil and Environmental
Engineering, IIHR−Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
21
|
Bullert A, Li X, Chunyun Z, Lee K, Pulliam CF, Cagle BS, Doorn JA, Klingelhutz AJ, Robertson LW, Lehmler HJ. Disposition and metabolomic effects of 2,2',5,5'-tetrachlorobiphenyl in female rats following intraperitoneal exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104245. [PMID: 37572994 PMCID: PMC10562985 DOI: 10.1016/j.etap.2023.104245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies.
Collapse
Affiliation(s)
- Amanda Bullert
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Zhang Chunyun
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kendra Lee
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F Pulliam
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna S Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan A Doorn
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted Versus Observed Activity of PCB Mixtures Toward the Ryanodine Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554299. [PMID: 37662381 PMCID: PMC10473618 DOI: 10.1101/2023.08.22.554299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs, and similar compounds, towards RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A. Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach California
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Erika B. Holland
- Department of Biological Science, California State University of Long Beach, Long Beach California
| |
Collapse
|
23
|
Li X, Bullert AJ, Han W, Yang W, Zhang QY, Ding X, Lehmler HJ. Enantiomeric Fractions Reveal Differences in the Atropselective Disposition of 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) in Wildtype, Cyp2abfgs-Null, and CYP2A6-Humanized Mice. Chem Res Toxicol 2023; 36:1386-1397. [PMID: 37467352 PMCID: PMC10445290 DOI: 10.1021/acs.chemrestox.3c00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/21/2023]
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that can cause neurotoxicity. PCBs, such as PCB 95 (2,2',3,5',6-pentachlorobiphenyl), can be metabolized by cytochrome P450 enzymes into neurotoxic metabolites. To better understand how the metabolism of PCB 95 affects neurotoxic outcomes, we conducted a study on the disposition of PCB 95 in transgenic mouse models. The mice were given a single oral dose of PCB 95 (1.0 mg/kg) and were euthanized 24 h later for analysis. PCB 95 levels were highest in adipose tissue, followed by the liver, brain, and blood. Adipose tissue levels were significantly higher in wild-type (WT) mice than in Cyp2abfgs-null (KO) or CYP2A6-transgenic (KI) mice. We also observed genotype-dependent differences in the enrichment of aS-PCB 95 in female mice, with a less pronounced enrichment in KO than WT and KI mice. Ten hydroxylated PCB 95 metabolites were detected in blood and tissue across all exposure groups. The metabolite profiles differed across tissues, while sex and genotype-dependent differences were less pronounced. Total OH-PCB levels were highest in the blood, followed by the liver, adipose tissue, and brain. Total OH-PCB blood levels were lower in KO than in WT mice, while the opposite trend was observed in the liver. In male mice, total OH-PCB metabolite levels were significantly lower in KI than in WT mice in blood and the liver, while the opposite trend was observed in female mice. In conclusion, the study highlights the differences in the atropselective disposition of PCB 95 and its metabolites in different types of mice, demonstrating the usefulness of these transgenic mouse models for characterizing the role of PCB metabolism in PCB neurotoxicity.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Bullert
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Weiguo Han
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Weizhu Yang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xinxin Ding
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Bullert A, Li X, Zhang C, Lee K, Pulliam CF, Cagle BS, Doorn JA, Klingelhutz AJ, Robertson LW, Lehmler HJ. Disposition and Metabolomic Effects of 2,2',5,5'-Tetrachlorobiphenyl in Female Rats Following Intraperitoneal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.19.544952. [PMID: 37609242 PMCID: PMC10441371 DOI: 10.1101/2023.06.19.544952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies. Highlights PCB 52 was present in adipose, brain, liver, and serum 3 weeks after PCB exposureLiver and serum contained hydroxylated, sulfated, and methylated PCB 52 metabolitesMetabolomics analysis revealed minor changes in endogenous serum metabolitesLevels of dopamine and its metabolites in the brain were not affected by PCB 52.
Collapse
Affiliation(s)
- Amanda Bullert
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kendra Lee
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna S. Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan A. Doorn
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Paranjape N, Dean LE, Martinez A, Tjalkens RB, Lehmler HJ, Doorn JA. Structure-Activity Relationship of Lower Chlorinated Biphenyls and Their Human-Relevant Metabolites for Astrocyte Toxicity. Chem Res Toxicol 2023; 36:971-981. [PMID: 37279407 PMCID: PMC10283044 DOI: 10.1021/acs.chemrestox.3c00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Indexed: 06/08/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) is associated with developmental neurotoxicity and neurodegenerative disorders; however, the underlying mechanisms of pathogenesis are unknown. Existing literature has focused mainly on using neurons as a model system to study mechanisms of PCB-mediated neurotoxicity, overlooking the role of glial cells, such as astrocytes. As normal brain function is largely astrocyte-dependent, we hypothesize that astrocytes play an important role in PCB-mediated injury to neurons. We assessed the toxicity of two commercial PCB mixtures, Aroclor 1016 and Aroclor 1254, and a non-Aroclor PCB mixture found in residential air called the Cabinet mixture, all of which contain lower chlorinated PCBs (LC-PCBs) found in indoor and outdoor air. We further assessed the toxicity of five abundant airborne LC-PCBs and their corresponding human-relevant metabolites in vitro models of astrocytes, namely, the C6 cell line and primary astrocytes isolated from Sprague-Dawley rats and C57BL/6 mice. PCB52 and its human-relevant hydroxylated and sulfated metabolites were found to be the most toxic compounds. No significant sex-dependent cell viability differences were observed in rat primary astrocytes. Based on the equilibrium partitioning model, it was predicted that the partitioning of LC-PCBs and their corresponding metabolites in biotic and abiotic compartments of the cell culture system is structure-dependent and that the observed toxicity is consistent with this prediction. This study, for the first time, shows that astrocytes are sensitive targets of LC-PCBs and their human-relevant metabolites and that further research to identify mechanistic targets of PCB exposure in glial cells is necessary.
Collapse
Affiliation(s)
- Neha Paranjape
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Laura E. Dean
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andres Martinez
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ronald B. Tjalkens
- Department
of Environmental and Radiological Health Sciences, College of Veterinary
Medicine and Biomedical Sciences, Colorado
State University, Fort Collins, Colorado 80521, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
26
|
Megson D, Tiktak GP, Shideler S, Dereviankin M, Harbicht L, Sandau CD. Source apportionment of polychlorinated biphenyls (PCBs) using different receptor models: A case study on sediment from the Portland Harbor Superfund Site (PHSS), Oregon, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162231. [PMID: 36796695 DOI: 10.1016/j.scitotenv.2023.162231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Multivariate modelling techniques are used by a wide variety of investigations in environmental chemistry. It is surprisingly rare for studies to show a detailed understanding of uncertainties created by modelling or how uncertainties in chemical analysis impact model outputs. It is common to use untrained multivariate models for receptor modelling. These models produce a slightly different output each time they are run. The fact that a single model can provide different results is rarely acknowledged. In this manuscript, we attempt to address this by investigating differences that can be generated using four different receptor models (NMF, ALS, PMF & PVA) to perform source apportionment of polychlorinated biphenyls (PCBs) in surface sediments from Portland Harbor. Results showed that models generally had a strong agreement and identified the same main signatures that represented commercial PCB mixtures, however, subtle differences were identified by; different models, same models but with a different number of end members (EM), and the same model with the same number of end members. As well as identifying different Aroclor-like signatures, the relative proportion of these sources also varied. Depending on which method is selected it may have a significant impact on conclusions of a scientific report or litigation case and ultimately, allocation on who is responsible for paying for remediation. Therefore, care must be taken to understand these uncertainties to select a method that produces consistent results with end members that can be chemically explained. We also investigated a novel approach to use our multivariate models to identify inadvertent sources of PCBs. By using a residual plot produced from one of our models (NMF) we were able to suggest the presence of approximately 30 different potentially inadvertently produced PCBs which account for 6.6 % of the total PCBs in Portland Harbor sediments.
Collapse
Affiliation(s)
- David Megson
- Manchester Metropolitan University, Manchester, UK; Chemistry Matters Inc., Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Schettgen T, Bertram J, Krabbe J, Christoforou R, Schweiker M, Esser A, Möller M, Ziegler P, Kraus T. Excretion kinetics of 1,3-dichlorobenzene and its urinary metabolites after controlled airborne exposure in human volunteers. Arch Toxicol 2023; 97:1033-1045. [PMID: 36717398 PMCID: PMC10025240 DOI: 10.1007/s00204-023-03447-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
The solvent 1,3-dichlorobenzene (1,3-DCB) is formed during thermal decomposition of the initiator 2,4-dichlorobenzoylperoxide in the production of silicone rubber with potential exposure of production workers as shown in previous works. Despite a threshold limit value (MAK value) of 2 ppm in air, there are currently no data about the corresponding internal exposure that would allow for the derivation of a biological limit value. In the present study, we have investigated the absorption of 1,3-DCB and urinary kinetics of its metabolites in 10 human volunteers after controlled inhalative exposure. Due to the strong odour of 1,3-DCB, a subjective evaluation of odour nuisance was also performed. Ten male human volunteers (23-36 yrs.) were exposed 6 h/day to a concentration of 0.7 ppm and 1.5 ppm in the Aachen workplace simulation laboratory (AWSL) with one week between each experiment. In order to investigate potential dermal absorption, the volunteers were exposed to 1.5 ppm wearing a suitable filter mask that prevented inhalative exposure in a third exposure. 1,3-DCB in blood was measured after 3 and 6 h exposure and the urinary metabolites 3,5-dichlorocatechol (3,5-DCC), 2,4-dichlorophenol (2,4-DCP) and 3,5-dichlorophenol (3,5-DCP) were measured over 24 h after exposure via LC/MS/MS. There were clear dose-response relations for all investigated parameters. The maximum excretion of the metabolites was reached at the end of exposure and corresponded to 5.2 ± 0.7 mg/g crea, 1.5 ± 0.35 mg/g crea and 0.07 ± 0.011 mg/g crea at 0.7 ppm and to 12.0 ± 3 mg/g crea, 3.5 ± 1.1 mg/g crea and 0.17 ± 0.05 mg/g crea at 1.5 ppm for 3,5-DCC, 2,4-DCP and 3,5-DCP, respectively. The use of filter masks decreased the internal exposure for about 85-90%, indicating substantial dermal absorption. Odour perception did not show a dose-response, probably due to fast olfactory adaption. The human study presented here provides an excellent basis for deriving a biological limit value for 1,3-DCB.
Collapse
Affiliation(s)
- T Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - J Bertram
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - J Krabbe
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - R Christoforou
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - M Schweiker
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - A Esser
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - M Möller
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - P Ziegler
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - T Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
28
|
Behan-Bush R, Liszewski JN, Schrodt MV, Vats B, Li X, Lehmler HJ, Klingelhutz AJ, Ankrum JA. Toxicity Impacts on Human Adipose Mesenchymal Stem/Stromal Cells Acutely Exposed to Aroclor and Non-Aroclor Mixtures of Polychlorinated Biphenyl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1731-1742. [PMID: 36651682 PMCID: PMC9893815 DOI: 10.1021/acs.est.2c07281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Polychlorinated biphenyl (PCB) accumulates in adipose where it may impact the growth and function of cells within the tissue. This is particularly concerning during adolescence when adipocytes expand rapidly. Herein, we sought to understand how exposure to PCB mixtures found in U.S. schools affects human adipose mesenchymal stem/stromal cell (MSC) health and function. We investigated how exposure to Aroclor 1016 and Aroclor 1254, as well as a newly characterized non-Aroclor mixture that resembles the PCB profile found in cabinets, Cabinet Mixture, affects adipose MSC growth, viability, and function in vitro. We found that exposure to all three mixtures resulted in two distinct types of toxicity. At PCB concentrations >20 μM, the majority of MSCs die, while at 1-10 μM, MSCs remained viable but display numerous alterations to their phenotype. At these sublethal concentrations, the MSC rate of expansion slowed and morphology changed. Further assessment revealed that PCB-exposed MSCs had impaired adipogenesis and a modest decrease in immunosuppressive capabilities. Thus, exposure to PCB mixtures found in schools negatively impacts the health and function of adipose MSCs. This work has implications for human health due to MSCs' role in supporting the growth and maintenance of adipose tissue.
Collapse
Affiliation(s)
- Riley
M. Behan-Bush
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jesse N. Liszewski
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Michael V. Schrodt
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| | - Bhavya Vats
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Aloysius J. Klingelhutz
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Microbiology and Immunology, University
of Iowa, Iowa City, Iowa 52242, United States
| | - James A. Ankrum
- Roy
J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Fraternal
Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
29
|
Bako CM, Martinez A, Marek RF, Hornbuckle KC, Schnoor JL, Mattes TE. Lab-scale biodegradation assay using passive samplers to determine microorganisms' ability to reduce polychlorinated biphenyl (PCB) volatilization from contaminated sediment. MethodsX 2023; 10:102039. [PMID: 36798837 PMCID: PMC9926300 DOI: 10.1016/j.mex.2023.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Many PCB-degrading aerobes have been identified which may serve as bioaugmentation strains for aerobic, in situ bioremediation or in combination with dredging operations. The present work describes a lab-scale PCB biodegradation assay which can be used to screen potential bioaugmentation strains or consortia for their ability to decrease PCB mass flux from contaminated sediment to air through biodegradation of freely dissolved PCBs that have desorbed from sediment particles. The assay uses two types of passive samplers to simultaneously measure PCB mass that is freely dissolved in aqueous solution and PCB mass that has volatilized to the headspace of the bioreactor. Using this approach, relative comparisons of PCB mass accumulated in passive samplers between bioaugmented treatments and controls allow for practical assessment of a microbial strain's ability to reduce both freely dissolved and vapor phase PCB concentrations. The method is designed to be conducted using aliquots of homogenized, well-characterized, PCB-contaminated sediment gathered from a field site. This work details the experimental design methodology, required materials, bioreactor set-up, passive sampling, PCB-extraction, sample cleanup, and quantification protocols such that the biodegradation assay can be conducted or replicated. A step-by-step protocol is also included and annotated with photos, tips, and tricks from experienced analysts.•Relative comparisons of PCB mass accumulated in passive samplers between experimental treatments and controls allow for practical assessment of bioaugmentation strain's ability to reduce both freely dissolved and vapor phase PCB concentrations•Passive sampler preparation, deployment, PCB-extraction, cleanup procedures, and quantification are detailed step-by-step and annotated by experienced analysts.
Collapse
Affiliation(s)
- Christian M. Bako
- United States Environmental Protection Agency (US EPA) – Great Lakes National Program Office, 77W. Jackson Blvd., Chicago, IL United States, 60604
| | - Andres Martinez
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA United States, 52245
| | - Rachel F. Marek
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA United States, 52245
| | - Keri C. Hornbuckle
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA United States, 52245
| | - Jerald L. Schnoor
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA United States, 52245
| | - Timothy E. Mattes
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA United States, 52245
| |
Collapse
|
30
|
Dreyer A, Minkos A. Polychlorinated biphenyls (PCB) and polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/F) in ambient air and deposition in the German background. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120511. [PMID: 36349639 DOI: 10.1016/j.envpol.2022.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
PCDD/Fs (17 congeners and Σ tetra -to octachloro homologues) and 209 PCBs were investigated in monthly samples of ambient air (gas + particle phase) and atmospheric deposition at two background monitoring sites in Germany in 2018/19. In atmospheric deposition samples, PCDD/F congeners as well as certain PCBs were frequently below the method quantification limits whereas values for PCDD/F homologue groups could be quantified more often. Annual deposition averages for individual PCDD/Fs were between <0.1 μg/m2d and 6.7 μg/m2d. Averages for Σ TeCDD/F to OCDD/F homologue totals in deposition were about 11 pg/m2d and 19 pg/m2d. Total PCB deposition rates were about 1900 pg/m2d and 1550 pg/m2d. PCDD/F + PCB-deposition rates were below 1 pg WHO2005-TEQ/m2d on average. In ambient air, both substance groups were frequently observed. Annual concentration averages for individual PCDD/F were between 0.1 fg/m³ and 50 fg/m³. Average values for Σ TeCDD/F to OCDD/F homologue totals in ambient air were 283 fg/m³ and 162 fg/m³. Total PCB concentrations were about 50 pg/m³ at both sites. PCDD/F + PCB-TEQ values were lower than 5 fg WHO2005-TEQ/m³ on average. Besides the frequently studied dioxin-like PCBs and six indicator PCBs, the analysis of the 209 PCBs (166 separated PCB-peaks) enabled the identification and evaluation of additional PCBs that might be of environmental concern. Of 166 PCBs or PCB-coelutions, up to 144 were quantified in air samples and up to 94 in atmospheric deposition samples. In ambient air, some of these PCBs were observed at levels similar to or exceeding those of the six indicator PCBs. Important additional PCBs in ambient air were PCB 5 + 8, PCB 11, PCB 17, PCB 18, PCB 20 + 33, PCB 31, PCB 43 + 49, PCB 44, PCB 47 + 48 + 65 + 75, PCB 93 + 95 + 98 + 102, PCB 139 + 149, and PCB 151. The presence of these PCBs in atmospheric samples implies that by analysing only selected PCBs potentially important contaminants are overlooked.
Collapse
|
31
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
32
|
Hannah TJ, Megson D, Sandau CD. A review of the mechanisms of by-product PCB formation in pigments, dyes and paints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158529. [PMID: 36063921 DOI: 10.1016/j.scitotenv.2022.158529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
There has been an increased awareness of paints and pigments as a source of by-product PCBs in the environment. The majority of existing work has focused only on reporting the presence of the main PCBs in different products with a specific focus on the most PCB congeners, PCB11 and PCB209. This gives the impression that only a handful of PCBs are found in paints. However, this is not the case. PCB profiles in paints and pigments can be just as complex as commercial technical mixtures. This review identified the presence of 149 different PCBs in paint samples. For reference, only 141 different PCBs have been reported in all of the 5 main commercial Aroclor formulations (A1016, A1242, A1248, A1254 (early & late) and A1260). The total PCB concentrations in some paint samples can be substantial, with concentrations as high as 919 mg kg-1 reported in azo pigments. When trying to identify sources of PCBs in the environment, pigments, dyes and paints are often overlooked. In this manuscript, we have compiled congener profiles from 140 different samples from the available scientific literature and presented this in the supplementary information as valuable resource for others to use in source identification applications. We have also proposed detailed mechanisms for the formation of PCBs in pigments, dyes and paints. In many cases, the PCB congeners predicted by these mechanisms provide an excellent match for what has been observed in the scientific literature. We have also identified several additional classes of pigments that are expected to contain PCBs but have yet to be verified by experimental data.
Collapse
Affiliation(s)
| | - David Megson
- Chemistry Matters, Calgary, AB, Canada; Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK.
| | | |
Collapse
|
33
|
Hombrecher K, Quass U, Sievering S, Schöppe A, Rauchfuss K. Contamination of food crops by unintentionally released PCB 47, PCB 51 and PCB 68 in the vicinity of silicone production sites and their relevance for human health assessment. CHEMOSPHERE 2022; 308:136392. [PMID: 36096305 DOI: 10.1016/j.chemosphere.2022.136392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Since it was shown that silicone rubber production can unintentionally release PCBs, these production sites have become a focus of investigation. The use of the cross-linking agent bis(2,4)-dichlorobenzoylperoxide (2,4-DCBP) can lead to emissions of the PCB congeners PCB 47, PCB 51 and PCB 68 into the environment and cause their accumulation e. g. in food crops. To determine the presence and extent of this uptake, we used the newly developed method dandelion screening. Samples were taken from wild dandelion plants near nine production sites in North Rhine-Westphalia, Germany, and analysed for PCBs. In some cases, the regional orientation values for the maximum background level (OMB) were exceeded by up to nine times. Overall, background levels were exceeded at seven of the nine sites investigated and mitigation measures were initiated at the production sites. In order to validate the dandelion screening results, kale was exposed, which allowed for a health assessment. A wide-ranging consumption recommendation was then issued in four out of nine study areas. At this point in the investigations, risk reduction measures had already been implemented at all production sites investigated, so it can be assumed that the exposures at sites not yet in focus are significantly greater. This is a globally relevant problem, as 2,4-DCBP is used in many countries.
Collapse
Affiliation(s)
- Katja Hombrecher
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, Essen, 45133, Germany.
| | - Ulrich Quass
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, Essen, 45133, Germany
| | - Silvia Sievering
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, Essen, 45133, Germany
| | - Angelika Schöppe
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, Essen, 45133, Germany
| | - Knut Rauchfuss
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, Essen, 45133, Germany
| |
Collapse
|
34
|
Zhang CY, Li X, Keil Stietz KP, Sethi S, Yang W, Marek RF, Ding X, Lein PJ, Hornbuckle KC, Lehmler HJ. Machine Learning-Assisted Identification and Quantification of Hydroxylated Metabolites of Polychlorinated Biphenyls in Animal Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13169-13178. [PMID: 36047920 PMCID: PMC9573770 DOI: 10.1021/acs.est.2c02027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 06/02/2023]
Abstract
Laboratory studies of the disposition and toxicity of hydroxylated polychlorinated biphenyl (OH-PCB) metabolites are challenging because authentic analytical standards for most unknown OH-PCBs are not available. To assist with the characterization of these OH-PCBs (as methylated derivatives), we developed machine learning-based models with multiple linear regression (MLR) or random forest regression (RFR) to predict the relative retention times (RRT) and MS/MS responses of methoxylated (MeO-)PCBs on a gas chromatograph-tandem mass spectrometry system. The final MLR model estimated the retention times of MeO-PCBs with a mean absolute error of 0.55 min (n = 121). The similarity coefficients cos θ between the predicted (by RFR model) and experimental MS/MS data of MeO-PCBs were >0.95 for 92% of observations (n = 96). The levels of MeO-PCBs quantified with the predicted MS/MS response factors approximated the experimental values within a 2-fold difference for 85% of observations and 3-fold differences for all observations (n = 89). Subsequently, these model predictions were used to assist with the identification of OH-PCB 95 or OH-PCB 28 metabolites in mouse feces or liver by suggesting candidate ranking information for identifying the metabolite isomers. Thus, predicted retention and MS/MS response data can assist in identifying unknown OH-PCBs.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xueshu Li
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kimberly P. Keil Stietz
- Department
of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, United States
| | - Sunjay Sethi
- Department
of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, United States
| | - Weizhu Yang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Rachel F. Marek
- Department
of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xinxin Ding
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Pamela J. Lein
- Department
of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, United States
| | - Keri C. Hornbuckle
- Department
of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
35
|
Liu X, Mullin MR, Egeghy P, Woodward KA, Compton KC, Nickel B, Aguilar M, Folk E. Inadvertently Generated PCBs in Consumer Products: Concentrations, Fate and Transport, and Preliminary Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12228-12236. [PMID: 35943277 PMCID: PMC9511961 DOI: 10.1021/acs.est.2c02517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although commercial polychlorinated biphenyl (PCB) production was banned in 1979 under the Toxics Substance Control Act, inadvertent generation of PCBs through a variety of chemical production processes continues to contaminate products and waste streams. In this research, a total of 39 consumer products purchased from local and online retailer stores were analyzed for 209 PCB congeners. Inadvertent PCBs (iPCBs) were detected from seven products, and PCB-11 was the only congener detected in most of the samples, with a maximum concentration exceeding 800 ng/g. Emission of PCB-11 to air was studied from one craft foam sheet product using dynamic microchambers at 40 °C for about 120 days. PCB-11 migration from the product to house dust was also investigated. The IAQX program was then employed to estimate the emissions of PCB-11 from 10 craft foam sheets to indoor air in a 30 m3 room at 0.5 h-1 air change rate for 30 days. The predicted maximum PCB-11 concentration in the room air (156.8 ng/m3) and the measured concentration in dust (20 ng/g) were applied for the preliminary exposure assessment. The generated data from multipathway investigation in this work should be informative for further risk assessment and management for iPCBs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement & Modeling, Research Triangle Park, NC 27711, USA
| | - Michelle R. Mullin
- U.S. Environmental Protection Agency, Region 10, Land, Chemicals, and Redevelopment Division, Seattle, WA 98101, USA
| | - Peter Egeghy
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711, USA
| | - Katherine A. Woodward
- U.S. Environmental Protection Agency, Region 1, Land, Chemicals, and Redevelopment Division, Boston, MA 02109, USA
| | - Kathleen C. Compton
- U.S. Environmental Protection Agency, Region 10, Land, Chemicals, and Redevelopment Division, Seattle, WA 98101, USA
| | - Brian Nickel
- U.S. Environmental Protection Agency, Region 10, Water Division, Seattle, WA 98101, USA
| | - Marcus Aguilar
- U.S. Environmental Protection Agency, Region 9, Land, Chemicals, and Redevelopment Division, San Francisco, CA 94105, USA
| | - Edgar Folk
- Jacobs, Critical Mission Solutions, EPA - Research Laboratory Support, Research Triangle Park, NC 27711, USA
| |
Collapse
|
36
|
Roy MA, Gridley CK, Li S, Park Y, Timme-Laragy AR. Nrf2a dependent and independent effects of early life exposure to 3,3'-dichlorobiphenyl (PCB-11) in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106219. [PMID: 35700651 PMCID: PMC9701526 DOI: 10.1016/j.aquatox.2022.106219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 06/03/2023]
Abstract
The environmental pollutant 3,3'-dichlorobiphenyl (PCB-11) is a lower-chlorinated polychlorinated biphenyl (PCB) congener present in air and water samples. Both PCB-11 and its metabolite, 4-PCB-11-Sulfate, are detected in humans, including in pregnant women. Previous research in zebrafish (Danio rerio) has shown that 0.2 μM exposures to 4-PCB-11-Sulfate starting at 1 day post fertilization (dpf) increase hepatic neutral lipid accumulation in larvae at 15 dpf. Here, we explored whether nuclear factor erythroid 2-related factor 2 (Nrf2), known as the master-regulator of the adaptive response to oxidative stress, contributes to metabolic impacts of 4-PCB-11-Sulfate. For this work, embryos were collected from homozygous wildtype or Nrf2a mutant adult zebrafish that also express GFP in pancreatic β-cells, rendering Tg(ins:GFP;nrf2afh318+/+) and Tg(ins:GFP;nrf2afh318-/-) lines. Exposures were conducted from 1-15 dpf to either 0.05% DMSO or DMSO-matched 0.2 µM 4-PCB-11-Sulfate, and at 15 dpf subsets of larvae were imaged for overall morphology, primary pancreatic islet area, and collected for fatty acid profiling and RNAseq. At 15 dpf, independent of genotype, fish exposed to 4-PCB-11-Sulfate survived significantly more at 80-85% compared to 65-73% survival for unexposed fish, and had primary pancreatic islets 8% larger compared to unexposed fish. Fish growth at 15 dpf was dependent on genotype, with Nrf2a mutant fish a significant 3-5% shorter than wildtype fish, and an interaction effect was observed where Nrf2a mutant fish exposed to 4-PCB-11-Sulfate experienced a significant 29% decrease in the omega-3 fatty acid DHA compared to unexposed mutant fish. RNAseq revealed 308 differentially expressed genes, most of which were dependent on genotype. These findings suggest that Nrf2a plays an important role in growth as well as for DHA production in the presence of 4-PCB-11-Sulfate. Further research would be beneficial to understand the importance of Nrf2a throughout the lifecourse, especially in the context of toxicant exposures.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Charlotte K Gridley
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
37
|
Ortiz Almirall X, Solà Yagüe N, Gonzalez-Olmos R, Díaz-Ferrero J. Photochemical degradation of persistent organic pollutants (PCDD/FS, PCBS, PBDES, DDTS and HCB) in hexane and fish oil. CHEMOSPHERE 2022; 301:134587. [PMID: 35427665 DOI: 10.1016/j.chemosphere.2022.134587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
This study has investigated the photochemical degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and some organochlorine pesticides, such as hexachlorobenzene (HCB) or dichloro-diphenyl-trichloroethane (DDT) in hexane under UV irradiation at 254 nm. All pollutants were completely degraded after 3.5 h of exposition to the UV light. Moreover, this technique was applied to remove persistent organic pollutants from fish oil, with eliminations of a 34% for PCDD/Fs, 53% for PCBs, 59% for HCB, 67% for PBDEs and 73% for DDTs after 12 h of exposition to the UV light (254 nm). Dioxin-like PCBs increased their concentration after the treatment, probably due to the dehalogenation of other more chlorinated congeners. The fatty acids analysis of the fish oil revealed that the most important ω-3 fatty acids -EPA and DHA-were degraded to 67 and 70% of their initial content respectively. For these reasons elimination of persistent organic pollutants with photochemical treatment has limited applications for oils with food-purposes. However, it still can be a useful technique for decontamination of industrial oils.
Collapse
Affiliation(s)
- X Ortiz Almirall
- Environmental Laboratory, Analytical and Applied Chemistry Department, IQS School of Engineering - Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain.
| | - N Solà Yagüe
- Environmental Laboratory, Analytical and Applied Chemistry Department, IQS School of Engineering - Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - R Gonzalez-Olmos
- Chemical Engineering and Material Sciences Department, IQS School of Engineering - Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - J Díaz-Ferrero
- Environmental Laboratory, Analytical and Applied Chemistry Department, IQS School of Engineering - Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| |
Collapse
|
38
|
Li X, Hefti MM, Marek RF, Hornbuckle KC, Wang K, Lehmler HJ. Assessment of Polychlorinated Biphenyls and Their Hydroxylated Metabolites in Postmortem Human Brain Samples: Age and Brain Region Differences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9515-9526. [PMID: 35658127 PMCID: PMC9260965 DOI: 10.1021/acs.est.2c00581] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) has been implicated in neurodevelopmental disorders. However, the distribution of PCBs and OH-PCBs in the human brain has not been characterized. This study investigated the age-, sex-, and brain region-specific distribution of all 209 PCBs using gaschromatography-tandem mass spectrometry (GC-MS/MS) in neonatal (N = 7) and adult (N = 7) postmortem brain samples. OH-PCB analyses were performed by GC-MS/MS (as methylated derivatives) and, in a subset of samples, by nontarget liquid chromatography high-resolution mass spectrometry (Nt-LCMS). Fourteen higher chlorinated PCB congeners were observed with a detection frequency >50%. Six lower chlorinated PCBs were detected with a detection frequency >10%. Higher chlorinated PCBs were observed with higher levels in samples from adult versus younger donors. PCB congener profiles from adult donors showed more similarities across brain regions and donors than younger donors. We also assess the potential neurotoxicity of the PCB residues in the human brain with neurotoxic equivalency (NEQ) approaches. The median ΣNEQs, calculated for the PCB homologues, were 40-fold higher in older versus younger donors. Importantly, lower chlorinated PCBs made considerable contributions to the neurotoxic potential of PCB residues in some donors. OH-PCBs were identified for the first time in a small number of human brain samples by GC-MS/MS and Nt-LCMS analyses, and all contained four or fewer chlorine.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marco M. Hefti
- Department
of Pathology, University of Iowa Hospital
and Clinics, Iowa City, Iowa 52242, United
States
| | - Rachel F. Marek
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department
of Biostatistics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, University of Iowa, Iowa City, Iowa 52242, United States
- . Phone: (319) 335-4310. Fax: (319) 335-4290
| |
Collapse
|
39
|
Melymuk L, Blumenthal J, Sáňka O, Shu-Yin A, Singla V, Šebková K, Pullen Fedinick K, Diamond ML. Persistent Problem: Global Challenges to Managing PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9029-9040. [PMID: 35647669 PMCID: PMC9228072 DOI: 10.1021/acs.est.2c01204] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polychlorinated biphenyls (PCBs), "famous" as persistent organic pollutants (POPs), have been managed nationally since the 1970s and globally under the Stockholm Convention on POPs since 2004, requiring environmentally sound management (ESM) of PCBs by 2028. At most, 30% of countries are on track to achieve ESM by 2028. Globally over 10 million tonnes of PCB-containing materials remain, mostly in countries lacking the ability to manage PCB waste. Canada (Ontario) and Czechia, both parties to the Stockholm Convention, are close to achieving the 2028 goal, having reduced their stocks of pure PCBs by 99% in the past 10 years. In contrast, the USA, not a party to the Stockholm Convention, continues to have a substantial but poorly inventoried stock of PCBs and only ∼3% decrease in mass of PCBs since 2006. PCB management, which depends on Stockholm Convention support and national compliance, portends major challenges for POP management. The failure to manage global PCB stocks >30 years after the end of production highlights the urgent need to prioritize reducing production and use of newer, more widely distributed POPs such as chlorinated paraffins and per- and polyfluorinated alkyl substances, as these management challenges are unlikely to be resolved in the coming decades.
Collapse
Affiliation(s)
- Lisa Melymuk
- Faculty
of Science, Masaryk University, Kotlarska 2, Brno 611 37, Czech Republic
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Jonathan Blumenthal
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Ondřej Sáňka
- Faculty
of Science, Masaryk University, Kotlarska 2, Brno 611 37, Czech Republic
| | - Adriana Shu-Yin
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Veena Singla
- Healthy
People & Thriving Communities Program, Natural Resources Defense Council, San Francisco, California 94104, United States
| | - Kateřina Šebková
- Faculty
of Science, Masaryk University, Kotlarska 2, Brno 611 37, Czech Republic
| | - Kristi Pullen Fedinick
- Science
Office, Natural Resources Defense Council, Washington, D.C. 20005, United States
| | - Miriam L. Diamond
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
- School
of the Environment, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
40
|
Schettgen T, Esser A, Alt A, Randerath I, Kraus T, Ziegler P. Decomposition Products of the Initiator Bis(2,4-dichlorobenzoyl)peroxide in the Silicone Industry: Human Biomonitoring in Plasma and Urine of Workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8518-8527. [PMID: 35671459 DOI: 10.1021/acs.est.2c01530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bis(2,4-dichlorobenzoyl)peroxide (2,4-DCBP) is used as an initiator for silicone rubber production. During hot curing, 2,4-DCBP decomposes into 2,4-dichlorobenzoic acid, 1,3-dichlorobenzene, and the polychlorinated biphenyl (PCB) congeners PCB-47, PCB-51, and PCB-68. The extent of occupational exposure to these decomposition products has not been investigated yet. We determined for the first time the corresponding internal exposure of employees (n = 104) of a German silicone rubber facility by human biomonitoring in plasma and urine. Collected samples were investigated by gas chromatography/mass spectrometry for levels of PCBs in plasma and by liquid chromatography/tandem mass spectrometry for urinary post-shift levels of 2,4-dichlorobenzoic acid (2,4-DCBA) and the metabolites 3,5-dichlorocatechol (3,5-DCK), 2,4-dichlorophenol (2,4-DCP), and 3,5-dichlorophenol (3,5-DCP). PCB-47 and PCB-68 levels correlated significantly and were found in >97% of all samples with maximum values of 4.43 and 0.77 μg/L, respectively. 2,4-DCBA, 3,5-DCK, 2,4-DCP, and 3,5-DCP were quantified in >80% of all urine samples with maximum levels of 1.46; 26.92; 7.68; and 0.39 mg/L, respectively. There is a considerable uptake of decomposition products of 2,4-DCBP in workers of a silicone rubber facility, affecting employees in all work areas. Individual levels depended on the work task. Considering the carcinogenic potential of PCBs, the workers' additional exposure to PCB-47 and PCB-68 might be of concern.
Collapse
Affiliation(s)
- Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Anne Alt
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Isabella Randerath
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
41
|
Jahnke JC, Martinez A, Hornbuckle KC. Distinguishing Aroclor and non-Aroclor sources to Chicago Air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153263. [PMID: 35066038 PMCID: PMC9116205 DOI: 10.1016/j.scitotenv.2022.153263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/03/2023]
Abstract
Many polychlorinated biphenyl (PCB) congeners are found in both legacy Aroclor mixtures and modern materials, and both contribute to PCBs levels in ambient air. The various sources of PCBs make it difficult to quantify the relative importance of emissions from remaining legacy materials and emissions of PCBs released from production and use of modern products. To address this challenge, we utilized active and passive sampling, analytical methods optimized for PCBs, and Positive Matrix Factorization (PMF) and cos theta to examine the chemical signature of PCBs in Chicago air. Here we report our findings for over 640 samples collected over 7 years and analyzed for all 209 congeners. We conclude that Aroclor sources (1254, 1016/1242, and 1260) are consistent and dominant contributors to Chicago air. However, non-Aroclors sources accounted for 13%-16% of the total PCBs measured. Our analysis indicates non-Aroclor sources explain 99% of PCB11, 90% of PCB 68, and 58-69% of congeners with 8 to 10 chlorines in Chicago air. All of these are known to be emitted from paints or silicone polymers. Additionally, we identified over 20 congeners that have non-Aroclor contributions of more than 50% including PCB 3 (4-monochlorobiphenyl, 83% non-Aroclor) as well as 7 congeners of unknown sources: PCBs 43, 46, 55, 89, 96, 137, and 139 + 140. Non-Aroclor emission sources contribute to the entire range of congeners from mono- to deca-chlorobiphenyls. We found evidence of highly localized non-Aroclor sources including a signature similar to that of green paint. We also found source signals similar to the PCB congeners volatilizing from and absorbing to neighboring Lake Michigan. The measured profiles vary from season to season: lower chlorinated congeners dominate in winter months while higher chlorinated congeners contribute more in summer.
Collapse
Affiliation(s)
- Jacob C Jahnke
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andres Martinez
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Keri C Hornbuckle
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
42
|
Zhang D, Saktrakulkla P, Marek RF, Lehmler HJ, Wang K, Thorne PS, Hornbuckle KC, Duffel MW. PCB Sulfates in Serum from Mothers and Children in Urban and Rural U.S. Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6537-6547. [PMID: 35500099 PMCID: PMC9118556 DOI: 10.1021/acs.est.2c00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Serum samples from 24 subjects (6 mother-daughter and 6 mother-son dyads) in a rural community (Columbus Junction, Iowa) and 24 subjects (6 mother-daughter and 6 mother-son dyads) in an urban community (East Chicago, Indiana) were analyzed for 74 sulfated metabolites of polychlorinated biphenyls (PCBs). We detected significantly higher mean concentrations of total assessed PCB sulfates in the urban group (110-8900 ng/g fresh weight of serum, mean = 3400 ng/g, standard error = 300) than in the rural cohort (530-6700 ng/g fresh weight of serum, mean = 1800 ng/g, standard error = 500). Eight PCB sulfate congeners (4-PCB 2 sulfate, 4'-PCB 2 sulfate, 2'-PCB 3 sulfate, 4'-PCB 3 sulfate, 4-PCB 11 sulfate, 4'-PCB 18 sulfate, 4'-PCB 25 sulfate, and 4-PCB 52 sulfate) contributed over 90% of the total assessed PCB sulfates in most individuals. The serum samples were enriched in PCB sulfates with fewer than 5 chlorine atoms, and this congener distribution differed from those of PCBs and hydroxylated PCBs in previous studies in the same communities. Regression analysis indicated several significant congener-specific correlations in mother-child dyads, and these relationships differed by location and by mother-daughter or mother-son dyads. This is the first study reporting a broad range of PCB sulfates in populations from urban and rural areas.
Collapse
Affiliation(s)
- Duo Zhang
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Panithi Saktrakulkla
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242 United States
| | - Rachel F. Marek
- Department
of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242 United States
- IIHR-Hydroscience
& Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department
of Biostatistics, The University of Iowa, Iowa City, Iowa 52242 United States
| | - Peter S. Thorne
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242 United States
- IIHR-Hydroscience
& Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Michael W. Duffel
- Interdisciplinary
Graduate Program in Human Toxicology, The
University of Iowa, Iowa City, Iowa 52242 United States
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
43
|
Martinez A, Awad AM, Jones MP, Hornbuckle KC. Intracity occurrence and distribution of airborne PCB congeners in Chicago. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151505. [PMID: 34762940 PMCID: PMC8810667 DOI: 10.1016/j.scitotenv.2021.151505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/03/2023]
Abstract
To evaluate the magnitude and extent of airborne PCBs in an urban area, we measured and investigated the temporal and spatial behavior of atmospheric concentrations of individual polychlorinated biphenyl (PCB) congeners as well as the sum of all congeners (ΣPCB) in both gas and particle phases at 27 locations across the City of Chicago in a single year (2009). In total, 141 gas-phase air samples were collected, including 22 pairs (44 samples) deployed at the same time but at two different locations, and 46 particle-phase samples. ΣPCB in the gas-phase ranged from 80 to 3000 pg/m3, with a geometric mean (GM) of 530 pg/m3, whereas particle-phase ranged from 8 to 160 pg/m3, with a GM of 28 pg/m3. We found the temporal variability to be about three times larger than the variability over space for all gas-phase congeners and ΣPCB. Around 50% of the sample PCB profiles resembled a mixture of a 1:1 vapor Aroclor mixture of 1016 + 1254, with most of the rest (30%) showing enrichment of PCB 3 (>0.1), which did not match any Aroclor profiles. PCB 11 contributed to ~5% in all samples. The fractions of PCB congeners bound to particles ranged from 0.001 to 0.97. Our analysis shows that airborne PCBs are widely distributed across Chicago and confirms that most locations have a similar PCB distribution, but differ in the concentration levels. Volatilization continues to be the main release process of PCBs into the atmosphere, including both Aroclor and non-Aroclor congeners.
Collapse
Affiliation(s)
- Andres Martinez
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA.
| | - Andrew M Awad
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, The University of Iowa, Iowa City, IA 52242, USA
| | - Keri C Hornbuckle
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
44
|
Schettgen T, Esser A, Kraus T, Ziegler P. Plasma levels of unintentionally produced non-Aroclor polychlorinated biphenyl (PCB) congeners in workers from the silicone rubber industry. CHEMOSPHERE 2022; 291:132722. [PMID: 34718009 DOI: 10.1016/j.chemosphere.2021.132722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The unintentional release of non-Aroclor-PCBs 47, PCB 68 and PCB 51 by a silicone manufacturing company in North Rhine-Westphalia, Germany, due to the use of bis-(2,4-dichlorobenzoyl)peroxide (2,4-DCBP) as an initiator has raised serious concerns about the possible uptake of these congeners by workers in silicone rubber production. We have conducted a pilot study in Germany to quantify these congeners in plasma samples of employees working in and handling silicone rubber during production and electrical cable manufacturing. A total of 117 plasma samples were collected from workers in 7 companies and 84 plasma samples from control subjects not working in silicone industry. PCB 47 and PCB 68 were detected in plasma above the limit of quantification (0.01 μg/L) in 84% and 66% of the silicone industry workers, respectively, whereas both congeners were undetectable in plasma of the control group. The maximum levels for PCB 47 were 2.56 μg/L and for PCB 68 were 0.42 μg/L. PCB 51 could not be determined in any plasma sample. Plasma samples of workers making electric cables had in general lower levels than those from workers making silicone rubber. Due to the high persistence of PCBs and the poorly defined toxicological properties of PCB 47 and PCB 68, a replacement of 2,4-DCBP as initiator in silicone rubber production should be considered. Given the large market for silicone products, our results might have a global impact on silicone industry.
Collapse
Affiliation(s)
- Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| |
Collapse
|
45
|
Noh Y, Boor BE, Shannahan JH, Troy CD, Jafvert CT, Whelton AJ. Emergency responder and public health considerations for plastic sewer lining chemical waste exposures in indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126832. [PMID: 34449354 PMCID: PMC9614704 DOI: 10.1016/j.jhazmat.2021.126832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The cured-in-place pipe (CIPP) manufacturing process is used to repair buried pipes, and its waste commonly discharged into the air can enter nearby buildings. Exposure can prompt illness and the need for medical care. A mass balance model was applied to estimate indoor styrene concentrations due to intrusion of CIPP emissions through plumbing under different bathroom ventilation conditions. To better understand building contamination and recommend emergency response actions, calculations to estimate chemical intrusion through plumbing were developed. Field reports and study calculations showed that contractor-applied external pressures during plastic manufacture have and can displace plumbing trap water seals. Modeled styrene vapor concentrations that entered the building (1, 300, 1000 ppm) were similar to those measured at CIPP worksites. Modeling revealed that in some cases, bathroom exhaust fan operation during a CIPP project may increase indoor styrene concentrations due to enhanced entrainment of styrene-laden air from the sink and toilet. However, styrene concentrations decreased with increasing air leakage across the bathroom door due to reduced suction from the plumbing system. CIPP waste discharge should be treated as a hazardous material release and can pose a threat to human health. Immediate building evacuation, respiratory protection, provision of medical assistance, source elimination, and building decontamination are recommended.
Collapse
Affiliation(s)
- Yoorae Noh
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Cary D Troy
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Chad T Jafvert
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA; Division of Ecological and Environmental Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA; Division of Ecological and Environmental Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
46
|
Rodenburg LA, Hermanson MR, Sumner AL. Effect of membrane filtration on the fate of polychlorinated biphenyls in wastewater treatment. CHEMOSPHERE 2022; 287:132335. [PMID: 34563767 DOI: 10.1016/j.chemosphere.2021.132335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Spokane River is impacted by levels of polychlorinated biphenyls (PCBs) that have triggered fish consumption advisories and exceed water quality standards. Select wastewater treatment plants (WWTPs) on the river have been upgraded from secondary (biological) treatment to tertiary treatment in the form of membrane filtration to address phosphorus contamination. Because membrane filtration is effective at removing particles, it is likely to reduce PCB concentrations in the effluent as well. In this work, PCBs measured in the influents and effluent of several WWTPs discharging to the river were examined. Implementation of membrane filtration reduced PCB concentrations in the effluent (and therefore PCB loads to the river) by 33% at a facility that produces recycled and virgin paper and by ∼55% at municipal WWTPs, compared to secondary (activated sludge) treatment. Largest reductions in concentrations in effluent and loads were achieved for higher molecular weight (MW) PCB congeners (i.e. those with six or more chlorines), homologs, and formulations. The more modest reductions in effluent concentrations achieved at the paper WWTP may be due to the mix of PCBs in the wastewater there: it contained primarily the low MW Aroclor 1242 (presumably from carbonless copy paper) and PCB 11 (3,3'-dichlorobiphenyl) possibly from pigments. PCBs that appear to be associated with silicone products such as caulk, tubing, and o-rings are relatively more abundant in the effluent of some plants compared to the influent, suggesting that these congeners arise from contamination during sampling or from within the plant itself. At some WWTPs, this contamination accounts for nearly a third of PCBs measured in the effluent.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| | - Michael R Hermanson
- Spokane County Environmental Services, 1116 W. Broadway Avenue, Spokane, WA, 99260, USA
| | - Amy L Sumner
- Spokane County Environmental Services, 1116 W. Broadway Avenue, Spokane, WA, 99260, USA
| |
Collapse
|
47
|
Sethi S, Keil Stietz KP, Valenzuela AE, Klocke CR, Silverman JL, Puschner B, Pessah IN, Lein PJ. Developmental Exposure to a Human-Relevant Polychlorinated Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Front Neurosci 2021; 15:766826. [PMID: 34938155 PMCID: PMC8685320 DOI: 10.3389/fnins.2021.766826] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are putative environmental risks for neurodevelopmental disorders. Here, we tested two hypotheses: (1) developmental exposure to a human-relevant PCB mixture causes behavioral phenotypes relevant to neurodevelopmental disorders; and (2) expression of human mutations that dysregulate neuronal Ca2+ homeostasis influence sensitivity to behavioral effects of developmental PCB exposures. To test these hypotheses, we used mice that expressed a gain-of-function mutation (T4826I) in ryanodine receptor 1 (RYR1), the X-linked fragile X mental retardation 1 (FMR1) CGG repeat expansion or both mutations (double mutant; DM). Transgenic mice and wildtype (WT) mice were exposed to the MARBLES PCB mix at 0, 0.1, 1, and 6 mg/kg/day in the maternal diet throughout gestation and lactation. The MARBLES PCB mix simulates the relative proportions of the 12 most abundant PCB congeners found in the serum of pregnant women at increased risk for having a child with a neurodevelopmental disorder. We assessed ultrasonic vocalizations at postnatal day 7 (P7), spontaneous repetitive behaviors at P25-P30, and sociability at P27-P32. Developmental PCB exposure reduced ultrasonic vocalizations in WT litters in all dose groups, but had no effect on ultrasonic vocalizations in transgenic litters. Developmental PCB exposure significantly increased self-grooming and decreased sociability in WT males in the 0.1 mg/kg dose group, but had no effect on WT females in any dose group. Genotype alone influenced ultrasonic vocalizations, self-grooming and to a lesser extent sociability. Genotype alone also influenced effects of PCBs on sociability. PCB levels in the brain tissue of pups increased in a dose-dependent manner, but within any dose group did not differ between genotypes. In summary, developmental PCB exposure phenocopied social behavior phenotypes observed in mice expressing human mutations that modify intracellular Ca2+ dynamics, and expression of these mutations alleviated PCB effects on ultrasonic vocalizations and repetitive behavior, and modified the dose-response relationships and sex-dependent effects of PCB effects on social behavior. These findings suggest that: (1) developmental PCB exposure causes behavioral phenotypes that vary by sex and genotype; and (2) sex-specific responses to environmental factors may contribute to sex biases in the prevalence and/or severity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R. Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
48
|
Hombrecher K, Quass U, Leisner J, Wichert M. Significant release of unintentionally produced non-Aroclor polychlorinated biphenyl (PCB) congeners PCB 47, PCB 51 and PCB 68 from a silicone rubber production site in North Rhine-Westphalia, Germany. CHEMOSPHERE 2021; 285:131449. [PMID: 34329153 DOI: 10.1016/j.chemosphere.2021.131449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Silicone rubber production using bis(2,4)-dichlorobenzoylperoxide (2,4-DCBP) as cross-linking agent was recently found to emit significant amounts of the non-Aroclor PCB congeners PCB 47, PCB 51 and PCB 68 into ambient air. Emissions were reported initially to be associated with flue gas condensate flakes deposited in the direct vicinity of the production site. These flakes were mainly composed of 2,4-dichlorobenzoic acid and were contaminated with PCBs in the range of 150-300 mg/kg. Analysis of ambient air proved that also substantial gaseous emissions of the specific PCB congeners occur. The PCB congeners PCB 47, PCB 51 and PCB 68 were also found in bulk deposition samples, bio-indicators (dandelion, kale) and soil samples in the vicinity of the production site. Substitution of 2,4-DCBP by other cross-linking agents and mitigation measures led to a significant decrease of environmental impact.
Collapse
Affiliation(s)
- Katja Hombrecher
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, 45133, Essen, Germany.
| | - Ulrich Quass
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, 45133, Essen, Germany
| | - Jörg Leisner
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, 45133, Essen, Germany
| | - Michael Wichert
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (LANUV NRW), Wallneyer Str. 6, 45133, Essen, Germany
| |
Collapse
|
49
|
Duffel MW, Tuttle K, Lehmler HJ, Robertson LW. Human hepatic microsomal sulfatase catalyzes the hydrolysis of polychlorinated biphenyl sulfates: A potential mechanism for retention of hydroxylated PCBs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103757. [PMID: 34688910 PMCID: PMC8595862 DOI: 10.1016/j.etap.2021.103757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 05/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that continue to be of concern due to their varied toxicities. Upon human exposure, many PCBs with lower numbers of chlorine atoms are metabolized to hydroxylated derivatives (OH-PCBs), and cytosolic sulfotransferases can subsequently catalyze the formation of PCB sulfates. Recent studies have indicated that PCB sulfates bind reversibly with a high affinity to human serum proteins, and that they are also taken up by cells and tissues. Since PCB sulfates might be hydrolyzed to the more toxic OH-PCBs, we have investigated the ability of human hepatic microsomal sulfatase to catalyze this reaction. Twelve congeners of PCB sulfates were substrates for the microsomal sulfatase with catalytic rates exceeding that of dehydroepiandrosterone sulfate as a comparison substrate for steroid sulfatase (STS). These results are consistent with an intracellular mechanism for sulfation and de-sulfation that may contribute to retention and increased time of exposure to OH-PCBs.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, IA, USA.
| | - Kristopher Tuttle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
50
|
Hoang AQ, Aono D, Watanabe I, Tsugeki NK, Kuwae M, Takahashi S. Historical record of polychlorinated biphenyls in a sediment core from Lake Biwa, Japan: Significance of unintentional emission and weathering signals revealed by full congener-specific analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147913. [PMID: 34134391 DOI: 10.1016/j.scitotenv.2021.147913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of 209 PCB congeners was determined in a sediment core dated between 1930 and 2019 from Lake Biwa, a typical temperate monomictic lake in Japan. Concentrations of total PCBs ranged from 5.3 to 48 ng/g dry weight (dw), showing a highest peak at the 1960s to 1970s. The temporal trend of total PCBs in this sediment core generally matched with Japanese PCB production and emission pattern (i.e., increasing from the 1950s, peaking at 1970, and gradually decreasing since 1972). The vertical PCB profiles in our core were affected by physical mixing and bioturbation. By using a detailed and comprehensive analytical method, we have found elevated concentrations and special historical profiles of several congeners such as CB-7, -11, -47/48/75, -51, -68, and -209, which are still rarely included in routine PCB analysis. Some tetra-CB congeners like CB-47/48/75, -51, and -68 showed their concentration peaks at the early 2010s, which may be unintentionally produced during polymer manufacturing processes. PCB homolog- and congener-specific profiles in our sediment core samples have experienced weathering with higher proportions of penta- and hexa-CBs as compared to the Kanechlor usage pattern (i.e., dominated by tri- and tetra-CBs). Both intentional (i.e., technical mixtures) and unintentional (e.g., PCB-containing polymers and pigments) sources of PCBs were suggested from congener-specific analysis.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Daichi Aono
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Narumi K Tsugeki
- Faculty of Law, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|