1
|
Chremos A, Krekelberg WP, Hatch HW, Siderius DW, Mahynski NA, Shen VK. Development of SAFT-Based Coarse-Grained Models of Carbon Dioxide and Nitrogen. J Phys Chem B 2025; 129:3443-3453. [PMID: 40116397 PMCID: PMC11973872 DOI: 10.1021/acs.jpcb.5c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
We develop coarse-grained models for carbon dioxide (CO2) and nitrogen (N2) that capture the vapor-liquid equilibria of both their single components and their binary mixtures over a wide range of temperatures and pressures. To achieve this, we used an equation of state (EoS), namely Statistical Associating Fluid Theory (SAFT), which utilizes a molecular-based algebraic description of the free energy of chain fluids. This significantly accelerates the exploration of the parameter space, enabling the development of coarse-grained models that provide an optimal description of the macroscopic experimental data. SAFT creates models of fluids by chaining together spheres, which represent coarse-grained parts of a molecule. The result is a series of fitted parameters, such as bead size, bond length, and interaction strengths, that seem amenable to molecular simulation. However, only a limited set of models can be directly implemented in a particle-based simulation; this is predominantly due to how SAFT handles overlap between bonded monomers with parameters that do not translate to physical features, such as bond length. To translate such parameters to bond lengths in a coarse-grained force-field, we performed Wang-Landau transition-matrix Monte Carlo (WL-TMMC) simulations in the grand canonical ensemble on homonuclear fused two-segment Mie models and evaluated the phase behavior at different bond lengths. In the spirit of the law of corresponding states, we found that a force field, which matches SAFT predictions, can be derived by rescaling length and energy scales based on ratios of critical point properties of simulations and experiments. The phase behavior of CO2 and N2 mixtures was also investigated. Overall, we found excellent agreement over a wide range of temperatures and pressures in pure components and mixtures, similar to TraPPE CO2 and N2 models. Our proposed approach is the first step to establishing a more robust bridge between SAFT and molecular simulation modeling.
Collapse
Affiliation(s)
- Alexandros Chremos
- Chemical Sciences Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8320, United
States
| | - William P. Krekelberg
- Chemical Sciences Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8320, United
States
| | - Harold W. Hatch
- Chemical Sciences Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8320, United
States
| | - Daniel W. Siderius
- Chemical Sciences Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8320, United
States
| | - Nathan A. Mahynski
- Chemical Sciences Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8320, United
States
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8320, United
States
| |
Collapse
|
2
|
Sahu AK, Rufford TE, Ali SH, Knibbe R, Smart S, Jiao F, Bell AT, Zhang X. Material needs for power-to-X systems for CO 2 utilization require a life cycle approach. Chem Sci 2025; 16:5819-5835. [PMID: 40115182 PMCID: PMC11920902 DOI: 10.1039/d4sc07752k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
The world's transition from a fossil-fuel-driven society to a future net-zero or negative carbon dioxide emission society will require a significant scale-up of Power-to-X technologies to capture and convert CO2 to low carbon intensity fuels and chemicals. The deployment of Power-to-X technologies at gigawatt scales necessary to impact CO2 emissions and replace existing fossil-fuel-dependent processes will require vast quantities of raw materials and minerals. Many of the materials required in Power-to-X systems, such as rare earth metal yttrium and iridium, differ from those used to construct and operate petroleum-hydrocarbon-based processes for the last 100 years. Thus, electrolyzer manufacturers and mineral producers face significant challenges in matching supply to the growing demand. In this Perspective, we identify critical materials needed for Power-to-X electrolyzers and analyze the impacts and risks of these materials' existing global supply chains. We then provide an overview of methodologies for Environmental Life Cycle Assessment (LCA) and Social Life Cycle Assessment (SLCA) that we encourage scientific communities to adopt early in the research process to evaluate the multidimensional socio-environmental impacts throughout a product's life cycle, from raw material extraction and processing to manufacturing, use, and end-of-life disposal. We advocate that life cycle thinking is crucial for the informed, just and ethical development of disruptive technologies and systems such as Power-to-X technologies.
Collapse
Affiliation(s)
- Aloka Kumar Sahu
- School of Chemical Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
| | - Thomas E Rufford
- School of Chemical Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- Dow Centre for Sustainable Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
| | - Saleem H Ali
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- Department of Geography and Delaware Energy Institute, University of Delaware Newark Delaware USA
| | - Ruth Knibbe
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- School of Mechanical and Mining Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
| | - Simon Smart
- School of Chemical Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- Dow Centre for Sustainable Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
| | - Feng Jiao
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis St. Louis - 63130 Missouri USA
| | - Alexis T Bell
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- Department of Chemical and Biomolecular Engineering, University of California in Berkeley Berkeley - 94720 California USA
| | - Xiwang Zhang
- School of Chemical Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- Dow Centre for Sustainable Engineering, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of CO2, The University of Queensland St. Lucia - 4072 Brisbane Queensland Australia
| |
Collapse
|
3
|
Singh V, Urunikulavan V, Bar AK. An insight into the route from CO 2 fixation to CO 32--bridged dinuclear lanthanide(III) complexes featuring inner coordination post-synthetic modification. Dalton Trans 2025; 54:4566-4576. [PMID: 39945431 DOI: 10.1039/d4dt03050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
An insight into the route from the fixation of CO2 gas into CO32- and the concomitant formation of a novel series of carbonato-bridged dinuclear lanthanide(III) complexes is presented. Efficient and quantitative conversion of CO2 gas into CO32- is confirmed by deliberately employing CO2 gas as a reagent. The feature of inner coordination post-synthetic modification is demonstrated via ligand substitution at the terminally axial coordination sites of the dinuclear motifs. Spectroscopic and X-ray crystallographic techniques were employed for probing the reactions and structural elucidation of the products.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati - 517619, Andhra Pradesh, India.
| | - Vajeeha Urunikulavan
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati - 517619, Andhra Pradesh, India.
| | - Arun Kumar Bar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati - 517619, Andhra Pradesh, India.
| |
Collapse
|
4
|
Landuyt A, Kochetygov I, McMonagle CJ, Kumar PV, Yuwono JA, Queen WL, Abdala PM, Müller CR. Role of Na 2CO 3 as Nucleation Seeds to Accelerate the CO 2 Uptake Kinetics of MgO-Based Sorbents. JACS AU 2024; 4:4809-4820. [PMID: 39735919 PMCID: PMC11672151 DOI: 10.1021/jacsau.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 12/31/2024]
Abstract
There is an urgent need for inexpensive, functional materials that can capture and release CO2 under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO2 sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO2 uptakes, MgO-based CO2 sorbents feature slow carbonation kinetics, limiting their CO2 uptake during typical industrial contact times. The addition of molten alkali metal nitrate promoters, such as NaNO3, can partially mitigate the slow kinetics. Here, we investigate how the CO2 uptake kinetics of NaNO3-promoted MgO can be increased further through the addition of finely dispersed Na2CO3. The incorporation of Na2CO3 significantly increases the CO2 uptake rate from 1.4 to 14.6 mmol MgCO3 (mol MgO)-1 s-1. Using in situ synchrotron X-ray powder diffraction (XRD), we track the formation of MgCO3 and elucidate the mechanism through which Na2CO3 promotes the CO2 uptake of MgO. Our findings demonstrate that Na2CO3 rapidly converts within seconds into Na2Mg(CO3)2 during carbonation, acting subsequently as nucleation seeds for MgCO3 formation, in turn significantly enhancing CO2 uptake kinetics. Further, the presence of Na2Mg(CO3)2 considerably enhances the mobility of ions in the sorbent, leading to sintering of MgCO3. Importantly, Na2Mg(CO3)2 promotes MgCO3 formation even in the presence of molten RbNO3, a salt with a limited ability to dissolve [Mg2+···CO3 2-] ion pairs, indicating that Na2Mg(CO3)2 lowers the critical ion pair concentration required for MgCO3 nucleation. Additionally, the partial dissolution of Na2CO3 in NaNO3 may increase the concentration of carbonate ions in the melt, further accelerating carbonation kinetics in MgO-(Na2CO3/NaNO3).
Collapse
Affiliation(s)
- Annelies Landuyt
- Laboratory
of Energy Science and Engineering, Department of Mechanical and Process
Engineering, Eidgenössische Technische
Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Ilia Kochetygov
- Paul
Scherrer Institut, PSI Center for Energy and Environmental Sciences, Villigen, PSI CH-5232, Switzerland
| | - Charles J. McMonagle
- Swiss-Norwegian
Beamlines (SNBL), European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France
| | - Priyank V. Kumar
- School
of Chemical Engineering, The University
of New South Wales (UNSW Sydney), 2052 Sydney, New South Wales, Australia
| | - Jodie A. Yuwono
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Wendy L. Queen
- Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1051 Sion, Switzerland
| | - Paula M. Abdala
- Laboratory
of Energy Science and Engineering, Department of Mechanical and Process
Engineering, Eidgenössische Technische
Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Christoph R. Müller
- Laboratory
of Energy Science and Engineering, Department of Mechanical and Process
Engineering, Eidgenössische Technische
Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Chowdhury S, Westenberg R, Wennerholm K, Cardiff RAL, Beliaev AS, Noireaux V, Carothers JM, Peralta-Yahya P. Carbon Negative Synthesis of Amino Acids Using a Cell-Free-Based Biocatalyst. ACS Synth Biol 2024; 13:3961-3975. [PMID: 39570279 DOI: 10.1021/acssynbio.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Biological systems can directly upgrade carbon dioxide (CO2) into chemicals. The CO2 fixation rate of autotrophic organisms, however, is too slow for industrial utility, and the breadth of engineered metabolic pathways for the synthesis of value-added chemicals is too limited. Biotechnology workhorse organisms with extensively engineered metabolic pathways have recently been engineered for CO2 fixation. Yet, their low carbon fixation rate, compounded by the fact that living organisms split their carbon between cell growth and chemical synthesis, has led to only cell growth with no chemical synthesis achieved to date. Here, we engineer a lysate-based cell-free expression (CFE)-based multienzyme biocatalyst for the carbon negative synthesis of the industrially relevant amino acids glycine and serine from CO2 equivalents─formate and bicarbonate─and ammonia. The formate-to-serine biocatalyst leverages tetrahydrofolate (THF)-dependent formate fixation, reductive glycine synthesis, serine synthesis, and phosphite dehydrogenase-dependent NAD(P)H regeneration to convert 30% of formate into serine and glycine, surpassing the previous 22% conversion using a purified enzyme system. We find that (1) the CFE-based biocatalyst is active even after 200-fold dilution, enabling higher substrate loading and product synthesis without incurring additional cell lysate cost, (2) NAD(P)H regeneration is pivotal to driving forward reactions close to thermodynamic equilibrium, (3) balancing the ratio of the formate-to-serine pathway genes added to the CFE is key to improving amino acid synthesis, and (4) efficient THF recycling enables lowering the loading of this cofactor, reducing the cost of the CFE-based biocatalyst. To our knowledge, this is the first synthesis of amino acids that can capture CO2 equivalents for the carbon negative synthesis of amino acids using a CFE-based biocatalyst. Looking ahead, the CFE-based biocatalyst process could be extended beyond serine to pyruvate, a key intermediate, to access a variety of chemicals from aromatics and terpenes to alcohols and polymers.
Collapse
Affiliation(s)
- Shaafique Chowdhury
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ray Westenberg
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kimberly Wennerholm
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Alexander S Beliaev
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Centre for Agriculture and the Bioeconomy, School of Biological and Environmental Sciences, Queensland University of Technology, Gardens Point Campus, P.O. Box 2434, Brisbane 4001, Queensland, Australia
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Lechtenberg F, Istrate R, Tulus V, Espuña A, Graells M, Guillén‐Gosálbez G. PULPO: A framework for efficient integration of life cycle inventory models into life cycle product optimization. JOURNAL OF INDUSTRIAL ECOLOGY 2024; 28:1449-1463. [PMID: 39722861 PMCID: PMC11667648 DOI: 10.1111/jiec.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This work presents the PULPO (Python-based user-defined lifecycle product optimization) framework, developed to efficiently integrate life cycle inventory (LCI) models into life cycle product optimization. Life cycle optimization (LCO), which has found interest in both the process systems engineering and life cycle assessment (LCA) communities, leverages LCA data to go beyond simple assessments of a limited number of alternatives and identify the best possible product systems configuration subject to a manifold of choices, constraints, and objectives. However, typically, aggregated inventories are used to build the optimization problems. Contrary to existing frameworks, PULPO integrates whole LCI databases and user inventories as a backbone for the optimization problem, considering economy-wide feedback loops between fore- and background systems that would otherwise be omitted. The open-source implementation combines functions from Brightway2 for the manipulation of inventory data and pyomo for the formulation and solution of the optimization problem. The advantages of this approach are demonstrated in a case study focusing on the design of optimal future global green methanol production systems from captured CO2 and electrolytic H2. It is shown that the approach can be used to assess sector-coupling with multi-functional processes and prospective background databases that would otherwise be impractical to approach from a standalone LCA perspective. The use of PULPO is particularly appealing when evaluating large-scale decisions that have a strong impact on socioeconomic systems, resulting in changes in the technosphere on which the background system is based and which is often assumed constant in standard LCO approaches regardless of the decisions taken. This article met the requirements for a gold-gold JIE data openness badge described at http://jie.click/badges.
Collapse
Affiliation(s)
- Fabian Lechtenberg
- Department of Chemical EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
| | - Robert Istrate
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenNetherlands
- Department of Chemistry and Applied Bioscience, Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Victor Tulus
- Department of Chemistry and Applied Bioscience, Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| | - Antonio Espuña
- Department of Chemical EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
| | - Moisès Graells
- Department of Chemical EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
| | - Gonzalo Guillén‐Gosálbez
- Department of Chemistry and Applied Bioscience, Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland
| |
Collapse
|
7
|
Chen J, Feng Y, Zhang Z, Wang Q, Ma F. Exploring the patterns of China's carbon neutrality policies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123092. [PMID: 39476679 DOI: 10.1016/j.jenvman.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
To achieve the ambitious carbon neutrality goal by 2060, the Chinese government has implemented a series of carbon neutrality policies. These policy documents are pivotal in facilitating the examination of policy substance, the scrutiny of policy evolution, and the dissection of the policy instruments involved. This study develops an analytical framework for assessing carbon neutrality through policy documents, applying text mining and network analysis to probe the intricacies of policy topics, interagency collaboration, and diffusion dynamics. This research aims to delineate and expound upon the strategic paradigms employed by the Chinese government in its quest for carbon neutrality. The findings reveal a constellation of eleven policy topics, with "green" and "low carbon" being key aspects of each. The policy collaboration network has a density of 0.593, and the National Development and Reform Commission (NDRC)'s high average weighted degree of 14.6 highlights its crucial role in leading and coordinating these policies. In terms of diffusion dynamics, the green energy transition topic has a diffusion speed of 0.967 and a strength of 49, indicating its importance to the Chinese government. On a practical level, the findings offer policy-makers concrete, actionable recommendations to refine policy design and enhance implementation effectiveness. Theoretically, this study advances the scientific understanding of policy dynamics by proposing a novel analytical framework that integrates multiple dimensions of policy analysis, contributing to the methodological development of policy research.
Collapse
Affiliation(s)
- Jinglong Chen
- School of Information Management, Wuhan University, Wuhan, 430072, China; Center for Studies of Information Resources, Wuhan University, Wuhan, 430072, China; Big Data Institute, Wuhan University, Wuhan, 430072, China
| | - Ye Feng
- School of International Trade, Shanxi University of Finance and Economics, Shanxi, 030006, China
| | - Zhijian Zhang
- School of Information Management, Wuhan University, Wuhan, 430072, China; Center for Studies of Information Resources, Wuhan University, Wuhan, 430072, China; Big Data Institute, Wuhan University, Wuhan, 430072, China
| | - Qinqin Wang
- School of Information Management, Central China Normal University, Wuhan, 430079, China
| | - Feicheng Ma
- School of Information Management, Wuhan University, Wuhan, 430072, China; Center for Studies of Information Resources, Wuhan University, Wuhan, 430072, China; Big Data Institute, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Barpaga D, King JA, Kothandaraman J, Lopez JS, Moskowitz BM, Hubbard ML, Zheng RF, Malhotra D, Koech PK, Zwoster AJ, Dagle RA, Heldebrant DJ. Single-Pass Demonstration of Integrated Capture and Catalytic Conversion of CO 2 from Simulated Flue Gas to Methanol in a Water-Lean Carbon Capture Solvent. ACS OMEGA 2024; 9:46247-46262. [PMID: 39583732 PMCID: PMC11579938 DOI: 10.1021/acsomega.4c06919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Here, we demonstrate an integrated semibatch simultaneous CO2 capture and conversion to methanol process using a water-lean solvent, N-(2-ethoxyethyl)-3-morpholinopropan-1-amine (2-EEMPA), that serves as both the capture solvent and subsequent condensed-phase medium for the catalytic hydrogenation of CO2. CO2 is captured from simulated coal-derived flue gas at a target >90 mol % capture efficiency, with a continuous slipstream of CO2-rich solvent delivered to a fixed bed catalytic reactor for catalytic hydrogenation. A single-pass conversion rate >60 C-mol % and selectivity >80 C-mol % are observed for methanol at relatively low temperatures (<200 °C) in the condensed phase of the carbon capture solvent. Hydrogenation products also include higher alcohols (e.g., ethanol and propanol) and hydrocarbons (e.g., methane and ethane), suggesting that multiple products could be made offering adaptability with varied CO2-derived products. Catalyst activity and selectivity are directly impacted by the water content in the capture solvent. Anhydrous operation provides high catalyst activity and productivity, suggesting that water management will be a critical parameter in real-world operation. Ultimately, we conclude that the integrated capture and catalytic hydrogenation of CO2 are chemically viable and potentially more energetically efficient and cost-effective than conventional separate capture and conversion approaches.
Collapse
Affiliation(s)
- Dushyant Barpaga
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Jaelynne A. King
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | | | - Johnny S. Lopez
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Benjamin M. Moskowitz
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Michael L. Hubbard
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Richard F. Zheng
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Deepika Malhotra
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Phillip K. Koech
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Andy J. Zwoster
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - Robert A. Dagle
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| | - David J. Heldebrant
- Pacific Northest National
Laboratory, 902 Battelle Blvd, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Griffin A, Robertson M, Gunter Z, Coronado A, Xiang Y, Qiang Z. Design and Application of Joule Heating Processes for Decarbonized Chemical and Advanced Material Synthesis. Ind Eng Chem Res 2024; 63:19398-19417. [PMID: 39553915 PMCID: PMC11565571 DOI: 10.1021/acs.iecr.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Atmospheric CO2 concentrations keep increasing at intensifying rates due to rising energy and material demands. The chemical production industry is a large energy consumer, responsible for up to 935 Mt of CO2 emissions per year, and decarbonization is its major goal moving forward. One of the primary sources of energy consumption and CO2 emissions in the chemical sector is associated with the production and use of heat for material synthesis, which conventionally was generated through the combustion of fossil fuels. To address this grand challenge, Joule heating has emerged as an alternative heating method that greatly increases process efficiency, reducing both energy consumption and greenhouse gas emissions. In this Review, we discuss the key concepts that govern these Joule heating processes including material selection and reactor design, as well as the current state-of-the-art in the literature for employing these processes to synthesize commodity chemicals along with advanced materials such as graphene, metal species, and metal carbides. Finally, we provide a perspective on future research avenues within this field, which can facilitate the widespread adoption of Joule heating for decarbonizing industrial processes.
Collapse
Affiliation(s)
- Anthony Griffin
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Mark Robertson
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zoe Gunter
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Amy Coronado
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Yizhi Xiang
- Dave
C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Zhe Qiang
- School
of Polymer Science and Engineering, The
University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
10
|
Tay BY, Kan C, Ong J, Dighe SU, Hengne AM, Huang KW, Zhang L, Wong RJ, Tan D. Mechanochemically-based three-way approach for the synthesis of K-doped Cu-Fe/ZnO-Al 2O 3 catalysts for converting CO 2 to oxygenates. Chem Commun (Camb) 2024; 60:10890-10893. [PMID: 39253791 DOI: 10.1039/d4cc02073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Three ball-milling methodologies were developed to synthesize bespoke multi-metallic K-doped Cu-Fe/ZnO-Al2O3 catalysts for the hydrogenation of carbon dioxide. The catalytic performance of the catalysts was benchmarked against their solution-based counterparts. The catalysts synthesized by ball milling are greener, showing smaller particles, with different selectivity towards oxygenate products.
Collapse
Affiliation(s)
- Boon Ying Tay
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Charmain Kan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Jennet Ong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Shashikant U Dighe
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Amol M Hengne
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Kuo-Wei Huang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
- Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Lili Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Roong Jien Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Davin Tan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| |
Collapse
|
11
|
Bhardwaj R, Choudhury J. A phosphine-free molecularly-defined Ni(II) complex in catalytic hydrogenation of CO 2. Chem Commun (Camb) 2024; 60:10176-10179. [PMID: 39190483 DOI: 10.1039/d4cc03054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The development of base metal catalysts capable of CO2 hydrogenation is a challenge and a necessity to progress from the scarce noble metal catalysts. In this regard, we report herein the first non-phosphine-based Ni complex, supported by a "carbazolato-bis-NHC" pincer ligand framework, for efficient catalytic hydrogenation of CO2 to formate. A tailored combination of the Ni complex as a catalyst, DBU as a base, and Zn(OAc)2 as an additive offered enhanced activity leading to a TON up to 5476 and an excellent yield up to 92% for the formate product from a reaction on ∼27 mmol scale.
Collapse
Affiliation(s)
- Ritu Bhardwaj
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
| |
Collapse
|
12
|
Singh R, Wang L, Huang J. In-Situ Characterization Techniques for Mechanism Studies of CO 2 Hydrogenation. Chempluschem 2024; 89:e202300511. [PMID: 38853143 DOI: 10.1002/cplu.202300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The paramount concerns of global warming, fossil fuel depletion, and energy crises have prompted the need of hydrocarbons productions via CO2 conversion. In order to achieve global carbon neutrality, much attention needs to be diverted towards CO2 management. Catalytic hydrogenation of CO2 is an exciting opportunity to curb the increasing CO2 and produce value-added products. However, the comprehensive understanding of CO2 hydrogenation is still a matter of discussion due to its complex reaction mechanism and involvement of various species. This review comprehensively discusses three processes: reverse water gas shift (RWGS) reaction, modified Fischer Tropsch synthesis (MFTS), and methanol-mediated route (MeOH) for CO2 hydrogenation to hydrocarbons. Along with analysing the reaction pathways, it is also very important to understand the real-time evolvement of catalytic process and reaction intermediates by employing in-situ characterization techniques under actual reaction conditions. Subsequently, in second part of this review, we provided a systematic analysis of advancements in in-situ techniques aimed to monitor the evolution of catalysts during CO2 reduction process. The section also highlights the key components of in-situ cells, their working principles, and applications in identifying reaction mechanisms for CO2 hydrogenation. Finally, by reviewing respective achievements in the field, we identify key gaps and present some future directions for CO2 hydrogenation and in-situ studies.
Collapse
Affiliation(s)
- Rasmeet Singh
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
13
|
Mayer F, Rehner P, Seiler J, Schilling J, Gross J, Bardow A. Adsorption Modeling Based on Classical Density Functional Theory and PC-SAFT: Temperature Extrapolation and Fluid Transfer. Ind Eng Chem Res 2024; 63:14137-14147. [PMID: 39156967 PMCID: PMC11328139 DOI: 10.1021/acs.iecr.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Adsorption is at the heart of many processes from gas separation to cooling. The design of adsorption-based processes requires equilibrium adsorption properties. However, data for adsorption equilibria are limited, and therefore, a model is desirable that uses as little data as possible for its parametrization, while allowing for data interpolation or even extrapolation. This work presents a physics-based model for adsorption isotherms and other equilibrium adsorption properties. The model is based on one-dimensional classical density functional theory (1D-DFT) and the perturbed-chain statistical associating fluid theory (PC-SAFT). The physical processes inside the pores are considered in a thermodynamically consistent approach that is computationally efficient. Once parametrized with a single isotherm, the model is able to extrapolate to other temperatures and outperforms the extrapolation capabilities of state-of-the-art models, such as the empirical isotherm models from Langmuir or Toth. Furthermore, standard combining rules can be used to transfer parameters adjusted to an adsorbent/fluid pair to other fluids. These features are demonstrated for the adsorption of N2, CH4, and CO2 in metal-organic frameworks. Thereby, the presented model can calculate temperature-dependent isotherms for various fluids by using data limited to a single isotherm as input.
Collapse
Affiliation(s)
- Fabian Mayer
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Philipp Rehner
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jan Seiler
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Johannes Schilling
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Joachim Gross
- Institute
of Thermodynamics & Thermal Process Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - André Bardow
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Huo J, Wang Z, Lauri P, Medrano-García JD, Guillén-Gosálbez G, Hellweg S. Region-Specific Sourcing of Lignocellulose Residues as Renewable Feedstocks for a Net-Zero Chemical Industry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13748-13759. [PMID: 39049709 PMCID: PMC11308523 DOI: 10.1021/acs.est.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Biobased chemicals, crucial for the net-zero chemical industry, rely on lignocellulose residues as a major feedstock. However, its availability and environmental impacts vary greatly across regions. By 2050, we estimate that 3.0-5.2 Gt of these residues will be available from the global forest and agricultural sectors, with key contributions from Brazil, China, India, and the United States. This supply satisfies the growing global feedstock demands for plastics when used efficiently. Forest residues have 84% lower climate change impacts than agricultural residues on average globally but double the land-use-related biodiversity loss. Biobased plastics may reduce climate change impacts relative to fossil-based alternatives but are insufficient to fulfill net-zero targets. In addition, they pose greater challenges in terms of biodiversity loss and water stress. Avoiding feedstock sourcing from biodiversity-rich areas could halve lignocellulose residues-related biodiversity loss without significantly compromising availability. Improvements in region-specific feedstock sourcing, agricultural management and biomass utilization technologies are warranted for transitioning toward a sustainable chemical industry.
Collapse
Affiliation(s)
- Jing Huo
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, 8093 Zürich, Switzerland
| | - Zhanyun Wang
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, 8093 Zürich, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| | - Pekka Lauri
- International
Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria
| | - Juan D. Medrano-García
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, 8093 Zürich, Switzerland
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Gonzalo Guillén-Gosálbez
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, 8093 Zürich, Switzerland
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Stefanie Hellweg
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
15
|
Bhaskaran A, Singh SA, Reddy BM, Roy S. Integrated CO 2 Capture and Dry Reforming of CH 4 to Syngas: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14766-14778. [PMID: 38978485 DOI: 10.1021/acs.langmuir.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integrating carbon capture with dry reforming of methane offers a promising approach to addressing greenhouse gas emissions while producing valuable syngas. This review examines the complexities and progress made in this integrated process, wherein catalysts play a critical role in adsorbing carbon dioxide and facilitating the conversion of methane to syngas. The chemical process entails the concurrent capture of CO2 emissions and their usage in dry reforming, a reaction in which CH4 interacts with CO2 to generate syngas, an essential precursor for various industrial applications. The dual-functional materials can adsorb carbon dioxide and actively reform to an end-use application. The much-studied Ca-based sorbents exhibit a theoretical carbon capture capacity of 17.8 mmol g-1. However, during practical exploration of these materials as a dual-functional catalyst for integrated carbon capture and the dry reforming of methane, the uptake reduces to ∼13 mmol g-1 carbon capacity with 96.5 and 96% conversions of CO2 and CH4, respectively. Therefore, a thorough analysis of the complex relationship between CO2 capture and CH4 reforming catalysis is attempted herein based on various reported materials. Design concepts, structural optimization, and performance evaluation analysis of the dual-functional materials reveal their importance in carbon capture and reformation technology. Additionally, this review covers the field difficulties, future perspectives, and attractive commercial implementation predictions. This scrutiny illustrates the significance of dual-functional materials for sustainable energy production and environmental protection.
Collapse
Affiliation(s)
- Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Satyapaul A Singh
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Benjaram M Reddy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500 078, India
| |
Collapse
|
16
|
Yao Y, Lan K, Graedel TE, Rao ND. Models for Decarbonization in the Chemical Industry. Annu Rev Chem Biomol Eng 2024; 15:139-161. [PMID: 38271623 DOI: 10.1146/annurev-chembioeng-100522-114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Various technologies and strategies have been proposed to decarbonize the chemical industry. Assessing the decarbonization, environmental, and economic implications of these technologies and strategies is critical to identifying pathways to a more sustainable industrial future. This study reviews recent advancements and integration of systems analysis models, including process analysis, material flow analysis, life cycle assessment, techno-economic analysis, and machine learning. These models are categorized based on analytical methods and application scales (i.e., micro-, meso-, and macroscale) for promising decarbonization technologies (e.g., carbon capture, storage, and utilization, biomass feedstock, and electrification) and circular economy strategies. Incorporating forward-looking, data-driven approaches into existing models allows for optimizing complex industrial systems and assessing future impacts. Although advances in industrial ecology-, economic-, and planetary boundary-based modeling support a more holistic systems-level assessment, more efforts are needed to consider impacts on ecosystems. Effective applications of these advanced, integrated models require cross-disciplinary collaborations across chemical engineering, industrial ecology, and economics.
Collapse
Affiliation(s)
- Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut, USA;
- Chemical and Environmental Engineering, Yale School of Engineering and Applied Science, Yale University, New Haven, Connecticut, USA
| | - Kai Lan
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut, USA;
| | - Thomas E Graedel
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut, USA;
| | - Narasimha D Rao
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|
17
|
Tonelli D, Rosa L, Gabrielli P, Parente A, Contino F. Cost-competitive decentralized ammonia fertilizer production can increase food security. NATURE FOOD 2024; 5:469-479. [PMID: 38755344 PMCID: PMC11199140 DOI: 10.1038/s43016-024-00979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The current centralized configuration of the ammonia industry makes the production of nitrogen fertilizers susceptible to the volatility of fossil fuel prices and involves complex supply chains with long-distance transport costs. An alternative consists of on-site decentralized ammonia production using small modular technologies, such as electric Haber-Bosch or electrocatalytic reduction. Here we evaluate the cost-competitiveness of producing low-carbon ammonia at the farm scale, from a solar agrivoltaic system, or using electricity from the grid, within a novel global fertilizer industry. Projected costs for decentralized ammonia production are compared with historical market prices from centralized production. We find that the cost-competitiveness of decentralized production relies on transport costs and supply chain disruptions. Taking both factors into account, decentralized production could achieve cost-competitiveness for up to 96% of the global ammonia demand by 2030. These results show the potential of decentralized ammonia technologies in revolutionizing the fertilizer industry, particularly in regions facing food insecurity.
Collapse
Affiliation(s)
- Davide Tonelli
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium.
- Aero-Thermo-Mechanics Department, ULB, Brussels, Belgium.
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA.
| | - Lorenzo Rosa
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA.
| | - Paolo Gabrielli
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
- Institute of Energy and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Francesco Contino
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Rojas-Rueda D, McAuliffe K, Morales-Zamora E. Addressing Health Equity in the Context of Carbon Capture, Utilization, and Sequestration Technologies. Curr Environ Health Rep 2024; 11:225-237. [PMID: 38600409 DOI: 10.1007/s40572-024-00447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW To describe the role of health equity in the context of carbon capture, utilization, and sequestration (CCUS) technologies. RECENT FINDINGS CCUS technologies have the potential to both improve and worsen health equity. They could help reduce greenhouse gas emissions, a major contributor to climate change, but they could also have negative health impacts like air and noise pollution. More research is needed to fully understand the health equity implications of CCUS technologies. CCUS technologies have both health equity risks and benefits. Implementing misguided CCUS projects in vulnerable communities could exacerbate environmental injustice and health disparities and have the potential to increase carbon emissions. However, well-conceived projects could benefit communities through economic development. Governments, industry, and society should prioritize and expedite the reduction of CO2 emissions before considering carbon reductions via CCUS. Furthermore, CCUS projects must be thoroughly evaluated and should only proceed if they have demonstrated a net reduction in CO2 emissions and provide more benefits than risks to local communities. This underscores the importance of prioritizing health equity in the planning of CCUS projects.
Collapse
Affiliation(s)
- David Rojas-Rueda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Environmental Health Building, 1601 Campus Delivery, Fort Collins, CO, 80523, USA.
- Colorado School of Public Health, Colorado State University, Environmental Health Building, 1601 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Kelly McAuliffe
- Colorado School of Public Health, Colorado State University, Environmental Health Building, 1601 Campus Delivery, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
19
|
Seong G, Yoko A, Tomai T, Naka T, Wang H, Frenkel AI, Adschiri T. Effect of Exposed Facets and Oxidation State of CeO 2 Nanoparticles on CO 2 Adsorption and Desorption. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7532-7540. [PMID: 39697414 PMCID: PMC11651629 DOI: 10.1021/acssuschemeng.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 12/20/2024]
Abstract
CeO2 nanoparticles exhibit potential as solid adsorbents for carbon dioxide (CO2) capture and storage (CCS), offering precise control over various facets and enhancing their efficiency. This study investigated the adsorption and desorption behaviors of two types of CeO2 nanoparticles: cubic CeO2 with primarily {001} facets and polyhedral CeO2 with mainly {111} facets. The results showed that despite polyhedral CeO2's lower quantity, it demonstrated successful adsorption-desorption cycles in both oxidized and reduced states. However, reduced CeO2-x exhibited a higher adsorption capacity but displayed irreversible adsorption-desorption cycles. Reversible adsorption occurred through weak bond formation with CO2, while cubic CeO2 with a high oxygen vacancy concentration exhibited irreversible adsorption due to strong bond formation. These insights contribute significantly to understanding CeO2 nanoparticle characteristics and their impact on the CO2 adsorption and desorption processes, aiding in the development of advanced CCS techniques.
Collapse
Affiliation(s)
- Gimyeong Seong
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Department
of Environmental and Energy Engineering, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
| | - Akira Yoko
- WPI-Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- International
Center for Synchrotron Radiation Innovation Smart, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takaaki Tomai
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takashi Naka
- National
Institute of Materials Sciences (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Haodong Wang
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Anatoly I. Frenkel
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tadafumi Adschiri
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- WPI-Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
20
|
Jiang M, Cao Y, Liu C, Chen D, Zhou W, Wen Q, Yu H, Jiang J, Ren Y, Hu S, Hertwich E, Zhu B. Tracing fossil-based plastics, chemicals and fertilizers production in China. Nat Commun 2024; 15:3854. [PMID: 38719830 PMCID: PMC11078955 DOI: 10.1038/s41467-024-47930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Phasing down fossil fuels is crucial for climate mitigation. Even though 80-90% of fossil fuels are used to provide energy, their use as feedstock to produce plastics, fertilizers, and chemicals, is associated with substantial CO2 emissions. However, our understanding of hard-to-abate chemical production remains limited. Here we developed a chemical process-based material flow model to investigate the non-energy use of fossil fuels and CO2 emissions in China. Results show in 2017, the chemical industry used 0.18 Gt of coal, 88.8 Mt of crude oil, and 12.9 Mt of natural gas as feedstock, constituting 5%, 15%, and 7% of China's respective total use. Coal-fed production of methanol, ammonia, and PVCs contributes to 0.27 Gt CO2 emissions ( ~ 3% of China's emissions). As China seeks to balance high CO2 emissions of coal-fed production with import dependence on oil and gas, improving energy efficiency and coupling green hydrogen emerges as attractive alternatives for decarbonization.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yuheng Cao
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Changgong Liu
- China Petroleum & Chemical Corporation (Sinopec), Beijing, China
| | - Dingjiang Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Institute for Circular Economy, Tsinghua University, Beijing, China
| | - Wenji Zhou
- School of Applied Economics, Renmin University of China, Beijing, China
| | - Qian Wen
- China National Petroleum & Chemical Planning Institute, Beijing, China
| | - Hejiang Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jian Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yucheng Ren
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Shanying Hu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Institute for Circular Economy, Tsinghua University, Beijing, China
| | - Edgar Hertwich
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Bing Zhu
- Institute for Circular Economy, Tsinghua University, Beijing, China.
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.
- Energy, Climate, and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.
| |
Collapse
|
21
|
Del-Mazo-Alvarado O, Prieto C, Sánchez A, Ramírez-Márquez C, Bonilla-Petriciolet A, Martín M. An Integrated Process Analysis for Producing Glycerol Carbonate from CO 2 and Glycerol. CHEMSUSCHEM 2024:e202301546. [PMID: 38438304 DOI: 10.1002/cssc.202301546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Glycerol carbonate (GC) is one of the most attractive green chemicals involved in several applications such as polymer synthesis, e. g., the production of polyurethanes and polycarbonates. This relevant chemical can be produced, in a green way, using CO2 (from carbon capture) and glycerol (a byproduct from biodiesel manufacturing). Therefore, in this work, a comprehensive analysis of the GC production process is conducted based on the following synthesis route: urea-dimethyl carbonate-GC using carbon dioxide and glycerol as the main raw materials where the synthesis pathway was efficiently integrated using Aspen Plus. A techno-economic analysis was performed in order to estimate the required capital investment and operating cost for the whole GC process, providing insights on individual capital cost requirements for the urea, dimethyl carbonate, and GC production sections. A total capital cost of $192.1 MM, and a total operating cost of $225.7 MM/y were estimated for the process. The total annualized cost was estimated as $1,558 USD/t of GC produced, competitive with current market price.
Collapse
Affiliation(s)
| | - Carlos Prieto
- Department of Chemical Engineering, Universidad de Salamanca, Salamanca, Spain
| | - Antonio Sánchez
- Department of Chemical Engineering, Universidad de Salamanca, Salamanca, Spain
| | - César Ramírez-Márquez
- Department of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | - Mariano Martín
- Department of Chemical Engineering, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Ribó EG, Mao Z, Hirschi JS, Linsday T, Bach K, Walter ED, Simons CR, Zuehlsdorff TJ, Nyman M. Implementing vanadium peroxides as direct air carbon capture materials. Chem Sci 2024; 15:1700-1713. [PMID: 38303956 PMCID: PMC10829016 DOI: 10.1039/d3sc05381d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 02/03/2024] Open
Abstract
Direct air capture (DAC) removal of anthropogenic CO2 from the atmosphere is imperative to slow the catastrophic effects of global climate change. Numerous materials are being investigated, including various alkaline inorganic metal oxides that form carbonates via DAC. Here we explore metastable early d0 transition metal peroxide molecules that undergo stabilization via multiple routes, including DAC. Specifically here, we describe via experiment and computation the mechanistic conversion of A3V(O2)4 (tetraperoxovanadate, A = K, Rb, Cs) to first a monocarbonate VO(O2)2(CO3)3-, and ultimately HKCO3 plus KVO4. Single crystal X-ray structures of rubidium and cesium tetraperoxovanadate are reported here for the first time, likely prior-challenged by instability. Infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), 51V solid state NMR (nuclear magnetic resonance), tandem thermogravimetry-mass spectrometry (TGA-MS) along with calculations (DFT, density functional theory) all converge on mechanisms of CO2 capture and release that involve the vanadium centre, despite the end product of a 300 days study being bicarbonate and metavanadate. Electron Paramagnetic Resonance (EPR) Spectroscopy along with a wet chemical assay and computational studies evidence the presense of ∼5% adventitous superoxide, likely formed by peroxide reduction of vanadium, which also stabilizes via the reaction with CO2. The alkalis have a profound effect on the stability of the peroxovanadate compounds, stability trending K > Rb > Cs. While this translates to more rapid CO2 capture with heavier alkalis, it does not necessarily lead to capture of more CO2. All compounds capture approximately two equivalents CO2 per vanadium centre. We cannot yet explain the reactivity trend of the alkali peroxovanadates, because any change in speciation of the alkalis from reactions to product is not quantifiable. This study sets the stage for understanding and implementing transition metal peroxide species, including peroxide-functionalized metal oxides, for DAC.
Collapse
Affiliation(s)
| | - Zhiwei Mao
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Jacob S Hirschi
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Taylor Linsday
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Karlie Bach
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Eric D Walter
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory Richland WA 99352 USA
| | | | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - May Nyman
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
23
|
Jang JW, Cha I, Choi J, Han J, Hwang JY, Cho IG, Son SU, Kang EJ, Song C. Biomass- and Carbon Dioxide-Derived Polyurethane Networks for Thermal Interface Material Applications. Polymers (Basel) 2024; 16:177. [PMID: 38256976 PMCID: PMC10820237 DOI: 10.3390/polym16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Recent environmental concerns have increased demand for renewable polymers and sustainable green resource usage, such as biomass-derived components and carbon dioxide (CO2). Herein, we present crosslinked polyurethanes (CPUs) fabricated from CO2- and biomass-derived monomers via a facile solvent-free ball milling process. Furan-containing bis(cyclic carbonate)s were synthesized through CO2 fixation and further transformed to tetraols, denoted FCTs, by aminolysis and utilized in CPU synthesis. Highly dispersed polyurethane-based hybrid composites (CPU-Ag) were also manufactured using a similar ball milling process. Due to the malleability of the CPU matrix, enabled by transcarbamoylation (dynamic covalent chemistry), CPU-based composites are expected to present very low interfacial thermal resistance between the heat sink and heat source. The characteristics of the dynamic covalent bond (i.e., urethane exchange reaction) were confirmed by the results of dynamic mechanical thermal analysis and stress relaxation analysis. Importantly, the high thermal conductivity of the CPU-based hybrid material was confirmed using laser flash analysis (up to 51.1 W/m·K). Our mechanochemical approach enables the facile preparation of sustainable polymers and hybrid composites for functional application.
Collapse
Affiliation(s)
- Ji Won Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Inhwan Cha
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea; (J.C.); (J.Y.H.)
| | - Jungwoo Han
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Joon Young Hwang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea; (J.C.); (J.Y.H.)
| | - Il Gyu Cho
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea; (J.C.); (J.Y.H.)
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| |
Collapse
|
24
|
Azuazu IN, Sam K, Campo P, Coulon F. Challenges and opportunities for low-carbon remediation in the Niger Delta: Towards sustainable environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165739. [PMID: 37499826 DOI: 10.1016/j.scitotenv.2023.165739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
There is increasing demand for low-carbon remediation strategies for reducing greenhouse gas emissions and promoting sustainable development in the management of environmental contamination. This trend is within the broader context of sustainable remediation strategies that balance environmental, economic, and social aspects. This article critically reviewed existing literature to evaluate and compare various low-carbon remediation methods, such as bioremediation, phytoremediation, in situ chemical oxidation, soil vapour extraction, and electrokinetic remediation, to identify suitable techniques for the remediation of oil-contaminated sites in the Niger Delta region of Nigeria. We analysed the UK sustainable remediation frameworks (SuRF-UK) to glean lessons for the Nigerian context. Our findings indicate that bioremediation and phytoremediation are particularly promising low-carbon remediation technologies for the Niger Delta region due to their cost-effectiveness and adaptability to local conditions. We proposed a framework that deeply considers opportunities for achieving multiple goals including effective remediation and limited greenhouse gas emissions while returning net social and economic benefit to local communities. The proposed framework will help decision makers to implement effective remediation technologies that meet sustainability indices, integrates emissions considerations return net environmental benefit to local communities. There is a need for policymakers to establish and enforce policies and regulations that support sustainable remediation practises, build the capacity of stakeholders, invest in research and development, and promote collaboration among stakeholders to create a regulatory environment that supports sustainable remediation practises and promotes environmental sustainability in the region. This study provides insights for achieving low-carbon remediation in regions addressing land contamination by different contaminants and facilitates the adoption of remediation technologies that consider contextual socio-economic and environmental indices for sustainable development.
Collapse
Affiliation(s)
| | - Kabari Sam
- School of the Environment, Geography and Geosciences, University of Portsmouth, PO1 3QL, UK
| | - Pablo Campo
- School of Water Energy and Environment, Cranfield University, MK430AL, UK
| | - Frederic Coulon
- School of Water Energy and Environment, Cranfield University, MK430AL, UK.
| |
Collapse
|
25
|
De La Torre P, An L, Chang CJ. Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302122. [PMID: 37144618 DOI: 10.1002/adma.202302122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Indexed: 05/06/2023]
Abstract
The catalytic reduction of carbon dioxide (CO2 ) using sustainable energy inputs is a promising strategy for upcycling of atmospheric carbon into value-added chemical products. This goal has inspired the development of catalysts for selective and efficient CO2 conversion using electrochemical and photochemical methods. Among the diverse array of catalyst systems designed for this purpose, 2D and 3D platforms that feature porosity offer the potential to combine carbon capture and conversion. Included are covalent organic frameworks (COFs), metal-organic frameworks (MOFs), porous molecular cages, and other hybrid molecular materials developed to increase active site exposure, stability, and water compatibility while maintaining precise molecular tunability. This mini-review showcases catalysts for the CO2 reduction reaction (CO2 RR) that incorporate well-defined molecular elements integrated into porous materials structures. Selected examples provide insights into how different approaches to this overall design strategy can augment their electrocatalytic and/or photocatalytic CO2 reduction activity.
Collapse
Affiliation(s)
- Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
| |
Collapse
|
26
|
Coralli I, Giuri D, Spada L, Ortolani J, Mazzocchetti L, Tomasini C, Stevens LA, Snape CE, Fabbri D. Valorization Strategies in CO 2 Capture: A New Life for Exhausted Silica-Polyethylenimine. Int J Mol Sci 2023; 24:14415. [PMID: 37833862 PMCID: PMC10572583 DOI: 10.3390/ijms241914415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The search for alternative ways to give a second life to materials paved the way for detailed investigation into three silica-polyethylenimine (Si-PEI) materials for the purpose of CO2 adsorption in carbon capture and storage. A solvent extraction procedure was investigated to recover degraded PEIs and silica, and concomitantly, pyrolysis was evaluated to obtain valuable chemicals such as alkylated pyrazines. An array of thermal (TGA, Py-GC-MS), mechanical (rheology), and spectroscopical (ATR-FTIR, 1H-13C-NMR) methods were applied to PEIs extracted with methanol to determine the relevant physico-chemical features of these polymers when subjected to degradation after use in CO2 capture. Proxies of degradation associated with the plausible formation of urea/carbamate moieties were revealed by Py-GC-MS, NMR, and ATR-FTIR. The yield of alkylpyrazines estimated by Py-GC-MS highlighted the potential of exhausted PEIs as possibly valuable materials in other applications.
Collapse
Affiliation(s)
- Irene Coralli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Demetra Giuri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Lorenzo Spada
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Jacopo Ortolani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (J.O.); (L.M.)
| | - Laura Mazzocchetti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (J.O.); (L.M.)
| | - Claudia Tomasini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| | - Lee A. Stevens
- Faculty of Engineering, University of Nottingham, The Energy Technologies Building, Nottingham NG7 2TU, UK; (L.A.S.); (C.E.S.)
| | - Colin E. Snape
- Faculty of Engineering, University of Nottingham, The Energy Technologies Building, Nottingham NG7 2TU, UK; (L.A.S.); (C.E.S.)
| | - Daniele Fabbri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Technopole of Rimini, Via Dario Campana 71, 47922 Rimini, Italy; (I.C.); (C.T.); (D.F.)
| |
Collapse
|
27
|
Grossmann Q, Stampi-Bombelli V, Yakimov A, Docherty S, Copéret C, Mazzotti M. Developing Versatile Contactors for Direct Air Capture of CO 2 through Amine Grafting onto Alumina Pellets and Alumina Wash-Coated Monoliths. Ind Eng Chem Res 2023; 62:13594-13611. [PMID: 37663169 PMCID: PMC10472440 DOI: 10.1021/acs.iecr.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023]
Abstract
The optimization of the air-solid contactor is critical to improve the efficiency of the direct air capture (DAC) process. To enable comparison of contactors and therefore a step toward optimization, two contactors are prepared in the form of pellets and wash-coated honeycomb monoliths. The desired amine functionalities are successfully incorporated onto these industrially relevant pellets by means of a procedure developed for powders, providing materials with a CO2 uptake not influenced by the morphology and the structure of the materials according to the sorption measurements. Furthermore, the amine functionalities are incorporated onto alumina wash-coated monoliths that provide a similar CO2 uptake compared to the pellets. Using breakthrough measurements, dry CO2 uptakes of 0.44 and 0.4 mmol gsorbent-1 are measured for pellets and for a monolith, respectively. NMR and IR studies of CO2 uptake show that the CO2 adsorbs mainly in the form of ammonium carbamate. Both contactors are characterized by estimated Toth isotherm parameters and linear driving force (LDF) coefficients to enable an initial comparison and provide information for further studies of the two contactors. LDF coefficients of 1.5 × 10-4 and of 1.2 × 10-3 s-1 are estimated for the pellets and for a monolith, respectively. In comparison to the pellets, the monolith therefore exhibits particularly promising results in terms of adsorption kinetics due to its hierarchical pore structure. This is reflected in the productivity of the adsorption step of 6.48 mol m-3 h-1 for the pellets compared to 7.56 mol m-3 h-1 for the monolith at a pressure drop approximately 1 order of magnitude lower, making the monoliths prime candidates to enhance the efficiency of DAC processes.
Collapse
Affiliation(s)
- Quirin Grossmann
- Institute
of Energy and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Alexander Yakimov
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Scott Docherty
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, Vladimir Prelog Weg 2, ETH Zurich, 8093 Zurich, Switzerland
| | - Marco Mazzotti
- Institute
of Energy and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
28
|
Molahid VLM, Kusin FM, Syed Hasan SNM. Mineralogical and chemical characterization of mining waste and utilization for carbon sequestration through mineral carbonation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4439-4460. [PMID: 36811700 DOI: 10.1007/s10653-023-01513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Mining activities have often been associated with the issues of waste generation, while mining is considered a carbon-intensive industry that contributes to the increasing carbon dioxide emission to the atmosphere. This study attempts to evaluate the potential of reusing mining waste as feedstock material for carbon dioxide sequestration through mineral carbonation. Characterization of mining waste was performed for limestone, gold and iron mine waste, which includes physical, mineralogical, chemical and morphological analyses that determine its potential for carbon sequestration. The samples were characterized as having alkaline pH (7.1-8.3) and contain fine particles, which are important to facilitate precipitation of divalent cations. High amount of cations (CaO, MgO and Fe2O3) was found in limestone and iron mine waste, i.e., total of 79.55% and 71.31%, respectively, that are essential for carbonation process. Potential Ca/Mg/Fe silicates, oxides and carbonates have been identified, which was confirmed by the microstructure analysis. The limestone waste composed majorly of CaO (75.83%), which was mainly originated from calcite and akermanite minerals. The iron mine waste consisted of Fe2O3 (56.60%), mainly from magnetite and hematite, and CaO (10.74%) which was derived from anorthite, wollastonite and diopside. The gold mine waste was attributed to a lower cation content (total of 7.71%), associated mainly with mineral illite and chlorite-serpentine. The average capacity for carbon sequestration was between 7.73 and79.55%, which corresponds to 383.41 g, 94.85 g and 4.72 g CO2 that were potentially sequestered per kg of limestone, iron and gold mine waste, respectively. Therefore, it has been learned that the mine waste might be utilized as feedstock for mineral carbonation due to the availability of reactive silicate/oxide/carbonate minerals. Utilization of mine waste would be beneficial in light of waste restoration in most mining sites while tackling the issues of CO2 emission in mitigating the global climate change.
Collapse
Affiliation(s)
- Verma Loretta M Molahid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faradiella Mohd Kusin
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Sharifah Nur Munirah Syed Hasan
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Biel-Nielsen TL, Hatton TA, Villadsen SNB, Jakobsen JS, Bonde JL, Spormann AM, Fosbøl PL. Electrochemistry-Based CO 2 Removal Technologies. CHEMSUSCHEM 2023; 16:e202202345. [PMID: 36861656 DOI: 10.1002/cssc.202202345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Indexed: 06/10/2023]
Abstract
Unprecedented increase in atmospheric CO2 levels calls for efficient, sustainable, and cost-effective technologies for CO2 removal, including both capture and conversion approaches. Current CO2 abatement is largely based on energy-intensive thermal processes with a high degree of inflexibility. In this Perspective, it is argued that future CO2 technologies will follow the general societal trend towards electrified systems. This transition is largely promoted by decreasing electricity prices, continuous expansion of renewable energy infrastructure, and breakthroughs in carbon electrotechnologies, such as electrochemically modulated amine regeneration, redox-active quinones and other species, and microbial electrosynthesis. In addition, new initiatives make electrochemical carbon capture an integrated part of Power-to-X applications, for example, by linking it to H2 production. Selected electrochemical technologies crucial for a future sustainable society are reviewed. However, significant further development of these technologies within the next decade is needed, to meet the ambitious climate goals.
Collapse
Affiliation(s)
- Tessa Lund Biel-Nielsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800, Kgs. Lyngby, Denmark
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
| | - Sebastian N B Villadsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800, Kgs. Lyngby, Denmark
| | | | - Jacob L Bonde
- ESTECH A/S, Sverigesvej 13, DK-5700, Svendborg, Denmark
| | - Alfred M Spormann
- Departments of Chemical Engineering and of Civil and Environmental Engineering, Stanford University, 94305, Stanford, California, USA
- Novo Nordisk Foundation CO2 Research Center, Aarhus University, Gustav Wieds Vej 10C, Building 3135, 214, DK-8000, Aarhus, Denmark
| | - Philip L Fosbøl
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Boto ST, Bardl B, Harnisch F, Rosenbaum MA. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:4375-4386. [PMID: 37288452 PMCID: PMC10243432 DOI: 10.1039/d3gc00471f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research.
Collapse
Affiliation(s)
- Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| | - Bettina Bardl
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
| | - Falk Harnisch
- UFZ - Helmholtz-Centre for Environmental Research GmbH, Department of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| |
Collapse
|
31
|
Shabir I, Dash KK, Dar AH, Pandey VK, Fayaz U, Srivastava S, R N. Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. FUTURE FOODS 2023. [DOI: 10.1016/j.fufo.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
32
|
Kochenburger T, Liesche G, Brinkmann J, Gagalick K, Förtsch D. Fine chemicals production in a carbon-neutral economy: the role of electrification. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
33
|
Goksu A, Li H, Liu J, Duyar MS. Nanoreactor Engineering Can Unlock New Possibilities for CO 2 Tandem Catalytic Conversion to C-C Coupled Products. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300004. [PMID: 37287598 PMCID: PMC10242537 DOI: 10.1002/gch2.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Climate change is becoming increasingly more pronounced every day while the amount of greenhouse gases in the atmosphere continues to rise. CO2 reduction to valuable chemicals is an approach that has gathered substantial attention as a means to recycle these gases. Herein, some of the tandem catalysis approaches that can be used to achieve the transformation of CO2 to C-C coupled products are explored, focusing especially on tandem catalytic schemes where there is a big opportunity to improve performance by designing effective catalytic nanoreactors. Recent reviews have highlighted the technical challenges and opportunities for advancing tandem catalysis, especially highlighting the need for elucidating structure-activity relationships and mechanisms of reaction through theoretical and in situ/operando characterization techniques. In this review, the focus is on nanoreactor synthesis strategies as a critical research direction, and discusses these in the context of two main tandem pathways (CO-mediated pathway and Methanol-mediated pathway) to C-C coupled products.
Collapse
Affiliation(s)
- Ali Goksu
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Haitao Li
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Melis S. Duyar
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| |
Collapse
|
34
|
Qadeer K, Al-Hinai A, Chuah LF, Sial NR, Al-Muhtaseb AH, Al Abri R, Qyyum MA, Lee M. Methanol production and purification via membrane-based technology: Recent advancements, challenges, and the way forward. CHEMOSPHERE 2023:139007. [PMID: 37253401 DOI: 10.1016/j.chemosphere.2023.139007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
Industrail revolution on the back of fossil fuels has costed humanity higher temperatures on the planet due to ever-growing concentration of CO2 emissions in Earth's atmosphere. To tackle global warming demand for renewable energy sources continues to increase. Along renewables, there has been a growing interest in converting carbon dioxide to methanol, which can be used as a fuel or a feedstock for producing chemicals. The current review study provides a comprehensive overview of the recent advancements, challenges, and future prospects of methanol production and purification via membrane-based technology. Traditional downstream processes for methanol production, such as distillation and absorption, have several drawbacks, including high energy consumption and environmental concerns. In comparison to conventional technologies, membrane-based separation techniques have emerged as a promising alternative for producing and purifying methanol. The review highlights recent developments in membrane-based methanol production and purification technology, including using novel membrane materials such as ceramic, polymeric, and mixed matrix membranes. Additionally, integrating photocatalytic processes with membrane separation has been investigated to improve the conversion of carbon dioxide to methanol. Despite the potential benefits of membrane-based systems, several challenges need to be addressed. Membrane fouling and scaling are significant issues that can reduce the efficiency and lifespan of the membranes. Furthermore, the cost-effectiveness of membrane-based systems compared to traditional methods is a critical consideration that must be evaluated. In conclusion, the review provides insights into the current state of membrane-based technology for methanol production and purification and identifies areas for future research. The development of high-performance membranes and the optimization of membrane-based processes are crucial for improving the efficiency and cost-effectiveness of this technology and for advancing the goal of sustainable energy production.
Collapse
Affiliation(s)
- Kinza Qadeer
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Amer Al-Hinai
- Sustainable Energy Research Center (SERC) and Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Noman Raza Sial
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Rashid Al Abri
- Sustainable Energy Research Center (SERC) and Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Muhammad Abdul Qyyum
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
35
|
Troiano DT, Hofmann T, Brethauer S, Studer MHP. Toward optimal use of biomass as carbon source for chemical bioproduction. Curr Opin Biotechnol 2023; 81:102942. [PMID: 37062153 DOI: 10.1016/j.copbio.2023.102942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Biomass is widely identified as a promising, renewable replacement for fossil feedstocks in the production of energy, fuels, and chemicals. However, the sustainable supply of biomass is limited. Economic and ecological criteria support prioritization of biomass as a carbon source for organic chemicals; however, utilization for energy currently dominates. Therefore, to optimize the use of available biomass feedstock, biorefining development must focus on high carbon efficiencies and enabling the conversion of all biomass fractions, including lignin and fermentation-derived CO2. Additionally, novel technological platforms should allow the incorporation of nontraditional, currently underutilized carbon feedstocks (e.g. manure) into biorefining processes. To this end, funneling of waste feedstocks to a single product (e.g. methane) and subsequent conversion to chemicals is a promising approach.
Collapse
Affiliation(s)
- Derek T Troiano
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Tobias Hofmann
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Simone Brethauer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Michael H-P Studer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland.
| |
Collapse
|
36
|
Leow WR, Völker S, Meys R, Huang JE, Jaffer SA, Bardow A, Sargent EH. Electrified hydrocarbon-to-oxygenates coupled to hydrogen evolution for efficient greenhouse gas mitigation. Nat Commun 2023; 14:1954. [PMID: 37029102 PMCID: PMC10082166 DOI: 10.1038/s41467-023-37382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Chemicals manufacture is among the top greenhouse gas contributors. More than half of the associated emissions are attributable to the sum of ammonia plus oxygenates such as methanol, ethylene glycol and terephthalic acid. Here we explore the impact of electrolyzer systems that couple electrically-powered anodic hydrocarbon-to-oxygenate conversion with cathodic H2 evolution reaction from water. We find that, once anodic hydrocarbon-to-oxygenate conversion is developed with high selectivities, greenhouse gas emissions associated with fossil-based NH3 and oxygenates manufacture can be reduced by up to 88%. We report that low-carbon electricity is not mandatory to enable a net reduction in greenhouse gas emissions: global chemical industry emissions can be reduced by up to 39% even with electricity having the carbon footprint per MWh available in the United States or China today. We conclude with considerations and recommendations for researchers who wish to embark on this research direction.
Collapse
Affiliation(s)
- Wan Ru Leow
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Simon Völker
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062, Aachen, Germany
| | - Raoul Meys
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062, Aachen, Germany
- Carbon Minds GmbH, Eupener Straße 165, 50933, Cologne, Germany
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | | | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstr. 8, 52062, Aachen, Germany.
- Energy & Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland.
- Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
| |
Collapse
|
37
|
Singh B, Polshettiwar V. Role of fiber density of amine functionalized dendritic fibrous nanosilica on CO 2 capture capacity and kinetics. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Abstract
Textural properties of the solid sorbents are critical to tuning their CO2 capture performance. In this work, we studied the effect of fiber density (in turn, pore size, distribution, and accessibility) on CO2 capture capacity and kinetics. CO2 solid sorbents were prepared by physisorption of tetraethylenepentamine (TEPA) molecules on dendritic fibrous nanosilica (DFNS) with varying fiber density. Among the various DFNS, the DFNS with moderate fiber density [DFNS-3] showed the best CO2 capture capacity under the flue gas condition. The maximum CO2 capture capacity achieved was 24.3 wt % (5.53 mmol/g) at 75 °C for DFNS-3 under humid gas conditions. Fiber density also played a role in the kinetics of CO2 capture. DFNS-1 with dense fiber density needed ∼10.4 min to reach 90 % capture capacity, while DFNS-3 (moderate fiber density) needed only 6.4 min, which further decreased to 5.9 min for DFNS-5 with lightly dense fibers. The DFNS-impregnated TEPA also showed good recyclability during 21 adsorption and desorption cycles under humid and dry conditions. The total CO2 capture capacity of DFNS-3 (14.7) in 21 cycles was 108.9 and 105.0 mmol/g under humid and dry conditions, respectively. Adsorption lifetime calculation and recyclability confirmed the fiber density-dependent CO2 capture performance.
Collapse
|
38
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
39
|
James J, Lücking LE, van Dijk H, Boon J. Review of technologies for carbon monoxide recovery from nitrogen- containing industrial streams. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1066091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Carbon monoxide (CO) is an important gas required for various industrial processes. Whether produced directly from syngas or as part of by-product gas streams, valorization of CO streams will play an important role in the decarbonization of industry. CO is often generated in mixtures with other gases such as H2, CO2, CH4, and N2 and therefore separation of CO from the other gases is required. In particular, separation of CO from N2 is difficult given their similar molecular properties. This paper summarizes the current state of knowledge on the four processes for separation of CO from gas mixtures: cryogenic purification, absorption, adsorption and membrane separation. Particular emphasis is placed on technical processes for industrial applications and separation of N2 and CO. Cryogenic processes are not suitable for separation of CO from N2. Absorption developments focus on the use of ionic liquids to replace solvents, with promising progress being made in the field of CO solubility in ionic liquids. Advancements in adsorption processes have focused on the development of new materials however future work is required to develop materials that do not require vacuum regeneration. Membrane processes are most promising in the form of solid state and mixed matrix membranes. In general, there is limited development beyond lab scale for new advancements in CO separation from gas streams. This highlights an opportunity and need to investigate and develop beyond state-of-the-art processes for CO separation at industrial scale, especially for separation of CO from N2.
Collapse
|
40
|
Theofanidis SA, Antzaras AN, Lemonidou AA. CO2 as a building block: from capture to utilization. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
41
|
Becker J, Liebal UW, Phan AN, Ullmann L, Blank LM. Renewable carbon sources to biochemicals and -fuels: contributions of the smut fungi Ustilaginaceae. Curr Opin Biotechnol 2023; 79:102849. [PMID: 36446145 DOI: 10.1016/j.copbio.2022.102849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
The global demand for food, fuels, and chemicals increases annually. Using renewable C-sources (i.e. biomass, CO2, and organic waste) is a prerequisite for a future free of fossil carbon. The smut fungi Ustilaginaceae naturally produce a versatile spectrum of valuable products, such as organic acids, polyols, and glycolipids, applicable in the food, energy, chemistry, and pharmaceutical sector. Combined with the use of alternative (co-)substrates (e.g. acetate, butanediol, formate, and glycerol), these microorganisms offer excellent potential for industrial biotechnology, thereby overcoming central challenges humankind faces, including CO2 release and land use. Here, we provide insight into fundamental production capacities, present genetic modifications that improve the biotechnical application, and review recent high-performance engineering of Ustilaginaceae toward relevant platform chemicals.
Collapse
Affiliation(s)
- Johanna Becker
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ulf W Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - An Nt Phan
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lena Ullmann
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Arifutzzaman A, Musa IN, Aroua MK, Saidur R. MXene based activated carbon novel nano-sandwich for efficient CO2 adsorption in fixed-bed column. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Kusin FM, Hasan SNMS, Molahid VLM, Yusuff FM, Jusop S. Carbon dioxide sequestration of iron ore mining waste under low-reaction condition of a direct mineral carbonation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22188-22210. [PMID: 36282383 DOI: 10.1007/s11356-022-23677-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Mining waste that is rich in iron-, calcium- and magnesium-bearing minerals can be a potential feedstock for sequestering CO2 by mineral carbonation. This study highlights the utilization of iron ore mining waste in sequestering CO2 under low-reaction condition of a mineral carbonation process. Alkaline iron mining waste was used as feedstock for aqueous mineral carbonation and was subjected to mineralogical, chemical, and thermal analyses. A carbonation experiment was performed at ambient CO2 pressure, temperature of 80 °C at 1-h exposure time under the influence of pH (8-12) and particle size (< 38-75 µm). The mine waste contains Fe-oxides of magnetite and hematite, Ca-silicates of anorthite and wollastonite and Ca-Mg-silicates of diopside, which corresponds to 72.62% (Fe2O3), 5.82% (CaO), and 2.74% (MgO). Fe and Ca carbonation efficiencies were increased when particle size was reduced to < 38 µm and pH increased to 12. Multi-stage mineral transformation was observed from thermogravimetric analysis between temperature of 30 and 1000 °C. Derivative mass losses of carbonated products were assigned to four stages between 30-150 °C (dehydration), 150-350 °C (iron dehydroxylation), 350-700 °C (Fe carbonate decomposition), and 700-1000 °C (Ca carbonate decomposition). Peaks of mass losses were attributed to ferric iron reduction to magnetite between 662 and 670 °C, siderite decarbonization between 485 and 513 °C, aragonite decarbonization between 753 and 767 °C, and calcite decarbonization between 798 and 943 °C. A 48% higher carbonation rate was observed in carbonated products compared to raw sample. Production of carbonates was evidenced from XRD analysis showing the presence of siderite, aragonite, calcite, and traces of Fe carbonates, and about 33.13-49.81 g CO2/kg of waste has been sequestered from the process. Therefore, it has been shown that iron mining waste can be a feasible feedstock for mineral carbonation in view of waste restoration and CO2 emission reduction.
Collapse
Affiliation(s)
- Faradiella Mohd Kusin
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Sharifah Nur Munirah Syed Hasan
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Verma Loretta M Molahid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ferdaus Mohamat Yusuff
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shamsuddin Jusop
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
44
|
Malik A, Bhatt S, Soni A, Khatri PK, Guha AK, Saikia L, Jain SL. Visible-light driven reaction of CO 2 with alcohols using a Ag/CeO 2 nanocomposite: first photochemical synthesis of linear carbonates under mild conditions. Chem Commun (Camb) 2023; 59:1313-1316. [PMID: 36636985 DOI: 10.1039/d2cc05152d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The first photochemical synthesis of linear carbonates from the reaction of CO2 with alcohols using a silver-doped ceria nanocomposite at room temperature under visible light irradiation is described. DFT calculations suggested the electron transfer from Ag 4d states to Ce 4f states in the composite for the photoreaction.
Collapse
Affiliation(s)
- Anil Malik
- Chemical & Material Sciences Division, CSIR-Indiam Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Sakshi Bhatt
- Chemical & Material Sciences Division, CSIR-Indiam Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Aishwarya Soni
- Chemical & Material Sciences Division, CSIR-Indiam Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Praveen K Khatri
- Chemical & Material Sciences Division, CSIR-Indiam Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Ankur K Guha
- Department of Chemistry, Cotton University, Guwahati-781001, Assam, India
| | - Lakshi Saikia
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-NEIST, Jorhat-785006, Assam, India
| | - Suman L Jain
- Chemical & Material Sciences Division, CSIR-Indiam Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| |
Collapse
|
45
|
Pintus A, Mantovani S, Kovtun A, Bertuzzi G, Melucci M, Bandini M. Recyclable GO-Arginine Hybrids for CO 2 Fixation into Cyclic Carbonates. Chemistry 2023; 29:e202202440. [PMID: 36260641 DOI: 10.1002/chem.202202440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/30/2022]
Abstract
New covalently modified GO-guanidine materials have been realized in a gram-scale synthesis and purified by an innovative microfiltration. The use of these composites in the fixation of CO2 into cyclic carbonates is demonstrated. Mild operating conditions, high yields (up to 85 %), wide scope (15 examples) and recoverability/reusability (up to 5 cycles) of the material account for the efficiency of the protocol. Dedicated control experiments shed light on the activation modes exerted by GO-l-arginine during the ring-opening/closing synthetic sequence.
Collapse
Affiliation(s)
- Angela Pintus
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Sebastiano Mantovani
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Alessandro Kovtun
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica, "Giacomo Ciamcian", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Manuela Melucci
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica, "Giacomo Ciamcian", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
46
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
47
|
Huo J, Wang Z, Oberschelp C, Guillén-Gosálbez G, Hellweg S. Net-zero transition of the global chemical industry with CO 2-feedstock by 2050: feasible yet challenging. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:415-430. [PMID: 36685711 PMCID: PMC9808895 DOI: 10.1039/d2gc03047k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Carbon capture, utilization and storage (CCUS) have been projected by the power and industrial sectors to play a vital role towards net-zero greenhouse gas emissions. In this study, we aim to explore the feasibility of a global chemical industry that fully relies on CO2 as its carbon source in 2050. We project the global annual CO2 demand as chemical feedstock to be 2.2-3.1 gigatonnes (Gt), well within the possible range of supply (5.2-13.9 Gt) from the power, cement, steel, and kraft pulp sectors. Hence, feedstock availability is not a constraint factor for the transition towards a fully CO2-based chemical industry on the global basis, with the exception of few regions that could face local supply shortages, such as the Middle East. We further conduct life cycle assessment to examine the environmental benefits on climate change and the trade-offs of particulate matter-related health impacts induced by carbon capture. We conclude that CO2 captured from solid biomass-fired power plants and kraft pulp mills in Europe would have the least environmental and health impacts, and that India and China should prioritize low-impact regional electricity supply before a large-scale deployment of CCUS. Finally, two bottom-up case studies of China and the Middle East illustrate how the total regional environmental and health impacts from carbon capture can be minimized by optimizing its supply sources and transport, requiring cross-sectoral cooperation and early planning of infrastructure. Overall, capture and utilization of unabatable industrial waste CO2 as chemical feedstock can be a feasible way for the net-zero transition of the industry, while concerted efforts are yet needed to build up the carbon-capture-and-utilization value chain around the world.
Collapse
Affiliation(s)
- Jing Huo
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich John-von-Neumann-Weg 9 8093 Zürich Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zürich Zürich Switzerland
| | - Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich John-von-Neumann-Weg 9 8093 Zürich Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zürich Zürich Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory Lerchenfeldstrasse 5 CH-9014 St Gallen Switzerland
| | - Christopher Oberschelp
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich John-von-Neumann-Weg 9 8093 Zürich Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zürich Zürich Switzerland
| | - Gonzalo Guillén-Gosálbez
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zürich Zürich Switzerland
- Sustainable Process Systems Engineering Lab, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Stefanie Hellweg
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich John-von-Neumann-Weg 9 8093 Zürich Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zürich Zürich Switzerland
| |
Collapse
|
48
|
Suliman MH, Yamani ZH, Usman M. Electrochemical Reduction of CO 2 to C1 and C2 Liquid Products on Copper-Decorated Nitrogen-Doped Carbon Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:47. [PMID: 36615959 PMCID: PMC9824042 DOI: 10.3390/nano13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the significant rise in atmospheric carbon dioxide (CO2) concentration and its detrimental environmental effects, the electrochemical CO2 conversion to valuable liquid products has received great interest. In this work, the copper-melamine complex was used to synthesize copper-based electrocatalysts comprising copper nanoparticles decorating thin layers of nitrogen-doped carbon nanosheets (Cu/NC). The as-prepared electrocatalysts were characterized by XRD, SEM, EDX, and TEM and investigated in the electrochemical CO2 reduction reaction (ECO2RR) to useful liquid products. The electrochemical CO2 reduction reaction was carried out in two compartments of an electrochemical H-Cell, using 0.5 M potassium bicarbonate (KHCO3) as an electrolyte; nuclear magnetic resonance (1H NMR) was used to analyze and quantify the liquid products. The electrode prepared at 700 °C (Cu/NC-700) exhibited the best dispersion for the copper nanoparticles on the carbon nanosheets (compared to Cu/NC-600 & Cu/NC-800), highest current density, highest electrochemical surface area, highest electrical conductivity, and excellent stability and faradic efficiency (FE) towards overall liquid products of 56.9% for formate and acetate at the potential of -0.8V vs. Reversible Hydrogen Electrode (RHE).
Collapse
|
49
|
Martínez-Ahumada E, López-Olvera A, Carmona-Monroy P, Díaz-Salazar H, Garduño-Castro MH, Obeso JL, Leyva C, Martínez A, Hernández-Rodríguez M, Solis-Ibarra D, Ibarra IA. SO 2 capture and detection using a Cu(II)-metal-organic polyhedron. Dalton Trans 2022; 51:18368-18372. [PMID: 36268816 DOI: 10.1039/d2dt03096a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The SO2 adsorption-desorption capacity at room temperature and 1 bar of the metal-organic polyhedron MOP-CDC was investigated. In addition, the qualitative solid-state absorption-emission properties of this material (before and after SO2 exposure) were measured and tested, and it demonstrated remarkable capability for SO2 detection. Our results represent the first example of fluorimetric SO2 detection in a MOP.
Collapse
Affiliation(s)
- Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510, México D.F., Mexico.
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510, México D.F., Mexico.
| | - Paulina Carmona-Monroy
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510, México D.F., Mexico.
| | - Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Del. Coyoacán, C. P. 04510, Cd. Mx., Mexico
| | | | - Juan L Obeso
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calz. Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calz. Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico
| | - Ana Martínez
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, and Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, Ciudad de México 04510, Mexico
| | - Marcos Hernández-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Del. Coyoacán, C. P. 04510, Cd. Mx., Mexico
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510, México D.F., Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, 04510, México D.F., Mexico.
| |
Collapse
|
50
|
Fu L, Ren Z, Si W, Ma Q, Huang W, Liao K, Huang Z, Wang Y, Li J, Xu P. Research progress on CO2 capture and utilization technology. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|