1
|
Feng X, Shen A, Zhang W, Jia S, Iliuk A, Wang Y, Zhang W, Zhang Y, Tao WA, Hu L. High-throughput capture and in situ protein analysis of extracellular vesicles by chemical probe-based array. Nat Protoc 2025; 20:1057-1081. [PMID: 39438698 DOI: 10.1038/s41596-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are small particles with phospholipid bilayers that carry a diverse range of cargoes including nucleic acids, proteins and metabolites. EVs have important roles in various cellular processes and are increasingly recognized for their ubiquitous role in cell-cell communications and potential applications in therapeutics and diagnostics. Although many methods have been developed for the characterization and measurement of EVs, analyzing them from biofluids remains a challenge with regard to throughput and sensitivity. Recently, we introduced an approach to facilitate high-throughput analysis of EVs from trace amounts of sample. In this method, an amphiphile-dendrimer supramolecular probe (ADSP) is coated onto a nitrocellulose membrane for array-based capture and to enable an in situ immunoblotting assay. Here, we describe the protocol for our array-based method of EV profiling. We describe an enhanced version of the method that incorporates an automated printing workstation, ensuring high throughput and reproducibility. We further demonstrate the use of our array to profile specific glycosylations on the EV surface using click chemistry of an azide group introduced by metabolic labeling. In this protocol, the synthesis of ADSP and the fabrication of ADSP nitrocellulose membrane array can be completed on the same day. EVs are efficiently captured from biological or clinical samples through a 30-min incubation, followed by an immunoblotting assay within a 3-h window, thus providing a high-throughput platform for EV isolation and in situ targeted analysis of EV proteins and their modifications.
Collapse
Affiliation(s)
- Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Ao Shen
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Shengnan Jia
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Wenke Zhang
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China
| | - Ying Zhang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
3
|
Aghakhani A, Pezeshki PS, Rezaei N. The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy. Expert Opin Investig Drugs 2024; 33:721-740. [PMID: 38795060 DOI: 10.1080/13543784.2024.2360209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors. AREAS COVERED This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments. EXPERT OPINION By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wang H, Liu S, Zhan J, Liang Y, Zeng X. Shaping the immune-suppressive microenvironment on tumor-associated myeloid cells through tumor-derived exosomes. Int J Cancer 2024; 154:2031-2042. [PMID: 38500385 DOI: 10.1002/ijc.34921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Tumor-associated myeloid cells (TAMCs) play a crucial role in orchestrating the dynamics of the tumor immune microenvironment. This heterogeneous population encompasses myeloid-derived suppressor cells, tumor-associated macrophages and dendritic cells, all of which contribute to the establishment of an immunosuppressive milieu that fosters tumor progression. Tumor-derived exosomes (TEXs), small extracellular vesicles secreted by tumor cells, have emerged as central mediators in intercellular communication within the tumor microenvironment. In this comprehensive review, we explore the intricate mechanisms through which TEXs modulate immune-suppressive effects on TAMCs and their profound implications in cancer progression. We delve into the multifaceted ways in which TEXs influence TAMC functions, subsequently affecting tumor immune evasion. Furthermore, we elucidate various therapeutic strategies aimed at targeting TEX-mediated immune suppression, with the ultimate goal of bolstering antitumor immunity.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shanshan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianhao Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Department of Clinical Medcine, HuanKui Academy, Nanchang University, Nanchang, China
| | - Yuqing Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaoping Zeng
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
5
|
Lin EY, Hsu SX, Wu BH, Deng YC, Wuli W, Li YS, Lee JH, Lin SZ, Harn HJ, Chiou TW. Engineered Exosomes Containing microRNA-29b-2 and Targeting the Somatostatin Receptor Reduce Presenilin 1 Expression and Decrease the β-Amyloid Accumulation in the Brains of Mice with Alzheimer's Disease. Int J Nanomedicine 2024; 19:4977-4994. [PMID: 38828204 PMCID: PMC11144417 DOI: 10.2147/ijn.s442876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the β-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.
Collapse
Affiliation(s)
- En-Yi Lin
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shao-Xi Hsu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Bing-Hua Wu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Yu-Chen Deng
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Everfront Biotech Inc, Taipei, Taiwan
| | - Wei Wuli
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | | | | | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
6
|
Bikfalvi A, Guyon J, Daubon T. New insights into the role of thrombospondin-1 in glioblastoma development. Semin Cell Dev Biol 2024; 155:52-57. [PMID: 37690904 DOI: 10.1016/j.semcdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Glioblastoma (GB), the most malignant subtype of diffuse glioma, is highly aggressive, invasive and vascularized. Its median survival is still short even with maximum standard care. There is a need to identify potential new molecules and mechanisms, that are involved in the interactions of GB cells with the tumor microenvironment (TME), for therapeutic intervention. Thrombospondin-1 (TSP1) is a multi-faceted matricellular protein which plays a significant role in development, physiology and pathology including cancer. Recent studies have pinpoint an important role of TSP1 in GB development which will be summarized and discussed herein. We will discuss studies, mainly from preclinical research, which should lead to a deeper understanding of TSP1's role in GB development. We will also discuss some issues with regard to the use of this knowledge for the clinic.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33615 Pessac, France.
| | - Joris Guyon
- Service de Pharmacologie médicale, CHU de Bordeaux, 33615 Bordeaux, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| |
Collapse
|
7
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
8
|
Wang X, Li H, Wang Z, Chen J, Chen W, Zhou X, Zhang L, Xu S, Gao XD, Yang G. Site- and Structure-Specific Glycosylation Signatures of Bovine, Caprine, Porcine, and Human Milk-Derived Extracellular Vesicles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20826-20837. [PMID: 38096130 DOI: 10.1021/acs.jafc.3c06439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles released by living cells. As vesicles for macromolecule transmission and intercellular communication, EVs are broadly applied in clinical diagnosis and biomimetic drug delivery. Milk-derived EVs (MEVs) are an ideal choice for scale-up applications because they exhibit biocompatibility and are easily obtained. Herein, intact glycopeptides in MEVs from bovines, caprines, porcines, and humans were comprehensively analyzed by high-resolution mass spectrometry using the sceHCD, followed by the EThcD fragment method, revealing that protein glycosylation is abundant and heterogeneous in MEVs. The dominant glycans in all MEVs were sialic acid-modified N-linked glycans (over 50%). A couple of species-specific glycans were also characterized, which are potentially markers of different original EVs. Interestingly, the Neu5Gc-modified glycans were enriched in caprine milk-derived EVs (58 ± 2%). Heterogeneity of MEV protein glycosylation was observed for glycosites and glycan compositions, and the structural heterogeneity of protein glycosylation was also identified and validated. The glycosignatures of EV biogenesis- and endocytosis-related proteins (CD63 and MFGE8) were significantly different in these four species. Overall, we comprehensively characterized the glycosylation signature of MEVs from four different species and provided insight into protein glycosylation related to drug target delivery.
Collapse
Affiliation(s)
- Xiuyuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zibo Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingru Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenyan Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shiqian Xu
- Henan XinDa Livestock Co., Ltd., Zhengzhou, Henan 450001, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ganglong Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Freise C, Zappe A, Löwa N, Schnorr J, Pagel K, Wiekhorst F, Taupitz M. Uremic Toxin-Induced Exosome-like Extracellular Vesicles Contain Enhanced Levels of Sulfated Glycosaminoglycans which Facilitate the Interaction with Very Small Superparamagnetic Iron Oxide Particles. Int J Mol Sci 2023; 24:14253. [PMID: 37762555 PMCID: PMC10532171 DOI: 10.3390/ijms241814253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Uremic toxins exert pathophysiological effects on cells and tissues, such as the generation of a pro-calcifying subtype of exosome-like extracellular vesicles (EVs) in vascular cells. Little is known about the effects of the toxins on the surface structure of EVs. Thus, we studied the effects of uremic toxins on the abundance of sulfated glycosaminoglycans (GAGs) in EVs, and the implications for binding of ligands such as very small superparamagnetic iron oxide particles (VSOPs) which could be of relevance for radiological EV-imaging. Vascular cells were treated with the uremic toxins NaH2PO4 and a mixture of urea and indoxyl sulfate. Uremia in rats was induced by adenine feeding. EVs were isolated from culture supernatants and plasma of rats. By proton T1-relaxometry, magnetic particle spectroscopy, and analysis of genes, proteins, and GAG-contents, we analyzed the roles of GAGs in the ligand binding of EVs. By influencing GAG-associated genes in host cells, uremic toxins induced higher GAG contents in EVs, particularly of sulfated chondroitin sulfate and heparan sulfate chains. EVs with high GAG content interacted stronger with VSOPs compared to control ones. This was confirmed by experiments with GAG-depleted EVs from genetically modified CHO cells and with uremic rat-derived EVs. Mechanistically, uremic toxin-induced PI3K/AKT-signaling and expression of the sulfate transporter SLC26A2 in host cells contributed to high GAG contents in EVs. In conclusion, uremic conditions induce enhanced GAG contents in EVs, which entails a stronger interaction with VSOPs. VSOPs might be suitable for radiological imaging of EVs rich in GAGs.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| | - Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany; (A.Z.); (K.P.)
| | - Norbert Löwa
- Metrology for Magnetic Nanoparticles Berlin, Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2, 10587 Berlin, Germany; (N.L.); (F.W.)
| | - Jörg Schnorr
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany; (A.Z.); (K.P.)
| | - Frank Wiekhorst
- Metrology for Magnetic Nanoparticles Berlin, Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2, 10587 Berlin, Germany; (N.L.); (F.W.)
| | - Matthias Taupitz
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| |
Collapse
|
10
|
Montero E, Isenberg JS. The TSP1-CD47-SIRPα interactome: an immune triangle for the checkpoint era. Cancer Immunol Immunother 2023; 72:2879-2888. [PMID: 37217603 PMCID: PMC10412679 DOI: 10.1007/s00262-023-03465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The use of treatments, such as programmed death protein 1 (PD1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies, that loosen the natural checks upon immune cell activity to enhance cancer killing have shifted clinical practice and outcomes for the better. Accordingly, the number of antibodies and engineered proteins that interact with the ligand-receptor components of immune checkpoints continue to increase along with their use. It is tempting to view these molecular pathways simply from an immune inhibitory perspective. But this should be resisted. Checkpoint molecules can have other cardinal functions relevant to the development and use of blocking moieties. Cell receptor CD47 is an example of this. CD47 is found on the surface of all human cells. Within the checkpoint paradigm, non-immune cell CD47 signals through immune cell surface signal regulatory protein alpha (SIRPα) to limit the activity of the latter, the so-called trans signal. Even so, CD47 interacts with other cell surface and soluble molecules to regulate biogas and redox signaling, mitochondria and metabolism, self-renewal factors and multipotency, and blood flow. Further, the pedigree of checkpoint CD47 is more intricate than supposed. High-affinity interaction with soluble thrombospondin-1 (TSP1) and low-affinity interaction with same-cell SIRPα, the so-called cis signal, and non-SIRPα ectodomains on the cell membrane suggests that multiple immune checkpoints converge at and through CD47. Appreciation of this may provide latitude for pathway-specific targeting and intelligent therapeutic effect.
Collapse
Affiliation(s)
- Enrique Montero
- Department of Diabetes Immunology, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
11
|
Tellez RSL, Reynolds L, Piris MA. Myeloid-derived suppressor cells (MDSCs): what do we currently know about the effect they have against anti-PD-1/PD-L1 therapies? Ecancermedicalscience 2023; 17:1556. [PMID: 37396098 PMCID: PMC10310335 DOI: 10.3332/ecancer.2023.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 07/04/2023] Open
Abstract
Recent advances in cancer treatment such as PD-1/PD-L1 checkpoint inhibitors have prompted multiple research studies to determine all of the factors that influence response or failure to these new treatments. One of those identified factors is myeloid-derived suppressor cells (MDSCs). These cells were identified and described for the first time in 2007 in laboratory mice and cancer patients. Previous studies showed that a greater number of MDSCs was directly related to a greater tumour volume. There are two clearly identified subpopulations: Mononuclear-type myeloid-derived suppressor cells (M-MDSCs) and polymorphonuclear (PMN-MDSCs). These cell population subtypes play a very important role, depending on the type of cancer, since they have the particularity of expressing PD-L1, which interacts with PD-1, inhibiting the expansion of cytotoxic T lymphocytes, promoting resistance to these treatments.
Collapse
Affiliation(s)
- Ronald Sergio Limón Tellez
- Department of Oncology, University Social Security USS, Nº58 Colon Street, 10260 Santa Cruz, Bolivia
- Associate Medical Oncology and Research, OncoBolivia Specialized Center for Cancer Treatment, Nº236 Azucenas Street, Equipetrol, Santa Cruz, Bolivia
- Department of Oncology and Research, Clinic of The Americas, Nº5001 Sixth Ring Avenue and Beni Street, 10260 Santa Cruz, Bolivia
- Associate Medical Chief Pathology Service, Fundación Jiménez Diaz, Nº228040 Reyes Católicos Avenue, 2552 Madrid, España
| | - Lucia Reynolds
- Associate Medical Oncology and Research, OncoBolivia Specialized Center for Cancer Treatment, Nº236 Azucenas Street, Equipetrol, Santa Cruz, Bolivia
- Department of Oncology and Research, Clinic of The Americas, Nº5001 Sixth Ring Avenue and Beni Street, 10260 Santa Cruz, Bolivia
| | - Miguel A Piris
- Associate Medical Chief Pathology Service, Fundación Jiménez Diaz, Nº228040 Reyes Católicos Avenue, 2552 Madrid, España
| |
Collapse
|
12
|
Ahmed MSU, Lord BD, Adu Addai B, Singhal SK, Gardner K, Salam AB, Ghebremedhin A, White J, Mahmud I, Martini R, Bedi D, Lin H, Jones JD, Karanam B, Dean-Colomb W, Grizzle W, Wang H, Davis M, Yates CC. Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers (Basel) 2023; 15:cancers15082282. [PMID: 37190208 DOI: 10.3390/cancers15082282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients.
Collapse
Affiliation(s)
- Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Brittany D Lord
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Adu Addai
- School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deepa Bedi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Huixian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jacqueline D Jones
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | | | - Windy Dean-Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Oncology-Newnan, Newnan, GA 30265, USA
| | - William Grizzle
- Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
13
|
Sun F, Suttapitugsakul S, Wu R. Systematic characterization of extracellular glycoproteins using mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:519-545. [PMID: 34047389 PMCID: PMC8627532 DOI: 10.1002/mas.21708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 05/13/2023]
Abstract
Surface and secreted glycoproteins are essential to cells and regulate many extracellular events. Because of the diversity of glycans, the low abundance of many glycoproteins, and the complexity of biological samples, a system-wide investigation of extracellular glycoproteins is a daunting task. With the development of modern mass spectrometry (MS)-based proteomics, comprehensive analysis of different protein modifications including glycosylation has advanced dramatically. This review focuses on the investigation of extracellular glycoproteins using MS-based proteomics. We first discuss the methods for selectively enriching surface glycoproteins and investigating protein interactions on the cell surface, followed by the application of MS-based proteomics for surface glycoprotein dynamics analysis and biomarker discovery. We then summarize the methods to comprehensively study secreted glycoproteins by integrating various enrichment approaches with MS-based proteomics and their applications for global analysis of secreted glycoproteins in different biological samples. Collectively, MS significantly expands our knowledge of extracellular glycoproteins and enables us to identify extracellular glycoproteins as potential biomarkers for disease detection and drug targets for disease treatment.
Collapse
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
14
|
Ren Y, Bäcker H, Müller M, Kienzle A. The role of myeloid derived suppressor cells in musculoskeletal disorders. Front Immunol 2023; 14:1139683. [PMID: 36936946 PMCID: PMC10020351 DOI: 10.3389/fimmu.2023.1139683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The immune system is closely linked to bone homeostasis and plays a pivotal role in several pathological and inflammatory conditions. Through various pathways it modulates various bone cells and subsequently sustains the physiological bone metabolism. Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous immature myeloid-derived cells that can exert an immunosuppressive function through a direct cell-to-cell contact, secretion of anti-inflammatory cytokines or specific exosomes. These cells mediate the innate immune response to chronic stress on the skeletal system. In chronic inflammation, MDSCs act as an inner offset to rebalance overactivation of the immune system. Moreover, they have been found to be involved in processes responsible for bone remodeling in different musculoskeletal disorders, autoimmune diseases, infection, and cancer. These cells can not only cause bone erosion by differentiating into osteoclasts, but also alleviate the immune reaction, subsequently leading to long-lastingly impacted bone remodeling. In this review, we discuss the impact of MDSCs on the bone metabolism under several pathological conditions, the involved modulatory pathways as well as potential therapeutic targets in MDSCs to improve bone health.
Collapse
Affiliation(s)
- Yi Ren
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Henrik Bäcker
- Department of Orthopedics, Auckland City Hospital, Auckland, New Zealand
| | - Michael Müller
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Arne Kienzle
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité — Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Arne Kienzle,
| |
Collapse
|
15
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
16
|
The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1390-1400. [PMID: 36138197 PMCID: PMC9535014 DOI: 10.1038/s12276-022-00855-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Exosomes are vesicles encompassed by a lipid bilayer that are released by various living cells. Exosomal proteins are encapsulated within the membrane or embedded on the surface. As an important type of exosome cargo, exosomal proteins can reflect the physiological status of the parent cell and play an essential role in cell-cell communication. Exosomal proteins can regulate tumor development, including tumor-related immune regulation, microenvironment reconstruction, angiogenesis, epithelial-mesenchymal transition, metastasis, etc. The features of exosomal proteins can provide insight into exosome generation, targeting, and biological function and are potential sources of markers for cancer diagnosis, prognosis, and treatment. Here, we summarize the effects of exosomal proteins on cancer biology, the latest progress in the application of exosomal proteins in cancer diagnosis and prognosis, and the potential contribution of exosomal proteins in cancer therapeutics and vaccines.
Collapse
|
17
|
Chen Z, Yuan R, Hu S, Yuan W, Sun Z. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Front Immunol 2022; 13:817942. [PMID: 35154134 PMCID: PMC8829028 DOI: 10.3389/fimmu.2022.817942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating tumor immunity. In this review, we provided a comprehensive description of the characteristics, functions and mechanisms of exosomes. We analyzed the immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has demonstrated great potential in cancers and non-cancerous diseases.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Challenges for the Development of Extracellular Vesicle-Based Nucleic Acid Medicines. Cancers (Basel) 2021; 13:cancers13236137. [PMID: 34885247 PMCID: PMC8656933 DOI: 10.3390/cancers13236137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid drugs, such as siRNAs, antisense oligonucleotides, and miRNAs, exert their therapeutic effects by causing genetic changes in cells. However, there are various limitations in their delivery to target organs and cells, making their application to cancer treatment difficult. Extracellular vesicles (EVs) are lipid bilayer particles that are released from most cells, are stable in the blood, and have low immunogenicity. Methods using EVs to deliver nucleic acid drugs to target organs are rapidly being developed that take advantage of these properties. There are two main methods for loading nucleic acid drugs into EVs. One is to genetically engineer the parent cell and load the target gene into the EV, and the other is to isolate EVs and then load them with the nucleic acid drug. Target organ delivery methods include passive targeting using the enhanced permeation and retention effect of EVs and active targeting in which EVs are modified with antibodies, peptides, or aptamers to enhance their accumulation in tumors. In this review, we summarize the advantages of EVs as a drug delivery system for nucleic acid drugs, the methods of loading nucleic acid drugs into EVs, and the targeting of EVs to target organs.
Collapse
|
19
|
Bray ER, Oropallo AR, Grande DA, Kirsner RS, Badiavas EV. Extracellular Vesicles as Therapeutic Tools for the Treatment of Chronic Wounds. Pharmaceutics 2021; 13:1543. [PMID: 34683836 PMCID: PMC8541217 DOI: 10.3390/pharmaceutics13101543] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds develop when the orderly process of cutaneous wound healing is delayed or disrupted. Development of a chronic wound is associated with significant morbidity and financial burden to the individual and health-care system. Therefore, new therapeutic modalities are needed to address this serious condition. Mesenchymal stem cells (MSCs) promote skin repair, but their clinical use has been limited due to technical challenges. Extracellular vesicles (EVs) are particles released by cells that carry bioactive molecules (lipids, proteins, and nucleic acids) and regulate intercellular communication. EVs (exosomes, microvesicles, and apoptotic bodies) mediate key therapeutic effects of MSCs. In this review we examine the experimental data establishing a role for EVs in wound healing. Then, we explore techniques for designing EVs to function as a targeted drug delivery system and how EVs can be incorporated into biomaterials to produce a personalized wound dressing. Finally, we discuss the status of clinically deploying EVs as a therapeutic agent in wound care.
Collapse
Affiliation(s)
- Eric R. Bray
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alisha R. Oropallo
- Comprehensive Wound Healing Center and Hyperbarics, Department of Vascular Surgery, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell Health, Hempstead, NY 11549, USA; (A.R.O.); (D.A.G.)
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Daniel A. Grande
- Comprehensive Wound Healing Center and Hyperbarics, Department of Vascular Surgery, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell Health, Hempstead, NY 11549, USA; (A.R.O.); (D.A.G.)
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Orthopedic Surgery, Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY 11040, USA
| | - Robert S. Kirsner
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
| | - Evangelos V. Badiavas
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
20
|
Pelissier Vatter FA, Cioffi M, Hanna SJ, Castarede I, Caielli S, Pascual V, Matei I, Lyden D. Extracellular vesicle- and particle-mediated communication shapes innate and adaptive immune responses. J Exp Med 2021; 218:212439. [PMID: 34180950 PMCID: PMC8241538 DOI: 10.1084/jem.20202579] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication among immune cells is vital for the coordination of proper immune responses. Extracellular vesicles and particles (EVPs) act as messengers in intercellular communication, with important consequences for target cell and organ physiology in both health and disease. Under normal physiological conditions, immune cell-derived EVPs participate in immune responses by regulating innate and adaptive immune responses. EVPs play a major role in antigen presentation and immune activation. On the other hand, immune cell-derived EVPs exert immunosuppressive and regulatory effects. Consequently, EVPs may contribute to pathological conditions, such as autoimmune and inflammatory diseases, graft rejection, and cancer progression and metastasis. Here, we provide an overview of the role of EVPs in immune homeostasis and pathophysiology, with a particular focus on their contribution to innate and adaptive immunity and their potential use for immunotherapies.
Collapse
Affiliation(s)
- Fanny A Pelissier Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Samer J Hanna
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Ines Castarede
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
21
|
Al-Dossary AA, Tawfik EA, Isichei AC, Sun X, Li J, Alshehri AA, Alomari M, Almughem FA, Aldossary AM, Sabit H, Almalik AM. Engineered EV-Mimetic Nanoparticles as Therapeutic Delivery Vehicles for High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13123075. [PMID: 34203051 PMCID: PMC8234974 DOI: 10.3390/cancers13123075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we begin with the role of natural extracellular vesicles (EVs) in high-grade serous ovarian cancer (HGSOC). Then, we narrow our focus on the advantages of using EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics. Furthermore, we discuss the challenges of the clinical translation of engineering EV mimetic drug delivery systems and the promising directions of further development. Abstract High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis. Naturally occurring extracellular vesicles (EVs) have been shown to play a pivotal role in progression of OC and are now being harnessed as a delivery vehicle for cancer chemotherapeutics. However, there are limitations to their clinical application due to current challenges in their preparation techniques. Intriguingly, there is a recent drive towards the use of engineered synthetic EVs for the delivery of chemotherapeutics and RNA interference therapy (RNAi), as they show the promise of overcoming the obstacles in the treatment of OC patients. This review discusses the therapeutic application of EVs in OC and elucidates the potential use of engineered EV-mimetic nanoparticles as a delivery vehicle for RNAi therapy and other chemotherapeutics, which would potentially improve clinical outcomes of OC patients.
Collapse
Affiliation(s)
- Amal A. Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
- Correspondence: ; Tel.: +966-1-333-31137
| | - Essam A. Tawfik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Adaugo C. Isichei
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Xin Sun
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA; (X.S.); (J.L.)
| | - Abdullah A. Alshehri
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Fahad A. Almughem
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| | - Ahmad M. Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdulaziz M. Almalik
- National Center for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (E.A.T.); (A.A.A.); (F.A.A.); (A.M.A.)
| |
Collapse
|
22
|
Hosseini R, Asef-Kabiri L, Yousefi H, Sarvnaz H, Salehi M, Akbari ME, Eskandari N. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer 2021; 20:83. [PMID: 34078376 PMCID: PMC8170799 DOI: 10.1186/s12943-021-01376-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-derived exosomes (TDEs) have been shown to impede anti-tumor immune responses via their immunosuppressive cargo. Since dendritic cells (DCs) are the key mediators of priming and maintenance of T cell-mediated responses; thus it is logical that the exosomes released by tumor cells can exert a dominant influence on DCs biology. This paper intends to provide a mechanistic insight into the TDEs-mediated DCs abnormalities in the tumor context. More importantly, we discuss extensively how tumor exosomes induce subversion of DCs differentiation, maturation and function in separate sections. We also briefly describe the importance of TDEs at therapeutic level to help guide future treatment options, in particular DC-based vaccination strategy, and review advances in the design and discovery of exosome inhibitors. Understanding the exosomal content and the pathways by which TDEs are responsible for immune evasion may help to revise treatment rationales and devise novel therapeutic approaches to overcome the hurdles in cancer treatment.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Asef-Kabiri
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
23
|
Li C, Hou X, Zhang P, Li J, Liu X, Wang Y, Guan Q, Zhou Y. Exosome-based Tumor Therapy: Opportunities and Challenges. Curr Drug Metab 2021; 21:339-351. [PMID: 32410558 DOI: 10.2174/1389200221666200515103354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exosomes play an important role in transferring information among different cell types, as they transport materials from the cell membrane to the cytoplasm. They are involved not only in normal physiological functions, but also in the occurrence and development of a variety of diseases. Cancer is a major health problem affecting humans. Currently, exosomes are considered novel stars in tumor therapy. OBJECTIVE To present a review focusing on the role of exosomes in tumorigenesis and development and the possibility of treating tumors with exosome-targeted therapies or using exosomes as carriers. METHODS We reviewed literature related to the biological origin and function of exosomes and exosome-tumor relationship. RESULTS Exosomes are closely related to tumor immunity, angiogenesis, pre-metastasis microenvironment, chemoresistance, energy metabolism, etc. Tumor therapy involving the targeting of exosomes involves block the generation, secretion, uptake of exosomes, and elimination of circulating exosomes, and develop antitumor vaccines. Exosome as delivery vehicles can be loaded with chemotherapeutic drugs, therapeutic genes, and other therapeutic drugs to target cells. Prospects and challenges of exosome-based tumor therapy are also discussed. CONCLUSION Exosomes are involved in multiple processes during tumor development and should be further studied as novel targets for cancer therapy.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou, China
| | - Juan Li
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoguang Liu
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China,Department of Rheumatology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Cells 2021; 10:cells10051170. [PMID: 34065010 PMCID: PMC8150533 DOI: 10.3390/cells10051170] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The primary function of myeloid cells is to protect the host from infections. However, during cancer progression or states of chronic inflammation, these cells develop into myeloid-derived suppressor cells (MDSCs) that play a prominent role in suppressing anti-tumor immunity. Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. Therefore, understanding the mechanisms by which MDSCs promote tumor growth is essential for improving current immunotherapies and developing new ones. This review explores mechanisms by which MDSCs suppress T-cell immunity and how this impacts the efficacy of commonly used immunotherapies.
Collapse
|
25
|
Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol Sci 2021; 22:4570. [PMID: 33925464 PMCID: PMC8123789 DOI: 10.3390/ijms22094570] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Steven M. Bronson
- Department of Internal Medicine, Section of Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Thomas W. Miller
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, 13273 Marseille, France
| | - David R. Soto-Pantoja
- Department of Surgery and Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| |
Collapse
|
26
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
27
|
Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles. Pharmaceutics 2021; 13:pharmaceutics13040492. [PMID: 33916841 PMCID: PMC8067091 DOI: 10.3390/pharmaceutics13040492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is surrounded by the blood–brain barrier (BBB), a semipermeable border of endothelial cells that prevents pathogens, solutes and most molecules from non-selectively crossing into the CNS. Thus, the BBB acts to protect the CNS from potentially deleterious insults. Unfortunately, the BBB also frequently presents a significant barrier to therapies, impeding passage of drugs and biologicals to target cells within the CNS. This review provides an overview of different approaches to deliver therapeutics across the BBB, with an emphasis in extracellular vesicles as delivery vehicles to the CNS.
Collapse
|
28
|
Isolation and Functional Characterization of Myeloid-Derived Suppressor Cells in Infections Under High Containment. Methods Mol Biol 2021. [PMID: 33237546 DOI: 10.1007/978-1-0716-1060-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The current absence of markers unique to MDSC, particularly those expanded during human infection, necessitate concurrent demonstration of their suppressive capacity to ensure unequivocal identification. This is further complicated by the array of heterogeneous markers used to characterize MDSC in various conditions and models. Standardization of phenotypic and functional characterization, as well as isolation, from infectious biological samples of patients, are critical for accurately reporting MDSC dynamics, function, organ abundance, and establishment of their therapeutic value in infectious diseases. To illustrate, we report on our established method for MDSC isolation from bronchoalveolar lavage fluid and peripheral blood of pulmonary TB patients, as well as functional impact on T cells by measuring T cell activation, proliferation, and cytokine production.
Collapse
|
29
|
Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-042120-105240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immature myeloid cells at varied stages of differentiation, known as myeloid-derived suppressor cells (MDSC), are present in virtually all cancer patients. MDSC are profoundly immune-suppressive cells that impair adaptive and innate antitumor immunity and promote tumor progression through nonimmune mechanisms. Their widespread presence combined with their multitude of protumor activities makes MDSC a major obstacle to cancer immunotherapies. MDSC are derived from progenitor cells in the bone marrow and traffic through the blood to infiltrate solid tumors. Their accumulation and suppressive potency are driven by multiple tumor- and host-secreted proinflammatory factors and adrenergic signals that act via diverse but sometimes overlapping transcriptional pathways. MDSC also accumulate in response to the chronic inflammation and lipid deposition characteristic of obesity and contribute to the more rapid progression of cancers in obese individuals. This article summarizes the key aspects of tumor-induced MDSC with a focus on recent progress in the MDSC field.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Pathology and Huntsman Cancer Institute (HCI), University of Utah, Salt Lake City, Utah 84112, USA
- Emeritus at: Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
30
|
Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery. Pharm Res 2021; 38:179-197. [PMID: 33604783 DOI: 10.1007/s11095-021-02988-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-enclosed vesicles and act like 'messages in a bottle' in cell-cell communication by transporting their cargoes to recipient cells. Small EVs (sEVs, < 200 nm) are highly researched recently and have been harnessed as novel delivery systems for the treatment of various diseases, including neurodegenerative disorders, cardiovascular diseases, and most importantly cancer primarily because of their non-immunogenicity, tissue penetration and cell-tropism. This review will first provide a comprehensive overview of sEVs regarding the current understanding on their properties, biogenesis, new classification by the ISEV, composition, as well as their roles in cancer development (thereby called "oncosomes"). The primary focus will be given to the current state of sEVs as natural nanocarriers for cancer drug delivery, the technologies and challenges involved in sEV isolation and characterization, therapeutic cargo loading, and surface modification to enhance tumor-targeting. We will also provide examples of sEV products under clinical trials. Furthermore, the current challenges as well as the advance in "sEV mimetics" to address some of the sEVs limitations is briefly discussed. We seek to advance our understanding of sEVs to unlock their full potential as superior drug delivery vehicles in cancer therapy.
Collapse
|
31
|
Ren Y, Dong X, Zhao H, Feng J, Chen B, Zhou Y, Peng Y, Zhang L, Zhou Q, Li Y, Wu M, He Y. Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis. Am J Transplant 2021; 21:552-566. [PMID: 32892499 DOI: 10.1111/ajt.16291] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 01/25/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are one of the major negative regulators of immune responses during many pathological conditions such as cancer and transplantation. Emerging evidence indicates that MDSC also contribute to tumor progression through their pro-angiogenic activity in addition to immunosuppressive function. However, virtually nothing is known about the role of MDSC in the regulation of neovascularization after transplantation. Here we showed that antibody-mediated depletion of MDSC in mice led to robust growth of blood and lymphatic neovessels and rapid allograft rejection after corneal penetrating keratoplasty. In contrast, adoptive transfer of ex vivo generated MDSC from cytokine-treated bone marrow cells (evMDSC) suppressed neovascularization and prolonged corneal allograft survival in an inducible nitric oxide synthase (iNOS)-dependent manner. Mechanistically, compared to naïve MDSC control, evMDSC have increased expression of an anti-angiogenic factor thrombospondin 1 (Tsp-1) and decreased expression of two critical pro-angiogenic factors, vascular endothelial growth factor A (VEGF-A), and VEGF-C. These findings demonstrate MDSC as a critical anti-angiogenic regulator during transplantation. Our study also indicates that evMDSC are a valuable candidate agent for development of novel cell therapy to improve allograft survival after transplantation.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaonan Dong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Qinghua Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Mengbo Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
32
|
Muhammad SA. Are extracellular vesicles new hope in clinical drug delivery for neurological disorders? Neurochem Int 2021; 144:104955. [PMID: 33412233 DOI: 10.1016/j.neuint.2021.104955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Cells secrete extracellular vesicles (EVs) for intercellular communication. EVs are natural nanovesicles that are surrounded by lipid bilayer for delivery of assorted cargoes for therapeutic purposes. In addition to their therapeutic roles, these vesicles are potential drug delivery systems. Exosomes are the most studied EVs as the delivery carriers that can cross the blood-brain barrier (BBB) because of their nanosize. BBB is a diffusion barrier that is selective for small molecules to transit from blood to the brain. This barrier has been an obstacle for the delivery of drugs to the brain for the treatment of neurological disorders (NDs). For efficient drug delivery, synthetic vesicles such as liposomes have been employed as carriers for delivery of therapeutic molecules in clinical practice. However, these delivery systems are not without drawbacks. Among the limitations of these drug carriers include recognition by the body as foreign particles that encounter multiple defence systems that could recognize, neutralize and eliminate them. EVs are natural vesicles that may circumvent the body defence system to remain in systemic circulation for a long time. This unique property made them excellent drug delivery vehicles for clinical application. Here I discuss the progress, challenges and future directions of EVs (especially exosomes) as vehicles for targeted delivery of drug and at the same time deliver their cargoes for regenerative purposes in NDs. Recent developments in bioengineering and microfluidic technologies, which hold promise for clinical-grade production of EVs as drug delivery systems for NDs are also highlighted.
Collapse
Affiliation(s)
- S A Muhammad
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria.
| |
Collapse
|
33
|
Fenselau C, Ostrand-Rosenberg S. Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol 2021; 359:104258. [PMID: 33338939 PMCID: PMC7802618 DOI: 10.1016/j.cellimm.2020.104258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Collaborative research is reviewed in which mass spectrometry-based proteomics and next generation sequencing were used qualitatively and quantitatively to interrogate proteins and RNAs carried in intact myeloid-derived suppressor cells (MDSC) and exosomes shed in vitro by MDSC. In aggregate exosomes more than 4000 proteins were identified, including annexins and immunosuppressive mediators. Bioassays showed that exosomes induce MDSC chemotaxis dependent on S100A8 and S100A9 in their cargo. Surface selective chemistry identified glycoproteins on MDSC and exosome surfaces, including CD47 and thrombospondin 1, which both facilitate exosome-catalyzed chemotaxis. Large numbers of mRNAs and microRNAs were identified in aggregate exosomes, whose potential functions in receptor cells include angiogenesis, and proinflammatory and immunosuppressive activities. Inflammation was found to have asymmetric effects on MDSC and exosomal cargos. Collectively, our findings indicate that the exosomes shed by MDSC provide divergent and complementary functions that support the immunosuppression and tumor promotion activities of MDSC.
Collapse
Affiliation(s)
- Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland, Baltimore County, MD 20742, United States; Department of Pathology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT 84112, United States
| |
Collapse
|
34
|
Dietz S, Schwarz J, Rühle J, Schaller M, Fehrenbacher B, Marmé A, Schmid E, Peter A, Poets CF, Gille C, Köstlin-Gille N. Extracellular vesicles released by myeloid-derived suppressor cells from pregnant women modulate adaptive immune responses. Cell Immunol 2020; 361:104276. [PMID: 33517124 DOI: 10.1016/j.cellimm.2020.104276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Immunological pregnancy complications are a main challenge in reproductive medicine. Mechanisms regulating the adaptation of the maternal immune system to pregnancy are incompletely understood and therapeutic options limited. Myeloid derived suppressor cells (MDSC) are immune-modulatory cells expanding during healthy pregnancy and seem to play a crucial role for maternal-fetal tolerance. Recent studies showed that exosomes produced by MDSC have immune-modulatory effects corresponding to their parental cells under different pathological conditions. Here, we investigated immunological effects of exosomes of GR-MDSC during pregnancy. Isolated GR-MDSC exosomes from peripheral blood of pregnant women were tested for functionality in different in vitro assays. We show that GR-MDSC exosomes exhibited profound immune-modulatory effects such as suppression of T-cell proliferation, T helper 2 (Th2)-cell polarization, induction of regulatory T-cells and inhibition of lymphocyte cytotoxicity. Our results confirm that MDSC-derived exosomes functionally correspond to their parental cells and identify them as an interesting therapeutic target for immunological pregnancy complications.
Collapse
Affiliation(s)
- Stefanie Dietz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Julian Schwarz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Jessica Rühle
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | | | | | - Evi Schmid
- Department of Pediatric Surgery & Pediatric Urology, University of Tuebingen, Germany
| | - Andreas Peter
- German Centre for Diabetes Research (DZD), Tuebingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Germany
| | - Christian F Poets
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Christian Gille
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany.
| | | |
Collapse
|
35
|
Chen W, Wang R, Li D, Zuo C, Wen P, Liu H, Chen Y, Fujita M, Wu Z, Yang G. Comprehensive Analysis of the Glycome and Glycoproteome of Bovine Milk-Derived Exosomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12692-12701. [PMID: 33137256 DOI: 10.1021/acs.jafc.0c04605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bovine milk-derived exosomes (BMDEs) have potential applications in the pharmaceutical industry as drug delivery carriers. A comprehensive analysis of protein glycosylation in exosomes is necessary to elucidate the process of targeted delivery. In this work, free oligosaccharides (FOSs), O-glycans, and N-glycans in BMDEs and whey were first analyzed through multiple derivation strategies. In summary, 13 FOSs, 44 O-glycans, and 94 N-glycans were identified in bovine milk. To analyze site-specific glycosylation of glycoproteins, a one-step method was used to enrich and characterize intact glycopeptides. A total of 1359 proteins including 114 glycoproteins were identified and most of these were located in the exosomes. Approximately 95 glycopeptides were initially discovered and 5 predicted glycosites were confirmed in BMDEs. Collectively, these findings revealed the characterization and distribution of glycans and glycoproteins in BMDEs, providing insight into the potential applications of BMDEs in drug delivery and food science.
Collapse
Affiliation(s)
- Wenyan Chen
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Rong Wang
- School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dan Li
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zuo
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Piaopiao Wen
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haili Liu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Morihisa Fujita
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 2020; 10:2156-2170. [PMID: 33304783 PMCID: PMC7714989 DOI: 10.1016/j.apsb.2020.04.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages have a leading position in the tumor microenvironment (TME) which paves the way to carcinogenesis. Initially, monocytes and macrophages are recruited to the sites where the tumor develops. Under the guidance of different microenvironmental signals, macrophages would polarize into two functional phenotypes, named as classically activated macrophages (M1) and alternatively activated macrophages (M2). Contrary to the anti-tumor effect of M1, M2 exerts anti-inflammatory and tumorigenic characters. In progressive tumor, M2 tumor-associated macrophages (TAMs) are in the majority, being vital regulators reacting upon TME. This review elaborates on the role of TAMs in tumor progression. Furthermore, prospective macrophage-focused therapeutic strategies, including drugs not only in clinical trials but also at primary research stages, are summarized followed by a discussion about their clinical application values. Nanoparticulate systems with efficient drug delivery and improved antitumor effect are also summed up in this article.
Collapse
Affiliation(s)
- Qiyao Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ningning Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Lin S, Zhou S, Yuan T. The "sugar-coated bullets" of cancer: Tumor-derived exosome surface glycosylation from basic knowledge to applications. Clin Transl Med 2020; 10:e204. [PMID: 33135347 PMCID: PMC7551131 DOI: 10.1002/ctm2.204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific interest in exosomes has exploded in recent decades. In 1990 only three articles were published on exosomes, while over 1,700 have already been published half-way into 2020.1 While researchers have shown much interest in exosomes since being discovered in 1981, an appreciation of the potential role of glycans in exosome structure and function has emerged only recently. Glycosylation is one of the most common post-translational modification, which functions in many physiological and pathological aspects of cellular function. Many components of exosomes are heavily glycosylated including proteins, lipids, among others. Thus, glycosylation undoubtedly has a great impact on exosome biosynthesis and function. Despite the importance of glycosylation in exosomes and the recent recognition of them as biomarkers for not only malignancies but also other system dysfunction and disease, the characterization of exosome glycans remains understudied. In this review, we discuss glycosylation patterns of exosomes derived from various tissues, their biological features, and potential for various clinical applications. We highlight state-of-the-art knowledge about the fine structure of exosomes, which will allow researchers to reconstruct them by surface modification. These efforts will likely lead to novel disease-related biomarker discovery, purification tagging, and targeted drug transfer for clinical applications in the future.
Collapse
Affiliation(s)
- Shanyi Lin
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Ting Yuan
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| |
Collapse
|
38
|
Waas M, Littrell J, Gundry RL. CIRFESS: An Interactive Resource for Querying the Set of Theoretically Detectable Peptides for Cell Surface and Extracellular Enrichment Proteomic Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1389-1397. [PMID: 32212654 PMCID: PMC8116119 DOI: 10.1021/jasms.0c00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cell surface transmembrane, extracellular, and secreted proteins are high value targets for immunophenotyping, drug development, and studies related to intercellular communication in health and disease. As the number of specific and validated affinity reagents that target this subproteome are limited, mass spectrometry (MS)-based approaches will continue to play a critical role in enabling discovery and quantitation of these molecules. Given the technical considerations that make MS-based cell surface proteome studies uniquely challenging, it can be difficult to select an appropriate experimental approach. To this end, we have integrated multiple prediction strategies and annotations into a single online resource, Compiled Interactive Resource for Extracellular and Surface Studies (CIRFESS). CIRFESS enables rapid interrogation of the human proteome to reveal the cell surface proteome theoretically detectable by current approaches and highlights where current prediction strategies provide concordant and discordant information. We applied CIRFESS to identify the percentage of various subsets of the proteome which are expected to be captured by targeted enrichment strategies, including two established methods and one that is possible but not yet demonstrated. These results will inform the selection of available proteomic strategies and development of new strategies to enhance coverage of the cell surface and extracellular proteome. CIRFESS is available at www.cellsurfer.net/cirfess.
Collapse
Affiliation(s)
- Matthew Waas
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jack Littrell
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
39
|
Zhu Y, An Y, Li R, Zhang F, Wang Q, He P. Double imprinting-based electrochemical detection of mimetic exosomes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Yakymiv Y, Augeri S, Fissolo G, Peola S, Bracci C, Binaschi M, Bellarosa D, Pellacani A, Ferrero E, Ortolan E, Funaro A. CD157: From Myeloid Cell Differentiation Marker to Therapeutic Target in Acute Myeloid Leukemia. Cells 2019; 8:cells8121580. [PMID: 31817547 PMCID: PMC6952987 DOI: 10.3390/cells8121580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Human CD157/BST-1 and CD38 are dual receptor-enzymes derived by gene duplication that belong to the ADP ribosyl cyclase gene family. First identified over 30 years ago as Mo5 myeloid differentiation antigen and 10 years later as Bone Marrow Stromal Cell Antigen 1 (BST-1), CD157 proved not to be restricted to the myeloid compartment and to have a diversified functional repertoire ranging from immunity to cancer and metabolism. Despite being a NAD+-metabolizing ectoenzyme anchored to the cell surface through a glycosylphosphatidylinositol moiety, the functional significance of human CD157 as an enzyme remains unclear, while its receptor role emerged from its discovery and has been clearly delineated with the identification of its high affinity binding to fibronectin. The aim of this review is to provide an overview of the immunoregulatory functions of human CD157/BST-1 in physiological and pathological conditions. We then focus on CD157 expression in hematological tumors highlighting its emerging role in the interaction between acute myeloid leukemia and extracellular matrix proteins and its potential utility for monoclonal antibody targeted therapy in this disease.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/antagonists & inhibitors
- ADP-ribosyl Cyclase/chemistry
- ADP-ribosyl Cyclase/metabolism
- Adaptive Immunity
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Disease Susceptibility
- Enzyme Activation
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/metabolism
- Humans
- Immunity, Innate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Models, Molecular
- Molecular Targeted Therapy
- Myeloid Cells/cytology
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- Protein Conformation
- Structure-Activity Relationship
- Substrate Specificity
- Tissue Distribution
Collapse
Affiliation(s)
- Yuliya Yakymiv
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Stefania Augeri
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Giulia Fissolo
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Silvia Peola
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Monica Binaschi
- Department of Experimental and Translational Oncology, Menarini Ricerche S.p.A, 00071 Pomezia, Rome, Italy; (M.B.); (D.B.)
| | - Daniela Bellarosa
- Department of Experimental and Translational Oncology, Menarini Ricerche S.p.A, 00071 Pomezia, Rome, Italy; (M.B.); (D.B.)
| | | | - Enza Ferrero
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Erika Ortolan
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Ada Funaro
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
- Correspondence: ; Tel.: +39-011-6705988
| |
Collapse
|
42
|
Lian S, Xie X, Lu Y, Jia L. Checkpoint CD47 Function On Tumor Metastasis And Immune Therapy. Onco Targets Ther 2019; 12:9105-9114. [PMID: 31806995 PMCID: PMC6839575 DOI: 10.2147/ott.s220196] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
The success of cancer immunotherapy on recognition checkpoints for killing cancer cells has raised a great interest of scientists in understanding new and old methods of immunotherapeutic. CD47 (cluster of differentiation 47) is a cell surface glycoprotein and widely expressed on cells, which belongs to the immunoglobulin (Ig) superfamily as a cell membrane receptor which serves in immune therapy. CD47 is an inhibitory receptor expressed on tumor cell surface and interacts with signal receptor protein-alpha (SIPR-α, also named CD172a or SHPS-1) which may escape from immune cells such as macrophage and T cells. Meanwhile, tumor cells express high CD47 protein which may secrete exosomes with high CD47 expression. The high CD47 expression-exosomes could serve the tumor metastasis process and provide transfer convenience for tumors on the microenvironment. CD47 on cancer cells can also affect the migration and invasion of cells. The high CD47 expression on tumor or CTC (circulating tumor cell) surface means the stronger migration and invasion and makes them escape from immune cells for phagocytosis such as T cells, NK (natural killer) cells and macrophage, which could be used for diagnosis and prognosis on cancer patients. Meanwhile, targeting CD47 combined with other biomarkers such as EpCAM (epithelial cell adhesion molecule), CD44, etc on cancer surface could be used to isolate CTCs from patients' blood. In terms of treatment, anti-CD47 antibody combined with another antibody such as anti-PD-L1 (programmed death-ligand 1) antibody or drugs such as rituximab, DOX or oxaliplatin also has better therapeutic effects and antitumor function to tumors. Using nanomaterials as an intermediary for CD47-related immune therapy could greatly increase the therapeutic effect and overcome multiple biological barriers for anti-CD47 antibody in vivo. In this review, we discuss the important role and the function of CD47 in tumor metastasis and also provide a reference for related research.
Collapse
Affiliation(s)
- Shu Lian
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.,Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, People's Republic of China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.,Marine Drug R&D Center, Institute of Oceanography, Minjiang University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
43
|
Villa F, Quarto R, Tasso R. Extracellular Vesicles as Natural, Safe and Efficient Drug Delivery Systems. Pharmaceutics 2019; 11:pharmaceutics11110557. [PMID: 31661862 PMCID: PMC6920944 DOI: 10.3390/pharmaceutics11110557] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are particles naturally released from cells, delimited by a lipid bilayer, carrying functionally active biological molecules. In addition to their physiological role in cellular communication, the interest of the scientific community has recently turned to the use of EVs as vehicles for delivering therapeutic molecules. Several attempts are being made to ameliorate drug encapsulation and targeting, but these efforts are thwarted if the starting material does not meet stringent quality criteria. Here, we take a step back to the sources and isolation procedures that could guarantee significant improvements in the purification of EVs to be used as drug carriers, highlighting the advantages and shortcomings of each approach.
Collapse
Affiliation(s)
- Federico Villa
- U.O. Cellular Oncology, Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Rodolfo Quarto
- U.O. Cellular Oncology, Ospedale Policlinico San Martino, 16132 Genova, Italy.
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy.
| | - Roberta Tasso
- U.O. Cellular Oncology, Ospedale Policlinico San Martino, 16132 Genova, Italy.
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy.
| |
Collapse
|
44
|
Chen D, Geis-Asteggiante L, Gomes FP, Ostrand-Rosenberg S, Fenselau C. Top-Down Proteomic Characterization of Truncated Proteoforms. J Proteome Res 2019; 18:4013-4019. [PMID: 31545043 DOI: 10.1021/acs.jproteome.9b00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A top-down proteomic strategy with semiautomated analysis of data sets has proven successful for the global identification of truncated proteins without the use of chemical derivatization, enzymatic manipulation, immunoprecipitation, or other enrichment. This approach provides the reliable identification of internal polypeptides formed from precursor gene products by proteolytic cleavage of both the N- and C-termini, as well as truncated proteoforms that retain one or the other termini. The strategy has been evaluated by application to the immunosuppressive extracellular vesicles released by myeloid-derived suppressor cells. More than 1000 truncated proteoforms have been identified, from which binding motifs are derived to allow characterization of the putative proteases responsible for truncation.
Collapse
Affiliation(s)
- Dapeng Chen
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Fabio P Gomes
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , Maryland 21250 , United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
45
|
Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, Xu H, Wang S. Granulocytic Myeloid-Derived Suppressor Cells Promote the Stemness of Colorectal Cancer Cells through Exosomal S100A9. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901278. [PMID: 31559140 PMCID: PMC6755519 DOI: 10.1002/advs.201901278] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/22/2019] [Indexed: 05/27/2023]
Abstract
Cancer stem cells play a critical role in colorectal cancer (CRC) progression. Myeloid-derived suppressor cells (MDSCs) promote tumor progression through multiple mechanisms in CRC. The roles of MDSCs in CRC cell stemness are unclear. MDSC-derived exosomes are proposed to act as intercellular messengers. Herein, it is reported that granulocytic MDSCs (G-MDSCs) promote CRC cell stemness and progression in mice through exosomes. It is found that S100A9, is highly expressed in G-MDSC-derived exosomes, and its blockade suppresses CRC cell stemness and the susceptibility of mice to AOM/DSS-induced colitis-associated colon cancer. Hypoxia induces G-MDSCs to secrete more exosomes in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner, and respiratory hyperoxia can reduce CRC cells stemness through the inhibition of GM-Exo production. Study-based CRC patients also show that human MDSCs enhance CRC cell stemness and growth via exosomal S100A9, and plasma exosomal S100A9 level in CRC patients is markedly higher than that in healthy subjects. Thus, this study suggests that G-MDSCs promote CRC cell stemness and growth through exosomal S100A9. Moreover, respiratory hyperoxia may be a beneficial strategy to reduce CRC cells stemness through the inhibition of GM-Exo production. MDSCs exosomal S100A9 may be a marker for predicting the development of CRC.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
- Department of Laboratory MedicineThe First People's Hospital of Yancheng CityYancheng224000China
| | - Kai Yin
- Department of General SurgeryAffiliated Hospital of Jiangsu UniversityZhenjiang212001JiangsuChina
| | - Jie Tian
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Xueli Xia
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Jie Ma
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Xinyi Tang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
| | - Huaxi Xu
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Shengjun Wang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| |
Collapse
|
46
|
Goulart MR, Hlavaty SI, Chang YM, Polton G, Stell A, Perry J, Wu Y, Sharma E, Broxholme J, Lee AC, Szladovits B, Turmaine M, Gribben J, Xia D, Garden OA. Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells. Sci Rep 2019; 9:3574. [PMID: 30837603 PMCID: PMC6400936 DOI: 10.1038/s41598-019-40285-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key players in immune evasion, tumor progression and metastasis. MDSCs accumulate under various pathological states and fall into two functionally and phenotypically distinct subsets that have been identified in humans and mice: polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. As dogs are an excellent model for human tumor development and progression, we set out to identify PMN-MDSCs and M-MDSCs in clinical canine oncology patients. Canine hypodense MHC class II-CD5-CD21-CD11b+ cells can be subdivided into polymorphonuclear (CADO48A+CD14-) and monocytic (CADO48A-CD14+) MDSC subsets. The transcriptomic signatures of PMN-MDSCs and M-MDSCs are distinct, and moreover reveal a statistically significant similarity between canine and previously published human PMN-MDSC gene expression patterns. As in humans, peripheral blood frequencies of canine PMN-MDSCs and M-MDSCs are significantly higher in dogs with cancer compared to healthy control dogs (PMN-MDSCs: p < 0.001; M-MDSCs: p < 0.01). By leveraging the power of evolution, we also identified additional conserved genes in PMN-MDSCs of multiple species that may play a role in MDSC function. Our findings therefore validate the dog as a model for studying MDSCs in the context of cancer.
Collapse
Affiliation(s)
- Michelle R Goulart
- Royal Veterinary College, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sabina I Hlavaty
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - James Perry
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Wu
- Royal Veterinary College, London, UK
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Avery C Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mark Turmaine
- Division of Bioscience, University College London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dong Xia
- Royal Veterinary College, London, UK
| | - Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. J Proteome Res 2019; 18:947-959. [PMID: 30608700 DOI: 10.1021/acs.jproteome.8b00647] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Hui Yu
- Department of Internal Medicine , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Andrew J McKenzie
- Sarah Cannon Research Institute , Nashville , Tennessee 37203 , United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Medicine , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| | - James G Patton
- Department of Biological Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37212 , United States
| | - Qi Liu
- Department of Biostatistics , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Alissa M Weaver
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| |
Collapse
|
48
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
49
|
Abstract
Exosomes are natural nanoparticles that play an important role in cell-to-cell communication. Communication is achieved through the transfer of cargos, such as microRNAs, from donor to recipient cells and binding of exosomes to cell surface receptors. Exosomes and their cargos are also obtained from dietary sources, such as milk. Exosome and cell glycoproteins are crucial for intestinal uptake. A large fraction of milk exosomes accumulates in the brain, whereas the tissue distribution of microRNA cargos varies among distinct species of microRNA. The fraction of milk exosomes that escapes absorption elicits changes in microbial communities in the gut. Dietary depletion of exosomes and their cargos causes a loss of circulating microRNAs and elicits phenotypes such as loss of cognitive performance, increase in purine metabolites, loss of fecundity, and changes in the immune response. Milk exosomes meet the definition of bioactive food compounds.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| |
Collapse
|
50
|
Ostrand-Rosenberg S, Fenselau C. Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. THE JOURNAL OF IMMUNOLOGY 2018; 200:422-431. [PMID: 29311384 DOI: 10.4049/jimmunol.1701019] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a diverse population of immature myeloid cells that have potent immune-suppressive activity. Studies in both mice and humans have demonstrated that MDSC accumulate in most individuals with cancer, where they promote tumor progression, inhibit antitumor immunity, and are an obstacle to many cancer immunotherapies. As a result, there has been intense interest in understanding the mechanisms and in situ conditions that regulate and sustain MDSC, and the mechanisms MDSC use to promote tumor progression. This article reviews the characterization of MDSC and how they are distinguished from neutrophils, describes the suppressive mechanisms used by MDSC to mediate their effects, and explains the role of proinflammatory mediators and the tumor microenvironment in driving MDSC accumulation, suppressive potency, and survival.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250; and
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| |
Collapse
|