1
|
Li Y, Li C, Zhang N, Liu Y, Kang H, Wang M, Zhao L, Li D, Tian H. Mitigation of oxidative stress-induced aging by extracellular polysaccharides from Lactiplantibacillus plantarum R6-1 from Sayram ketteki. Int J Biol Macromol 2025; 308:142392. [PMID: 40120913 DOI: 10.1016/j.ijbiomac.2025.142392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Oxidative stress within the body is associated with aging, playing a crucial role in its progression. Polysaccharides from lactic acid bacteria are well recognized for their antioxidant effects, potentially improving the aging process. This study investigated the characterization and antioxidant activities of extracellular polysaccharides (EPS-1: 59,978 Da, 40.9 % mannose, 4.5 % ribose, 5.8 % glucuronic acid, 44.1 % glucose, 2.9 % galactose; EPS-2: 25,686 Da, 22.9 % mannose, 5.4 % ribose, 5.5 % glucuronic acid, 59.6 % glucose, 5.4 % galactose) produced by Lactiplantibacillus plantarum R6-1. The results showed that EPS could increase the survival rates of Caco-2 cells exposed to hydrogen peroxide and mitigate the D-galactose (D-Gal)-induced oxidative stress in mice. Administration of EPS activated the hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in mice. Subsequently, this pathway activated various oxidation-related enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. Meanwhile, EPS regulated mouse intestinal microbiota by increasing the relative abundance of beneficial bacteria secreting anti-inflammatory factors, such as Norank_f_Muribaculaceae and Dubosiella, and restoring the imbalance of Firmicutes to Bacteroidetes caused by oxidative stress. This study shows that L. plantarum R6-1's EPS exhibited the ability to concurrently influence both the liver and intestinal microbiota of mice, thereby achieving an anti-oxidative effect through their interconnected interactions.
Collapse
Affiliation(s)
- Yuwei Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Yajing Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Hongyan Kang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Lina Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; School of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan 657000, China.
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
2
|
Wang M, Chen D, Liu J, Huang T, Du Y, Ming S, Zong S. Isolation, characterization and palliative effect of D-gal-induced liver injury of Stropharia rugosoannulata exopolysaccharide. Int J Biol Macromol 2025; 308:142457. [PMID: 40147650 DOI: 10.1016/j.ijbiomac.2025.142457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In this study, a homogeneous polysaccharide component, namely SREP-1, was purified from Stropharia rugosoannulata fermentation broth. SREP-1 was identified as a novel water-soluble neutral polysaccharide, with a molecular weight of 9.6 kDa. Monosaccharide composition analysis showed that SREP-1 was composed of glucose, galactose and mannose in a molar ratio of 78.6: 13.6: 7.8. The primary structure was elucidated through FT-IR, methylation analysis and NMR spectroscopy, revealing a backbone of →4)-α-D-Glcp-(1 → and →4,6)-α-D-Glcp-(1 → residues, and →6)-α-D-Galp-(1→, β-D-Manp-(1 → and α-D-Glcp-(→1 residues for the branched chains. Results indicated that SREP-1 possessed an amorphous globular-like structure, good thermally stability and triple-helix conformation in water. In vivo results showed that SREP-1 reversed D-galactose (D-gal)-induced body weight and organ indexes decrease, and alleviated liver damage according to improved histopathology and declined indicators in serum. Amelioration of oxidative stress and abnormal inflammation of aging liver might be due to the elevated nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and decreased that of nuclear factor-κB p65 (NF-κB p65). Interestingly, the beneficial effects of SREP-1 were abolished after pretreatment with antibiotics. Our findings demonstrated that the role of SREP-1 in attenuating aging-related liver injury might involve the regulation of Nrf2-NF-κB signaling pathway and its prebiotic effect.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Tiantian Huang
- Jiangsu Alphay Bio-technology Co., Ltd., Nantong 226009, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ming
- Jiangsu Zhongnongke Food Engineering Co., Ltd, Suqian 223814, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
3
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 PMCID: PMC11785574 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Liu B, Zhang Z, Zhao J, Li X, Wang Y, Liu L, Qiao W, Chen L. Lactiplantibacillus plantarum HM-P2 influences gestational gut microbiome and microbial metabolism. Front Nutr 2024; 11:1489359. [PMID: 39758313 PMCID: PMC11695228 DOI: 10.3389/fnut.2024.1489359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Human milk-derived probiotics are beneficial bacteria that provide gestational health benefits, for both pregnant women and their offspring. The study aims to investigate whether the administration of human milk-derived probiotic L. plantarum HM-P2 could effectively influence gestational health. Methods The gestational humanized microbiome model was built by fecal microbiome transplant from gestational women into germ-free (GF) mice. Results HM-P2 was successfully planted and increased the top crypt depth of the colon, and microbes such as L. reuteri, Anaerofilum sp. An201, and Gemmiger were up-regulated in the HM-P2 group throughout gestation. HM-P2 significantly promoted the contents of intestinal caproic acid, bile acids, and tryptophan catabolites such as serotonin. Gut microbes were associated with these bile acids and tryptophans. Discussion HM-P2 could modulate the microbial community and microbial metabolites in gestational humanized GF mice. This probiotic strain could be a potential gestational dietary supplement with health benefits.
Collapse
Affiliation(s)
- Bin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Zhenzhen Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Xianping Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yaru Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lu Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| |
Collapse
|
5
|
Wang W, Chang J, Zhang Z, Liu H, He L, Liu Y, Kang J, Goff HD, Li Z, Guo Q. The galactomannan-EGCG physical complex: Effect of branching degree and molecular weight on structural and physiological properties. Carbohydr Polym 2024; 343:122447. [PMID: 39174126 DOI: 10.1016/j.carbpol.2024.122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
Polysaccharides and polyphenols are bioactive components that co-exist in many plant foods. Their binary interaction in terms of the structure-function relationships, however, has not been well clarified. This study elucidated the correlation between the structural and physiological properties of galactomannan (GM) -catechin monomer complexes and GM with different branching or molecular weight (Mw). Results indicated that locus bean gum with lower branching degree (Gal/Man is 0.259) bound more readily to EGCG with adsorption rate of 19.42 %. EGCG and ECG containing galloyl groups were more inclined to form hydrogen bonds with GMs, significantly improving the adsorption by GMs. The introduction of EGCG could enhance the antioxidant activity and starch digestion inhibition of GM, which positively correlated with the adsorption capacity of EGCG. The guar gum (GG) with higher Mw (7384.3 kDa) could transport 71.51 % EGCG into the colon, while the retention rate of EGCG reaching the colon alone was only 46.33 %. Conversely, GM-EGCG complex with lower Mw (6.9 kDa) could be readily utilized by gut microbiota, and increased production of short-chain fatty acids (SCFAs). This study elucidated the structure-properties relationship of GM-EGCG complexes, and provide a new idea for the development and precision nutrition of polysaccharides-polyphenol complexes fortified functional foods.
Collapse
Affiliation(s)
- Wan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Junhui Chang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li He
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Ngoc APT, Zahoor A, Kim DG, Yang SH. Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease. J Microbiol Biotechnol 2024; 34:1739-1747. [PMID: 39099195 PMCID: PMC11485767 DOI: 10.4014/jmb.2403.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut-brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut-brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.
Collapse
Affiliation(s)
- Anh Pham Thi Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dong Gyun Kim
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
7
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
8
|
Zhang B, Zhao W, Song D, Lyu X. Regulatory effect of β-glucan secreted by Rhizobium pusense on triglyceride metabolism and their relationships with the modulation of intestinal microbiota in mice fed a high-fat diet. Food Funct 2024; 15:8759-8774. [PMID: 39104327 DOI: 10.1039/d4fo01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The present study investigated the regulatory effects of β-glucan secreted by Rhizobium pusense (RPG) on triglyceride metabolism and gut microbiota in mice fed a high-fat diet. The results indicated that supplementation with RPG significantly reduced body weight gain, blood glucose levels, and the tissue index of epididymal white adipose tissue (eWAT) and subcutaneous adipose tissue (SAT). Conversely, it increased the tissue index of brown adipose tissue (BAT). Furthermore, RPG supplementation effectively decreased the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum. Regarding its influence on the triglyceride (TG) mechanism, RPG decreased TG levels in both serum and liver, while elevating TG levels in feces. Moreover, it moderated the composition of gut microbiota in mice fed a high-fat diet, particularly altering functionally relevant intestinal microbial phylotypes, leading to enhanced levels of short-chain fatty acids (SCFAs) in feces. Additionally, RPG treatment regulated the mRNA and protein levels of genes responsible for TG metabolism in the AMPK pathway, indicating an impact on TG synthesis and excretion in the liver. Pearson's correlation network analysis demonstrated strong correlations between key microbial phylotypes responsive to RPG intervention and parameters associated with TG metabolic disorders. SCFA levels were also found to correlate with the mRNA expression levels of genes involved in TG metabolism. Finally, lipidomics analyses were performed to investigate the underlying mechanisms of RPG intervention (glycerophospholipid metabolic pathway) and to identify potential lipid biomarkers, such as TG (18:2/20:4/22:6), TG (18:1/20:4/22:6), TG (20:1/18:1/22:4), PC (17:0/20:4), TG (18:1/20:4/22:5), PC (22:4/22:6), PC (20:0/22:6), PC (20:0e/20:4), DG (18:3e/18:2), DG (10:0/18:2), DG (18:2/14:2), TG (10:0/18:2/20:4), TG (16:1/14:3/18:2) and TG (16:0/14:2/22:6). Overall, our results suggest that RPG could activate the hepatic AMPK signaling pathway by regulating gut microbiota and metabolites through gut-liver crosstalk to exert a lipid-lowering effect in mice fed a high-fat diet and improve obesity.
Collapse
Affiliation(s)
- Bin Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Dong Song
- Jiangxi Baiyue Food Co. Ltd, Pingxiang, Jiangxi 337000, People's Republic of China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
9
|
Victoria Obayomi O, Folakemi Olaniran A, Olugbemiga Owa S. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J Funct Foods 2024; 119:106337. [DOI: 10.1016/j.jff.2024.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Wang K, Duan F, Sun T, Zhang Y, Lu L. Galactooligosaccharides: Synthesis, metabolism, bioactivities and food applications. Crit Rev Food Sci Nutr 2024; 64:6160-6176. [PMID: 36632761 DOI: 10.1080/10408398.2022.2164244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prebiotics are non-digestible ingredients that exert significant health-promoting effects on hosts. Galactooligosaccharides (GOS) have remarkable prebiotic effects and structural similarity to human milk oligosaccharides. They generally comprise two to eight sugar units, including galactose and glucose, which are synthesized from substrate lactose by microbial β-galactosidase. Enzyme sources from probiotics have received particular interest because of their safety and potential to synthesize specific structures that are particularly metabolized by intestinal probiotics. Owing to advancements in modern analytical techniques, many GOS structures have been identified, which vary in degree of polymerization, glycosidic linkage, and branch location. After intake, GOS adjust gut microbiota which produce short chain fatty acids, and exhibit excellent biological activities. They selectively stimulate the proliferation of probiotics, inhibit the growth and adhesion of pathogenic bacteria, alleviate gastrointestinal, neurological, metabolic and allergic diseases, modulate metabolites production, and adjust ion storage and absorption. Additionally, GOS are safe and stable, with high solubility and clean taste, and thus are widely used as food additives. GOS can improve the appearance, flavor, taste, texture, viscosity, rheological properties, shelf life, and health benefits of food products. This review systemically covers GOS synthesis, structure identifications, metabolism mechanisms, prebiotic bioactivities and wide applications, focusing on recent advances.
Collapse
Affiliation(s)
- Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wang Y, Wang Y, Zhao T, Li M, Wang Y, Cao J, Liu Y, Wang Z, Cheng G. Protective Effect of Que Zui Tea on d-Galactose-Induced Oxidative Stress Damage in Mice via Regulating SIRT1/Nrf2 Signaling Pathway. Molecules 2024; 29:1384. [PMID: 38543018 PMCID: PMC10975416 DOI: 10.3390/molecules29061384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Que Zui tea (QT) is an important herbal tea in the diet of the 'Yi' people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6'-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1β and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6'-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yongchao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Mengcheng Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Yudan Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China (Y.L.)
| |
Collapse
|
12
|
Wang J, Yang Y, Shi Y, Wei L, Gao L, Liu M. Oxidized/unmodified-polyethylene microplastics neurotoxicity in mice: Perspective from microbiota-gut-brain axis. ENVIRONMENT INTERNATIONAL 2024; 185:108523. [PMID: 38484610 DOI: 10.1016/j.envint.2024.108523] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Microplastics (MPs) are inevitably oxidized in the environment, and their potential toxicity to organisms has attracted wide attention. However, the neurotoxicity and mechanism of oxidized polyethylene (Ox-PE) MPs to organisms remain unclear. Herein, we prepared oxidized low-density polyethylene (Ox-LDPE) and established a model of MPs exposure by continuously orally gavage of C57BL/6 J mice with LDPE-MPs/Ox-LDPE-MPs for 28 days with or without oral administration of Lactobacillus plantarum DP189 and galactooligosaccharides (DP189&GOS). The experimental results indicated that LDPE-MPs or Ox-LDPE-MPs caused several adverse effects in mice, mainly manifested by behavioral changes, disruption of the intestinal and blood-brain barrier (BBB), and simultaneous oxidative stress, inflammatory reactions, and pathological damage in the brain and intestines. Brain transcriptomic analysis revealed that the cholinergic synaptic signaling pathways, which affect cognitive function, were significantly disrupted after exposure to LDPE-MPs or Ox-LDPE-MPs. Real-time quantitative polymerase chain reaction and Western Blotting results further demonstrated that the critical genes (Slc5a7, Chat and Slc18a3) and proteins (Chat and Slc18a3) in the cholinergic synaptic signaling pathway were significantly down-regulated after exposure to LDPE-MPs or Ox-LDPE-MPs. These alterations lead to reduced acetylcholine concentration, which causes cognitive dysfunction in mice. Importantly, the DP189&GOS interventions effectively mitigated the MPs-induced cognitive dysfunction and intestinal microbiota alteration, improved intestinal and BBB integrity, attenuated the oxidative stress and inflammatory response, and also saw a rebound in the release of acetylcholine. These results indicated that LDPE-MPs and Ox-LDPE-MPs exert neurotoxic effects on mice by inducing oxidative stress, inflammatory responses, and dysregulation of cholinergic signaling pathways in the mouse brain. That probiotic supplementation is effective in attenuating MPs-induced neurotoxicity in mice. Overall, this study reveals the potential mechanisms of neurotoxicity of LDPE-MPs and Ox-LDPE-MPs on mice and their improvement measures, necessary to assess the potential risks of plastic contaminants to human health.
Collapse
Affiliation(s)
- Ji Wang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Ying Yang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Li Wei
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
13
|
Gupta N, El-Gawaad NSA, Mallasiy LO, Gupta H, Yadav VK, Alghamdi S, Qusty NF. Microbial dysbiosis and the aging process: a review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front Microbiol 2024; 15:1260793. [PMID: 38440135 PMCID: PMC10909992 DOI: 10.3389/fmicb.2024.1260793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Gut microbiota dysbiosis has been a serious risk factor for several gastric and systemic diseases. Recently, gut microbiota's role in aging was discussed. Available preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus plantarums (LP) may influence the aging process via modulation of the gut microbiota. The present review summarized compelling evidence of LP's potential effect on aging hallmarks such as oxidative stress, inflammation, DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut microbiota and improves overall endurance in aging animal models. LP cell constituents exert considerable antioxidant potential which may reduce ROS levels directly. In addition, restored gut microbiota facilitate a healthy intestinal milieu and accelerate multi-channel communication via signaling factors such as SCFA and GABA. Signaling factors further activate specific transcription factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense systems involving anti-inflammatory cytokines, MMPs, and protective enzymes against MAPKs. We concluded that LP supplementation may be an effective approach to managing aging and associated health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Noida, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil, Saudi Arabia
| | | | | | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Liu Q, Wang Y, Wan Y, Liang Y, Tan Y, Wei M, Hou T. Selenium- and/or Zinc-Enriched Egg Diet Improves Oxidative Damage and Regulates Gut Microbiota in D-Gal-Induced Aging Mice. Nutrients 2024; 16:512. [PMID: 38398836 PMCID: PMC10893158 DOI: 10.3390/nu16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Eggs, with their high nutritional value, are great carriers for enriching nutrients. In this study, selenium- and/or zinc-enriched eggs (SZE) were obtained and their effects on ameliorating oxidative stress injury, alleviating cognitive impairment, and maintaining intestinal flora balance in a D-gal-induced aging mice model were investigated. As determined by the Y-maze test, SZE restored the learning and memory abilities and increased the Ach level and AChE activity of aging mice (p < 0.05). Meanwhile, supplementation of low-dose SZE increased antioxidant levels and decreased inflammation levels (p < 0.05). High-dose SZE increased anti-inflammatory levels but were less effective than low dose. Additionally, SZE maintained the intestinal flora balance and significantly increased the ratio of Firmicutes and Bacteroidota. Blautia, as a probiotic, was negatively correlated with pro-inflammatory factors and positively correlated with antioxidant levels (p < 0.05). These results suggest that SZE might improve organ damage and cognitive function by attenuating oxidative stress and inflammatory response and maintaining healthy gut flora.
Collapse
Affiliation(s)
- Qiaocui Liu
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yulin Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yuan Wan
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Yu Liang
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Yali Tan
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Mengya Wei
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Tao Hou
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Zhang Y, Wang X, Li W, Yang Y, Wu Z, Lyu Y, Yue C. Intestinal microbiota: a new perspective on delaying aging? Front Microbiol 2023; 14:1268142. [PMID: 38098677 PMCID: PMC10720643 DOI: 10.3389/fmicb.2023.1268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The global aging situation is severe, and the medical pressures associated with aging issues should not be underestimated. The need and feasibility of studying aging and intervening in aging have been confirmed. Aging is a complex natural physiological progression, which involves the irreversible deterioration of body cells, tissues, and organs with age, leading to enhanced risk of disease and ultimately death. The intestinal microbiota has a significant role in sustaining host dynamic balance, and the study of bidirectional communication networks such as the brain-gut axis provides important directions for human disease research. Moreover, the intestinal microbiota is intimately linked to aging. This review describes the intestinal microbiota changes in human aging and analyzes the causal controversy between gut microbiota changes and aging, which are believed to be mutually causal, mutually reinforcing, and inextricably linked. Finally, from an anti-aging perspective, this study summarizes how to achieve delayed aging by targeting the intestinal microbiota. Accordingly, the study aims to provide guidance for further research on the intestinal microbiota and aging.
Collapse
Affiliation(s)
- Yuemeng Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaomei Wang
- Yan’an University of Physical Education, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoxuan Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
16
|
Song D, Li A, Chen B, Feng J, Duan T, Cheng J, Chen L, Wang W, Min Y. Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens. J Anim Sci Biotechnol 2023; 14:147. [PMID: 37978561 PMCID: PMC10655300 DOI: 10.1186/s40104-023-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses. RESULTS The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05). CONCLUSIONS In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Aike Li
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Bingxu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Tao Duan
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Junlin Cheng
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Lixian Chen
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Weiwei Wang
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Chen F, Pan J, Yu L, Wang S, Zhang C, Zhao J, Narbad A, Zhai Q, Tian F. Lactiplantibacillus plantarum CCFM8661 alleviates D-galactose-induced brain aging in mice by the regulation of the gut microbiota. Food Funct 2023; 14:10135-10150. [PMID: 37901912 DOI: 10.1039/d3fo03377e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Aging is characterized by a decline in biological functions, leading to various health issues. There is significant interest in mitigating age and age-related health issues. Gut microbiota has emerged as a crucial target for combating aging and influencing host health. This study evaluated the anti-aging effects of Lactiplantibacillus plantarum CCFM8661 in mice and the role of the gut microbiota in mediating its effects. Aging was induced in mice using D-galactose, and L. plantarum CCFM8661 was orally administered for 8 weeks to evaluate its effects on age-related decline and the gut microbiota. The results demonstrated that supplementation with L. plantarum CCFM8661 effectively alleviated cognitive impairment and oxidative stress in the aging brain, as well as liver oxidation and bone damage, and impaired intestinal barrier function in aging mice. Furthermore, L. plantarum CCFM8661 modulated the gut microbiota of aging mice, increasing the abundance of beneficial bacteria, such as Ruminococcaceae, and influenced the functionality of the gut microbiota to promote the production of active metabolites. These findings suggest that L. plantarum CCFM8661 has a mitigating effect on organismal aging, especially brain aging.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
18
|
Hu A, Huang W, Shu X, Ma S, Yang C, Zhang R, Xiao X, Wu Y. Lactiplantibacillus plantarum Postbiotics Suppress Salmonella Infection via Modulating Bacterial Pathogenicity, Autophagy and Inflammasome in Mice. Animals (Basel) 2023; 13:3215. [PMID: 37893938 PMCID: PMC10603688 DOI: 10.3390/ani13203215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Our study aimed to explore the effects of postbiotics on protecting against Salmonella infection in mice and clarify the underlying mechanisms. Eighty 5-week-old C57BL/6 mice were gavaged daily with Lactiplantibacillus plantarum (LP)-derived postbiotics (heat-killed bacteria, LPBinactive; culture supernatant, LPC) or the active bacteria (LPBactive), and gavaged with Salmonella enterica Typhimurium (ST). The Turbidimetry test and agar diffusion assay indicated that LPC directly inhibited Salmonella growth. Real-time PCR and biofilm inhibition assay showed that LPC had a strong ability in suppressing Salmonella pathogenicity by reducing virulence genes (SopE, SopB, InvA, InvF, SipB, HilA, SipA and SopD2), pili genes (FilF, SefA, LpfA, FimF), flagellum genes (FlhD, FliC, FliD) and biofilm formation. LP postbiotics were more effective than LP on attenuating ST-induced intestinal damage in mice, as indicated by increasing villus/crypt ratio and increasing the expression levels of tight junction proteins (Occludin and Claudin-1). Elisa assay showed that LP postbiotics significantly reduced ST-induced inflammation by regulating the levels of inflammatory cytokines (the increased IL-4 and IL-10 and the decreased TNF-α) in serum and ileum (p < 0.05). Furthermore, LP postbiotics inhibited the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome by decreasing the protein expression of NLRP3 and Caspase-1, and the gene expression of Caspase-1, IL-1β and IL-18. Meanwhile, both LPC and LPB observably activated autophagy under ST infection, as indicated by the up-regulated expression of LC3 and Beclin1 and the downregulated p62 level (p < 0.05). Finally, we found that LP postbiotics could trigger an AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy. In summary, Lactiplantibacillus plantarum-derived postbiotics alleviated Salmonella infection via modulating bacterial pathogenicity, autophagy and NLRP3 inflammasome in mice. Our results confirmed the effectiveness of postbiotics agents in the control of Salmonella infection.
Collapse
Affiliation(s)
- Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wenxia Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xin Shu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shiyue Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
19
|
Koh YC, Kuo LH, Tung YC, Weerawatanakorn M, Pan MH. Identification of Indicative Gut Microbial Guilds in a Natural Aging Mouse Model. ACS OMEGA 2023; 8:36569-36580. [PMID: 37810685 PMCID: PMC10552476 DOI: 10.1021/acsomega.3c05949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
Gut microbial dysbiosis during later life may contribute to health conditions, possibly due to an increase in intestinal permeability, immune changes, and systemic inflammation. Mouse models have been employed to determine the influence of gut microbes on aging; however, suitable gut microbial indicators are currently lacking. Therefore, this study aimed to determine the gut microbial indicators and their potential guilds in a natural aging mouse model. In agreement with previous studies, alpha diversity indices-including observed OTUs, ACE, Chao1, and Simpson-were significantly lower in aged mice than in younger mice. The results of beta diversity analysis revealed the compositional differences between young and aged mice, and the MRPP, ANOSIM, and Adonis tests indicated that the results were representative. By employing ANCOM and LEfSe analyses, Bacteroides thetaiotaomicron (Bacteroides) and Anaeroplasma were identified as the indicators of young and aged mice, respectively. Notably, these indicators were still present after 3 months. The result of network analysis confirmed the negative correlation of these genera in mice, and the potential guild members were identified based on the increased abundance of Anaeroplasma in aged mice. The gut microbes of aged mice tend to correspond to those involved in human diseases, selenocompound metabolism, and glycolysis/gluconeogenesis in functional predictions. In this study, the gut microbial indicators in aged mice have been identified, and it is envisaged that these findings could provide a new approach for future studies of antiaging.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Lee-Han Kuo
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Yen-Chen Tung
- Department
of Food Science, National Ilan University, Yilan 26041, Taiwan
| | - Monthana Weerawatanakorn
- Department
of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung 41354, Taiwan
| |
Collapse
|
20
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
21
|
Ma J, Li T, Wang Q, Xu C, Yu W, Yu H, Wang W, Feng Z, Chen L, Hou J, Jiang Z. Enhanced viability of probiotics encapsulated within synthetic/natural biopolymers by the addition of gum arabic via electrohydrodynamic processing. Food Chem 2023; 413:135680. [PMID: 36796267 DOI: 10.1016/j.foodchem.2023.135680] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
To enhance the probiotics' viability, novel vehicles consisting of synthetic/natural biopolymers, i.e., polyvinyl alcohol (PVOH), polyvinylpyrrolidone, whey protein concentrate and maltodextrin, encapsulated with L. plantarum KLDS 1.0328 and gum arabic (GA) as a prebiotic were fabricated by electrohydrodynamic techniques. Inclusion of cells into composites caused an increase in conductivity and viscosity. Morphological analysis showed that cells were distributed along the electrospun nanofibres or distributed randomly in the electrosprayed microcapsules. Both intramolecular and intermolecular hydrogen bond interactions exist between biopolymers and cells. Thermal analysis revealed that the degradation temperatures (>300 °C) of various encapsulation systems have potential applications in heat-treatment foods. Additionally, cells especially immobilized in PVOH/GA electrospun nanofibres showed the highest viability compared with free cells after exposure to simulated gastrointestinal stress. Furthermore, cells retained their antimicrobial ability after rehydration of the composite matrices. Therefore, electrohydrodynamic techniques have great potential in encapsulating probiotics.
Collapse
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China
| | - Tianzhu Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China
| | - Qingyun Wang
- Beidahuang Wondersun Dairy Co., Ltd, Harbin 150090, PR China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China
| | - Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China
| | - Hongliang Yu
- Beidahuang Wondersun Dairy Co., Ltd, Harbin 150090, PR China
| | - Wan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, Harbin 150030, PR China
| | - Lijun Chen
- Beijing Sanyuan Foods Co Ltd, Natl Hlth Engn Res Ctr Maternal & Infant Dairy, Beijing 100163, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural, University, Harbin 150030, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China.
| |
Collapse
|
22
|
Wu Y, Hu A, Shu X, Huang W, Zhang R, Xu Y, Yang C. Lactobacillus plantarum postbiotics trigger AMPK-dependent autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome activation. J Cell Physiol 2023; 238:1336-1353. [PMID: 37052047 DOI: 10.1002/jcp.31016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
We previously found that Lactobacillus plantarum (LP)-derived postbiotics protected animals against Salmonella infection, but the molecular mechanism remains obscure. This study clarified the mechanisms from the perspective of autophagy. Intestinal porcine epithelial cells (IPEC-J2) were pretreated with LP-derived postbiotics (the culture supernatant, LPC; or heat-killed bacteria, LPB), and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics markedly triggered autophagy under ST infection, as indicated by the increased LC3 and Beclin1 and the decreased p62 levels. Meanwhile, LP postbiotics (particularly LPC) exhibited a strong capacity of inhibiting ST adhesion, invasion and replication. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) led to a significant decrease of autophagy and the aggravated infection, indicating the importance of autophagy in LP postbiotics-mediated Salmonella elimination. LP postbiotics (especially LPB) significantly suppressed ST-induced inflammation by modulating inflammatory cytokines (the increased interleukin (IL)-4 and IL-10, and decreased tumor necrosis factor-α (TNF), IL-1β, IL-6 and IL-18). Furthermore, LP postbiotics inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation, as evidenced by the decreased levels of NLRP3, Caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Deficits in autophagy resulted in an increase of inflammatory response and inflammasome activation. Finally, we found that both LPC and LPB triggered AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy, and this was further confirmed by AMPK RNA interference. The intracellular infection and NLRP3 inflammasome were aggravated after AMPK knockdown. In summary, LP postbiotics trigger AMPK-mediated autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome in IPEC-J2 cells. Our findings highlight the effectiveness of postbiotics, and provide a new strategy for preventing Salmonella infection.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Shu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenxia Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
23
|
Wang W, Xu C, Wang Q, Hussain MA, Wang C, Hou J, Jiang Z. Protective Effect of Polyphenols, Protein, Peptides, and Polysaccharides on Alcoholic Liver Disease: A Review of Research Status and Molecular Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37001022 DOI: 10.1021/acs.jafc.2c07081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alcoholic liver disease (ALD) has emerged as an important public health problem in the world. The polyphenols, protein, peptides, and polysaccharides have attracted attention for prevention or treatment of ALD. Therefore, this paper reviews the pathogenesis of ALD, the relationship between polyphenols, peptides, polysaccharides, and ALD, and expounds the mechanism of gut microbiota on protecting ALD. It is mainly found that the hydroxyl group of polyphenols endows it with antioxidation to protect ALD. The ALD protection of bioactive peptides is related to amino acid composition. The ALD protection of polysaccharides is related to the primary structure. Meanwhile, polyphenols, protein, peptides, and polysaccharides prevent or treat ALD by antioxidation, anti-inflammatory, antiapoptosis, lipid metabolism, and gut microbiota regulation. This contribution provides updated information on polyphenols, protein, peptides, and polysaccharides in response to ALD, which will not only facilitate the development of novel bioactive components but also the future application of functional food raw materials will be promoted.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingyun Wang
- Beidahuang Wondersun Dairy Co., Ltd., Harbin 150090, China
| | - Muhammad Altaf Hussain
- Lasbela University of Agriculture, Water and Marine Science Uthal, Balochistan 90150, Pakistan
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
24
|
Wang W, Zhao X, Ma Y, Zhang J, Xu C, Ma J, Hussain MA, Hou J, Qian S. Alleviating Effect of Lacticaseibacillus rhamnosus 1.0320 Combined with Dihydromyricetin on Acute Alcohol Exposure-Induced Hepatic Impairment: Based on Short-Chain Fatty Acids and Adenosine 5'-Monophosphate-Activated Protein Kinase-Mediated Lipid Metabolism Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4837-4850. [PMID: 36930948 DOI: 10.1021/acs.jafc.2c08523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive drinking has been listed by the World Health Organization as the fifth major risk factor; especially the liver, as the core organ of alcohol metabolism, is prone to organic lesions. Probiotics have received attention due to their bioactivity for liver protection. The beneficial effects of probiotics on hosts are related to their physiological functions. Therefore, based on the concept of second-generation synbiotes, this study explored the protective effects of four dietary polyphenols on the stress tolerance, hydrophobicity, adhesion, and digestive characteristics of L. rhamnosus 1.0320. L. rhamnosus 1.0320 had the best synergistic effect with dihydromyricetin (DMY). Therefore, this combination was selected as a synbiotic supplement to explore the protective effect on acute alcohol exposure-induced hepatic impairment. The results showed that L. rhamnosus 1.0320 combined with DMY restored the intestinal barrier by upregulating short-chain fatty acid levels and activated the adenosine 5'-monophosphate-activated protein kinase-mediated lipid metabolism pathway to inhibit oxidative stress, inflammation, and lipid accumulation in the liver. Furthermore, 109 CFU/mouse/d L. rhamnosus 1.0320 and 50 mg/kg/d DMY by gavage were identified as the optimal doses for protection against acute alcohol expose-induced hepatic impairment. This study provides new insights into alleviating acute alcoholic hepatic impairment by targeting intestinal metabolites through the gut-liver axis.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhao
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Ma
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Altaf Hussain
- Lasbela University of Agriculture, Water and Marine Science, Uthal 90150, Balochistan, Pakistan
| | - Juncai Hou
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Qian
- Analysis and Testing Sharing Center of the State-Owned Asset Management Office, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
25
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Preparation of shell-core fiber-encapsulated Lactobacillus rhamnosus 1.0320 using coaxial electrospinning. Food Chem 2023; 402:134253. [DOI: 10.1016/j.foodchem.2022.134253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023]
|
27
|
Wang W, Shang H, Li J, Ma Y, Xu C, Ma J, Hou J, Jiang Z. Four Different Structural Dietary Polyphenols, Especially Dihydromyricetin, Possess Superior Protective Effect on Ethanol-Induced ICE-6 and AML-12 Cytotoxicity: The Role of CYP2E1 and Keap1-Nrf2 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1518-1530. [PMID: 36637065 DOI: 10.1021/acs.jafc.2c06478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polyphenols have received attention as dietary supplements for the relief of alcoholic liver disease (ALD) due to various bioactivities. Ethanol-induced rat small intestinal epithelial cell 6 (IEC-6) and alpha mouse liver 12 (AML-12) cell models were pretreated with four dietary polyphenols with different structures to explore their effects on cytotoxicity and potential protective mechanisms. The results showed that polyphenols had potential functions to inhibit ethanol-induced AML-12 and IEC-6 cell damage and oxidative stress, and restore ethanol-induced IEC-6 permeability and tight junction gene expression. Especially, dihydromyricetin (DMY) had the best protective effect on ethanol-induced cytotoxicity, followed by apigenin (API). Western blot results showed that DMY and API had the best ability to inhibit CYP2E1 and Keap1, and promote nuclear translocation of Nrf2, which might be the potential mechanism by which DMY and API attenuate ethanol-induced cytotoxicity. Moreover, the molecular docking results predicted that DMY and API could bind more tightly to the amino acid residues of CYP2E1 and Keap1, which might be one of the inhibitory modes of dietary polyphenols on CYP2E1 and Keap1. This study provided a rationale for the subsequent protective effect of dietary polyphenols on alcohol-induced liver injury in animal models and provided new clues on bioactive components for ALD-protection based on the gut-liver axis.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Hang Shang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jinzhe Li
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yue Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| |
Collapse
|
28
|
Chen Q, Liu C, Zhang Y, Wang S, Li F. Effect of Lactobacillus plantarum KSFY01 on the exercise capacity of D-galactose-induced oxidative stress-aged mice. Front Microbiol 2022; 13:1030833. [PMID: 36620024 PMCID: PMC9812958 DOI: 10.3389/fmicb.2022.1030833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Aging is a process that involves comprehensive physiological changes throughout the body, and improvements in the exercise capacity of individuals may delay aging and relieve fatigue. Probiotics are subject to ongoing research to investigate their antioxidant properties. The purpose of this study was to investigate the effect of the probiotic Lactobacillus plantarum KSFY01 (L. plantarum KSFY01) on exercise tolerance in mice induced into a state of accelerated physiological aging by oxidative stress. Methods A mouse model of accelerated aging was established using D-galactose to induce oxidative stress. The bacteria L. plantarum KSFY01 was isolated from fermented yak yogurt. The effect of L. plantarum KSFY01 on the improvement of exercise capacity in aging-accelerated mice was evaluated by measuring their running time until exhaustion, histopathological sections, related biochemical indicators, and underlying gene expression. Results The oral administration of L. plantarum KSFY01 prolonged the running time of mice and reduced their creatine kinase (CK), alanine aminotransferase (ALT), and aspartate aminotransferasem (AST) levels. From this study, we observed that L. plantarum KSFY01 significantly improved the exercise capacity of mice and alleviated liver damage. Treatment with L. plantarum KSFY01 reduced the blood urea nitrogen (BUN), lactic acid (LD) accumulation, and lactate dehydrogenase (LDH) elevations produced by the accelerated aging state, and also reversed the changes in muscle glycogen (MG). Overall, L. plantarum KSFY01 could effectively improve metabolite accumulation, thereby relieving fatigue in exercised mice. The results of the antioxidant indices in vivo showed that L. plantarum KSFY01 intervention increased the activity of antioxidant enzymes, decreased the level of malondialdehyde (MDA), and restored the balance between the oxidative and antioxidant systems in fatigued mice. By investigating the underlying molecular mechanism, our results showed that L. plantarum KSFY01 intervention significantly reversed the decline in the expression levels of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway-related factors and improved the body's antioxidant capacity. We determined that the underlying molecular mechanism responsible for the antioxidant effect of L. plantarum KSFY01 mainly involves the activation of the Nrf2 pathway. The effect of L. plantarum KSFY01 was dose-dependent, and the expression level of Nrf2 increased with increasing dosage of the probiotic. Conclusion This study demonstrated that the probiotic L. plantarum KSFY01 exerts antioxidant effects and improved the athletic ability of mice. These findings are of significance to the development and utilization of probiotic resources.
Collapse
Affiliation(s)
- Qiuping Chen
- Department of Education Management, Our Lady of Fatima University, Valenzuela, Philippines
| | - Chuannan Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yinglong Zhang
- School of Physical Education, Yan’an University, Yan’an, China
| | - Shuai Wang
- The First Middle School of Tongliao City, Tongliao, China
| | - Fang Li
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food Chongqing University of Education, Chongqing, China,*Correspondence: Fang Li, ✉
| |
Collapse
|
29
|
Xu X, Liu S, Zhao Y, Wang M, Hu L, Li W, Xu H. Combination of Houttuynia cordata polysaccharide and Lactiplantibacillus plantarum P101 alleviates acute liver injury by regulating gut microbiota in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6848-6857. [PMID: 35639719 DOI: 10.1002/jsfa.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polysaccharides and probiotics can play an outstanding role in the treatment of liver disease by regulating gut microbiota. Recently, the combined therapeutic effect of probiotics and polysaccharides has attracted the attention of researchers. Houttuynia cordata polysaccharide (HCP) combined with Lactiplantibacillus plantarum P101 was used to prevent carbon tetrachloride (CCl4 )-induced acute liver injury (ALI) in mice, and its effect on gut microbiota regulation was explored. RESULTS Results showed that, in mice, HCP combined with L. plantarum P101 significantly alleviated oxidative stress and inflammatory injury in the liver by activating Nrf2 signals and inhibiting NF-κB signals. The analysis of gut microbiota revealed that the combination of HCP and L. plantarum P101 increased the abundance of beneficial bacteria such as Alloprevotella, Roseburia, and Akkermansia, but reduced that of the pro-inflammatory bacteria Alistipes, Enterorhabdus, Anaerotruncus, and Escherichia-Shigella. Correlation analysis also indicated that the expression of Nrf2 and TLR4/NF-κB was connected to the changes in gut microbiota composition. Houttuynia cordata polysaccharide combined with L. plantarum P101 can regulate the gut microbiota and then mediate the gut-liver axis to activate the antioxidant pathway and inhibit inflammatory responses, thereby alleviating CCl4 -induced ALI. CONCLUSION Our study provided a new perspective on the use of polysaccharides combined with probiotics in the treatment of liver disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Anthocyanins from Opuntia ficus-indica Modulate Gut Microbiota Composition and Improve Short-Chain Fatty Acid Production. BIOLOGY 2022; 11:biology11101505. [PMID: 36290409 PMCID: PMC9598542 DOI: 10.3390/biology11101505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Opuntia ficus-indica is rich in a variety of active substances, such as anthocyanins, flavonoids, and polysaccharides. Some studies have shown that anthocyanins extracted from natural plants can regulate intestinal flora. The fruit was used as raw material, and anthocyanins were extracted from it. In vivo experiments were used to study the effect of Opuntia ficus-indica anthocyanins on the mouse intestine by 16S rRNA high-throughput sequencing (NovaSeq 6000 platform) and gas chromatography (hydrogen flame ionization detector (FID)) methods. Microbiota and effects of short-chain fatty acids (SCFAs). The results showed that after feeding anthocyanins, the diversity of intestinal microorganisms in mice was significantly increased (p < 0.05), the ratio of Firmicutes/Bacteroidetes (F/B value) was significantly decreased (p < 0.05), the relative abundances of beneficial bacteria Lactobacillus, Bifidobacterium, Prevotella, and Akkermansia in the intestinal tract of mice were significantly increased (p < 0.05), and the relative abundance of pathogenic bacteria Escherichia-Shigella and Desulfovibrio decreased significantly (p < 0.05). Furthermore, anthocyanins significantly increased the content of short-chain fatty acids in the cecum of mice, among which the content of acetic acid, propionic acid, and butyric acid increased the most. Opuntia ficus-indica anthocyanins can change the microbial diversity and flora composition of the mouse gut and promote the production of short-chain fatty acids. The findings provide a theoretical basis for the use of Opuntia ficus-indica anthocyanins as dietary supplements to regulate human intestinal flora.
Collapse
|
31
|
Wang W, Hu C, Sun H, Zhao J, Xu C, Ma Y, Ma J, Jiang L, Hou J, Jiang Z. Low-cholesterol-low-fat mayonnaise prepared from soybean oil body as a substitute for egg yolk: The effect of substitution ratio on physicochemical properties and sensory evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Liu C, Guo Y, Cheng Y, Qian H. A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Wang W, Li J, Wang M, Gu L, Liu Z, Xu C, Ma J, Jiang L, Jiang Z, Hou J. Soybean-Oil-Body-Substituted Low-Fat Ice Cream with Different Homogenization Pressure, Pasteurization Condition, and Process Sequence: Physicochemical Properties, Texture, and Storage Stability. Foods 2022; 11:foods11172560. [PMID: 36076745 PMCID: PMC9455727 DOI: 10.3390/foods11172560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this research was to explore the impacts of different homogenization pressures, pasteurization conditions, and process sequence on the physical and chemical properties of soybean oil body (SOB)-substituted low-fat ice cream as well as the storage stability of SOB-substituted ice cream under these process parameters. With the increase of homogenization pressure (10–30 MPa), the increase of pasteurization temperature (65 °C for 30 min–85 °C for 15 min), and the addition of SOB before homogenization, the overrun and apparent viscosity of ice cream increased significantly, and the particle size, hardness, and melting rate decreased significantly. Thus, frozen dairy products of desired quality and condition could be obtained by optimizing process parameters. In addition, the SOB ice cream showed better storage stability, which was reflected in lower melting rate and hardness and more stable microstructure compared with the full-milk-fat ice cream. This study opened up new ideas for the application of SOB and the development of nutritious and healthy ice cream. Meanwhile, this research supplied a conceptual basis for the processing and quality optimization of SOB ice cream.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-5519-0710
| |
Collapse
|
34
|
Wang W, Xu C, Liu Z, Gu L, Ma J, Hou J, Jiang Z. Physicochemical properties and bioactivity of polysaccharides from Isaria cicadae Miquel with different extraction processes: effects on gut microbiota and immune response in mice. Food Funct 2022; 13:9268-9284. [PMID: 35993148 DOI: 10.1039/d2fo01646j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effect of different extraction processes on the physicochemical characterization, digestibility, antioxidant activity and prebiotic activity of Isaria cicadae Miquel (ICM) fruiting body polysaccharides was studied. Furthermore, the effect of ultrasound-assisted extraction of ICM (U-ICM) on gut microbiota, the intestinal barrier and immune response was deeply explored. This study found that ICMs showed high indigestibility in both α-amylase and artificial gastric juice, indicating that ICMs have the potential as dietary fiber. In contrast, U-ICM had the best antioxidant activity and prebiotic potential. Meanwhile, there was a structure-activity relationship between the antioxidant activity of ICMs and the content of uronic acid, arabinose and galactose. When healthy mice were fed U-ICM for 42 days, the relative abundances of Lactobacillus, Akkermansia, and Bacteroides were found to increase significantly, while that of Clostridium decreased significantly. Meanwhile, U-ICM significantly promotes the expression of tight junction protein and the production of cytokines, indicating that U-ICM had the function of enhancing the intestinal barrier and regulating the host immune response. In conclusion, U-ICM as dietary fiber has the potential to be developed as a gut health-promoting prebiotic component or functional food. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of ICMs.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Liya Gu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
35
|
Wang W, Hu C, Sun H, Zhao J, Xu C, Ma Y, Ma J, Jiang L, Hou J. Physicochemical Properties, Stability and Texture of Soybean-Oil-Body-Substituted Low-Fat Mayonnaise: Effects of Thickeners and Storage Temperatures. Foods 2022; 11:foods11152201. [PMID: 35892786 PMCID: PMC9332731 DOI: 10.3390/foods11152201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
With the increasing consumer demand for low-fat and low-cholesterol foods, low-fat mayonnaise prepared from soybean oil body (SOB) substitute for egg yolk has great consumption potential. However, based on previous studies, it was found that the stability and sensory properties of mayonnaise substituted with SOB were affected due to there being less lecithin and SOB containing more water. Therefore, this study investigated the effects of different ratios of xanthan gum, pectin and modified starch as stabilizers on the apparent viscosity, stability, texture and microstructure of SOB-substituted mayonnaise. It was found that the apparent viscosity and stability of SOB-substituted mayonnaise increased significantly when xanthan gum, pectin and modified starch were added in a ratio of 2:1:1. Meanwhile, the emulsified oil droplets of SOB-substituted mayonnaise were similar in size and uniformly dispersed in the emulsion system with different thickener formulations. In addition, the storage stability of SOB-substituted mayonnaise was explored. Compared with full egg yolk mayonnaise, SOB-substituted mayonnaise had better oxidative stability and bacteriostatic, which is important for the storage of mayonnaise. This study provided a theoretical basis for the food industry application of SOB. Meanwhile, this study provided new ideas for the development and storage of low-fat mayonnaise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|
36
|
Wang W, Xu C, Zhou X, Zhang L, Gu L, Liu Z, Ma J, Hou J, Jiang Z. Lactobacillus plantarum Combined with Galactooligosaccharides Supplement: A Neuroprotective Regimen Against Neurodegeneration and Memory Impairment by Regulating Short-Chain Fatty Acids and the c-Jun N-Terminal Kinase Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8619-8630. [PMID: 35816280 DOI: 10.1021/acs.jafc.2c01950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Probiotics and prebiotics have received attention in alleviating neurodegenerative diseases. Lactobacillus plantarum (L. plantarum) 69-2 was combined with galactooligosaccharides (GOS) and supplemented in a d-galactose (d-gal)-induced neurodegeneration and memory impairment mice model to explore its effects on the brain and the regulation of short-chain fatty acids. The results showed that the L. plantarum-GOS supplementation inhibited d-gal-induced oxidative stress and increased the brain's nuclear factor erythroid 2-related factor 2 (Nrf2) levels. Butyrate, a metabolite of the gut microbiota regulated by L. plantarum combined with GOS, inhibits p-JNK expression, downregulates pro-apoptotic proteins expression and the activation of inflammatory mediators, and upregulates synaptic protein expression. This might be a potential mechanism for L. plantarum 69-2 combined with GOS supplementation to alleviate d-gal-induced neurodegeneration and memory impairment. This study sheds new light on the development of aging-related neuroprotective dietary supplements based on the gut-brain axis.
Collapse
Affiliation(s)
- Wan Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Le Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liya Gu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhijing Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
37
|
Antiaging Effects of Dietary Polysaccharides: Advance and Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4362479. [PMID: 35864870 PMCID: PMC9296321 DOI: 10.1155/2022/4362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022]
Abstract
Aging is a process in which the various physiological functions of the body gradually deteriorate and eventually lead to death. During this process, the body’s resistance to external stresses gradually decreases and the aging-related diseases gradually are increased. Polysaccharides are a group of active substances extracted from living organisms and are widely found in plants, animals, and microorganisms. In the last decade, a variety of natural polysaccharides from functional and medicinal foods have attracted considerable interest for their beneficial effects in the prevention of chronic diseases such as cancers, diabetes, and neurodegenerative diseases. Interestingly, these polysaccharides have also been found to delay aging by reducing oxidative damage, inhibiting telomere shortening, and being anti-inflammatory in different animal models of aging. These reviews summarized the progresses in effects of polysaccharides on antiaging and the potential mechanisms and especially focused on the signaling pathways involved in the antiaging functions. Finally, the applications and prospects of the antiaging effects of polysaccharides are discussed.
Collapse
|
38
|
Liu B, Chen B, Yi J, Long H, Wen H, Tian F, Liu Y, Xiao L, Li L. Liuwei Dihuang Decoction Alleviates Cognitive Dysfunction in Mice With D-Galactose-Induced Aging by Regulating Lipid Metabolism and Oxidative Stress via the Microbiota-Gut-Brain Axis. Front Neurosci 2022; 16:949298. [PMID: 35844229 PMCID: PMC9283918 DOI: 10.3389/fnins.2022.949298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Aging is an important cause of cognitive dysfunction. Liuwei Dihuang decoction (LW), a commonly applied Chinese medicine formula, is widely used for the treatment of aging-related diseases in China. Previously, LW was confirmed to be effective in prolonging life span and reducing oxidative stress in aged mice. Unfortunately, the underlying mechanism of LW remains unclear. The aim of this study was to interpret the mechanism by which LW alleviates cognitive dysfunction related to aging from the perspective of the microbiota-gut-brain axis. Method All C57BL/6 mice (n = 60) were randomly divided into five groups: the control, model, vitamin E (positive control group), low-dose LW and high-dose LW groups (n = 12 in each group). Except for those in the control group, D-galactose was subcutaneously injected into mice in the other groups to induce the aging model. The antiaging effect of LW was evaluated by the water maze test, electron microscopy, 16S rRNA sequencing, combined LC–MS and GC–MS metabolomics, and ELISA. Results Liuwei Dihuang decoction ameliorated cognitive dysfunction and hippocampal synaptic ultrastructure damage in aging mice. Moreover, LW decreased Proteobacteria abundance and increased gut microbiota diversity in aging mice. Metabolomic analysis showed that LW treatment was associated with the significantly differential abundance of 14 metabolites, which were mainly enriched in apelin signaling, sphingolipid metabolism, glycerophospholipid and other metabolic pathways. Additionally, LW affected lipid metabolism and oxidative stress in aging mice. Finally, we also found that LW-regulated microbial species such as Proteobacteria and Fibrobacterota had potential relationships with lipid metabolism, oxidative stress and hippocampal metabolites. Conclusion In brief, LW improved cognitive function in aging mice by regulating lipid metabolism and oxidative stress through restoration of the homeostasis of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Baiyan Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Baiyan Liu,
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
| | - Hongping Long
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Huiqiao Wen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Fengming Tian
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yingfei Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Lan Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lisong Li
- College of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
39
|
Liu Z, Zhao J, Sun R, Wang M, Wang K, Li Y, Shang H, Hou J, Jiang Z. Lactobacillus plantarum 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-κB signaling pathway in obese mice. Food Funct 2022; 13:5971-5986. [PMID: 35546499 DOI: 10.1039/d1fo04316a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a natural active ingredient, lactic acid bacteria have potential anti-inflammatory effects. In this study, male C57BL/6J mice were given a high-fat diet (HFD) to establish an obese mouse model. Lactobacillus plantarum 23-1 (LP23-1) with prebiotic characteristics was intervened for 8 weeks to evaluate its remission effect on obese animals and related mechanisms. The effects of LP23-1 on lipid accumulation and intestinal inflammation in HFD-fed mice were systematically evaluated by detecting lipid accumulation, blood lipid level, pathological changes in the liver and small intestine, oxidative stress and inflammatory cell level, lipid transport-related gene expression, the inflammatory signaling pathway, and intestinal tight junction (TJ) mRNA and protein expression. The results showed that LP23-1 could significantly reduce the body weight and fat index of HFD-fed mice, improve the lipid levels of serum and liver, reduce the histopathological damage to the liver and small intestine, and alleviate oxidative stress and inflammatory response caused by obesity. In addition, reverse transcription-polymerase chain reaction and western blot analysis showed that LP23-1 could regulate the mRNA expression of lipid transport-related genes; activate the TLR4/NF-κB signaling pathway; reduce intestinal inflammation; improve the mRNA and protein expression of intestinal TJ proteins zona occludens-1 (ZO-1), occludin, claudin-1, and Muc2; repair intestinal mucosal injury; and enhance intestinal barrier function. The aforementioned results showed that LP23-1 through the TLR4/NF-κB signaling pathway and intestinal barrier function reduced obesity symptoms. This study provided new insights into the mechanism of LP23-1 in reducing obesity and provided a theoretical basis for developing new functional foods.
Collapse
Affiliation(s)
- Zhijing Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jiale Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Rongbo Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Min Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Kunyang Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yanan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hang Shang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
40
|
Wang W, Wang M, Xu C, Liu Z, Gu L, Ma J, Jiang L, Jiang Z, Hou J. Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods 2022; 11:foods11101504. [PMID: 35627074 PMCID: PMC9141774 DOI: 10.3390/foods11101504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Soybean oil body (SOB) has potential as a milk fat substitute due to its ideal emulsification, stability and potential biological activity. In this study, SOB was used as a milk fat substitute to prepare ice cream, expecting to reduce the content of saturated fatty acid and improve the quality defects of ice cream products caused by the poor stability of milk fat at low temperatures. This study investigated the effect of SOB as a milk fat substitute (the substitution amount was 10–50%) on ice cream through apparent viscosity, particle size, overrun, melting, texture, sensory and digestive properties. The results show SOB substitution for milk fat significantly increased the apparent viscosity and droplet uniformity and decreased the particle size of the ice cream mixes, indicating that there were lots of intermolecular interactions to improve ice cream stability. In addition, ice cream with 30% to 50% SOB substitution had better melting properties and texture characteristics. The ice cream with 40% SOB substitution had the highest overall acceptability. Furthermore, SOB substitution for milk fat increased unsaturated fatty acid content in ice cream and fatty acid release during digestion, which had potential health benefits for consumers. Therefore, SOB as a milk fat substitute may be an effective way to improve the nutritional value and quality characteristics of dairy products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|
41
|
Wu B, Yan J, Yang J, Xia Y, Li D, Zhang F, Cao H. Extension of the Life Span by Acarbose: Is It Mediated by the Gut Microbiota? Aging Dis 2022; 13:1005-1014. [PMID: 35855337 PMCID: PMC9286917 DOI: 10.14336/ad.2022.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Acarbose can extend the life span of mice through a process involving the gut microbiota. Several factors affect the life span, including mitochondrial function, cellular senescence, telomere length, immune function, and expression of longevity-related genes. In this review, the effects of acarbose-regulated gut microbiota on the life span-influencing factors have been discussed. In addition, a novel theoretical basis for improving our understanding of the mechanisms by which acarbose extends the life span of mice has been suggested.
Collapse
Affiliation(s)
- Baiyun Wu
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- School of Medicine, Nantong University, Nantong, China.
| | - Jiai Yan
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Ju Yang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Yanping Xia
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Dan Li
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Feng Zhang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Correspondence should be addressed to: Dr. Hong Cao, () and Dr. Feng Zhang (), Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Cao
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Correspondence should be addressed to: Dr. Hong Cao, () and Dr. Feng Zhang (), Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
42
|
Wan C, Chen S, Zhao K, Ren Z, Peng L, Xia H, Wei H, Yu B. Serum Untargeted Metabolism Reveals the Mechanism of L. plantarum ZDY2013 in Alleviating Kidney Injury Induced by High-Salt Diet. Nutrients 2021; 13:nu13113920. [PMID: 34836175 PMCID: PMC8620752 DOI: 10.3390/nu13113920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/24/2022] Open
Abstract
A high-salt diet (HSD) is one of the key risk factors for hypertension and kidney injury. In this study, a HSD C57BL/6J mice model was established with 4% NaCl, and then different concentrations of Lactobacillus plantarum ZDY2013 were intragastrically administered for 2 weeks to alleviate HSD-induced renal injury. For the study, 16S rRNA gene sequencing, non-targeted metabonomics, real-time fluorescent quantitative PCR, and Masson’s staining were used to investigate the mechanism of L. plantarum ZDY2013 in alleviating renal damage. Results showed that HSD caused intestinal inflammation and changed the intestinal permeability of mice, disrupted the balance of intestinal flora, and increased toxic metabolites (tetrahydrocorticosteron (THB), 3-methyhistidine (3-MH), creatinine, urea, and L-kynurenine), resulting in serious kidney damage. Interestingly, L. plantarum ZDY2013 contributed to reconstructing the intestinal flora of mice by increasing the level of Lactobacillus and Bifidobacterium and decreasing that of Prevotella and Bacteroides. Moreover, the reconstructed intestinal microbiota significantly changed the concentration of the metabolites of hosts through metabolic pathways, including TCA cycle, ABC transport, purine metabolism, and histidine metabolism. The content of uremic toxins such as L-kynurenine, creatinine, and urea in the serum of mice was found to be decreased by L. plantarum ZDY2013, which resulted in renal injury alleviation. Our data suggest that L. plantarum ZDY2013 can indeed improve chronic kidney injury by regulating intestinal flora, strengthening the intestinal barrier, limiting inflammatory response, and reducing uremic toxins.
Collapse
Affiliation(s)
- Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Kui Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
| | - Huiling Xia
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (C.W.); (S.C.); (K.Z.); (Z.R.); (L.P.); (H.W.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
| | - Bo Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China;
- Correspondence: ; Tel.: +86-791-8833-4578
| |
Collapse
|
43
|
He LL, Wang YC, Ai YT, Wang L, Gu SM, Wang P, Long QH, Hu H. Qiangji Decoction Alleviates Neurodegenerative Changes and Hippocampal Neuron Apoptosis Induced by D-Galactose via Regulating AMPK/SIRT1/NF-κB Signaling Pathway. Front Pharmacol 2021; 12:735812. [PMID: 34630111 PMCID: PMC8495211 DOI: 10.3389/fphar.2021.735812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023] Open
Abstract
Qiangji Decoction (QJD), a classic formula, has been widely used to treat brain aging-related neurodegenerative diseases. However, the mechanisms underlying QJD's improvement in cognitive impairment of neurodegenerative diseases remain unclear. In this study, we employed D-galactose to establish the model of brain aging by long-term D-galactose subcutaneous injection. Next, we investigated QJD's effect on cognitive function of the model of brain aging and the mechanisms that QJD suppressing neuroinflammation as well as improving neurodegenerative changes and hippocampal neuron apoptosis. The mice of brain aging were treated with three different dosages of QJD (12.48, 24.96, and 49.92 g/kg/d, respectively) for 4 weeks. Morris water maze was used to determine the learning and memory ability of the mice. HE staining and FJB staining were used to detect the neurodegenerative changes. Nissl staining and TUNEL staining were employed to detect the hippocampal neuron apoptosis. The contents of TNF-α, IL-1β, and IL-6 in the hippocampus were detected by using ELISA. Meanwhile, we employed immunofluorescence staining to examine the levels of GFAP and IBA1 in the hippocampus. Besides, the protein expression levels of Bcl-2, Bax, caspase-3, cleaved caspase-3, AMPKα, p-AMPKα-Thr172, SIRT1, IκBα, NF-κB p65, p-IκBα-Ser32, and p-NF-κB p65-Ser536 in the hippocampus of different groups were detected by Western blot (WB). Our findings showed that the QJD-treated groups, especially the M-QJD group, mitigated learning and memory impairments of the model of brain aging as well as the improvement of neurodegenerative changes and hippocampal neuron apoptosis. Moreover, the M-QJD markedly attenuated the neuroinflammation by regulating the AMPK/SIRT1/NF-κB signaling pathway. Taken together, QJD alleviated neurodegenerative changes and hippocampal neuron apoptosis in the model of brain aging via regulating the AMPK/SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Ling He
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yun-Cui Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Ya-Ting Ai
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Ling Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Si-Meng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing-Hua Long
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Hu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China.,School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
44
|
Yin J, Zhang B, Yu Z, Hu Y, Lv H, Ji X, Wang J, Peng B, Wang S. Ameliorative Effect of Dietary Tryptophan on Neurodegeneration and Inflammation in d-Galactose-Induced Aging Mice with the Potential Mechanism Relying on AMPK/SIRT1/PGC-1α Pathway and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4732-4744. [PMID: 33872003 DOI: 10.1021/acs.jafc.1c00706] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary tryptophan affects intestinal homeostasis and neurogenesis, whereas the underlying mechanism and the reciprocal interaction between tryptophan and gut microbiota in aging are unclear. This investigation was performed to determine the effect and mechanism of tryptophan on intestinal- and neuro- health in aging. In present study, the 0.4% tryptophan diet significantly ameliorated the oxidative stress and inflammation in the aging mice, potentially through the regulation of 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor κB (NF-κB) pathways. The 0.4% tryptophan diet increased the levels of indoles in colon contents, which indicated the potential contribution of tryptophan metabolites. Microbiome analysis revealed that the 0.4% tryptophan diet raised the relative abundance of Akkermansia in aging. The ameliorated effect of 0.4% tryptophan on neurodegeneration and neuroinflammation was summarized to potentially rely on the brain-derived neurotrophic factor- (BDNF) and NF-κB-related pathways. These findings provide the research evidence for the beneficial effect of tryptophan on aging.
Collapse
Affiliation(s)
- Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhenting Yu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Peng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|