1
|
Lai C, Yang H, Guo Z, Yi H, He T, Chen M, He G. Nano-selenium modified green eggshell biochar reduces cadmium accumulation in shallots (Allium schoenoprasum L.). ENVIRONMENTAL RESEARCH 2025; 277:121635. [PMID: 40250589 DOI: 10.1016/j.envres.2025.121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Green eggshell biochar, a renewable biomass material, demonstrates promising potential for environmental remediation. This study systematically prepared biochar under varying pyrolysis conditions and identified nano-selenium-modified biochar (produced at 600 °C for 3 h, termed 6-3 S) as the optimal formulation for cadmium (Cd) immobilization. Compared to untreated soil, the 6-3 S biochar reduced bioavailable Cd content by 38.65 % in contaminated soil. Correspondingly, Cd accumulation in shallot tissues decreased by 56.64 % (white parts) and 82.69 % (green parts). Furthermore, the 6-3 S treatment enhanced plant selenium levels by 21.3-29.8 % and preserved leaf microstructure integrity, reducing stomatal deformation by 44.2 % compared to controls. Additionally, Nitro Blue Tetrazolium (NBT) staining area decreased from 39.03 % to 24.00 %, indicating reduced oxidative stress. These dual effects-Cd suppression and selenium enrichment-significantly improved shallot quality and safety. The findings establish a scientific foundation for deploying nano-selenium-modified biochar in heavy metal-contaminated agricultural systems.
Collapse
Affiliation(s)
- Changwei Lai
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Huiqing Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Zicheng Guo
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Heyuan Yi
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Miao Chen
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Panda A, Fatnani D, Parida AK. Uptake, impact, adaptive mechanisms, and phytoremediation of heavy metals by plants: Role of transporters in heavy metal sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109578. [PMID: 39913980 DOI: 10.1016/j.plaphy.2025.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 03/11/2025]
Abstract
Heavy metals (HMs) pose severe threats to both the environment and its inhabitants, leading to reduced crop productivity and hazardous impacts on human and animal health. Metallurgical activities in peri-urban areas are major contributors to the terrestrial deposition of various HMs. Upon entering plant the cells, HMs disrupt structural and physiological processes, inducing stress responses and triggering metabolic pathways for stress adaptations. The plants have evolved specialized transport systems to regulate the uptake, transport, and cellular concentrations of these metals. HMs often exploit transporters of essential nutrients, such as phosphate, hexose, and sulfate to gain entry into plant cells. Key players include zinc receptor transporter (ZRT1) and iron receptor transporter (IRT1), both part of the ZIP (Zinc Iron Permease) family, as well as heavy metal-associated ATPases (HMAs) and ATP binding cassette transporter C (ABCC-type transporters). Hyperaccumulating plants thrive in harsh environments with elevated concentrations of toxic ions, such as sodium, chloride, and heavy metals including arsenic (As), mercury (Hg), cadmium (Cd), lead (Pb), silicon (Si), boron (B), antimony (Sb), germanium (Ge), and tellurium (Te), by compartmentalizing these ions into vacuoles. The accumulation of heavy metals or metalloids like cadmium (Cd), lead (Pb), arsenic (As), chromium (Cr), nickel (Ni), manganese (Mn), zinc (Zn), thallium (Tl), cobalt (Co), cupper (Cu), and selenium (Se) has been extensively reported in various hyperaccumulating plant species. The halophytes, known for their inherent salinity tolerance, exhibit superior resilience to HM stress due to overlapping mechanisms of ion compartmentatlization and detoxification. This review provides an in-depth analysis on the effects of heavy metals on the metabolic processes, growth, and development of plants, emphasizing heavy tolerance mechanisms with a particular focus on halophytes. The role of HM transporters in metal sequestration and detoxification is discussed, along with the potential of hyperaccumulating halophytes for phytoremediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Yu S, Wang S, Tang M, Pan S, Wang M. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154419. [PMID: 39864245 DOI: 10.1016/j.jplph.2025.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. × vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. × vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. × vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
Collapse
Affiliation(s)
- Shiyin Yu
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shan Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Min Tang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shuzhen Pan
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Meixian Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
4
|
Xia W, Ghouri F, Zhong M, Bukhari SAH, Ali S, Shahid MQ. Rice and heavy metals: A review of cadmium impact and potential remediation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177403. [PMID: 39510291 DOI: 10.1016/j.scitotenv.2024.177403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
In recent decades, the menace of heavy metals to food security and human health has become a serious concern. Given its status as the primary provider of food globally, significant research has been done to ensure the safe cultivation of rice, particularly concerning the mitigation of heavy metal contamination. Therefore, this article focuses on the effects and poisoning mechanism of heavy metals, primarily cadmium, on rice. Here, we have discussed the absorption, translocation, and toxicity mechanism of cadmium in rice and the external factors, such as soil pH, organic matter, microorganisms, and climate change, associated with this pollution. It also discusses in detail the sources of heavy metal pollution and the countermeasures against their effects on rice, such as the use of nanoparticles, biochar, plant growth regulators, nutrient management, molecular approaches, tolerant genotypes, and associated genes/proteins. Lastly, a number of significant research prospects concerning heavy metals in rice fields were suggested for future investigation. This review serves as a crucial reference for addressing the issue of heavy metal contamination in paddy fields, ensuring the safe cultivation of rice, promoting environmentally friendly fish farming practices, and safeguarding future food security and human health.
Collapse
Affiliation(s)
- Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Cui B, Luo H, Yao X, Xing P, Deng S, Zhang Q, Yi W, Gu Q, Peng L, Yu X, Zuo C, Wang J, Wang Y, Tang X. Nanosized-Selenium-Application-Mediated Cadmium Toxicity in Aromatic Rice at Different Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:2253. [PMID: 39204689 PMCID: PMC11359265 DOI: 10.3390/plants13162253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) pollution restricts the rice growth and poses a threat to human health. Nanosized selenium (NanoSe) is a new nano material. However, the effects of NanoSe application on aromatic rice performances under Cd pollution have not been reported. In this study, a pot experiment was conducted with two aromatic rice varieties and a soil Cd concentration of 30 mg/kg. Five NanoSe treatments were applied at distinct growth stages: (T1) at the initial panicle stage, (T2) at the heading stage, (T3) at the grain-filling stage, (T1+2) at both the panicle initial and heading stages, and (T1+3) at both the panicle initial and grain-filling stages. A control group (CK) was maintained without any application of Se. The results showed that, compared with CK, the T1+2 and T1+3 treatments significantly reduced the grain Cd content. All NanoSe treatments increased the grain Se content. The grain number per panicle, 1000-grain weight, and grain yield significantly increased due to NanoSe application under Cd pollution. The highest yield was recorded in T3 and T1+3 treatments. Compared with CK, all NanoSe treatments increased the grain 2-acetyl-1-pyrroline (2-AP) content and impacted the content of pyrroline-5-carboxylic acid and 1-pyrroline which are the precursors in 2-AP biosynthesis. In conclusion, the foliar application of NanoSe significantly reduced the Cd content, increased the Se content, and improved the grain yield and 2-AP content of aromatic rice. The best amendment was applying NanoSe at both the panicle initial and grain-filling stages.
Collapse
Affiliation(s)
- Baoling Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangbin Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Sicheng Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qianqian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Ligong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xianghai Yu
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Changjian Zuo
- Green Huinong Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518107, China
| | - Jingjing Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Yangbo Wang
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518000, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
6
|
Zhu S, Sun S, Zhao W, Yang X, Mao H, Sheng L, Chen Z. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC PLANT BIOLOGY 2024; 24:360. [PMID: 38698342 PMCID: PMC11067083 DOI: 10.1186/s12870-024-05076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Prague-Suchdol, 16500, Czech Republic
| |
Collapse
|
7
|
Wanjari UR, Gopalakrishnan AV. Cadmium as a male reproductive toxicant and natural and non-natural ways to tackle it: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18340-18361. [PMID: 38349491 DOI: 10.1007/s11356-024-32210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Cadmium (Cd) is a naturally occurring environmental pollutant, a toxic substance that causes oxidative stress. According to epidemiological studies, the data suggested that environmental and occupational Cd exposure may be related to several diseases and severe testicular damage. However, studies are going on to explore the mechanism of Cd-induced male reproductive toxicity and its treatment strategies. Currently, researchers are focusing on naturally occurring bioactive compounds, plant extracts, and biochemical, which have better efficacy, less toxicity, and high bioavailability. This review focuses on the mechanistic effect of Cd on testicular toxicity and different categories of compounds having a beneficial impact on Cd-induced male reproductive toxicity. Some potent bioactive antioxidants are quercetin, caffeic acid phenethyl ester, cyanidin-3-O-glucoside, curcumin, and silymarin. In comparison, plant extracts are Costus afer leaf methanol extract, methanol root extract of Carpolobia lutea, red carrot methanolic extract, Panax ginseng extract, and biochemicals including melatonin, progesterone, glutamine, L-carnitine, and selenium. Advanced and more detailed studies are needed on these compounds to explore their mechanism in attenuating Cd-induced testicular toxicity and can be potential therapeutics in the future.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Ali W, Mao K, Shafeeque M, Aslam MW, Li W. Effects of selenium on biogeochemical cycles of cadmium in rice from flooded paddy soil systems in the alluvial Indus Valley of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168896. [PMID: 38042182 DOI: 10.1016/j.scitotenv.2023.168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
This study delves into the pollution status, assesses the effects of Se on Cd biogeochemical pathways, and explores their interactions in nutrient-rich paddy soil-rice ecosystems through 500 soil-rice samples in Pakistan. The results showed that 99.6 % and 12.8 % of soil samples exceeded the World Health Organization (WHO) allowable Se and Cd levels (7 and 0.35 mg/kg). In comparison, 23 % and 6 % of the grain samples exceeded WHO's allowable Se and Cd levels (0.3 and 0.2 mg/kg), respectively. Geographically Weighted Regression (GWR) model results further revealed spatial nonstationarity, confirming diverse associations between dependent variables (Se and Cd in rice grain) and independent variables from paddy soil and plant tissues (root and shoot), such as Soil Organic Matter (SOM), pH, Se, and Cd concentrations. High Se:Cd molar ratios (>1) and a negative correlation (r = -0.16, p < 0.01) between the Cd translocation factor (Cd in rice grain/Cd in root) and Se in roots suggest that increased root Se levels inhibit the transfer of Cd from roots to grains. The inverse correlation between Se and Cd in paddy grains was further characterized as Se deficiency, no risk, high Cd risk, Se risk, Cd risk, and Se-Cd co-exposure risk. There was no apparent risk for human co-consumption in 42.6 % of grain samples with moderate Se and low Cd. The remaining categories indicate differing degrees of risk. In the study area, 31 % and 20 % of grain samples with low Se and Cd indicate Se deficiency and risk, respectively. High Se and low Cd levels in rice samples suggest a potential hazard for severe Se exposure due to frequent rice consumption. This study not only systematically evaluates the pollution status of paddy-soil systems in Pakistan but also provides a reference to thoroughly contemplate the development of a scientific approach for evaluating human risks and the potential dangers associated with paddy soils and rice, specifically in regions characterized by low Se and low Cd concentrations, as well as those with moderate Se and high Cd concentrations. SYNOPSIS: This study is significant for understanding the effects of Se on Cd geochemical cycles and their interactions in paddy soil systems in Pakistan.
Collapse
Affiliation(s)
- Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | | | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China; Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
9
|
Huang Z, Meng S, Huang J, Zhou W, Song X, Hao P, Tang P, Cao Y, Zhang F, Li H, Tang Y, Sun B. Transcriptome Analysis Reveals the Mechanism of Exogenous Selenium in Alleviating Cadmium Stress in Purple Flowering Stalks ( Brassica campestris var. purpuraria). Int J Mol Sci 2024; 25:1800. [PMID: 38339079 PMCID: PMC10855379 DOI: 10.3390/ijms25031800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| |
Collapse
|
10
|
Wu K, Wang L, Wu Z, Liu Z, Li Z, Shen J, Shi S, Liu H, Rensing C, Feng R. Selenite reduced cadmium uptake, interfered signal transduction of endogenous phytohormones, and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique, transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108107. [PMID: 38029613 DOI: 10.1016/j.plaphy.2023.108107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Selenium (Se) can reduce uptake and translocation of cadmium (Cd) in plants via plenty of ways, including regulation of root morphology. However, the underlying mechanisms on how Se will regulate root morphology under metal(loid) stresses are not fully illustrated. To fill up this knowledge gap, we investigated the effects of 0.5 mg L-1 selenite (Se(IV)) on root exudates, root morphology, root endogenous hormones, and Cd uptake efficiency of rice under the 1 mg L-1 Cd stress condition. The results showed that Se(IV) significantly reduced shoot and root Cd concentrations, and decreased Cd uptake efficiency via root hairs determined by a non-invasive micro-test (NMT) technology. When compared to the 1 mg L-1 Cd (Cd1) treatment, addition of 0.5 mg L-1 Se(IV) (1) significantly reduced root surface area and tip numbers, and non-significantly reduced root length, but significantly enhanced root diameter and root volume; (2) significantly enhanced concentrations of tartaric acid in the root exudate solution, root auxin (IAA) and root jasmonic acid (JA) via a UHPLC or a HPLC analysis; (3) significantly up-regulated metabolites correlated with synthesis of IAA, JA, gibberellin (GA), and salicylic acid, such as GA53, M-SA, (+/-)7-epi-JA, and derivatives of tryptophan and indole in the metabolome analysis. However, results of transcriptome analysis showed that (1) no upregulated differentially expressed genes (DEGs) were enriched in IAA synthesis; (2) some upregulated DEGs were found to be enriched in JA and GA53 synthesis pathways. In summary, although Se(IV) stimulated the synthesis of IAA, JA, and GA53, it significantly inhibited root growth mainly by 1) affecting signal transduction of IAA and GA; 2) altering IAA polar transport and homeostasis; and 3) regulating DEGs including SAUR32, SAUR36, SAUR76, OsSub33, OsEXPA8, OsEXPA18, and Os6bglu24.
Collapse
Affiliation(s)
- KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ShengJie Shi
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Zhao P, Huang P, Yan X, Chukwuma A, Yang S, Yang Z, Li H, Yang W. Inhibitory effect of exogenous mineral elements (Si, P, Zn, Ca, Mn, Se, Fe, S) on rice Cd accumulation and soil Cd bioavailability in Cd-contaminated farmlands: A meta-analysis. CHEMOSPHERE 2023; 343:140282. [PMID: 37758089 DOI: 10.1016/j.chemosphere.2023.140282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
A promising strategy for safely remediating Cd-contaminated farmland has been the application of mineral elements, which can reduce Cd accumulation in rice and inhibit its bioavailability in Cd-contaminated farmlands. However, there is still a lack of systematic and quantitative evaluations regarding how different mineral elements affect rice Cd accumulation and soil Cd bioavailability. Here, a meta-analysis was conducted based on 1062 individual observations from 137 published works to explore the effects of Si, P, Zn, Ca, Mn, Se, Fe and S in rice Cd accumulation and soil Cd bioavailability, we aimed to identify key factors that control the reduction of Cd concentration in rice grains. The results showed that the presence of exogenous elements had dramatically reduced rice grains Cd concentrations in the following decreasing order: Fe (43.03%) > P (38.45%) > Si (33.24%) > Ca (31.90%) > Se (29.83%) > Zn (25.95%) > Mn (23.26%) > S (18.78%). The elements of Ca, P and Si had strongly reduced Cd bioavailability in soils by 29.87%, 27.80% and 22.70%, respectively. The effects of these elements on Cd bioavailability appeared to be controlled by soil physio-chemical properties, such as pH, soil organic carbon (SOC) but also water management, application amounts and elemental forms. Overall, this study provides valuable insights into the potential of using exogenous mineral elements to mitigate Cd contamination in rice and farmlands, and facilitates the selection and application of mineral elements for the safe utilization of Cd-contaminated farmlands, taking into account soil properties and other factors that affect their effect.
Collapse
Affiliation(s)
- Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Xiao Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Arinzechi Chukwuma
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Sen Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China
| | - Huan Li
- Hunan University of Technology and Business, Changsha 410083, Hunan, PR China.
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, Hunan, PR China.
| |
Collapse
|
12
|
Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zhao Z, Wu P, Zia-Ur-Rehman M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165369. [PMID: 37433335 DOI: 10.1016/j.scitotenv.2023.165369] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.
Collapse
Affiliation(s)
- Haonan Jing
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agriculture University, Changsha 410128, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
13
|
Tang Y, Zhao Y, Zhou Y, Li S, Wu C, Shi G, Hu C, Zhao X. Se Ameliorates Cd Toxicity in Oilseed rape (Brassica napus L.) Seedlings by Inhibiting Cd Transporter Genes and Maintaining root Plasma Membrane Integrity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:42. [PMID: 37715785 DOI: 10.1007/s00128-023-03804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Se (Selenium) has been reported to be an important protective agent to decreases Cd (Cadmium) induced toxic in plants. However, it remains unclear how Se mitigates the uptake of Cd and increased the resistance to Cd toxicity. Hydroponic experiments were arranged to investigate the changes of physiological properties, root cell membrane integrity and Cd-related transporter genes in rape seedlings. Comparison of the biomass between the addition of Se and the absence of Se under Cd exposure showed that the Cd-induced growth inhibition of rape seedlings was alleviated by Se. Cd decreased the photosynthetic rate (Pn), stomatal conductance (Gs) and photosynthetic pigment content including chlorophyll a, chlorophyll b and carotenoid. However, all these parameters were all significantly improved by Se addition. Moreover, exposure to Se resulted in a decrease in Cd concentration in both shoot and root, ranging from 4.28 to 27.2%. Notably, the application of Se at a concentration of 1 µmol L- 1 exhibited the best performance. Furthermore, Se enhanced cell membrane integrity and reduced superoxide anion levels, thereby contributing to the alleviation of cadmium toxicity in plants. More critically, Se decreased the expression levels of root Cd-related transporter genes BnIRT1, BnHMA2 and BnHMA4 under Cd stress, which are responsible for Cd transport and translocation. These results are important to increase crop growth and reduce Cd load in the food chain from metal toxicity management and agronomical point of view.
Collapse
Affiliation(s)
- Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, 350300, China
| | - Yuanyuan Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingjie Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiqian Li
- Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, 350300, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Luo K, Zhou L, Xie C, Yang Q, Tan L, Lin Q. High-fidelity fluorescent probes for visualizing the inhibitory behavior of selenium on cadmium uptake in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131748. [PMID: 37267647 DOI: 10.1016/j.jhazmat.2023.131748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Cadmium (Cd), a widespread and highly toxic environmental contaminant, has seriously impacted the growth of rice and the quality of its products. Hence, it is crucial to monitor and employ robust means to reduce Cd levels in rice, and selenium (Se) has been proven to chelate cadmium ion (Cd2+) in rice with rational use. Herein, for the first time, the reported selenocysteine (Sec) probe NN-Sec and the newly designed Cd2+ probe SCP were chosen as visualization tools to monitor Sec-inhibited Cd2+ uptake in rice. Specifically, reduced fluorescence of rice precultured with Cd2+ was observed by SCP after Se application, while similarly decreased fluorescence of rice pretreated with Se was observed by NN-Sec after Cd2+ addition. The diminished fluorescence indicated the formation of Cd-Se complexes reduced the Cd2+ content in rice. Additionally, it was Cd2+ and Se that entered the rice causing the fluorescence generation, as demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). To conclude, the two probes successfully visualized Se inhibited Cd2+ uptake in rice, which could provide a robust tool for supporting the development of novel organic fertilizers and reagents to reduce Cd2+ content in rice and the environment.
Collapse
Affiliation(s)
- Kun Luo
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Liyi Zhou
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China.
| | - Can Xie
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Qiaomei Yang
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Libin Tan
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China
| | - Qinlu Lin
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing,National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology Changsha, Hunan 410004, China.
| |
Collapse
|
15
|
Li L, Wang S, Wu S, Rao S, Li L, Cheng S, Cheng H. Morphological and Physiological Indicators and Transcriptome Analyses Reveal the Mechanism of Selenium Multilevel Mitigation of Cadmium Damage in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12081583. [PMID: 37111807 PMCID: PMC10141491 DOI: 10.3390/plants12081583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome were measured to reveal the mechanisms by which Se reduces the inhibition and toxicity of Cd in B. juncea. The results showed that Se alleviated the inhibitive Cd effects on seedling biomass, root length, and chlorophyll, and promoted the adsorption of Cd by pectin and lignin in the root cell wall (CW). Se also alleviated the oxidative stress induced by Cd, and reduced the content of MDA in cells. As a result, SeCys and SeMet alleviated the transport of Cd to the shoots. Transcriptome data showed that the bivalent cation transporter MPP and ABCC subfamily participated in the separation of Cd in vacuoles, CAL1 was related to the chelation of Cd in the cytoplasm of cells, and ZIP transporter 4 reduced the transport of Cd to the shoots. These results indicated that Se alleviated the damage of Cd in plants and decreased its transport to the shoots by improving the antioxidant system, enhancing the ability of the CW to adsorb Cd, reducing the activity of Cd transporters, and chelating Cd.
Collapse
Affiliation(s)
- Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (L.L.); (S.W.)
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
16
|
Huang X, Fan C, Xie D, Chen H, Zhang S, Chen H, Qin S, Fu T, He T, Gao Z. Synergistic Effects of Water Management and Silicon Foliar Spraying on the Uptake and Transport Efficiency of Cadmium in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1414. [PMID: 36987102 PMCID: PMC10053962 DOI: 10.3390/plants12061414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
To study the synergistic effects of water management and silicon (Si) foliar spraying on the uptake and transport of cadmium (Cd) in rice, we designed four treatments: conventional intermittent flooding + no Si foliar spraying (CK), continuous flooding throughout the growth stage + no Si foliar spraying (W), conventional intermittent flooding + Si foliar spraying (Si) and continuous flooding throughout the growth stage + Si foliar spraying (WSi). The results show that WSi treatment reduced the uptake and translocation of Cd by rice and significantly reduced the brown rice Cd content, with no effect on rice yield. Compared with CK, the Si treatment increased the net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of rice by 6.5-9.4%, 10.0-16.6% and 2.1-16.8%, respectively. The W treatment decreased these parameters by 20.5-27.9%, 8.6-26.8% and 13.3-23.3%, respectively, and the WSi treatment decreased them by 13.1-21.2%, 3.7-22.3% and 2.2-13.7%, respectively. The superoxide dismutase (SOD) and peroxidase (POD) activity decreased by 6.7-20.6% and 6.5-9.5%, respectively, following the W treatment. Following the Si treatment, SOD and POD activity increased by 10.2-41.1% and 9.3-25.1%, respectively, and following the WSi treatment, they increased by 6.5-18.1% and 2.6-22.4%, respectively. Si foliar spraying ameliorated the detrimental effects of continuous flooding throughout the growth stage on photosynthesis and antioxidant enzyme activity. We conclude that synergistic continuous flooding throughout the growth stage, combined with Si foliar spraying, can significantly block Cd uptake and translocation and is therefore an effective means of reducing the accumulation of Cd in brown rice.
Collapse
Affiliation(s)
- Xiaoyun Huang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Chengwu Fan
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricutural Science, Guiyang 550025, China
| | - Dongyi Xie
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Hongxing Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Song Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Hui Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Song Qin
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricutural Science, Guiyang 550025, China
| | - Tianling Fu
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Zhenran Gao
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Cui H, Tang S, Huang S, Lei L, Jiang Z, Li L, Wei S. Simultaneous mitigation of arsenic and cadmium accumulation in rice grains by foliar inhibitor with ZIF-8@Ge-132. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160307. [PMID: 36403824 DOI: 10.1016/j.scitotenv.2022.160307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous mitigation of Arsenic (As) and Cadmium (Cd) in rice grains is hardly achieved with conventional soil treatments due to their opposite chemical behaviors in paddy soils. This study evaluates the effectiveness of a novel foliar inhibitor with germanium (Ge) -modified zeolitic imidazolate framework (ZIF-8@Ge-132) in cooperative mitigation of As and Cd in rice grains in a As and Cd co-contaminated paddy field, and the effecting mechanisms are elucidated by a series of advanced techniques. The results showed that the grains inorganic As and Cd was remarkably decreased by 45 % and 66 % by the foliar spay of ZIF-8@Ge-132, respectively. ZIF-8@Ge-132 also reduced the As and Cd contents in rice tissues, except for Cd in leaves, where Cd content increased by 148 %. The image-based measurement of plant phenotypic traits and the elements of image analysis using Laser Ablation-ICP-MS (LA-ICP-MS) and Laser Scanning Confocal Microscopy (LSCM) revealed that the possible mechanisms for the reduction of As and Cd in rice grains were as follows: (i) the thickening of the xylem in roots significantly retarded As and Cd absorption by rice plants. (ii) co-accumulation of Ge and Cd in the leaf vascular system likely contributed to the high Cd retention in rice leaves. (iii) antagonistic effects of Zn suppressed the uptake and transport of As in roots/leaves, resulting a lower As accumulation in rice grains.
Collapse
Affiliation(s)
- Hao Cui
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Shuting Tang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqi Huang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lidan Lei
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
18
|
Zhang H, Xie S, Wan N, Feng B, Wang Q, Huang K, Fang Y, Bao Z, Xu F. Iron plaque effects on selenium and cadmium stabilization in Cd-contaminated seleniferous rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22772-22786. [PMID: 36303005 DOI: 10.1007/s11356-022-23705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Dietary intake of selenium (Se)-enriched rice has benefit for avoiding Se-deficient disease, but there is a risk of excessive cadmium (Cd) intake. Through hydroponic culture and adsorption-desorption experiments, this paper focused on Se and Cd uptake in rice seedlings associated with the interactive effects of Se (Se4+ or Se6+), Cd, and iron (Fe) plaque. The formation of Fe plaque was promoted by Fe2+ and inhibited by Cd but not related with Se species. Shoot Se (Se4+ or Se6+) uptake was not affected by Fe plaque in most treatments, except that shoot Se concentrations were decreased by Fe plaque when Se4+ and Cd co-exposure. Shoot Cd concentrations were always inhibited by Fe plaque, regardless of Se species. Inhibiting Cd adsorption onto root surface (Se4+ + Cd) or increased Cd retention in Fe plaque (Se6+ + Cd) is an important mechanism for Fe plaque to reduce Cd uptake by rice. However, we found that DCB Cd concentrations (Cd adsorbed by Fe plaque) were not always positively correlated with Fe plaque amounts and always negatively correlated with the distribution ratios of Cd mass in root to that in Fe plaque (abbreviated as DRCMRF; r = - 0.942**); meanwhile, with the increase of DCB Fe concentration, the directions of variations of DCB Cd concentration and DRCMRF were affected by Se species. It indicated that the root system is also an important factor to affect DCB Cd concentration and inhibit Cd uptake, which is mediated by Se species. This paper provides a new understanding of Fe plaque-mediated interactive effect of Se and Cd uptakes in rice, which is beneficial for the remediation of Cd-contaminated and Cd-contaminated seleniferous areas.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Neng Wan
- WuHan Natural Resources and Planning Bureau, Wuhan, 430034, China
| | - Boxin Feng
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, 710069, China
| | - Qi Wang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Kangjun Huang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Yang Fang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd, Ankang, 725000, China
| |
Collapse
|
19
|
Feng H, Cheng J. Whole-Process Risk Management of Soil Amendments for Remediation of Heavy Metals in Agricultural Soil-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1869. [PMID: 36767236 PMCID: PMC9914875 DOI: 10.3390/ijerph20031869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Reducing the mobility and bioavailability of heavy metals in soils by adding exogenous materials is a technology for remediating soils contaminated with heavy metals. Unlike industrial sites, the use of such techniques in agricultural soils requires consideration of not only reducing the mobility of heavy metals but also avoiding adverse effects on soil fertility and the growth of plants. Due to the uncertainty of the stability of amendments applied to agricultural soil, the application of amendments in farmland soil is controversial. This article reviewed the field studies in which amendments were used to immobilize heavy metals, and identified the potential environmental impacts of all aspects of soil amendment usage, including production and processing, transportation, storage, application to soil, long-term stability, and plant absorption. Results of the study indicated that after identifying the environmental risks of the whole process of the application of improvers in agricultural fields, it is necessary to classify the risks according to their characteristics, and design differentiated risk control measures for the safe application of this type of technology.
Collapse
|
20
|
Zhang Y, Liu J, Li X, Zhou G, Sang Y, Zhang M, Gao L, Xue J, Zhao M, Yu H, Zhou X. Dietary selenium excess affected spermatogenesis via DNA damage and telomere-related cell senescence and apoptosis in mice. Food Chem Toxicol 2023; 171:113556. [DOI: 10.1016/j.fct.2022.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
|
21
|
Babashpour-Asl M, Farajzadeh-Memari-Tabrizi E, Yousefpour-Dokhanieh A. Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80021-80031. [PMID: 35397029 DOI: 10.1007/s11356-022-19941-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Since large areas of agricultural soils around the world are contaminated by Cd, a cost-effective and practical method is needed for the safe production of edible plants. The effective role of many nanomaterials to improve plant yield by mitigating environmental pollutions is addressed; however, the impacts of selenium nanoparticles (Se-NPs) have not been well-known yet. The aim of this work was to investigate foliar application of Se-NPs on yield, water content, proline concentration, phenolic content, lipid peroxidation, and essential oil (EO) attributes of coriander (Coriandrum sativum L.) under Cd stress. The plants were exposed to Cd contamination (0, 4, and 8 mg L-1) and foliar application of Se-NPs (0, 20, 40, and 60 mg L-1). The results showed increased Cd accumulation in roots and shoots of coriander plants upon Cd stress; however, Se-NPs alleviated the uptake of Cd. Cd toxicity, particularly 8 mg L-1, decreased shoot and root weight, chlorophyll (Chl), and relative water content (RWC), while Se-NPs improved these attributes. The Cd concentration at 4 mg L-1 and Se-NPs at 40 or 60 mg L-1 increased phenolic and flavonoid contents as well as EO yield. Proline concentration and malondialdehyde (MDA) increased by enhancing Cd stress, but Se-NPs decreased MDA. The GC/MS analysis showed that the main EO constitutes were n-decanal (18.80-29.70%), 2E-dodecanal (14.23-19.87%), 2E-decanal (12.60-19.40%), and n-nonane (7.23-12.87%), representing different amounts under Cd pollution and Se-NPs. To sum up, Se-NPs at 40-60 mg L-1 are effective in alleviating Cd stress.
Collapse
Affiliation(s)
- Marzieh Babashpour-Asl
- Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran.
| | | | | |
Collapse
|
22
|
Chang C, Zhang H, Huang F, Feng X. Understanding the translocation and bioaccumulation of cadmium in the Enshi seleniferous area, China: Possible impact by the interaction of Se and Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118927. [PMID: 35104557 DOI: 10.1016/j.envpol.2022.118927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) plays an indispensable role in minimizing cadmium (Cd) hazards for organisms. However, their potential interactions and co-exposure risk in the naturally Se-Cd enriched paddy field ecosystem are poorly understood. In this study, rice plants with rhizosphere soils sampled from the Enshi seleniferous region, China, were investigated to resolve this confusion. Here, translocation and bioaccumulation of Cd showed some abnormal patterns in the system of soil-rice plants. Roots had the highest bioaccumulation factors of Cd (range: 0.30-57.69; mean: 11.86 ± 14.32), and the biomass of Cd in grains (range: 1.44-127.70 μg, mean: 36.55 ± 36.20 μg) only accounted for ∼10% of the total Cd in whole plants (range: 14.67-1363.20 μg, mean: 381.25 ± 387.57 μg). The elevated soil Cd did not result in the increase of Cd concentrations in rice grains (r2 = 0.03, p > 0.05). Most interestingly, the opposite distribution between Se and Cd in rice grains was found (r2 = 0.24, p < 0.01), which is contrary to the positive correlation for Se and Cd in soil (r2 = 0.46, p < 0.01). It is speculated that higher Se (0.85-11.46 μg/g), higher Se/Cd molar ratios (mean: 5.42 ≫1; range: 1.50-12.87), and higher proportions of reductive Se species (IV, 0) of the Enshi acidic soil may have the stronger capacity of favoring the occurrence of Se binding to Cd ions by forming Cd-Se complexes (Se2- + Cd2+ =CdSe) under reduction conditions during flooding, and hence change the Cd translocation from soil to roots. Furthermore, the negative correlation (r2 = 0.25, p < 0.05) between the Cd translocation factor (TFwhole grains/root) and the roots Se indicates that Cd translocation from the roots to rice grains was suppressed, possibly by the interaction of Se and Cd. This study inevitably poses a challenge for the traditional risk assessment of Cd and Se in the soils-crops-consumers continuum, especially in the seleniferous area.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
23
|
Yang Y, Xia S, Li J, Zhong K, Wang J, Shi L, Chen Y. Screening of Foliar Barrier Agents and Reduces the Absorption and Transport of Cd in Wheat. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:372-378. [PMID: 34515821 DOI: 10.1007/s00128-021-03370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Different foliar barrier agents (FBA) were used by foliar spraying in first season field and pot experiments to compare their effects on Cadmium (Cd) reduction in wheat grains. The best two FBA (50 µM SNP and 2 mM Na2EDTA) can significantly reduce Cd concentration in wheat grains, and the filling period was the most effective period for FBA application. Compared with the control (H2O), foliar spraying 50 µM SNP or 2 mM Na2EDTA inhibited the moving of Cd from the lower tissue to upper tissue in stem and also significantly reduced the Cd accumulation in grains. Furthermore, compared with normal wheat variety (AK58), foliar spraying 50 µmol SNP or 2 mM Na2EDTA as the best two FBA significantly reduced Cd concentration in shoots of Cd low accumulation varieties (HZB and HJBY), which can be used for the safe production of wheat in Cd-contaminated farmlands.
Collapse
Affiliation(s)
- Yang Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shenglan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianmin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kecheng Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation,, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation,, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
24
|
Qi M, Liu Y, Li Y, Wang M, Liu N, Kleawsampanjai P, Zhou F, Zhai H, Wang M, Dinh QT, Ren R, Liang D. Detoxification difference of cadmium between the application of selenate and selenite in native cadmium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64475-64487. [PMID: 34312758 DOI: 10.1007/s11356-021-15564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has strong mobility and could cause toxicity to plants, and selenium (Se) can effectively detoxify Cd stress. However, differences in the detoxification effects of different species and dosages of exogenous Se on Cd and its mechanism are still unclear. In this study, a pot experiment was conducted to determine the effects of different rates of selenite and selenate application on radish growth, the uptake and translocation of Cd, and the fractions of Cd transformation in native Cd-contaminated soil. Results indicated that the decrease in radish biomass in selenate treatment was significantly greater than that in selenite treatment at a high Se application rate (2.5 mg·kg-1) (p < 0.05). In contrast to selenite treatments, the application of selenate significantly increased the translocation of Cd from radish roots to shoots (p < 0.05). Cadmium concentration and its bioaccumulation factor in radish decreased gradually with increasing selenite application rates, while these values decreased at low Se rate (1 mg·kg-1) and increased at high Se rate for selenate treatment. Different Se application rates resulted in Cd fractions distributions to change in soil. Therefore, the application of selenite treatment had a greater detoxification effect on Cd in soil than that in selenate treatment, and the double toxic effect was observed between Se and Cd in high selenate treatment (2.5 mg·kg-1). Combined with human health risk asseeement, the application of 2.5 mg·kg-1 selenite could be a good approach for detoxification in native Cd-contaminated soil used in this study.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pornpimol Kleawsampanjai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Quang Toan Dinh
- Center for Monitoring and Environmental Protection Thanh Hoa-Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa, Vietnam
| | - Rui Ren
- Shaanxi Hydrogeolog Engineering Geology and Environment Geology Survey Center, Shaanxi, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Huang YY, Fei G, Yu SL, Liu YF, Fu HL, Liao Q, Huang BF, Liu XY, Xin JL, Shen C. Molecular and biochemical mechanisms underlying boron-induced alleviation of cadmium toxicity in rice seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112776. [PMID: 34537586 DOI: 10.1016/j.ecoenv.2021.112776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Both cadmium (Cd) contamination and boron (B) deficiency in farmland soils pose a threat to the yield and quality of crops in Southern China. The present study investigated the mechanisms by which B reduces Cd accumulation in rice (Oryza sativa) seedlings. Boron supplementation partially restored the decline in shoot and root biomass caused by Cd treatment (26% and 33%, respectively), with no significant difference between the B+Cd and control groups. We also found that B significantly reduced shoot and root Cd concentrations (by 64% and 25%, respectively) but increased Cd concentration (by 43%) and proportion (from 38% to 55%) in root cell walls. Transcriptome analysis and biochemical tests suggested that B supplementation enhanced lignin and pectin biosynthesis, pectin demethylation, and sulfur and glutathione metabolism. Moreover, B decreased the expression of some Cd-induced transporter-related genes (i.e., HMA2, Nramp1, and several ABC genes). These results indicate that B relieved Cd toxicity and reduced Cd accumulation in rice seedlings by restraining Cd uptake and translocation from root to shoot by improving Cd tolerance and chelation ability. These novel findings would benefit further investigations into how B influences Cd uptake, translocation, detoxification, and accumulation in crops.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ge Fei
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Sha-Li Yu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yi-Fei Liu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Hui-Ling Fu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Bai-Fei Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Xue-Yang Liu
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jun-Liang Xin
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
26
|
Zhang H, Xie S, Bao Z, Carranza EJM, Tian H, Wei C. Synergistic inhibitory effect of selenium, iron, and humic acid on cadmium uptake in rice (Oryza sativa L.) seedlings in hydroponic culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64652-64665. [PMID: 34318411 DOI: 10.1007/s11356-021-15527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), iron (Fe), and humic acid (HA) are beneficial fertilizers that inhibit cadmium (Cd) uptake in crops and are crucial for agricultural yields as well as human health. However, the joined effect of Se, Fe, and HA on Cd uptake in rice are still poorly understood. Therefore, a hydroponic culture experiment was established to evaluate the combined effect of Se (Se4+ or Se6+), Fe, and HA on the biomass, Cd uptake, and Cd translocation of/in rice seedlings. Compared to Se6+ application, Se4+ application in most treatments resulted in lower Cd translocations from roots to shoots, leading to a significant decrease in shoot Cd concentrations. Compared to the treatments with Se4+ or Fe2+ application, joined application of Se4+ and Fe2+ inhibited Cd uptake in shoots by decreasing Cd adsorption onto (iron plaque) and uptake by roots, and alleviating Cd translocation from root to shoot. Compared to the treatments with Se6+ or Fe2+ application, joined application of Se6+ and Fe2+ inhibited Cd uptake in shoots by sequestering (retaining) Cd onto root surface (iron plaque). HA inhibited Cd uptake in all treatments by decreasing the bioavailability of Cd in the nutrient solution through complexation. The simultaneous application of Se, Fe, and HA decreased the shoot Cd concentrations the most, followed by the combined application of two fertilizers and their individual application; the mean shoot Cd concentration in the Fe-SeIV-HA2 treatment was the lowest among all the treatments, at only 11.39 % of those in the control treatments. The 3-way ANOVA results indicated that the Cd concentrations in shoots were significantly affected by Se, Fe, HA, and certain of their interactions (Fe×Se and Se×HA) (p< 0.05). The above findings suggest that the joined application of Se, Fe, and HA ameliorated Cd uptake mainly by inhibiting Cd adsorption onto (iron plaque) and uptake by roots and the translocation from roots to shoots (Fe×Se4+), retaining (sequestering) Cd in iron plaque (Fe×Se6+), and decreasing Cd availability in nutrient solution (HA).
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Zhengyu Bao
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | - Emmanuel John M Carranza
- Geological Sciences, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville, 3629, South Africa
| | - Huan Tian
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | - Changhua Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
27
|
Rizwan M, Ali S, Rehman MZU, Rinklebe J, Tsang DCW, Tack FMG, Abbasi GH, Hussain A, Igalavithana AD, Lee BC, Ok YS. Effects of selenium on the uptake of toxic trace elements by crop plants: A review. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021. [PMID: 0 DOI: 10.1080/10643389.2020.1796566] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Muhammad Zia ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, South Korea
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Filip M. G. Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Ghulam Hasan Abbasi
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Wang L, Feng J, Wang G, Guan T, Zhu C, Li J, Wang H. Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112651. [PMID: 34419645 DOI: 10.1016/j.ecoenv.2021.112651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
As a non-essential and toxic element, cadmium poses an important threat to aquatic organisms and human food safety. In this study, the effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense were studied from the physiological and biochemical indexes, histology and expression of related genes. These results showed that low concentrations (0.01, 0.02 mg/L) of cadmium have a positive effect on the non-specific immunity of M. nipponense, but high concentration (0.04 mg/L) of cadmium could inhibit or even damage the non-specific immunity of M. nipponense. The cadmium could induce oxidative stress in M. nipponense, and M. nipponense actived the antioxidant defense system to deal with oxidative stress, but high concentration (0.04 mg/L) of cadmium could inhibit the antioxidant defense system of M. nipponense, leading to oxidative damage, and may induce apoptosis in severe case. At the same time, the results of histology showed that cadmium can damage the structure of gill and hepatopancreas tissues of M. nipponense. This study provides theoretical data for evaluating the influences of heavy metal cadmium on M. nipponense and the toxic mechanism of heavy metal cadmium.
Collapse
Affiliation(s)
- Long Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
29
|
Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. CHEMOSPHERE 2021; 273:129690. [PMID: 33524757 DOI: 10.1016/j.chemosphere.2021.129690] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a primary contaminant in agricultural soils of the world. The ability of Cd uptake, transport, detoxification, and accumulation varies among different plant species and genotypes. Cd is translocated from soil to root by different transporters which are used for essential plant nutrient uptake. A number of strategies have been suggested for decreasing Cd toxicity in Cd contaminated soils. Recently, a lot of research have been carried out on minimizing Cd uptake through selenium (Se) and silicon (Si) applications. Both Se and Si have been reported to mitigate Cd toxicity in different crops. Vacuolar sequestration, formation of phytochelatins, and cell wall adsorption have been reported as effective mechanisms for Cd detoxification. The present review discussed past and current knowledge of literature to better understand Cd toxicity and its mitigation by adopting different feasible and practical approaches.
Collapse
Affiliation(s)
- Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Xiurong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
30
|
Yang C, Yao H, Wu Y, Sun G, Yang W, Li Z, Shang L. Status and risks of selenium deficiency in a traditional selenium-deficient area in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144103. [PMID: 33360462 DOI: 10.1016/j.scitotenv.2020.144103] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
In agricultural lands with selenium (Se) deficiency, bioavailability of Se in plants is low. Residents from large-scale agricultural production areas with Se deficiency often suffer from endemic diseases because of consumption of agricultural products lacking in Se. One such area in Northeast China where Keshan disease and Kashin-Beck disease originated, was selected for investigating the geochemistry, influencing factors, and risks of Se in the agroecosystems. Analysis of field samples indicates that the Se deficiency in soil is significantly reduced compared with that of several decades ago, and 62.6% of soils are now Se-sufficient in the southern Songnen Plain. However, Se in crop products remains low due to weak soil-plant transfer, resulting in high risks of Se deficiency related diseases in the rural population of this area. Structural equation modeling, principal component analysis, and other statistical analyses revealed that climate conditions and soil physical and chemical properties are the key factors influencing the spatial distribution of soil Se. Extensive use of agricultural fertilizers may indirectly inhibit the migration of Se from soil to plants. Ensuring sufficient Se contents in agricultural products to meet the minimum daily requirements of residents remains a challenge in Se-deficient areas, especially in the increased agricultural production environment in China.
Collapse
Affiliation(s)
- Chenmeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Yao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yunjie Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Heilongjiang Institute of Geological Survey, Harbin 150036, China.
| | - Wen Yang
- Heilongjiang Institute of Geological Survey, Harbin 150036, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhonggen Li
- College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
31
|
Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, Yu Y, Liu H, Rensing C, Wu Z, Ni R, Zheng S. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123570. [PMID: 32745877 DOI: 10.1016/j.jhazmat.2020.123570] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 05/07/2023]
Abstract
Since selenium (Se) was shown to be an essential element for humans in 1957, the biofortification of Se to crops via foliar spraying or soil fertilization has been performed for several decades to satisfy the daily nutritional need of humans. Appropriate doses of Se were found to counteract a number of abiotic and biotic stresses, such as exposure to heavy metals (metalloids) (HMs), via influencing the regulation of antioxidant systems, by stimulation of photosynthesis, by repair of damaged cell structures and functions, by regulating the metabolism of some substances and the rebalancing of essential elements in plant tissues. However, few concerns were paid on why and how Se could reduce the uptake of a variety of HMs. This review will mainly address the migration and transformation of HMs regulated by Se in the soil-plant system in order to present a hypothesis of why and how Se can reduce the uptake of HMs in plants. The following aspects will be examined in greater detail, including 1) how the soil characteristics influences the ability of Se to reduce the bioavailability of HMs in soils and their subsequent uptake by plants, which include soil Se speciation, pH, water regime, competing ions and microbes; 2) how the plant root system influenced by Se affects the uptake or the sequestration of HMs, such as root morphology, root iron plaques and root cell wall; 3) how Se combines with HMs and then sequesters them in plant cells; 4) how Se competes with arsenic (As) and thereby reduces As uptake in plants; 5) how Se regulates the expression of genes encoding functions involved in uptake, translocation and sequestration of HMs by Se in plants.
Collapse
Affiliation(s)
- RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YuanPing Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanShuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - ZeYing Wu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - RunXiang Ni
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - ShunAn Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| |
Collapse
|
32
|
Guo Y, Mao K, Cao H, Ali W, Lei D, Teng D, Chang C, Yang X, Yang Q, Niazi NK, Feng X, Zhang H. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115829. [PMID: 33160738 DOI: 10.1016/j.envpol.2020.115829] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Antagonism between selenium (Se) and cadmium (Cd) has been demonstrated in plants. However, a mutual suppression threshold for Se and Cd has not been identified in previous studies using Cd or Se individually. To fill this knowledge gap, we determined the levels of Se and Cd in various tissues of rice under concentration gradients of Se and Cd with different Se application times via hydroponic experiments. The results showed that the application of exogenous Se or Cd reduced the uptake and transport of the other. When the molar ratio of Se/Cd (R (Se/Cd)) was higher than 1, the concentration and transfer factor of Cd (TF-Cd) in all parts of rice simultaneously reached the lowest values. The minimum Se absorption in rice was obtained at R (Cd/Se) greater than 20, while no inhibition threshold was found for Se transport. In addition, approximately 1:1 R (Se/Cd) was observed in roots and the addition of exogenous Cd or Se promoted the enrichment of the other element in roots. These data suggested a mutual inhibition of Se and Cd in their absorption, transportation and accumulation in rice, which might be related to the formation of insoluble Cd-Se complexes in roots. This study provided new insights into a plausible explanation of the interactions between Se and Cd and contributed to the remediation and treatment of combined Se and Cd pollution in farmland systems.
Collapse
Affiliation(s)
- Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Da Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Dongye Teng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qi Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shanxi Province, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shanxi Province, China.
| |
Collapse
|
33
|
Hasanuzzaman M, Nahar K, García-Caparrós P, Parvin K, Zulfiqar F, Ahmed N, Fujita M. Selenium Supplementation and Crop Plant Tolerance to Metal/Metalloid Toxicity. FRONTIERS IN PLANT SCIENCE 2021; 12:792770. [PMID: 35046979 PMCID: PMC8761772 DOI: 10.3389/fpls.2021.792770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
Selenium (Se) supplementation can restrict metal uptake by roots and translocation to shoots, which is one of the vital stress tolerance mechanisms. Selenium can also enhance cellular functions like membrane stability, mineral nutrition homeostasis, antioxidant response, photosynthesis, and thus improve plant growth and development under metal/metalloid stress. Metal/metalloid toxicity decreases crop productivity and uptake of metal/metalloid through food chain causes health hazards. Selenium has been recognized as an element essential for the functioning of the human physiology and is a beneficial element for plants. Low concentrations of Se can mitigate metal/metalloid toxicity in plants and improve tolerance in various ways. Selenium stimulates the biosynthesis of hormones for remodeling the root architecture that decreases metal uptake. Growth enhancing function of Se has been reported in a number of studies, which is the outcome of improvement of various physiological features. Photosynthesis has been improved by Se supplementation under metal/metalloid stress due to the prevention of pigment destruction, sustained enzymatic activity, improved stomatal function, and photosystem activity. By modulating the antioxidant defense system Se mitigates oxidative stress. Selenium improves the yield and quality of plants. However, excessive concentration of Se exerts toxic effects on plants. This review presents the role of Se for improving plant tolerance to metal/metalloid stress.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- *Correspondence: Mirza Hasanuzzaman
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Masayuki Fujita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
- Masayuki Fujita
| |
Collapse
|
34
|
Zhu J, Zhao P, Nie Z, Shi H, Li C, Wang Y, Qin S, Qin X, Liu H. 1Selenium supply alters the subcellular distribution and chemical forms of cadmium and the expression of transporter genes involved in cadmium uptake and translocation in winter wheat (Triticum aestivum). BMC PLANT BIOLOGY 2020; 20:550. [PMID: 33287728 PMCID: PMC7722431 DOI: 10.1186/s12870-020-02763-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cadmium (Cd) accumulation in crops affects the yield and quality of crops and harms human health. The application of selenium (Se) can reduce the absorption and transport of Cd in winter wheat. RESULTS The results showed that increasing Se supply significantly decreased Cd concentration and accumulation in the shoot and root of winter wheat and the root-to-shoot translocation of Cd. Se application increased the root length, surface area and root volume but decreased the average root diameter. Increasing Se supply significantly decreased Cd concentration in the cell wall, soluble fraction and cell organelles in root and shoot. An increase in Se supply inhibited Cd distribution in the organelles of shoot and root but enhanced Cd distribution in the soluble fraction of shoot and the cell wall of root. The Se supply also decreased the proportion of active Cd (ethanol-extractable (FE) Cd and deionized water-extractable (FW) Cd) in root. In addition, the expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 significantly increased with increasing Cd concentration in root, and the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root was downregulated by increasing Se supply, regardless of Se supply or Cd stress. The expression of TaHMA3-b in root was significantly downregulated by 10 μM Se at both the 5 μM and 25 μM Cd level but upregulated by 5 μM Se at the 25 μM Cd level. The expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 in shoot was downregulated by increasing Se supply at 5 μM Cd level, and 5 μM Se upregulated the expression of those genes in shoot at 25 μM Cd level. CONCLUSIONS The results confirm that Se application limits Cd accumulation in wheat by regulating the subcellular distribution and chemical forms of Cd in winter wheat tissues, as well as the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Peng Zhao
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Zhaojun Nie
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Chang Li
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Yi Wang
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Shiyu Qin
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Xiaoming Qin
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Hongen Liu
- Resources and Environment College, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
35
|
Zhou YM, Long SS, Li BY, Huang YY, Li YJ, Yu JY, Du HH, Khan S, Lei M. Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44249-44256. [PMID: 32767006 DOI: 10.1007/s11356-020-10282-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In order to unravel the cadmium (Cd) enrichment patterns in rice (Oryza sativa L.) grown under different exogenous exposure pathways, the pot experiment was conducted in a greenhouse. Cd was added to the soil-rice system via mixing soil with Cd-containing solution, irrigating the pots with Cd-containing water and leaf-spraying with Cd solution to simulate soil pollution (SPS), irrigation water pollution (IPS), and atmospheric deposit pollution sources (APS), respectively. No significant (p > 0.05) differences in plant height and rice grain yield were observed among all treatments including three different Cd pollution sources and control. The contents of Cd in rice plants significantly (p < 0.05) increased with increase in Cd concentrations in three pollution sources. The distribution pattern of Cd in the rice plant organs treated with SPS and IPS followed the order: roots > stems > leaves > husk > brown rice, while it was leaves > roots > stems > husk > brown rice treated with APS. At the same level of treatment, the highest concentration of Cd was observed in rice organs (except for middle and high concentrations treatment roots) grown under APS, followed by IPS and SPS, suggesting that the Cd bioavailability from different pollution sources followed the order of APS > IPS > SPS. It is concluded that the atmospheric pollution contributed more enrichment of rice with Cd. Therefore, in field environment, air deposits should also be analyzed for toxic metals during assessment of food chain contamination and health risk.
Collapse
Affiliation(s)
- Yi-Min Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Si-Si Long
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Bing-Yu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Ya-Yuan Huang
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Yong-Jie Li
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Jia-Yan Yu
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Hui-Hui Du
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
- Hunan Province Irrigation Water Quality Purification Engineering Center, Changsha, 410128, People's Republic of China.
| |
Collapse
|
36
|
Zhang C, Huang Y, Talukder M, Ge J, Lv MW, Bi SS, Li JL. Selenium sources differ in their potential to alleviate the cadmium-induced testicular dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115610. [PMID: 33254640 DOI: 10.1016/j.envpol.2020.115610] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), a major environmental contaminant, is closely associated with male reproductive health. Selenium (Se) has been recognized as an effective chemo-protectant against Cd toxicity, but the underlying mechanisms remain unclear. The objective of present study was to illustrate the toxic effect of Cd on testis, and then compare the antagonistic effect among different Se sources on growth performance, testicular damage, ion homeostasis, antioxidative potential, and the expression of selenotranscriptome and biosynthetic related factors in Cd-treated chicken. Male chickens were fed with (Ⅰ) Control group: basal diet; (Ⅱ) Cd group: basal diet with 140 mg/kg CdCl2; (Ⅲ) YSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Yeast-Se; (Ⅳ) NSe + Cd group: basal diet with 140 mg/kg CdCl2 and 1 mg/kg Nano-Se; (Ⅴ) SSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Na2SeO3. It was observed that different Se treatments dramatically alleviated Cd-induced testicular developmental disorder, ion homeostasis disorder, hormone secretion disorder and oxidative stress. Simultaneously, Se mitigated Cd-induced testicular toxicity by regulating selenoprotein biosynthetic related factors to promote selenoprotein transcription. Finally, this study indicated that dietary supplementation of Yeast-Se produced an acceptable Se form to protect testis from Cd exposure.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR72701, USA
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
37
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
38
|
Yin A, Shen C, Huang Y, Yue M, Huang B, Xin J. Reduction of Cd accumulation in Se-biofortified rice by using fermented manure and fly ash. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39391-39401. [PMID: 32648217 DOI: 10.1007/s11356-020-10031-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Large areas of soils in China are contaminated with Cd and are deficient in Se. Therefore, here, we aimed to reduce Cd accumulation while increasing Se content in rice grain, and to elucidate the mechanisms associated. A greenhouse pot experiment was conducted to determine grain concentrations of Se and Cd upon foliar spraying of Se combined with the application of horse manure and/or fly ash to different contaminated soils containing Cd 0.51 (T1), 1.46 (T2), and 4.59 mg Cd kg-1 (T3). The amount of Fe, Si, and Cd in root iron plaque, and concentrations of Cd and Si in rice tissues were also determined. Foliar spray of Se increased Se concentration in brown rice from approximately 0.04 to 0.15 mg kg-1. Fly ash significantly reduced Cd concentration in brown rice from 0.07 to 0.05, 0.15 to 0.09, and 1.00 to 0.55 mg kg-1 at the T1, T2, and T3 treatment levels, respectively, and soil Cd bioavailability (by at least 33.3%), while it increased Si content in rice roots and shoots by at least 34%. The increase of Si concentration in rice tissues inhibited Cd translocation to brown rice by at least 17%. Horse manure increased the formation of root Fe plaque by approximately 2.3-fold, which resulted in the significant reduction of Cd accumulation in brown rice, shoots, and roots by 36-56%. Thus, foliar spray of Se in combination with the application of fly ash and horse manure proved an effective method to produce Cd-low and Se-rich rice.
Collapse
Affiliation(s)
- Aiguo Yin
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingying Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Maofeng Yue
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Junliang Xin
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| |
Collapse
|
39
|
Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4030057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient required for the health of humans and lower plants, but its importance for higher plants is still being investigated. The biological functions of Se related to human health revolve around its presence in 25 known selenoproteins (e.g., selenocysteine or the 21st amino acid). Humans may receive their required Se through plant uptake of soil Se, foods enriched in Se, or Se dietary supplements. Selenium nanoparticles (Se-NPs) have been applied to biofortified foods and feeds. Due to low toxicity and high efficiency, Se-NPs are used in applications such as cancer therapy and nano-medicines. Selenium and nano-selenium may be able to support and enhance the productivity of cultivated plants and animals under stressful conditions because they are antimicrobial and anti-carcinogenic agents, with antioxidant capacity and immune-modulatory efficacy. Thus, nano-selenium could be inserted in the feeds of fish and livestock to improvise stress resilience and productivity. This review offers new insights in Se and Se-NPs biofortification for edible plants and farm animals under stressful environments. Further, extensive research on Se-NPs is required to identify possible adverse effects on humans and their cytotoxicity.
Collapse
|
40
|
Lv H, Chen W, Zhu Y, Yang J, Mazhar SH, Zhao P, Wang L, Li Y, Azam SM, Ben Fekih I, Liu H, Rensing C, Feng R. Efficiency and risks of selenite combined with different water conditions in reducing uptake of arsenic and cadmium in paddy rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114283. [PMID: 32443220 DOI: 10.1016/j.envpol.2020.114283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 02/26/2020] [Indexed: 05/09/2023]
Abstract
The co-contamination of arsenic (As) and cadmium (Cd) in soils is a common problem. Selenium (Se) can reduce the uptake of As and Cd in plants, and in practice, the alternate wetting and drying is a common culture mode in rice production. However, it is unknown whether Se can efficiently reduce As and Cd concentrations in crops suffering from a high-level contamination of As and Cd under different soil water conditions. In this study, we assessed the efficiency and risks of selenite [Se(IV)], in a pot experiment, to reduce the uptake of As and Cd in a rice plant (YangDao No 6) growing in a heavily contaminated soil by As and Cd (pH 7.28) under different soil water conditions. The results showed that Se(IV) failed to control the grain total As and Cd concentrations within their individual limited standard (0.2 mg kg-1) despite that Se(IV) significantly reduced the grain total As and Cd concentrations. The soil drying treatment alone could reduce the accumulation of arsenite [As(III)] in the grains, but additional Se(IV) stimulated the accumulation of As(III) in the grains under soil drying conditions. In addition, the addition of Se(IV) enhanced the As and Cd concentrations in the shoots and/or roots of rice plants under certain conditions. The above results all suggested that the utilization of Se(IV) in a high contaminated soil by As and Cd cannot well control the total concentrations of As and Cd in plants. In this study, the available concentrations of As and Cd in the rhizosphere soil, the rhizosphere soil pH, the formation of root iron/manganese plaques and the concentrations of essential elements in the grains were monitored, and the related mechanisms on the changes of these parameters were also discussed. This study will give a guideline for the safe production of rice plants in a heavily co-contaminated soil by As and Cd.
Collapse
Affiliation(s)
- HaiQin Lv
- Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - WenXiang Chen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Sohaib H Mazhar
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YuanPing Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Syed Muhammad Azam
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
41
|
Wang C, Rong H, Zhang X, Shi W, Hong X, Liu W, Cao T, Yu X, Yu Q. Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead. CHEMOSPHERE 2020; 251:126347. [PMID: 32169700 DOI: 10.1016/j.chemosphere.2020.126347] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 05/10/2023]
Abstract
Currently, exploring effective measures to reduce multiple toxic metals accumulation in rice grains is an urgent issue to be tackled. Pot experiments were thus conducted to explore the effects and mechanisms of foliar spraying with composite sols of silicon (Si) and selenium (Se) during tillering to booting stage on diminishing cadmium (Cd) and lead (Pb) translocation to rice grains and affiliated physiological and biochemical responses in rice seedlings grown in Cd + Pb-polluted soils (positive control). Results showed that Cd and Pb contents in leaves or grains were distinctly below the positive control by the sols. Compared to the positive control, transcriptions of Cd transporter-related genes including OsLCT1, OsCCX2, OsHMA2 and OsPCR1 genes in leaves, and OsLCT1, OsCCX2, TaCNR2 and OSPCR1 in peduncles were downregulated by the increasing sols. Meanwhile, Se-binding protein 1 was evidently upregulated, together to retard Cd and Pb translocation to rice grains. The sols not only upregulated transcriptions of Lhcb1, RbcL, and OsBTF3 genes and production of psbA, Lhcb1 and RbcL proteins, but also increased the chlorophylls contents and RuBP carboxylase activities in the leaves, improving photosynthesis. The sols restrained ROS production from NADPH oxidases, but activated glutathione peroxidase, alleviating oxidative stress and damage. Additionally, Se was significantly enriched and was existed as selenomethionine in the rice grains. However, Pb transporter-related genes remain to be specified. Thus, the composite sols have potential to reduce Cd and Pb accumulation, mitigate oxidative damage, and promote photosynthesis and organic Se enrichment in rice plants under Cd and Pb combined pollution.
Collapse
Affiliation(s)
- Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China.
| | - Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Xuebiao Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Wenjun Shi
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Xiu Hong
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Weichen Liu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Tong Cao
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Xianxian Yu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Qifen Yu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
42
|
Liu J, Hou H, Zhao L, Sun Z, Li H. Protective Effect of foliar application of sulfur on photosynthesis and antioxidative defense system of rice under the stress of Cd. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136230. [PMID: 31927283 DOI: 10.1016/j.scitotenv.2019.136230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/19/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
This paper investigates the effect of foliar application of sulfur on photosynthesis and antioxidative defense system of rice under the stress of Cd. The initial field studies showed that foliar spray of S was effective for reducing Cd concentration in rice and increasing the grain yield. However, the physiological mechanisms remain less clear on how the foliar application of S alleviates Cd toxicity in rice. Chlorophyll fluorescence, as a measure of photosynthesis, was taken to estimate the efficiency of photosystem II (PSII) photochemistry after the foliar application of S. The increase of photosynthetic parameters, i.e. the maximum photochemical efficiency of PSII reaction center (Fv/Fm), the actual PSII photochemical efficiency (ΦPSII), the photochemical quenching coefficient (qP), indicated that the foliar treatment alleviated the toxicity of Cd to PSII. The decrease of non-photochemical quenching coefficient (NPQ) indicated the increase of photochemical reaction efficiency with more absorbed light energy for photochemical reactions. Fourier Transform Infrared (FTIR) spectra showed that the foliar treatment stimulated the syntheses of lignin, lipids, aliphatic acid, polysaccharides, carboxylate and proteins. Micrographs of transmission electron microscope (TEM) also revealed the reduced mobility of Cd in cells. Foliar application of S effectively reduced the damage of Cd stress by maintaining the integrity of cell structure and participating in metabolic activities such as protein synthesis.
Collapse
Affiliation(s)
- Jiahao Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hua Li
- School of Environmental Science and Resources, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
43
|
Xue M, Wang D, Zhou F, Du Z, Zhai H, Wang M, Dinh QT, Tran TAT, Li H, Yan Y, Liang D. Effects of selenium combined with zinc amendment on zinc fractions and bioavailability in calcareous soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110082. [PMID: 31855791 DOI: 10.1016/j.ecoenv.2019.110082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) and zinc (Zn) are two important trace elements for human being and animals. The interaction between Se and Zn on the bioavailability of Zn in soil is still unclear. Therefore, pot experiments exposed to different dosages of zinc sulfate (ZnSO4) (0, 20, and 50 mg/kg soil) and sodium selenite (Na2SeO3) (0, 0.5, 1.0, and 2.5 mg/kg soil) were conducted to investigate the effects of selenite application on Zn bioavailability in calcareous soil and its related mechanisms. The total Zn content of different tissues (roots and shoots) of pak choi (Brassica chinensis L.) and the changes in Zn fraction distribution in soil before planting and after harvest were determined, and the mobility factor (MF) and distribution index (DI) of Zn in soils were calculated. In addition, the Pearson correlation and path analysis were conducted to clarify the relationships between Zn fractions in soil and the Zn uptake of pak choi. Results showed that Se amendment elevated soil Zn bioavailability at appropriate levels of Se and Zn. When 1.0 and 2.5 mg/kg of Se and 20 mg/kg of Zn were applied in soil, the proportion of exchangeable Zn (Ex-Zn) and Zn weakly bound to organic matter (Wbo-Zn) to the total content of Zn was significantly increased by 28.14%-82.52% compared with that of the corresponding single Zn treatment. Therefore, the Zn concentration in the shoots of pak choi was significantly increased by 27.2%-31.1%. High Zn (50 mg/kg) and Se co-amended treatments showed no significantly beneficial effect on the bioavailability of Zn. In addition, the potential available Zn content in soil (weakly bound to organic matter and carbonate bound Zn) and MF and DI values were all positively correlated with the Zn concentrations in pak choi, indicating that these indexes can be used to predict the bioavailability of Zn in soil. This study can provide a good reference for Se and Zn biofortification of plants in calcareous soil.
Collapse
Affiliation(s)
- Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zekun Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huinan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
44
|
Ren M, Qin Z, Li X, Wang L, Wang Y, Zhang J, Huang Y, Yang S. Selenite antagonizes the phytotoxicity of Cd in the cattail Typha angustifolia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109959. [PMID: 31787383 DOI: 10.1016/j.ecoenv.2019.109959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The Phytotoxicity of and mechanism underlying selenite-mediated tolerance to Cd stress in Typha angustifolia were studied hydroponically with respect to metal uptake and translocation, photosynthesis-related parameters, contents of proline and O2•-, products of lipid peroxidation, cell viability, enzymatic and non-enzymatic antioxidants, glyoxalases and phytochelatins. T. angustifolia were exposed to 25, 50 and 100 μM of Cd alone and in conjunction with 5 mg L-1 of selenite in full-strength Hoagland's nutrient solution for 30 days. Results showed that Cd contents in T. angustifolia leaves and roots increased in a dose-dependent manner and were higher in roots, but those of BAC, BCF and TF changed in a contrary pattern. Addition of selenite to Cd-containing treatments further reduced Cd levels in T. angustifolia leaves and roots, as well as BAC, BCF and TF. A diphasic effect was found in T. angustifolia for the contents of total chlorophyll, GSH, PC and GSSG, as well as activities of CAT, POD, SOD and GR, in response to Cd stress alone and in conjunction with selenite supplementation, but the same effect was not observed for Pn, Cond, Tr, Ci, Fv/Fm and ϕPSII. In contrast, exogenous selenite supplementation enhanced the contents of total chlorophyll and the non-enzymatic antioxidants, as well as activities of enzymatic antioxidants, while the values of photosynthetic fluorescence parameters were rescued. Selenite addition decreased Cd-induced cell death. Proline contents and Gly I activities in T. angustifolia leaves kept increasing in a dose-dependent manner of Cd concentrations in the growth media and selenite addition further enhanced both parameters. Addition of selenite could quench Cd-mediated generation of MDA, O2•- and MG in T. angustifolia leaves and reduce Cd-induced Gly II activity. A U-shaped GSH/GSSG ratio in T. angustifolia leaves suggests a possible trade-off between PC synthesis and GR activity since both share the same substrate GSH. Therefore, confined BAC, BCF and TF were a mechanism that confers T. angustifolia tolerance to Cd stress, and that exogenous selenite supplementation could depress Cd-induced stress in T. angustifolia by rescuing the photosynthetic fluorescence, enhancing non-enzymatic and enzymatic antioxidants that scavenge O2•- and MG, and potentiating PC synthesis that chelates Cd.
Collapse
Affiliation(s)
- Mengmeng Ren
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| | - Zhenjie Qin
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| | - Xin Li
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| | - Ling Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| | - Yuanxiu Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| | - Jie Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| | - Yongjie Huang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| | - Shiyong Yang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biology Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
45
|
Liu N, Jiang Z, Li X, Liu H, Li N, Wei S. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. CHEMOSPHERE 2020; 241:125106. [PMID: 31683428 DOI: 10.1016/j.chemosphere.2019.125106] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
A pot experiment was conducted to investigate the possible mediatory effect of organic amendments (vermicompost and biochar) and selenium (Se) on Cd bioaccumulation in both rice cultivars (high-Cd accumulation rice: Yuzhenxiang (YZX) and low-Cd accumulation rice: Changliangyou772 (CLY)) in high-Cd-contaminated soils. The results showed that Cd sensitivity and tolerance were cultivar-dependent, and grain Cd contents for CLY accorded with the Chinese national food safety standards (0.2 mg kg-1), whereas grain Cd levels for YZX were 1.4-5.8 times higher than those for CLY. Soil applications of amendments decreased grain Cd levels by 3.5%-36.9% for YZX and 36.1%-74.4% for CLY. Moreover, vermicompost (VC) was more effective in reducing Cd bioaccumulation than biochar (BC). A combination of Se and organic amendments could significantly increase grain Se contents and help further reduce grain Cd levels by 5.8%-20.8%, compared to the single organic amendments. This mitigation progress could be attributed to the changes of Cd translocation and distribution among rice tissues and the inhibition of Cd bioavailability in soil through the alteration in soil properties. Organic amendments, especially high dose (5%), increased soil pH and organic matter contents, and correspondingly decreased soil Cd bioavailability. A sequential extraction analysis suggested that organic amendments and Se facilitated the transformation of soil Cd from the bioavailable form to the immobilized Cd form, and thus decreased grain Cd levels. Hence, co-applications of organic amendments and Se in combination with low-Cd accumulation cultivar could be an effective strategy for both Se needs of humans and safe utilization of Cd polluted soil.
Collapse
Affiliation(s)
- Na Liu
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Xiong Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Hanyi Liu
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Na Li
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
46
|
Zhang Z, Yuan L, Qi S, Yin X. The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1228-1235. [PMID: 31726553 DOI: 10.1016/j.scitotenv.2019.06.331] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
There is little available information about the important interactions between selenium and cadmium (Se-Cd) in crops grown on natural Se-Cd rich soils. We investigated their interactive effects on the translocation and uptake of Se and Cd from soils to crops. Corn (Zea mays L.) roots, stems, leaves, and grains, and their corresponding rhizosphere soils were collected from naturally Se-Cd rich areas in Wumeng Mountain, Guizhou, China. The Se and Cd levels were determined in the soils, roots, stems, leaves, and grains. Soil bioavailable Se and Cd were also determined. The low soil bioavailable molar ratios for Se and Cd (Se:Cd) (≤0.7) improved Cd accumulation in the plants. However, relatively high Se:Cd molar ratios (>0.7) in the soils prevented Cd from entering the plants, but the effect of the soil Se:Cd on Se accumulation in corn was not significant. The strong anion exchange-high performance liquid chromatography-inductively coupled plasma mass spectroscopy (SAX-HPLC-ICP-MS) chromatograms showed that Se-Cd complexes occurred in the leaves, which likely indicated that direct interactions between Se and Cd happened there. The results suggested that thresholds for soil bioavailable Se:Cd molar ratios played a role in the interaction between Se and Cd in corn under natural conditions.
Collapse
Affiliation(s)
- Zezhou Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Linxi Yuan
- Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China.
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
47
|
Qiao K, Wang F, Liang S, Wang H, Hu Z, Chai T. New Biofortification Tool: Wheat TaCNR5 Enhances Zinc and Manganese Tolerance and Increases Zinc and Manganese Accumulation in Rice Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9877-9884. [PMID: 31398030 DOI: 10.1021/acs.jafc.9b04210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heavy metal contaminants and nutrient deficiencies in soil negatively affect crop growth and human health. The plant cadmium resistance (PCR) protein transports heavy metals. The abundance of PCR is correlated with that of cell number regulator (CNR) protein, and the two proteins have similar conserved domains. Hence, CNR might also participate in heavy metal transport. We isolated and analyzed TaCNR5 from wheat (Triticum aestivum). The expression level of TaCNR5 in the shoots of wheat increased under cadmium (Cd), zinc (Zn), or manganese (Mn) treatments. Transgenic plants expressing TaCNR5 showed enhanced tolerance to Zn and Mn. Overexpression of TaCNR5 in Arabidopsis increased Cd, Zn, and Mn translocation from roots to shoots. The concentrations of Zn and Mn in rice grains were increased in transgenic plants expressing TaCNR5. These roles of TaCNR5 in the translocation and distribution of heavy metals mean that it has potential as a genetic biofortification tool to fortify cereal grains with micronutrients.
Collapse
Affiliation(s)
- Kun Qiao
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography , Shenzhen University , Shenzhen , Guangdong 518060 , People's Republic of China
| | - Fanhong Wang
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Shuang Liang
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hong Wang
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography , Shenzhen University , Shenzhen , Guangdong 518060 , People's Republic of China
| | - Tuanyao Chai
- College of Life Science , University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Southeast Asia Biodiversity Research Institute , Chinese Academy of Science , Yezin , Nay Pyi Taw 05282 , Myanmar
| |
Collapse
|
48
|
Treesubsuntorn C, Thiravetyan P. Calcium acetate-induced reduction of cadmium accumulation in Oryza sativa: Expression of auto-inhibited calcium-ATPase and cadmium transporters. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:862-872. [PMID: 30924996 DOI: 10.1111/plb.12990] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses. This study applied Ca in various forms (Ca acetate and CaCl2 ) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice. The results showed that supplementation of Cd-contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions. The possible involvement of the auto-inhibited Ca2+ -ATPase gene (ACA) might act to control the primary signal of the Cd stress response. The messages from ACA3 and ACA13 tended to up-regulate the low-affinity cation transporter (OsLCT1) and down-regulate Cd uptake and the Cd translocation transporter, including the genes, natural resistance-associated macrophage protein 5 (Nramp5) and Zn/Cd-transporting ATPase 2 (HMA2), which resulted in a reduction in the Cd concentration in rice. After cultivation for 120 days, the application of Ca acetate into Cd-contaminated soil inhibited Cd uptake of rice. Increasing the Ca acetate concentration in the soil lowered the Cd concentration in rice shoots and grains. Moreover, Ca acetate maintained rice productivity and quality whereas both aspects decreased under Cd stress.
Collapse
Affiliation(s)
- C Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - P Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
49
|
Chen L, Wu W, Han F, Li J, Ye W, Fu H, Yan Y, Ma Y, Wang Q. Agronomic Management and Rice Varieties Controlling Cd Bioaccumulation in Rice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132376. [PMID: 31277388 PMCID: PMC6650852 DOI: 10.3390/ijerph16132376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/26/2022]
Abstract
Selection of rice varieties and application of amendments are effective measures to ensure food safety. Here we report that in the non-Cd area, the grain quality of all rice varieties met the Chinese National Grain Safety Standards (CNGSS). In the high-Cd area, rice varieties showed significant different bioaccumulation of Cd with lower rice yields than those in non-Cd area with the average decrease of 31.1%. There was a negative correlation between grain Cd content and yields. A total of 19 rice varieties were selected as low Cd accumulating rice varieties and their Cd content met CNGSS in the low-Cd area. Six of them met CNGSS in the high-Cd area. The application of amendments significantly reduced Cd content in rice grains by 1.0–84.7% with an average of 52.6% and 13 of varieties met CNGSS. The amendments reduced available Cd content in soils by 1.1–75.8% but had no significant effects on rice yields. Therefore, the current study implied that proper agronomic management with selection of rice varieties and soil amendments was essential in controlling Cd accumulation in rice grains.
Collapse
Affiliation(s)
- Liangmei Chen
- College of Resources and Environmental Sciences, Anhui Agriculture University, Hefei 230001, China
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39056, USA
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Fengxiang Han
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39056, USA
| | - Jiangxia Li
- College of Resources and Environmental Sciences, Anhui Agriculture University, Hefei 230001, China
| | - Wenling Ye
- College of Resources and Environmental Sciences, Anhui Agriculture University, Hefei 230001, China
| | - Huanhuan Fu
- College of Resources and Environmental Sciences, Anhui Agriculture University, Hefei 230001, China
| | - Yonghua Yan
- Department of Math, Jackson State University, Jackson, MS 39056, USA
| | - Youhua Ma
- College of Resources and Environmental Sciences, Anhui Agriculture University, Hefei 230001, China.
| | - Qiang Wang
- College of Resources and Environmental Sciences, Anhui Agriculture University, Hefei 230001, China.
| |
Collapse
|
50
|
Cai M, Hu C, Wang X, Zhao Y, Jia W, Sun X, Elyamine AM, Zhao X. Selenium induces changes of rhizosphere bacterial characteristics and enzyme activities affecting chromium/selenium uptake by pak choi (Brassica campestris L. ssp. Chinensis Makino) in chromium contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:716-727. [PMID: 30933769 DOI: 10.1016/j.envpol.2019.03.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Understanding the chemical response and characteristics of bacterial communities in soil is critical to evaluate the effects of selenium (Se) supplement on plant growth and chromium (Cr)/Se uptake in Cr contaminated soil. The rhizosphere soil characteristics of pak choi (Brassica campestris L. ssp. Chinensis Makino) were investigated in soil contaminated with different levels and forms of Cr when supplemented with Se. Although inhibition of plant growth caused by Cr stress was not completely alleviated by Se, Cr content in plant tissues decreased in Cr(VI)120Se5 treatment (Cr(VI): 120 mg kg-1 soil; Se: 5 mg kg-1 soil) and its bioavailability in soil decreased in Cr(III)200Se5 (Cr(III): 200 mg kg-1 soil; Se: 5 mg kg-1 soil) treatment. Moreover, antagonism of Cr and Se on soil enzyme activities and bacterial communities were revealed. Notably, results of Cr(VI) reduction and Se metabolism functional profiles confirmed that bacterial communities play a critical role in regulating Cr/Se bioavailability. Additionally, the increases of Se bioavailability in Cr contaminated soil were ascribed to oxidation of Cr(VI) and reduction of Se reductases proportions, as well as the enhancing of pH in soil. These findings reveal that Se has the potential capacity to sustain the stability of microdomain in Cr contaminated soil.
Collapse
Affiliation(s)
- Miaomiao Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou, 510640, China
| | - Yuanyuan Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Jia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|