1
|
Nix MN, Gourisankar S, Sarott RC, Dwyer BG, Nettles SA, Martinez MM, Abuzaid H, Yang H, Wang Y, Simanauskaite JM, Romero BA, Jones HM, Krokhotin A, Lowensohn TN, Chen L, Low C, Davis MM, Fernandez D, Zhang T, Green MR, Hinshaw SM, Gray NS, Crabtree GR. A Bivalent Molecular Glue Linking Lysine Acetyltransferases to Oncogene-induced Cell Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643404. [PMID: 40166243 PMCID: PMC11956963 DOI: 10.1101/2025.03.14.643404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Developing cancer therapies that induce robust death of the malignant cell is critical to prevent relapse. Highly effective strategies, such as immunotherapy, exemplify this observation. Here we provide the structural and molecular underpinnings for an approach that leverages chemical induced proximity to produce specific cell killing of diffuse large B cell lymphoma, the most common non-Hodgkin's lymphoma. We develop KAT-TCIPs (lysine acetyltransferase transcriptional/epigenetic chemical inducers of proximity) that redirect p300 and CBP to activate programmed cell death genes normally repressed by the oncogenic driver, BCL6. Acute treatment rapidly reprograms the epigenome to initiate apoptosis and repress c-MYC. The crystal structure of the chemically induced p300-BCL6 complex reveals how chance interactions between the two proteins can be systematically exploited to produce the exquisite potency and selectivity of KAT-TCIPs. Thus, the malignant function of an oncogenic driver can be co-opted to activate robust cell death, with implications for precision epigenetic therapies.
Collapse
Affiliation(s)
- Meredith N. Nix
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Roman C. Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Brendan G. Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Michael M. Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haopeng Yang
- Department of Lymphoma- & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanlan Wang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Bryan A. Romero
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hannah M. Jones
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | | | - Lei Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Cara Low
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Daniel Fernandez
- Macromolecular Structure, Nucleus at Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael R. Green
- Department of Lymphoma- & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen M. Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Xing Y, Guo W, Wu M, Xie J, Huang D, Hu P, Zhou M, Zhang L, Zhong Y, Liu M, Chen Y, Yi Z. A Small-Molecule BCL6 Inhibitor as an Anti-Proliferative Agent for Diffuse Large B-Cell Lymphoma. Mol Cancer Ther 2025; 24:81-92. [PMID: 39387112 DOI: 10.1158/1535-7163.mct-23-0830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/09/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The B-cell lymphoma 6 (BCL6) transcription factor plays a key role in the establishment of germinal center (GC) formation. Diffuse large B-cell lymphoma (DLBCL) originates from the GC reaction due to dysregulation of BCL6. Disrupting BCL6 and its corepressors' interaction has become the foundation for rationally designing lymphoma therapies. However, BCL6 inhibitors with good activities in vitro and in vivo are rare, and there are no clinically approved BCL6 inhibitors. In this study, we discovered and developed a novel range of [1,2,4] triazolo[1,5-a] pyrimidine derivatives targeting BCL6/SMRT interaction. The lead compound WK692 directly bound BCL6BTB, disrupted BCL6BTB/SMRT interaction and activated the expression of BCL6 downstream genes inside cells, inhibited DLBCL growth and induced apoptosis in vitro, inhibited GC formation, decreased the proportion of follicular helper T cells, and impaired Ig affinity maturation. Further studies showed that WK692 inhibits DLBCL growth without toxic effects in vivo and synergizes with the EZH2 and PRMT5 inhibitors. Our results demonstrated that WK692 as a BCL6 inhibitor may be developed as a novel potential anticancer agent against DLBCL.
Collapse
Affiliation(s)
- Yajing Xing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiuqing Xie
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongxia Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Pan Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Miaoran Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yadong Zhong
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Chen C, Dong Q, Wang H, Dong S, Wang S, Lin W, Jia C, Dong M, Jin Y, Liu D. The association between NADPH oxidase (NOX) polymorphisms with immunohistochemistry and survival in diffuse large B cell lymphoma patients. Ann Hematol 2025; 104:407-420. [PMID: 39774928 DOI: 10.1007/s00277-024-06144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
The purpose of this study was to comprehensively analyze the prediction role of NADPH oxidase (NOX)-related polymorphisms (NCF4: rs1883112, CYBA: rs4673, RAC2: rs13058338) and immunohistochemical indices on survival in diffuse large B-cell lymphoma (DLBCL).The impact of NOX polymorphisms were evaluated in 335 DLBCL patients treated with R (rituximab)-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) from Harbin Medical University Cancer Hospital. We also collected information on their immunohistochemical expression and clinical outcomes.Among the patients treated with R-CHOP therapy, the patients with CyclinD1 (+) had significantly shorter progression-free survival (PFS) (p = 0.001) and event-free survival (EFS) (p < 0.001) than CyclinD1 (-) patients. Among patients received CHOP therapy, PFS was significantly longer in CD20 (+) patients (p = 0.011) than in CD20(-) patients. Among the patients treated with R-CHOP therapy, the PFS (p = 0.020) and EFS (p < 0.001) of patients with NCF4 rs1883112 AA/AG genotype were significantly longer than the patients with GG genotype. Patients treated with R-CHOP therapy and with RAC2 rs13058338 AA/AT genotype were more likely to have grade III or higher myelosuppression compared to patients with TT genotype (p = 0.027). Patients treated with CHOP therapy and with RAC2 rs13058338 AA/AT genotype were more likely to have grade III or higher systemic adverse events (p = 0.029). Cox regression analysis showed that NCF4 rs1883112 GG genotype and CyclinD1 (+) were the factors contributing to the poor outcomes in DLBCL patients treated with R-CHOP therapy.In conclusion, the results suggested that the NCF4 rs1883112 G allele may be a poor prognostic biomarker, especially for the DLBCL patients with CD3(-), CD5 (-), CD10 (-), Bcl-2 (+), Bcl-6 (+) or Ki-67(%) < 80%.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Female
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cyclophosphamide/therapeutic use
- Cyclophosphamide/administration & dosage
- Vincristine/therapeutic use
- Vincristine/administration & dosage
- Doxorubicin/therapeutic use
- Doxorubicin/administration & dosage
- Rituximab/therapeutic use
- Rituximab/administration & dosage
- Aged
- Adult
- Prednisone/therapeutic use
- Prednisone/administration & dosage
- NADPH Oxidases/genetics
- Aged, 80 and over
- Immunohistochemistry
- Polymorphism, Single Nucleotide
- Young Adult
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Adolescent
- RAC2 GTP-Binding Protein
- Disease-Free Survival
- Survival Rate
- Prognosis
Collapse
Affiliation(s)
- Chao Chen
- Department of laboratory, Harbin Medical University Cancer Hospital, 150086, Harbin, China
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Quan Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Huiqi Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Shiqi Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Shufan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Wenxin Lin
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
- College of Bioinformatics Science and Technology, Harbin Medical University, 150081, Harbin, China.
| | - Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, 150086, Harbin, China.
| |
Collapse
|
4
|
Rodrigues MJ, Cabry M, Collie G, Carter M, McAndrew C, Owen RL, Bellenie BR, Le Bihan YV, van Montfort RLM. Specific radiation damage to halogenated inhibitors and ligands in protein-ligand crystal structures. J Appl Crystallogr 2024; 57:1951-1965. [PMID: 39628887 PMCID: PMC11611281 DOI: 10.1107/s1600576724010549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Protein-inhibitor crystal structures aid medicinal chemists in efficiently improving the potency and selectivity of small-molecule inhibitors. It is estimated that a quarter of lead molecules in drug discovery projects are halogenated. Protein-inhibitor crystal structures have shed light on the role of halogen atoms in ligand binding. They form halogen bonds with protein atoms and improve shape complementarity of inhibitors with protein binding sites. However, specific radiation damage (SRD) can cause cleavage of carbon-halogen (C-X) bonds during X-ray diffraction data collection. This study shows significant C-X bond cleavage in protein-ligand structures of the therapeutic cancer targets B-cell lymphoma 6 (BCL6) and heat shock protein 72 (HSP72) complexed with halogenated ligands, which is dependent on the type of halogen and chemical structure of the ligand. The study found that metrics used to evaluate the fit of the ligand to the electron density deteriorated with increasing X-ray dose, and that SRD eliminated the anomalous signal from brominated ligands. A point of diminishing returns is identified, where collecting highly redundant data reduces the anomalous signal that may be used to identify binding sites of low-affinity ligands or for experimental phasing. Straightforward steps are proposed to mitigate the effects of C-X bond cleavage on structures of proteins bound to halogenated ligands and to improve the success of anomalous scattering experiments.
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Marc Cabry
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Gavin Collie
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Michael Carter
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Craig McAndrew
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Robin L. Owen
- Diamond Light Source Harwell Science and Innovation Campus DidcotOX11 0DEUnited Kingdom
| | - Benjamin R. Bellenie
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
| | - Yann-Vaï Le Bihan
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| | - Rob L. M. van Montfort
- Centre for Cancer Drug DiscoveryThe Institute of Cancer Research15 Cotswold RoadSuttonLondonSM2 5NGUnited Kingdom
- Division of Structural BiologyThe Institute of Cancer ResearchLondonSW3 6JBUnited Kingdom
| |
Collapse
|
5
|
Myers CG, Viswambharan H, Haywood NJ, Bridge K, Turvey S, Armstrong T, Lunn L, Meakin PJ, Porter KE, Clavane EM, Beech DJ, Cubbon RM, Wheatcroft SB, McPhillie MJ, Issad T, Fishwick CW, Kearney MT, Simmons KJ. Small molecule modulation of insulin receptor-insulin like growth factor-1 receptor heterodimers in human endothelial cells. Mol Cell Endocrinol 2024; 594:112387. [PMID: 39419341 DOI: 10.1016/j.mce.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES The insulin receptor (IR) and insulin like growth factor-1 receptor (IGF-1R) are heterodimers consisting of two extracellular α-subunits and two transmembrane β -subunits. Insulin αβ and insulin like growth factor-1 αβ hemi-receptors can heterodimerize to form hybrids composed of one IR αβ and one IGF-1R αβ. The function of hybrids in the endothelium is unclear. We sought insight by developing a small molecule capable of reducing hybrid formation in endothelial cells. METHODS We performed a high-throughput small molecule screening, based on a homology model of the apo hybrid structure. Endothelial cells were studied using western blotting and qPCR to determine the effects of small molecules that reduced hybrid formation. RESULTS Our studies unveil a first-in-class quinoline-containing heterocyclic small molecule that reduces hybrids by >50% in human umbilical vein endothelial cells (HUVECs) with no effects on IR or IGF-1R. This small molecule reduced expression of the negative regulatory p85α subunit of phosphatidylinositol 3-kinase, increased basal phosphorylation of the downstream target Akt and enhanced insulin/insulin-like growth factor-1 and shear stress-induced serine phosphorylation of Akt. In primary saphenous vein endothelial cells (SVEC) from patients with type 2 diabetes mellitus undergoing coronary artery bypass (CABG) surgery, hybrid receptor expression was greater than in patients without type 2 diabetes mellitus. The small molecule significantly reduced hybrid expression in SVEC from patients with type 2 diabetes mellitus. CONCLUSIONS We identified a small molecule that decreases the formation of IR: IGF-1R hybrid receptors in human endothelial cells, without significant impact on the overall expression of IR or IGF-1R. In HUVECs, reduction of IR: IGF-1R hybrid receptors leads to an increase in insulin-induced serine phosphorylation of the critical downstream signalling kinase, Akt. The underpinning mechanism appears, at least in part to involve the attenuation of the inhibitory effect of IR: IGF-1R hybrid receptors on PI3-kinase signalling.
Collapse
Affiliation(s)
- Chloe G Myers
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Samuel Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Armstrong
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Lydia Lunn
- Department of Chemistry University of Leeds, Leeds, United Kingdom
| | - Paul J Meakin
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva M Clavane
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Tarik Issad
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom.
| | - Katie J Simmons
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, United Kingdom
| |
Collapse
|
6
|
Mi D, Li C, Li Y, Yao M, Li Y, Hong K, Xie C, Chen Y. Discovery of novel BCL6-Targeting PROTACs with effective antitumor activities against DLBCL in vitro and in vivo. Eur J Med Chem 2024; 277:116789. [PMID: 39208743 DOI: 10.1016/j.ejmech.2024.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The transcriptional repressor B cell lymphoma 6 (BCL6) plays a critical role in driving tumorigenesis of diffuse large B-cell lymphoma (DLBCL). However, the therapeutic potential of inhibiting or degrading BCL6 for DLBCL has not been thoroughly understood. Herein, we reported the discovery of a series of novel BCL6-targeting PROTACs based on our previously reported N-phenyl-4-pyrimidinamine BCL6 inhibitors. The optimal compound DZ-837 degraded BCL6 with DC50 values around 600 nM and effectively inhibited the proliferation of several DLBCL cell lines. Further study indicated that DZ-837 induced significant G1 phase arrest and exhibited sustained reactivation of BCL6 downstream genes. In the SU-DHL-4 xenograft model, DZ-837 significantly inhibited tumor growth with TGI of 71.8 % at 40 mg/kg once daily. Furthermore, the combination of DZ-837 with BTK inhibitor Ibrutinib showed synergistic effects and overcame acquired resistance against DLBCL cells. Overall, our findings demonstrate that DZ-837 is an effective BCL6 degrader for DLBCL treatment as a monotherapy or in combination with Ibrutinib.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Animals
- Cell Proliferation/drug effects
- Mice
- Structure-Activity Relationship
- Drug Discovery
- Drug Screening Assays, Antitumor
- Molecular Structure
- Dose-Response Relationship, Drug
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Proteolysis Targeting Chimera
Collapse
Affiliation(s)
- Dazhao Mi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuzhan Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | | | - Yan Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Keyu Hong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China.
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunna, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
7
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
8
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 PMCID: PMC11629774 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman Sarott
- Department of Chemical and Systems Biology, Stanford University
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University
| | - Basel Karim
- Department of Chemistry, Stanford University
| | | | - Haopeng Yang
- Department of Lymphoma-Myeloma, MD Anderson Cancer Center
| | | | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Gerald R. Crabtree
- Department of Pathology, Stanford University
- Department Developmental Biology, Stanford University
| | | |
Collapse
|
9
|
Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: Progressing toward a new dream. Cell Chem Biol 2024; 31:1064-1088. [PMID: 38701786 PMCID: PMC11193649 DOI: 10.1016/j.chembiol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The modulation of protein-protein interactions with small molecules is one of the most rapidly developing areas in drug discovery. In this review, we discuss advances over the past decade (2014-2023) focusing on molecular glues (MGs)-monovalent small molecules that induce proximity, either by stabilizing native interactions or by inducing neomorphic interactions. We include both serendipitous and rational discoveries and describe the different approaches that were used to identify them. We classify the compounds in three main categories: degradative MGs, non-degradative MGs or PPI stabilizers, and MGs that induce self-association. Diverse, illustrative examples with structural data are described in detail, emphasizing the elements of molecular recognition and cooperative binding at the interface that are fundamental for a MG mechanism of action.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Lemaitre T, Cornu M, Schwalen F, Since M, Kieffer C, Voisin-Chiret AS. Molecular glue degraders: exciting opportunities for novel drug discovery. Expert Opin Drug Discov 2024; 19:433-449. [PMID: 38240114 DOI: 10.1080/17460441.2024.2306845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Molecular Glue Degraders (MGDs) is a concept that refers to a class of compounds that facilitate the interaction between two proteins or molecules within a cell. These compounds act as bridge that enhances specific Protein-Protein Interactions (PPIs). Over the past decade, this technology has gained attention as a potential strategy to target proteins that were traditionally considered undruggable using small molecules. AREAS COVERED This review presents the concept of cellular homeostasis and the balance between protein synthesis and protein degradation. The concept of protein degradation is concerned with molecular glues, which form part of the broader field of Targeted Protein Degradation (TPD). Next, pharmacochemical strategies for the rational design of MGDs are detailed and illustrated by examples of Ligand-Based (LBDD), Structure-Based (SBDD) and Fragment-Based Drug Design (FBDD). EXPERT OPINION Expanding the scope of what can be effectively targeted in the development of treatments for diseases that are incurable or resistant to conventional therapies offers new therapeutic options. The treatment of microbial infections and neurodegenerative diseases is a major societal challenge, and the discovery of MGDs appears to be a promising avenue. Combining different approaches to discover and exploit a variety of innovative therapeutic agents will create opportunities to treat diseases that are still incurable.
Collapse
Affiliation(s)
| | - Marie Cornu
- Normandie University, UNICAEN, CERMN, Caen, France
| | - Florian Schwalen
- Normandie University, UNICAEN, CERMN, Caen, France
- Department of Pharmacy, Caen University Hospital, Caen, France
| | - Marc Since
- Normandie University, UNICAEN, CERMN, Caen, France
| | | | | |
Collapse
|
11
|
Thomas K, Bouguenina H, Miller DSJ, Sialana FJ, Hayhow TG, Choudhary JS, Rossanese OW, Bellenie BR. Degradation by Design: New Cyclin K Degraders from Old CDK Inhibitors. ACS Chem Biol 2024; 19:173-184. [PMID: 38193430 PMCID: PMC10804372 DOI: 10.1021/acschembio.3c00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Small molecules that induce protein degradation hold the potential to overcome several limitations of the currently available inhibitors. Monovalent or molecular glue degraders, in particular, enable the benefits of protein degradation without the disadvantages of high molecular weight and the resulting challenge in drug development that are associated with bivalent molecules like Proteolysis Targeting Chimeras. One key challenge in designing monovalent degraders is how to build in the degrader activity─how can we convert an inhibitor into a degrader? If degradation activity requires very specific molecular features, it will be difficult to find new degraders and challenging to optimize those degraders toward drugs. Herein, we demonstrate that an unexpectedly wide range of modifications to the degradation-inducing group of the cyclin K degrader CR8 are tolerated, including both aromatic and nonaromatic groups. We used these findings to convert the pan-CDK inhibitors dinaciclib and AT-7519 to Cyclin K degraders, leading to a novel dinaciclib-based compound with improved degradation activity compared to CR8 and confirm the mechanism of degradation. These results suggest that general design principles can be generated for the development and optimization of monovalent degraders.
Collapse
Affiliation(s)
- Katie
L. Thomas
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Habib Bouguenina
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Daniel S. J. Miller
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Fernando J. Sialana
- Functional
Proteomics Group, The Institute of Cancer
Research, London SW3 6JB, U.K.
| | - Thomas G. Hayhow
- Oncology
R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, U.K.
| | - Jyoti S. Choudhary
- Functional
Proteomics Group, The Institute of Cancer
Research, London SW3 6JB, U.K.
| | - Olivia W. Rossanese
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Benjamin R. Bellenie
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
12
|
Wu M, Xie J, Xing Y, Zhang L, Chen H, Tang B, Zhou M, Lv S, Huang D, Jian S, Zhou C, Liu M, Guo W, Chen Y, Yi Z. Selectively targeting BCL6 using a small molecule inhibitor is a potential therapeutic strategy for ovarian cancer. Int J Biol Sci 2024; 20:486-501. [PMID: 38169532 PMCID: PMC10758095 DOI: 10.7150/ijbs.86303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian cancer is one of the tumors with the highest fatality rate among gynecological tumors. The current 5-year survival rate of ovarian cancer is <35%. Therefore, more novel alternative strategies and drugs are needed to treat ovarian cancer. The transcription factor B-cell lymphoma 6 (BCL6) is critically associated with poor prognosis and cisplatin resistance in ovarian cancer treatment. Therefore, BCL6 may be an attractive therapeutic target for ovarian cancer. However, the role of targeting BCL6 in ovarian cancer remains elusive. Here, we developed a novel BCL6 small molecule inhibitor, WK369, which exhibits excellent anti-ovarian cancer bioactivity, induces cell cycle arrest and causes apoptosis. WK369 effectively inhibits the growth and metastasis of ovarian cancer without obvious toxicity in vitro and in vivo. meanwhile, WK369 can prolong the survival of ovarian cancer-bearing mice. It is worth noting that WK369 also has significant anti-tumor effects on cisplatin-resistant ovarian cancer cell lines. Mechanistic studies have shown that WK369 can directly bind to the BCL6-BTB domain and block the interaction between BCL6 and SMRT, leading to the reactivation of p53, ATR and CDKN1A. BCL6-AKT, BCL6-MEK/ERK crosstalk is suppressed. As a first attempt, our study demonstrates that targeting BCL6 may be an effective approach to treat ovarian cancer and that WK369 has the potential to be used as a candidate therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Min Wu
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Jiuqing Xie
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Yajing Xing
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Lin Zhang
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Huang Chen
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Bin Tang
- Department of Gynecology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Miaoran Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyi Lv
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Dongxia Huang
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Shuyi Jian
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Cili Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mingyao Liu
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Weikai Guo
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Yihua Chen
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| | - Zhengfang Yi
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai 200241, China
| |
Collapse
|
13
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Borrowing Transcriptional Kinases to Activate Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563687. [PMID: 37961702 PMCID: PMC10634765 DOI: 10.1101/2023.10.23.563687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protein kinases are disease drivers whose therapeutic targeting traditionally centers on inhibition of enzymatic activity. Here chemically induced proximity is leveraged to convert kinase inhibitors into context-specific activators of therapeutic genes. Bivalent molecules that link ligands of the transcription factor B-cell lymphoma 6 (BCL6) to ATP-competitive inhibitors of cyclin-dependent kinases (CDKs) were developed to re-localize CDK to BCL6-bound loci on chromatin and direct phosphorylation of RNA Pol II. The resulting BCL6-target proapoptotic gene expression translated into killing of diffuse large B-cell lymphoma (DLBCL) cells at 72 h with EC50s of 0.9 - 10 nM and highly specific ablation of the BCL6-regulated germinal center response in mice. The molecules exhibited 10,000-fold lower cytotoxicity in normal lymphocytes and are well tolerated in mice. Genomic and proteomic evidence corroborated a gain-of-function mechanism where, instead of global enzyme inhibition, a fraction of total kinase activity is borrowed and re-localized to BCL6-bound loci. The strategy demonstrates how kinase inhibitors can be used to context-specifically activate transcription, accessing new therapeutic space.
Collapse
|
14
|
Liu M, Mirza A, McAndrew PC, Thapaliya A, Pierrat OA, Stubbs M, Hahner T, Chessum NEA, Innocenti P, Caldwell J, Cheeseman MD, Bellenie BR, van Montfort RLM, Newton GK, Burke R, Collins I, Hoelder S. Determination of Ligand-Binding Affinity ( Kd) Using Transverse Relaxation Rate ( R2) in the Ligand-Observed 1H NMR Experiment and Applications to Fragment-Based Drug Discovery. J Med Chem 2023; 66:10617-10627. [PMID: 37467168 PMCID: PMC10424183 DOI: 10.1021/acs.jmedchem.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 07/21/2023]
Abstract
High hit rates from initial ligand-observed NMR screening can make it challenging to prioritize which hits to follow up, especially in cases where there are no available crystal structures of these hits bound to the target proteins or other strategies to provide affinity ranking. Here, we report a reproducible, accurate, and versatile quantitative ligand-observed NMR assay, which can determine Kd values of fragments in the affinity range of low μM to low mM using transverse relaxation rate R2 as the observable parameter. In this study, we examined the theory and proposed a mathematical formulation to obtain Kd values using non-linear regression analysis. We designed an assay format with automated sample preparation and simplified data analysis. Using tool compounds, we explored the assay reproducibility, accuracy, and detection limits. Finally, we used this assay to triage fragment hits, yielded from fragment screening against the CRBN/DDB1 complex.
Collapse
Affiliation(s)
- Manjuan Liu
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Amin Mirza
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - P. Craig McAndrew
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Arjun Thapaliya
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Olivier A. Pierrat
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Mark Stubbs
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Tamas Hahner
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Nicola E. A. Chessum
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Paolo Innocenti
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - John Caldwell
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Matthew D. Cheeseman
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Benjamin R. Bellenie
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Rob L. M. van Montfort
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K.
| | - Gary K. Newton
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Ian Collins
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| | - Swen Hoelder
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
15
|
Gourisankar S, Krokhotin A, Ji W, Liu X, Chang CY, Kim SH, Li Z, Wenderski W, Simanauskaite JM, Yang H, Vogel H, Zhang T, Green MR, Gray NS, Crabtree GR. Rewiring cancer drivers to activate apoptosis. Nature 2023; 620:417-425. [PMID: 37495688 DOI: 10.1038/s41586-023-06348-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Genes that drive the proliferation, survival, invasion and metastasis of malignant cells have been identified for many human cancers1-4. Independent studies have identified cell death pathways that eliminate cells for the good of the organism5,6. The coexistence of cell death pathways with driver mutations suggests that the cancer driver could be rewired to activate cell death using chemical inducers of proximity (CIPs). Here we describe a new class of molecules called transcriptional/epigenetic CIPs (TCIPs) that recruit the endogenous cancer driver, or a downstream transcription factor, to the promoters of cell death genes, thereby activating their expression. We focused on diffuse large B cell lymphoma, in which the transcription factor B cell lymphoma 6 (BCL6) is deregulated7. BCL6 binds to the promoters of cell death genes and epigenetically suppresses their expression8. We produced TCIPs by covalently linking small molecules that bind BCL6 to those that bind to transcriptional activators that contribute to the oncogenic program, such as BRD4. The most potent molecule, TCIP1, increases binding of BRD4 by 50% over genomic BCL6-binding sites to produce transcriptional elongation at pro-apoptotic target genes within 15 min, while reducing binding of BRD4 over enhancers by only 10%, reflecting a gain-of-function mechanism. TCIP1 kills diffuse large B cell lymphoma cell lines, including chemotherapy-resistant, TP53-mutant lines, at EC50 of 1-10 nM in 72 h and exhibits cell-specific and tissue-specific effects, capturing the combinatorial specificity inherent to transcription. The TCIP concept also has therapeutic applications in regulating the expression of genes for regenerative medicine and developmental disorders.
Collapse
MESH Headings
- Humans
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-bcl-6/metabolism
- Transcription Factors/metabolism
- Epigenesis, Genetic/drug effects
- Promoter Regions, Genetic
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Wenzhi Ji
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Xiaofan Liu
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Samuel H Kim
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Zhengnian Li
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | | - Haopeng Yang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford Cancer Institute, ChEM-H, Stanford University, Stanford, CA, USA.
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Hong D, Lee K. Polymorphic structures of 3-phenyl-1 H-1,3-benzo-diazol-2(3 H)-one. Acta Crystallogr E Crystallogr Commun 2023; 79:534-537. [PMID: 37288468 PMCID: PMC10242737 DOI: 10.1107/s2056989023003961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
The polymorphic structures (I and II) of 3-phenyl-1H-1,3-benzo-diazol-2(3H)-one, C13H10N2O, acquired from pentane diffusion into the solution in THF, are reported. The structures show negligible differences in bond distances and angles, but the C-N-C-C torsion angles between the backbone and the phenyl substituent, 123.02 (15)° for I and 137.18 (11)° for II, are different. Compound I features a stronger C=O⋯H-N hydrogen bond than that in II, while the structure of II exhibits a stronger π-π inter-action than in I, as confirmed by the shorter inter-centroid distance [3.3257 (8) Å in II in comparison to 3.6862 (7) Å in I]. Overall, the supra-molecular inter-actions of I and II are distinct, presumably originating from the variation in the dihedral angle.
Collapse
Affiliation(s)
- Dabeen Hong
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| | - Kyounghoon Lee
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| |
Collapse
|
17
|
Harnden A, Davis OA, Box GM, Hayes A, Johnson LD, Henley AT, de Haven Brandon AK, Valenti M, Cheung KMJ, Brennan A, Huckvale R, Pierrat OA, Talbot R, Bright MD, Akpinar HA, Miller DSJ, Tarantino D, Gowan S, de Klerk S, McAndrew PC, Le Bihan YV, Meniconi M, Burke R, Kirkin V, van Montfort RLM, Raynaud FI, Rossanese OW, Bellenie BR, Hoelder S. Discovery of an In Vivo Chemical Probe for BCL6 Inhibition by Optimization of Tricyclic Quinolinones. J Med Chem 2023; 66:5892-5906. [PMID: 37026591 PMCID: PMC10150366 DOI: 10.1021/acs.jmedchem.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 04/08/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a transcriptional repressor and oncogenic driver of diffuse large B-cell lymphoma (DLBCL). Here, we report the optimization of our previously reported tricyclic quinolinone series for the inhibition of BCL6. We sought to improve the cellular potency and in vivo exposure of the non-degrading isomer, CCT373567, of our recently published degrader, CCT373566. The major limitation of our inhibitors was their high topological polar surface areas (TPSA), leading to increased efflux ratios. Reducing the molecular weight allowed us to remove polarity and decrease TPSA without considerably reducing solubility. Careful optimization of these properties, as guided by pharmacokinetic studies, led to the discovery of CCT374705, a potent inhibitor of BCL6 with a good in vivo profile. Modest in vivo efficacy was achieved in a lymphoma xenograft mouse model after oral dosing.
Collapse
Affiliation(s)
- Alice
C. Harnden
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Owen A. Davis
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Gary M. Box
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Angela Hayes
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Louise D. Johnson
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alan T. Henley
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alexis K. de Haven Brandon
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Melanie Valenti
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Kwai-Ming J. Cheung
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alfie Brennan
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Huckvale
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivier A. Pierrat
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rachel Talbot
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Michael D. Bright
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Hafize Aysin Akpinar
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Daniel S. J. Miller
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Dalia Tarantino
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Sharon Gowan
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Selby de Klerk
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Peter Craig McAndrew
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Yann-Vaï Le Bihan
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Mirco Meniconi
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Vladimir Kirkin
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rob L. M. van Montfort
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Florence I. Raynaud
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivia W. Rossanese
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Benjamin R. Bellenie
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Swen Hoelder
- Centre
for Cancer Drug Discovery and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
18
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
19
|
Mamai A, Chau AM, Wilson BJ, Watson ID, Joseph BB, Subramanian PR, Morshed MM, Morin JA, Prakesch MA, Lu T, Connolly P, Kuntz DA, Pomroy NC, Poda G, Nguyen K, Marcellus R, Strathdee G, Theriault B, Subramaniam R, Mohammed M, Abibi A, Chan M, Winston J, Kiyota T, Undzys E, Aman A, Austin N, Du Jardin M, Packman K, Phillippar U, Attar R, Edwards J, O’Meara J, Uehling DE, Al-awar R, Privé GG, Isaac MB. Discovery of OICR12694: A Novel, Potent, Selective, and Orally Bioavailable BCL6 BTB Inhibitor. ACS Med Chem Lett 2023; 14:199-210. [PMID: 36793435 PMCID: PMC9923840 DOI: 10.1021/acsmedchemlett.2c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.
Collapse
Affiliation(s)
- Ahmed Mamai
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Anh M. Chau
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Brian J. Wilson
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Iain D. Watson
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Babu B. Joseph
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Pandiaraju R. Subramanian
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Monzur M. Morshed
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Justin A. Morin
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Michael A. Prakesch
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Tianbao Lu
- Janssen
Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania19477, United States
| | - Pete Connolly
- Janssen
Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania19477, United States
| | - Douglas A. Kuntz
- Princess
Margaret Cancer Centre, Toronto, OntarioM5G 2C1, Canada
| | - Neil C. Pomroy
- Princess
Margaret Cancer Centre, Toronto, OntarioM5G 2C1, Canada
| | - Gennady Poda
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, OntarioM5S 3M2, Canada
| | - Kong Nguyen
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Richard Marcellus
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Graig Strathdee
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Brigitte Theriault
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Ratheesh Subramaniam
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Mohammed Mohammed
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Ayome Abibi
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Manuel Chan
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Jeffrey Winston
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Taira Kiyota
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Elijus Undzys
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Ahmed Aman
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, OntarioM5S 3M2, Canada
| | - Nigel Austin
- Janssen
Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania19477, United States
| | - Marc Du Jardin
- Janssen
Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania19477, United States
| | - Kathryn Packman
- Janssen
Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania19477, United States
| | - Ulrike Phillippar
- Janssen
Research & Development, Turnhoutseweg 30, B-2340Beerse, Belgium
| | - Riccardo Attar
- Janssen
Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania19477, United States
| | - James Edwards
- Janssen
Research & Development, LLC, 1400 McKean Road, Spring
House, Pennsylvania19477, United States
| | - Jeff O’Meara
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - David E. Uehling
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| | - Rima Al-awar
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
- Department
of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gilbert G. Privé
- Princess
Margaret Cancer Centre, Toronto, OntarioM5G 2C1, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto, OntarioM5G 1L7, Canada
- Department
of Biochemistry, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Methvin B. Isaac
- Drug
Discovery Program, Ontario Institute for
Cancer Research, 661 University Avenue, Suite 510, Toronto, OntarioM5G 0A3, Canada
| |
Collapse
|
20
|
Bonchuk A, Balagurov K, Georgiev P. BTB domains: A structural view of evolution, multimerization, and protein-protein interactions. Bioessays 2023; 45:e2200179. [PMID: 36449605 DOI: 10.1002/bies.202200179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Broad-complex, Tramtrack, and Bric-à-brac/poxvirus and zinc finger (BTB/POZ) is a conserved domain found in many eukaryotic proteins with diverse cellular functions. Recent studies revealed its importance in multiple developmental processes as well as in the onset and progression of oncological diseases. Most BTB domains can form multimers and selectively interact with non-BTB proteins. Structural studies of BTB domains delineated the presence of different interfaces involved in various interactions mediated by BTBs and provided a basis for the specific inhibition of distinct protein-interaction interfaces. BTB domains originated early in eukaryotic evolution and progressively adapted their structural elements to perform distinct functions. In this review, we summarize and discuss the structural principles of protein-protein interactions mediated by BTB domains based on the recently published structural data and advances in protein modeling. We propose an update to the structure-based classification of BTB domain families and discuss their evolutionary interconnections.
Collapse
Affiliation(s)
- Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Balagurov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Gu H, He J, Li Y, Mi D, Guan T, Guo W, Liu B, Chen Y. B-cell Lymphoma 6 Inhibitors: Current Advances and Prospects of Drug Development for Diffuse Large B-cell Lymphomas. J Med Chem 2022; 65:15559-15583. [PMID: 36441945 DOI: 10.1021/acs.jmedchem.2c01433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-cell lymphoma 6 (BCL6) is a transcriptional repressor that regulates the differentiation of B lymphocytes and mediates the formation of germinal centers (GCs) by recruiting corepressors through the BTB domain of BCL6. Physiological processes regulated by BCL6 involve cell activation, differentiation, DNA damage, and apoptosis. BCL6 is highly expressed when the gene is mutated, leading to the malignant proliferation of cells and drives tumorigenesis. BCL6 overexpression is closely correlated with tumorigenesis in diffuse large B-cell lymphoma (DLBCL) and other lymphomas, and BCL6 inhibitors can effectively inhibit some lymphomas and overcome resistance. Therefore, targeting BCL6 might be a promising therapeutic strategy for treating lymphomas. Herein, we comprehensively review the latest development of BCL6 inhibitors in diffuse large B-cell lymphoma and discuss the overview of the pharmacophores of BCL6 inhibitors and their efficacies in vitro and in vivo. Additionally, the current advances in BCL6 degraders are provided.
Collapse
Affiliation(s)
- Haijun Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022; 23:15440. [PMID: 36499765 PMCID: PMC9741350 DOI: 10.3390/ijms232315440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The field of targeted protein degradation (TPD) is a rapidly developing therapeutic modality with the promise to tame disease-relevant proteins in ways that are difficult or impossible to tackle with other strategies. While we move into the third decade of TPD, multiple degrader drugs have entered the stage of the clinic and many more are expected to follow. In this review, we provide an update on the most recent advances in the field of targeted degradation with insights into possible clinical implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Pierrat OA, Liu M, Collie GW, Shetty K, Rodrigues MJ, Le Bihan YV, Gunnell EA, McAndrew PC, Stubbs M, Rowlands MG, Yahya N, Shehu E, Talbot R, Pickard L, Bellenie BR, Cheung KMJ, Drouin L, Innocenti P, Woodward H, Davis OA, Lloyd MG, Varela A, Huckvale R, Broccatelli F, Carter M, Galiwango D, Hayes A, Raynaud FI, Bryant C, Whittaker S, Rossanese OW, Hoelder S, Burke R, van Montfort RLM. Discovering cell-active BCL6 inhibitors: effectively combining biochemical HTS with multiple biophysical techniques, X-ray crystallography and cell-based assays. Sci Rep 2022; 12:18633. [PMID: 36329085 PMCID: PMC9633773 DOI: 10.1038/s41598-022-23264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
By suppressing gene transcription through the recruitment of corepressor proteins, B-cell lymphoma 6 (BCL6) protein controls a transcriptional network required for the formation and maintenance of B-cell germinal centres. As BCL6 deregulation is implicated in the development of Diffuse Large B-Cell Lymphoma, we sought to discover novel small molecule inhibitors that disrupt the BCL6-corepressor protein-protein interaction (PPI). Here we report our hit finding and compound optimisation strategies, which provide insight into the multi-faceted orthogonal approaches that are needed to tackle this challenging PPI with small molecule inhibitors. Using a 1536-well plate fluorescence polarisation high throughput screen we identified multiple hit series, which were followed up by hit confirmation using a thermal shift assay, surface plasmon resonance and ligand-observed NMR. We determined X-ray structures of BCL6 bound to compounds from nine different series, enabling a structure-based drug design approach to improve their weak biochemical potency. We developed a time-resolved fluorescence energy transfer biochemical assay and a nano bioluminescence resonance energy transfer cellular assay to monitor cellular activity during compound optimisation. This workflow led to the discovery of novel inhibitors with respective biochemical and cellular potencies (IC50s) in the sub-micromolar and low micromolar range.
Collapse
Affiliation(s)
- Olivier A Pierrat
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Manjuan Liu
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Gavin W Collie
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Kartika Shetty
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Matthew J Rodrigues
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Yann-Vaï Le Bihan
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Emma A Gunnell
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - P Craig McAndrew
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Mark Stubbs
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Martin G Rowlands
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Norhakim Yahya
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Erald Shehu
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rachel Talbot
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Lisa Pickard
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Benjamin R Bellenie
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Kwai-Ming J Cheung
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ludovic Drouin
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Paolo Innocenti
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Hannah Woodward
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Owen A Davis
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Matthew G Lloyd
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ana Varela
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rosemary Huckvale
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Fabio Broccatelli
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Michael Carter
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - David Galiwango
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Angela Hayes
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Florence I Raynaud
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Christopher Bryant
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Steven Whittaker
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Olivia W Rossanese
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Swen Hoelder
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rosemary Burke
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rob L M van Montfort
- Division of Cancer Therapeutics, Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK.
- Division of Structural Biology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
24
|
Wolska-Washer A, Smolewski P. Targeting Protein Degradation Pathways in Tumors: Focusing on their Role in Hematological Malignancies. Cancers (Basel) 2022; 14:3778. [PMID: 35954440 PMCID: PMC9367439 DOI: 10.3390/cancers14153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Cells must maintain their proteome homeostasis by balancing protein synthesis and degradation. This is facilitated by evolutionarily-conserved processes, including the unfolded protein response and the proteasome-based system of protein clearance, autophagy, and chaperone-mediated autophagy. In some hematological malignancies, including acute myeloid leukemia, misfolding or aggregation of the wild-type p53 tumor-suppressor renders cells unable to undergo apoptosis, even with an intact p53 DNA sequence. Moreover, blocking the proteasome pathway triggers lymphoma cell apoptosis. Extensive studies have led to the development of proteasome inhibitors, which have advanced into drugs (such as bortezomib) used in the treatment of certain hematological tumors, including multiple myeloma. New therapeutic options have been studied making use of the so-called proteolysis-targeting chimeras (PROTACs), that bind desired proteins with a linker that connects them to an E3 ubiquitin ligase, resulting in proteasomal-targeted degradation. This review examines the mechanisms of protein degradation in the cells of the hematopoietic system, explains the role of dysfunctional protein degradation in the pathogenesis of hematological malignancies, and discusses the current and future advances of therapies targeting these pathways, based on an extensive search of the articles and conference proceedings from 2005 to April 2022.
Collapse
Affiliation(s)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| |
Collapse
|
25
|
Sasso J, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2022; 62:601-623. [PMID: 35856839 PMCID: PMC9910052 DOI: 10.1021/acs.biochem.2c00245] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted protein degradation is a rapidly exploding drug discovery strategy that uses small molecules to recruit disease-causing proteins for rapid destruction mainly via the ubiquitin-proteasome pathway. It shows great potential for treating diseases such as cancer and infectious, inflammatory, and neurodegenerative diseases, especially for those with "undruggable" pathogenic protein targets. With the recent rise of the "molecular glue" type of protein degraders, which tighten and simplify the connection of an E3 ligase with a disease-causing protein for ubiquitination and subsequent degradation, new therapies for unmet medical needs are being designed and developed. Here we use data from the CAS Content Collection and the publication landscape of recent research on targeted protein degraders to provide insights into these molecules, with a special focus on molecular glues. We also outline the advantages of the molecular glues and summarize the advances in drug discovery practices for molecular glue degraders. We further provide a thorough review of drug candidates in targeted protein degradation through E3 ligase recruitment. Finally, we highlight the progression of molecular glues in drug discovery pipelines and their targeted diseases. Overall, our paper provides a comprehensive reference to support the future development of molecular glues in medicine.
Collapse
|
26
|
Davis OA, Cheung KMJ, Brennan A, Lloyd MG, Rodrigues MJ, Pierrat OA, Collie GW, Le Bihan YV, Huckvale R, Harnden AC, Varela A, Bright MD, Eve P, Hayes A, Henley AT, Carter MD, McAndrew PC, Talbot R, Burke R, van Montfort RLM, Raynaud FI, Rossanese OW, Meniconi M, Bellenie BR, Hoelder S. Optimizing Shape Complementarity Enables the Discovery of Potent Tricyclic BCL6 Inhibitors. J Med Chem 2022; 65:8169-8190. [PMID: 35657291 PMCID: PMC9234963 DOI: 10.1021/acs.jmedchem.1c02174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/30/2022]
Abstract
To identify new chemical series with enhanced binding affinity to the BTB domain of B-cell lymphoma 6 protein, we targeted a subpocket adjacent to Val18. With no opportunities for strong polar interactions, we focused on attaining close shape complementarity by ring fusion onto our quinolinone lead series. Following exploration of different sized rings, we identified a conformationally restricted core which optimally filled the available space, leading to potent BCL6 inhibitors. Through X-ray structure-guided design, combined with efficient synthetic chemistry to make the resulting novel core structures, a >300-fold improvement in activity was obtained by the addition of seven heavy atoms.
Collapse
Affiliation(s)
- Owen A. Davis
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Kwai-Ming J. Cheung
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Alfie Brennan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Matthew G. Lloyd
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Matthew J. Rodrigues
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K..
| | - Olivier A. Pierrat
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Gavin W. Collie
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K..
| | - Yann-Vaï Le Bihan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K..
| | - Rosemary Huckvale
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Alice C. Harnden
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Ana Varela
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Michael D. Bright
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Paul Eve
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Michael D. Carter
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - P. Craig McAndrew
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Rachel Talbot
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K..
| | - Florence I. Raynaud
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Olivia W. Rossanese
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Mirco Meniconi
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Benjamin R. Bellenie
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| | - Swen Hoelder
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K..
| |
Collapse
|
27
|
Huckvale R, Harnden AC, Cheung KMJ, Pierrat OA, Talbot R, Box GM, Henley AT, de Haven Brandon AK, Hallsworth AE, Bright MD, Akpinar HA, Miller DSJ, Tarantino D, Gowan S, Hayes A, Gunnell EA, Brennan A, Davis OA, Johnson LD, de Klerk S, McAndrew C, Le Bihan YV, Meniconi M, Burke R, Kirkin V, van Montfort RLM, Raynaud FI, Rossanese OW, Bellenie BR, Hoelder S. Improved Binding Affinity and Pharmacokinetics Enable Sustained Degradation of BCL6 In Vivo. J Med Chem 2022; 65:8191-8207. [PMID: 35653645 PMCID: PMC9234961 DOI: 10.1021/acs.jmedchem.1c02175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/30/2022]
Abstract
The transcriptional repressor BCL6 is an oncogenic driver found to be deregulated in lymphoid malignancies. Herein, we report the optimization of our previously reported benzimidazolone molecular glue-type degrader CCT369260 to CCT373566, a highly potent probe suitable for sustained depletion of BCL6 in vivo. We observed a sharp degradation SAR, where subtle structural changes conveyed the ability to induce degradation of BCL6. CCT373566 showed modest in vivo efficacy in a lymphoma xenograft mouse model following oral dosing.
Collapse
Affiliation(s)
- Rosemary Huckvale
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alice C. Harnden
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Kwai-Ming J. Cheung
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivier A. Pierrat
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rachel Talbot
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Gary M. Box
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | | | - Albert E. Hallsworth
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Michael D. Bright
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Hafize Aysin Akpinar
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Daniel S. J. Miller
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Dalia Tarantino
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Sharon Gowan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Emma A. Gunnell
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K.
| | - Alfie Brennan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Owen A. Davis
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Louise D. Johnson
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Selby de Klerk
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Craig McAndrew
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Yann-Vaï Le Bihan
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K.
| | - Mirco Meniconi
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Vladimir Kirkin
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
- Division
of Structural Biology, The Institute of
Cancer Research, London SM2 5NG, U.K.
| | - Florence I. Raynaud
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivia W. Rossanese
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Benjamin R. Bellenie
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Swen Hoelder
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
28
|
Domostegui A, Nieto-Barrado L, Perez-Lopez C, Mayor-Ruiz C. Chasing molecular glue degraders: screening approaches. Chem Soc Rev 2022; 51:5498-5517. [PMID: 35723413 DOI: 10.1039/d2cs00197g] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein-protein interactions (PPIs) govern all biological processes. Some small molecules modulate PPIs through induced protein proximity. In particular, molecular glue degraders are monovalent compounds that orchestrate interactions between a target protein and an E3 ubiquitin ligase, prompting the proteasomal degradation of the former. This and other pharmacological strategies of targeted protein degradation (e.g. proteolysis-targeting chimeras - PROTACs) overcome some limitations of traditional occupancy-based therapeutics. Here, we provide an overview of the "molecular glue" concept, with a special focus on natural and synthetic inducers of proximity to E3s. We then briefly highlight the serendipitous discoveries of some clinical and preclinical molecular glue degraders, and discuss the first examples of intentional discoveries. Specifically, we outline the different screening strategies reported in this rapidly evolving arena and our thoughts on future perspectives. By mastering the ability to influence PPIs, molecular glue degraders can induce the degradation of unligandable proteins, thus providing an exciting path forward to broaden the targetable proteome.
Collapse
Affiliation(s)
- Ana Domostegui
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Luis Nieto-Barrado
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Carles Perez-Lopez
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Cristina Mayor-Ruiz
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
29
|
Philip BM, John JS, V S, Kuruvilla TK, Paulose TAP, Sajan D. Vibrational spectra and molecular docking studies of bergapten isolated from Melicopedenhamii leaves as anti-breast cancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Fischer ES, Jones LH. Small molecule modulation of protein polymerization. Chem Soc Rev 2022; 51:2392-2396. [PMID: 35266488 DOI: 10.1039/d2cs00070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of protein surface physicochemistry through single point mutations can trigger polymerization, which is facilitated by subunit repetition within a homomeric complex. Furthermore, monogenic disorders may result from aberrant supramolecular assemblies caused by missense mutations that modify the protein surface. Noteworthy from a therapeutic perspective, small molecules have been shown to not only mediate and enhance polymerization, analogous to a surface residue perturbation, but also bind and stabilize the repeating unit to inhibit the self-assembly event. We exemplify pharmacological manipulation of polymeric protein assemblies using some recently reported studies. The aim of this Viewpoint is to highlight opportunities to rationally control protein polymerization for therapeutic benefit.
Collapse
Affiliation(s)
- Eric S Fischer
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Lyn H Jones
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, USA
| |
Collapse
|
31
|
Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B 2022; 12:3548-3566. [PMID: 36176907 PMCID: PMC9513498 DOI: 10.1016/j.apsb.2022.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular glues can specifically induce aggregation between two or more proteins to modulate biological functions. In recent years, molecular glues have been widely used as protein degraders. In addition, however, molecular glues play a variety of vital roles, such as complex stabilization, interactome modulation and transporter inhibition, enabling challenging therapeutic targets to be druggable and offering an exciting novel approach for drug discovery. Since most molecular glues are identified serendipitously, exploration of their systematic discovery and rational design are important. In this review, representative examples of molecular glues with various physiological functions are divided into those mediating homo-dimerization, homo-polymerization and hetero-dimerization according to their aggregation modes, and we attempt to elucidate their mechanisms of action. In particular, we aim to highlight some biochemical techniques typically exploited within these representative studies and classify them in terms of three stages of molecular glue development: starting point, optimization and identification.
Collapse
|
32
|
Wang Y, Sun YY, Cui YM, Yu YX, Wu ZG. Construction of Benzimidazolone Derivatives via Aryl Iodide Catalyzed Intramolecular Oxidative C-H Amination. J Org Chem 2022; 87:3234-3241. [PMID: 35170306 DOI: 10.1021/acs.joc.1c02929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first aryl iodide catalyzed intramolecular C-H amination of phenylurea has been disclosed for high-efficiency synthesis of benzimidazolone derivatives in excellent yields (up to 97%) by an operationally simple one-step organocatalytic oxidative process. Fluorinated protic alcohols can efficiently accelerate the conversion of this transformation. The straightforward method has good functional group tolerance and can be performed with an inexpensive and readily accessible catalyst with high proficiency.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yuan-Yuan Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yi-Mo Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Ying-Xin Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
33
|
Liu J, Zuo S, Huang J, Zhang F, Zuo A. Synthesis of unsymmetrical 1,3-substituted-1,3-dihydro-benzimidazolones via copper-catalyzed C–N coupling under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although photoinduced copper catalysis for carbon–nitrogen (C–N) amine bond formation with alkyl/aryl halides has been developed, the potential of copper photocatalysis for the synthesis of 1,3-substituted benzimidazolones remains mostly unexplored.
Collapse
Affiliation(s)
- Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Jieying Huang
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Fan Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Ang Zuo
- Department of Pharmaceutical Sciences, College of Pharmacy and UICentre (Drug Discovery at UIC), University of Illinois at Chicago, Chicago, Illinois 60612, USA
- SynChem, Inc., 1400 Chase Avenue, Elk Grove Village, Illinois 60007, USA
| |
Collapse
|
34
|
Frere GA, de Araujo ED, Gunning PT. Emerging mechanisms of targeted protein degradation by molecular glues. Methods Cell Biol 2022; 169:1-26. [DOI: 10.1016/bs.mcb.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Lloyd M, Huckvale R, Cheung KMJ, Rodrigues MJ, Collie GW, Pierrat OA, Gatti Iou M, Carter M, Davis OA, McAndrew PC, Gunnell E, Le Bihan YV, Talbot R, Henley AT, Johnson LD, Hayes A, Bright MD, Raynaud FI, Meniconi M, Burke R, van Montfort RLM, Rossanese OW, Bellenie BR, Hoelder S. Into Deep Water: Optimizing BCL6 Inhibitors by Growing into a Solvated Pocket. J Med Chem 2021; 64:17079-17097. [PMID: 34846884 PMCID: PMC8667045 DOI: 10.1021/acs.jmedchem.1c00946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/14/2022]
Abstract
We describe the optimization of modestly active starting points to potent inhibitors of BCL6 by growing into a subpocket, which was occupied by a network of five stably bound water molecules. Identifying potent inhibitors required not only forming new interactions in the subpocket but also perturbing the water network in a productive, potency-increasing fashion while controlling the physicochemical properties. We achieved this goal in a sequential manner by systematically probing the pocket and the water network, ultimately achieving a 100-fold improvement of activity. The most potent compounds displaced three of the five initial water molecules and formed hydrogen bonds with the remaining two. Compound 25 showed a promising profile for a lead compound with submicromolar inhibition of BCL6 in cells and satisfactory pharmacokinetic (PK) properties. Our work highlights the importance of finding productive ways to perturb existing water networks when growing into solvent-filled protein pockets.
Collapse
Affiliation(s)
| | | | - Kwai-Ming J. Cheung
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Matthew J. Rodrigues
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Gavin W. Collie
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivier A. Pierrat
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Mahad Gatti Iou
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Michael Carter
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Owen A. Davis
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - P. Craig McAndrew
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Emma Gunnell
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Yann-Vaï Le Bihan
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rachel Talbot
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Louise D. Johnson
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Michael D. Bright
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Florence I. Raynaud
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Mirco Meniconi
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivia W. Rossanese
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Benjamin R. Bellenie
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Swen Hoelder
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
36
|
Zacharchenko T, Kalverda AP, Wright SC. Structural basis of Apt48 inhibition of the BCL6 BTB domain. Structure 2021; 30:396-407.e3. [PMID: 34774129 DOI: 10.1016/j.str.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/31/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
B cell lymphoma 6 (BCL6) is a transcriptional repressor that is deregulated in diffuse large B cell lymphoma, and the peptide aptamer, Apt48, inhibits BCL6 by an unknown mechanism. We report the crystal structure of BCL6 in complex with an Apt48 peptide, and show that Apt48 binds to a therapeutically uncharacterized region at the bottom of the BCL6 BTB domain. We show that the corepressor binding site of the BTB domain may be divided conceptually into two low-affinity, peptide-binding regions. An upper region, the lateral groove, binds peptides in robust three-dimensional conformations, whereas a lower binding site is permissive to less-specific interactions. We show that, even with little sequence specificity, the interactions of the lower region are required for the high-affinity binding of the SMRT corepressor and other peptides to the BTB domain. This has relevance for the design of new BCL6 inhibitors and for understanding the evolution of corepressor interactions with the BTB domain.
Collapse
Affiliation(s)
- Thomas Zacharchenko
- School of Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Arnout P Kalverda
- School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephanie C Wright
- School of Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
37
|
Pearce AC, Bamford MJ, Barber R, Bridges A, Convery MA, Demetriou C, Evans S, Gobbetti T, Hirst DJ, Holmes DS, Hutchinson JP, Jayne S, Lezina L, McCabe MT, Messenger C, Morley J, Musso MC, Scott-Stevens P, Manso AS, Schofield J, Slocombe T, Somers D, Walker AL, Wyce A, Zhang XP, Wagner SD. GSK137, a potent small-molecule BCL6 inhibitor with in vivo activity, suppresses antibody responses in mice. J Biol Chem 2021; 297:100928. [PMID: 34274316 PMCID: PMC8350397 DOI: 10.1016/j.jbc.2021.100928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a zinc finger transcriptional repressor possessing a BTB-POZ (BR-C, ttk, and bab for BTB; pox virus and zinc finger for POZ) domain, which is required for homodimerization and association with corepressors. BCL6 has multiple roles in normal immunity, autoimmunity, and some types of lymphoma. Mice bearing disrupted BCL6 loci demonstrate suppressed high-affinity antibody responses to T-dependent antigens. The corepressor binding groove in the BTB-POZ domain is a potential target for small compound-mediated therapy. Several inhibitors targeting this binding groove have been described, but these compounds have limited or absent in vivo activity. Biophysical studies of a novel compound, GSK137, showed an in vitro pIC50 of 8 and a cellular pIC50 of 7.3 for blocking binding of a peptide derived from the corepressor silencing mediator for retinoid or thyroid hormone receptors to the BCL6 BTB-POZ domain. The compound has good solubility (128 μg/ml) and permeability (86 nM/s). GSK137 caused little change in cell viability or proliferation in four BCL6-expressing B-cell lymphoma lines, although there was modest dose-dependent accumulation of G1 phase cells. Pharmacokinetic studies in mice showed a profile compatible with achieving good levels of target engagement. GSK137, administered orally, suppressed immunoglobulin G responses and reduced numbers of germinal centers and germinal center B cells following immunization of mice with the hapten trinitrophenol. Overall, we report a novel small-molecule BCL6 inhibitor with in vivo activity that inhibits the T-dependent antigen immune response.
Collapse
Affiliation(s)
| | - Mark J Bamford
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ruth Barber
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Angela Bridges
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | - Constantinos Demetriou
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Sian Evans
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | | | - David J Hirst
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Sandrine Jayne
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Larissa Lezina
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | | | | | - Joanne Morley
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Ana Sousa Manso
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Jennifer Schofield
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Tom Slocombe
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Don Somers
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ann L Walker
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Simon D Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
38
|
Rodriguez-Rivera FP, Levi SM. Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS CENTRAL SCIENCE 2021; 7:1117-1125. [PMID: 34345664 PMCID: PMC8323112 DOI: 10.1021/acscentsci.1c00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Diverging from traditional target inhibition, proteasomal protein degradation approaches have emerged as novel therapeutic modalities that embody distinct pharmacological profiles and can access previously undrugged targets. Small molecule degraders have the potential to catalytically destroy target proteins at substoichiometric concentrations, thus lowering administered doses and extending pharmacological effects. With this mechanistic premise, research efforts have advanced the development of small molecule degraders that benefit from stable and increased affinity ternary complexes. However, a holistic framework that evaluates different degradation modes from a catalytic perspective, including focusing on kinetically favored degradation mechanisms, is lacking. In this Outlook, we introduce the concept of an induced cooperativity spectrum as a unifying framework to mechanistically understand catalytic degradation profiles. This framework is bolstered by key examples of published molecular degraders extending from molecular glues to bivalent degraders. Critically, we discuss remaining challenges and future opportunities in drug discovery to rationally design and phenotypically screen for efficient degraders.
Collapse
Affiliation(s)
- Frances P. Rodriguez-Rivera
- Discovery
Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Samuel M. Levi
- Pfizer
Worldwide Research and Development, Pfizer,
Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Scholes NS, Mayor-Ruiz C, Winter GE. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem Biol 2021; 28:1048-1060. [PMID: 33811812 DOI: 10.1016/j.chembiol.2021.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The therapeutic modality of targeted protein degradation promises to overcome limitations of traditional pharmacology. Small-molecule degraders recruit disease-causing proteins to E3 ubiquitin ligases, prompting their ubiquitination and degradation by the proteasome. The discovery, mechanistic elucidation, and selectivity profiling of novel degraders are often conducted in cellular systems. This highlights the need for unbiased multi-omics strategies that inform on the functionally involved components. Here, we review how proteomics and functional genomics can be integrated to identify and mechanistically understand degraders, their target selectivity as well as putative resistance mechanisms.
Collapse
Affiliation(s)
- Natalie S Scholes
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; IRB Barcelona - Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Georg E Winter
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Orth B, Sander B, Möglich A, Diederichs K, Eilers M, Lorenz S. Identification of an atypical interaction site in the BTB domain of the MYC-interacting zinc-finger protein 1. Structure 2021; 29:1230-1240.e5. [PMID: 34186024 DOI: 10.1016/j.str.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/26/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
The repurposing of structurally conserved protein domains in different functional contexts is thought to be a driving force in the evolution of complex protein interaction networks. The BTB/POZ domain is such a versatile binding module that occurs over 200 times in the human proteome with diverse protein-specific adaptations. In BTB-zinc-finger transcription factors, the BTB domain drives homo- and heterodimerization as well as interactions with non-BTB-domain-containing proteins. Which mechanisms encode specificity in these interactions at a structural level is incompletely understood. Here, we uncover an atypical peptide-binding site in the BTB domain of the MYC-interacting zinc-finger protein 1 (MIZ1) that arises from local flexibility of the core BTB fold and may provide a target site for MIZ1-directed therapeutic approaches. Intriguingly, the identified binding mode requires the BTB domain to be in a homodimeric state, thus holding opportunities for functional discrimination between homo- and heterodimers of MIZ1 in the cell.
Collapse
Affiliation(s)
- Barbara Orth
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany; Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Bodo Sander
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, University of Bayreuth, 95447 Bayreuth, Germany
| | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Eilers
- Lehrstuhl für Biochemie, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sonja Lorenz
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
41
|
Abstract
Targeted protein degradation is a broad and expanding field aimed at the modulation of protein homeostasis. A focus of this field has been directed toward molecules that hijack the ubiquitin proteasome system with heterobifunctional ligands that recruit a target protein to an E3 ligase to facilitate polyubiquitination and subsequent degradation by the 26S proteasome. Despite the success of these chimeras toward a number of clinically relevant targets, the ultimate breadth and scope of this approach remains uncertain. Here we highlight recent advances in assays and tools available to evaluate targeted protein degradation, including and beyond the study of E3-targeted chimeric ligands. We note several challenges associated with degrader development and discuss various approaches to expanding the protein homeostasis toolbox.
Collapse
|
42
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Kozicka Z, Thomä NH. Haven't got a glue: Protein surface variation for the design of molecular glue degraders. Cell Chem Biol 2021; 28:1032-1047. [PMID: 33930325 DOI: 10.1016/j.chembiol.2021.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Molecular glue degraders are small, drug-like compounds that induce interactions between an E3 ubiquitin ligase and a target, which result in ubiquitination and subsequent degradation of the recruited protein. In recent years, serendipitous discoveries revealed that some preclinical and clinical compounds already work as molecular glue degraders, with many more postulated to destabilize their targets through indirect or yet unresolved mechanisms. Here we review strategies by which E3 ubiquitin ligases can be reprogrammed by monovalent degraders, with a focus on molecular glues hijacking cullin-RING ubiquitin ligases. We argue that such drugs exploit the intrinsic property of proteins to form higher-order assemblies, a phenomenon previously seen with disease-causing sequence variations. Modifications of the protein surface by a bound small molecule can change the interactome of the target protein. By inducing interactions between a ligase and a substrate, molecular glue degraders offer an exciting path for the development of novel therapeutics.
Collapse
Affiliation(s)
- Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | |
Collapse
|
44
|
Ai Y, Hwang L, MacKerell AD, Melnick A, Xue F. Progress toward B-Cell Lymphoma 6 BTB Domain Inhibitors for the Treatment of Diffuse Large B-Cell Lymphoma and Beyond. J Med Chem 2021; 64:4333-4358. [PMID: 33844535 DOI: 10.1021/acs.jmedchem.0c01686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a master regulator of germinal center formation that produce antibody-secreting plasma cells and memory B-cells for sustained immune responses. The BTB domain of BCL6 (BCL6BTB) forms a homodimer that mediates transcriptional repression by recruiting its corepressor proteins to form a biologically functional transcriptional complex. The protein-protein interaction (PPI) between the BCL6BTB and its corepressors has emerged as a therapeutic target for the treatment of DLBCL and a number of other human cancers. This Perspective provides an overview of recent advances in the development of BCL6BTB inhibitors from reversible inhibitors, irreversible inhibitors, to BCL6 degraders. Inhibitor design and medicinal chemistry strategies for the development of novel compounds will be provided. The binding mode of new inhibitors to BCL6BTB are highlighted. Also, the in vitro and in vivo assays used for the evaluation of new compounds will be discussed.
Collapse
Affiliation(s)
- Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Lucia Hwang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Ari Melnick
- Department of Hematology and Oncology, Weill Cornell Medical College, New York, New York 10021, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
45
|
Small-molecule-induced polymerization triggers degradation of BCL6. Nature 2020; 588:164-168. [PMID: 33208943 PMCID: PMC7816212 DOI: 10.1038/s41586-020-2925-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 09/03/2020] [Indexed: 12/23/2022]
Abstract
Effective and sustained inhibition of non-enzymatic oncogenic driver proteins is a major pharmacological challenge. The clinical success of thalidomide analogues demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets1-3, but a substantial subset of proteins are resistant to targeted degradation using existing approaches4,5. Here we report an alternative mechanism of targeted protein degradation, in which a small molecule induces the highly specific, reversible polymerization of a target protein, followed by its sequestration into cellular foci and subsequent degradation. BI-3802 is a small molecule that binds to the Broad-complex, Tramtrack and Bric-à-brac (BTB) domain of the oncogenic transcription factor B cell lymphoma 6 (BCL6) and leads to the proteasomal degradation of BCL66. We use cryo-electron microscopy to reveal how the solvent-exposed moiety of a BCL6-binding molecule contributes to a composite ligand-protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule such as BI-3802 can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to increased pharmacological activity compared to the effects induced by other BCL6 inhibitors. These findings open new avenues for the development of therapeutic agents and synthetic biology.
Collapse
|