1
|
Wang F, Shen C, Chen F, Cao J, Yue P, Shen B. Quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery: impact of glycyrrhizic acid concentrations. Pharm Dev Technol 2025:1-10. [PMID: 40279160 DOI: 10.1080/10837450.2025.2498370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
The purpose of this study was to investigate the impact of glycyrrhizic acid (GL) concentrations on in vitro and in vivo behavior of quercetin (QT) nanocrystals stabilized by GL (QT-NCs/GL), with a particular focus on its influence on liver targeted drug delivery. QT-NCs/GL with similar particle size around 200 nm were successfully prepared by media milling technique using different concentrations of GL, which were 10%, 20% and 40% (w/w) of the QT. All QT-NCs/GL showed oval and rod shapes, and remained in crystalline state with a reduced crystallinity as GL concentrations increased. All QT-NCs/GL exhibited significant solubility increase and drug release improvement of QT as compared to raw QT. Pharmacokinetics revealed similar plasma concentration-time profiles of QT after intravenous of all QT-NCs/GL. All QT-NCs/GL exhibited rapidly distribution of QT to liver with the maximum QT concentration more than 750 μg/g at 5 min after intravenous administration, and the AUC0∼t of QT for three formulations in liver were significant difference with the following order: QT-NCs/GL-40% > QT-NCs/GL-20% > QT-NCs/GL-10%. These results suggested that different GL concentrations exhibited significant influence on liver targeted delivery of QT-NCs/GL, and more GL used in QT-NCs/GL may contribute more liver distribution of QT.
Collapse
Affiliation(s)
- Fengxia Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, China
| | - Chengying Shen
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Fangwen Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Jinyun Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, China
| |
Collapse
|
2
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Liu Z, Koseki Y, Suzuki R, Dao ATN, Kasai H. Sustained Drug Release from Dual-Responsive Hydrogels for Local Cancer Chemo-Photothermal Therapy. Macromol Biosci 2025; 25:e2400413. [PMID: 39565793 PMCID: PMC11904390 DOI: 10.1002/mabi.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Indexed: 11/22/2024]
Abstract
As an exceptional carrier for localized drug delivery to tumors, hydrogels can achieve prolonged drug release through careful design and adjustments, effectively targeting cancer cells and minimizing side effects. This study investigates a novel dual-responsive hydrogel system designed for the delivery of nanomedicines, focusing on drug release and the local antitumor efficacy of SN-38-cholesterol nanoparticles (SN-38-chol NPs) and polydopamine NPs (PDA NPs)/poly(n-isopropylacrylamide) (pNIPAM) hydrogels. By combining the thermosensitive properties of pNIPAM with the near-infrared (NIR) responsiveness of PDA NPs, the hydrogel aims to enhance on-demand drug release. SN-38-chol NPs, known for their stability and small size, are incorporated into the hydrogel to improve drug release dynamics. The investigation reveals a drug release cycle of over three weeks, maintaining sensitivity to both temperature and NIR light for controlled drug release. In vivo studies demonstrate the high tumor growth inhibition performance of the system after photothermal treatment induced by 808 nm NIR light. These results suggest that the drug-carrying hydrogel system holds promise for diverse applications in chemical and physical therapies, including the treatment of malignant wounds, post-surgery wound healing, and direct tumor treatment. This study establishes the potential of SN-38-chol NPs and PDA NPs/pNIPAM hydrogels as effective platforms for chemo-phototherapy.
Collapse
Affiliation(s)
- Zhixiang Liu
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, AobaSendaiMiyagi980–8577Japan
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, AobaSendaiMiyagi980–8577Japan
| | - Ryuju Suzuki
- National Institute of TechnologySendai College4‐16‐1 Ayashi, AobaSendaiMiyagi989–3128Japan
| | - Anh Thi Ngoc Dao
- Graduate School of Integrated Science and TechnologyNagasaki University1–14 BunkyoNagasakiNagasaki852–8521Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, AobaSendaiMiyagi980–8577Japan
| |
Collapse
|
4
|
Chen W, Huang J, Guo Y, Wang X, Lin Z, Wei R, Chen J, Wu X. Nanocrystals for Intravenous Drug Delivery: Composition Development, Preparation Methods and Applications in Oncology. AAPS PharmSciTech 2025; 26:66. [PMID: 39979757 DOI: 10.1208/s12249-025-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Intravenous routes of drug delivery are widely used in clinical practice due to the advantages of fast onset of action and avoidance of first-pass effect. Still, it is difficult to develop poorly water-soluble drugs for intravenous administration. In recent years, the application of nanocrystal technology has become more and more widespread, mainly involving reducing the particle size to the nanoparticle size range and improving its physicochemical properties to enhance the bioavailability of drugs. Intravenous nanocrystals (INCs) can show unique advantages in the vasculature, with their high drug loading capacity, low toxicity, and overcoming low solubility, which makes them a new solution in tumor therapy. In addition, INCs are mainly suspended in aqueous/oil phase media, which makes them easy to inject. Therefore, INCs may serve as a novel strategy to address poor water solubility, low bioavailability, and associated toxicity. This review contains the compositional development of INCs, and preparation methods, and provides some insights into their application in oncology.
Collapse
Affiliation(s)
- Wanjiao Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jingyi Huang
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Yankun Guo
- Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Xinyv Wang
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Ruting Wei
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jianming Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| | - Xin Wu
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
5
|
Iqbal FM, Rodríguez-Nogales C, Boulens N, Delie F. Formulation and optimization of transferrin-modified genistein nanocrystals: In vitro anti-cancer assessment and pharmacokinetic evaluation. Int J Pharm 2024; 667:124863. [PMID: 39447935 DOI: 10.1016/j.ijpharm.2024.124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
In this research work, nanocrystals (NC) of poorly water-soluble drug genistein (Gen) were formulated to improve its aqueous solubility and bioavailability. Genistein nanocrystals (Gen-NC) were prepared by wet ball milling. The formulation was optimized using Box Behnken Design Expert to evaluate the impact of stabilizer concentration, drug concentration and quantity of zirconium beads (milling media) on NC size, polydispersity and zeta potential. The NCs were surface-decorated with transferrin (Tf) to form Tf modified Gen-NCs (Tf-Gen-NC) for improving cancer cell selectivity and cytotoxicity. The NC formulations were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray power diffraction (XRD) and differential scanning calorimetry (DSC). The particle size distribution of the optimized formulation varied from 200 to 300 nm with poly dispersibility index (PDI) between 0.1 and 0.3. Tf-Gen-NC and Gen-NC released 96 % and 80 % of the drug content in 20 min at 37 °C, respectively, whereas only 18 % were released with the unprocessed drug. In vitro cytotoxicity was tested in pulmonary adenocarcinoma epithelial cells (A549) and fibroblast cell line (L929). The Tf-Gen-NC presented an enhanced anticancer effect. In vivo pharmacokinetic studies in mice after intraperitoneal administration showed that the Cmax of NC formulations were 2.5-fold higher compared to free Gen. The area under the curve from time of administration to 24 h was 2.5 to 3-fold higher when compared with unprocessed drug. This study shows the interest of Gen-NC in the development of new formulations for Gen as an anticancer drug.
Collapse
Affiliation(s)
- Furqan Muhammad Iqbal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Carlos Rodríguez-Nogales
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland; Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Nathalie Boulens
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland
| | - Florence Delie
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Zhang A, Huang J, Liu Y, Gong H, Guan F, Li W, Han F, Wang Y. Hyaluronic acid application strategies for plant bioactive component delivery: A review. Int J Biol Macromol 2024; 282:137129. [PMID: 39486733 DOI: 10.1016/j.ijbiomac.2024.137129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Despite the notable therapeutic effects of bioactive components derived from naturally occurring medicinal plants, various factors such as low solubility, poor bioavailability, possible toxicity, and inadequate tumor targeting capabilities generally hinder their full potential. Hyaluronic Acid (HA), a naturally occurring polysaccharide, has recently attracted significant research interest from scientists owing to its ability to precisely target tumors, anionic polysaccharide properties, and easily modifiable unique structure. In addition to offering a solid backing for delivering plant bioactive constituents, these remarkable attributes also have considerable implications for drug delivery systems in the future. This review delves into HA's application in delivering plant bioactive components, starting with a summary of HA's functional characteristics and detailing its strategies for single and dual-component delivery. The review also provides a forward-looking analysis of the challenges encountered in developing HA-based drug delivery systems.
Collapse
Affiliation(s)
- Ailin Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jianchang Huang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yutong Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hexin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Fengjuan Han
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
7
|
Iaconisi GN, Ahmed A, Lauria G, Gallo N, Fiermonte G, Cowman MK, Capobianco L, Dolce V. Targeting mitochondria in Cancer therapy: Machine learning analysis of hyaluronic acid-based drug delivery systems. Int J Biol Macromol 2024; 283:137840. [PMID: 39566768 DOI: 10.1016/j.ijbiomac.2024.137840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Mitochondrial alterations play a crucial role in the development and progression of cancer. Dysfunctional mitochondria contribute to the acquisition of key hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, and resistance to cell death. Consequently, targeting mitochondrial dysfunction has emerged as a promising therapeutic strategy. Hyaluronic acid (HA), a naturally occurring glycosaminoglycan, has garnered significant attention due to its multifaceted roles in cancer biology. METHODS We employed a Systematic Literature Review (SLR) approach to examine a collection of 90 scientific publications using a text mining technique leveraging the Latent Dirichlet Allocation (LDA) algorithm. RESULTS The result of this activity, performed through the MySLR digital platform, allowed us to identify a set of two distinct topics representing the research domain. Specifically, Topic 1 comprised 41 papers, while Topic 2 comprised 49 papers. CONCLUSIONS The computational analysis highlighted that the integration of HA into drug delivery systems represents a promising approach to enhance the effectiveness and safety of cancer therapies. The discussed clinical trials provided compelling evidence of the potential of HA-based treatments in targeting cancer cells while minimizing adverse effects on healthy tissues.
Collapse
Affiliation(s)
- Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Graziantonio Lauria
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, NY, New York, USA; Department of Orthopedic Surgery, Grossman School of Medicine, New York University, NY, New York, USA.
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
8
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
10
|
Kareemi AF, Likhitkar S. Applications and advancements of polysaccharide-based nanostructures for enhanced drug delivery. Colloids Surf B Biointerfaces 2024; 238:113883. [PMID: 38615389 DOI: 10.1016/j.colsurfb.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Growing demand for highly effective, site-specific delivery of pharmaceuticals and nutraceuticals using nano-sized carriers has prompted increased scrutiny of carrier biocompatibility and biodegradability. To address these concerns, biodegradable natural polymers have emerged as a transformative domain, offering non-toxic, precisely targetable carriers capable of finely modulating cargo pharmacokinetics while generating innocuous decomposition by-products. This comprehensive review illuminates the emergence of polysaccharide-based nanoparticulate drug delivery systems. These systems establish an interactive interface between drug and targeted organs, guided by strategic modifications to polysaccharide backbones, which facilitate the creation of morphologically, constitutionally, and characteristically vibrant nanostructures through various fabrication routes, underpinning their pivotal role in biomedical applications. Advancements crucial to enhancing polysaccharide-based drug delivery, such as surface modifications and bioinspired modifications for enhanced targeting, and stimuli-responsive release, strategies to overcome biological barriers, enhance tumor penetration, and optimize therapeutic outcomes are highlighted. This review also examines some potent challenges, and the contemporary way out of them, and discusses future perspectives in the field.
Collapse
Affiliation(s)
- Asra Fatimah Kareemi
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India
| | - Sweta Likhitkar
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India.
| |
Collapse
|
11
|
Zhang W, Xiang S, Han Y, Wang H, Deng Y, Bian P, Bando Y, Golberg D, Weng Q. Phospholipid-inspired alkoxylation induces crystallization and cellular uptake of luminescent COF nanocarriers. Biomaterials 2024; 306:122503. [PMID: 38359508 DOI: 10.1016/j.biomaterials.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The porous nature and structural variability of covalent organic frameworks (COFs) make them preferred for drug loading and delivery applications. However, most COF materials suffer from poor luminescent properties and inefficiency for cell uptake. Herein, we experimentally demonstrate the crucial role of long alkoxy chains in the synthesis of crystalline COF nanostructures with high cellular uptake efficiency. After luminescence integration through band engineering, the semiconducting COF exhibits an optical bandgap of 2.05 eV, an emission wavelength of 632 nm, a high quantum yield of 37 %, and excellent fluorescence stability (100 % at 3 h). Such excellent optical properties of the designed COF nanocarriers enable quantitative evaluations of cellular uptake and visual tracking of drug delivery. It was demonstrated that the cellular uptake efficiency was enhanced by orders of magnitude for the COF after the introduction of long n-octyloxy chains, which firstly delivered the anticancer camptothecin (CPT) to cell lysosomes, and then underwent "endo/lysosomal escape" to induce cell apoptosis. In vivo assay evidenced a significant enhancement in the therapeutic effect with a 96 % inhibition of tumor growth after 14 days of treatment. This progress sheds light on designing cutting-edge drug delivery nanosystems based on COF materials with integrated diagnostic and therapeutic functions.
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Shuo Xiang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Yuxin Han
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Haiyan Wang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Yuxian Deng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China
| | - Panpan Bian
- Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, PR China.
| | - Yoshio Bando
- Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales, 2500, Australia; Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, QLD, Australia; Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305, Japan
| | - Qunhong Weng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha, 410082, PR China.
| |
Collapse
|
12
|
Shanmugam L, Venkatasubbu GD, Jayaraman M. Hyaluronan-based nano-formulation with mesoporous silica enhances the anticancer efficacy of phloroglucinol against gastrointestinal cancers. Int J Biol Macromol 2024; 265:130856. [PMID: 38490393 DOI: 10.1016/j.ijbiomac.2024.130856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Gastrointestinal cancers are one among the most frequently reported cancers where colorectal and gastric cancers ranks third leading cause of cancer related death worldwide. Phloroglucinol, a well-known therapeutic agent for cancer, where its usage has been limited due to its poor water solubility and bioavailability. Hence, our study aims to synthesize and characterize Hyaluronan grafted phloroglucinol loaded Mesoporous silica nanoparticles (MSN-PG-HA). Our nano-formulation hasn't shown any teratogenic effect on Zebrafish embryos, no hemolysis and toxic effect with normal fibroblast cells with a maximum concentration of 300 μg/mL. The cumulative drug release profile of MSN-PG-HA showed a maximum drug release of 96.9 % with 5 mM GSH under redox responsive drug release, which is crucial for targeting cancer cells. In addition, the MSN-PG-HA nanoparticles showed significant a cytotoxic effect against HCT-116, AGS and SW-620 with IC50 values of 86.5 μg/mL, 80.65 μg/mL and 109.255 μg/mL respectively. Also, the cellular uptake assay has shown an increased uptake of FITC-labeled-MSN-PG-HA by HA-receptor mediated endocytosis than FITC-labeled-MSN-PG without HA modification in CD44+ gastrointestinal cancer cell lines. The ability of MSN-PG-HA to target CD44+ cells was further exploited for its application in cancer stem cell research utilizing in silico analysis with various stem cell pathway related targets, in which PG showed higher binding affinity with Gli 1 and the simulation studies proving its effectiveness in disrupting the protein structure. Thus, the findings of our study with nano-formulation are safe and non-toxic to recommend for targeted drug delivery against gastrointestinal cancers as well as its affinity towards cancer stem cell pathway related proteins proving to be a significant formulation for cancer stem cell research.
Collapse
Affiliation(s)
- Lakshmi Shanmugam
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Megala Jayaraman
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
13
|
Frouhar E, Adibifar A, Salimi M, Karami Z, Shadmani N, Rostamizadeh K. Novel pH-responsive alginate-stabilized curcumin-selenium-ZIF-8 nanocomposites for synergistic breast cancer therapy. J Drug Target 2024; 32:444-455. [PMID: 38445558 DOI: 10.1080/1061186x.2024.2324935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
In this study, a novel selenium@zeolitic imidazolate framework core/shell nanocomposite stabilised with alginate was used to improve the anti-tumour activity of curcumin. The developed alginate-stabilised curcumin-loaded selenium@zeolitic imidazolate framework (Alg@Cur@Se@ZIF-8) had a mean diameter of 159.6 nm and polydispersity index < 0.25. The release of curcumin from the nanocarrier at pH 5.4 was 2.69 folds as high as at pH 7.4. The bare nanoparticles showed haemolytic activity of about 12.16% at a concentration of 500 µg/mL while covering their surface with alginate reduced this value to 5.2%. By investigating cell viability, it was found that Alg@Cur@Se@ZIF-8 caused more cell death than pure curcumin. Additionally, in vivo studies showed that Alg@Cur@Se@ZIF-8 dramatically reduced tumour growth compared to free curcumin in 4T1 tumour-bearing mice. More importantly, the histological study confirmed that the developed drug delivery system successfully inhibited lung and liver metastasis while causing negligible toxicity in vital organs. Overall, due to the excellent inhibitory activity on cancerous cell lines and tumour-bearing animals, Alg@Cur@Se@ZIF-8 can be considered promising for breast cancer therapy.
Collapse
Affiliation(s)
- Emma Frouhar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasim Shadmani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Zhan H, Lv Y, Shen R, Li C, Li M, Li Y. Bimetallic Gold/Silver and Bioactive Camptothecin Hybrid Nanoparticles for Eradication of Cancer Stem Cells in a Combination Manner. Mol Pharm 2024; 21:1450-1465. [PMID: 38335466 DOI: 10.1021/acs.molpharmaceut.3c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The defeat of cancer is still a challenge due to the existence of cancer stem cells (CSCs) because they resist conventional chemotherapy via multifactor regulated mechanisms. Consequently, one-dimensional action toward CSCs cannot work. Herein, we used rationally designed hybrid nanoparticles as a combined cancer therapy, hoping to form a multidimensional control network. In this paper, gold/silver alloy nanoparticle decorated camptothecin nanocrystals were formulated according to complementary anti-CSC mechanisms from gold, silver, and organic drug. This smart drug formulation could combine chemotherapy and thermotherapy, target different tumor sites, and demonstrate versatile toxicity profiles from each component. Major results indicated that this nanosystem demonstrated indiscriminately effective cytotoxic/proapoptotic/necrotic activity against bulk MCF-7 cells and their CSC subpopulation, in particular under laser ablation. Moreover, this nanosystem displayed enhanced antineoplastic activity against CSC spheroids, resulting in a significant reduction in their number and size, that is, their self-renewal capacity. All the results indicated that CSCs upon treatment of these new hybrid nanoparticles underwent reduced stemness and conversion from the original quiescent state and recovered their sensitivity toward chemotherapy. The relevant anticancer mechanism was ascribed to NIR-pH dual responsive drug release, synergistic/combined thermo-chemotherapy of organic drug and inorganic alloy nanoparticles, enhanced cellular uptake mediated by alloy nanoparticles, and Ag+-induced biomembrane damage. This thermo-chemotherapy platform provides a new combinatorial strategy for inorganic and organic agents in the complete elimination of CSCs.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Yulong Lv
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Ruiyu Shen
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Chaoyue Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Miao Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| | - Yahong Li
- Research Institute of Photonics, Dalian Polytechnic University, Dalian, Liaoning Province 116034, P. R. China
| |
Collapse
|
15
|
Zhang W, Xiang S, Long Y, Han Y, Jiang K, Bian P, Weng Q. Red-Fluorescent Covalent Organic Framework Nanospheres for Trackable Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:342-352. [PMID: 38111104 DOI: 10.1021/acsami.3c15521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as promising drug carriers due to their structural variability, inherent porosity, and customizable functions. However, most COFs used in drug delivery suffer from low cellular bioavailability and poor luminescence properties. In this study, we designed a series of size-tunable, crystalline, and red-fluorescent COF nanospheres (COFNSs) for trackable anticancer drug delivery. The semiconducting COFNSs were prepared by condensations of 1,3,5-triformylbenzene (TFB) with various dihydrazide blocks through the Schiff-base reaction, resulting in red emission at 647 nm and excellent fluorescence stability (∼100% for 1 h). Such fluorescence property allowed for systematic investigation of the cellular endocytosis pathway of COFNSs, visualization of drug delivery, and observation of the cell apoptosis process. The COFNSs exhibited high cell viability (>90%), a loading capacity of 183 wt % for the anticancer drug camptothecin (CPT), and significant enhancement in inhibiting 4T1 cancers both in vitro and in vivo as the CPT nanocarrier. This progress presents a valuable approach to design COF nanocarriers with integrated fluorescent and drug delivery functions.
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha 410082, P. R. China
| | - Shuo Xiang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha 410082, P. R. China
| | - Yanyang Long
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha 410082, P. R. China
| | - Yuxin Han
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha 410082, P. R. China
| | - Kang Jiang
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha 410082, P. R. China
| | - Panpan Bian
- Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, P R. China
| | - Qunhong Weng
- College of Materials Science and Engineering, Hunan University, 2 Lushan S Rd, Changsha 410082, P. R. China
| |
Collapse
|
16
|
Sallam NG, Boraie NA, Sheta E, El-Habashy SE. Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic-coated cubosomes bioactivated with frankincense oil. Int J Pharm 2024; 649:123637. [PMID: 38008234 DOI: 10.1016/j.ijpharm.2023.123637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Pancreatic cancer is an aggressive malignancy that remains a major cause of cancer-related deaths. Research for innovative anticancer therapeutic options is thus imperative. In this regard, phytotherapeutics offer great promise as efficient treatment modalities, especially leveraging nanodrug delivery. Herein, we innovatively coloaded the flavonoid genistein (Gen) and frankincense essential oil (FO) within cubosomes, which were then coated with the bioactive ligand hyaluronic acid (HA/Gen-FO-Cub) for active-targeting of pancreatic cancer. The novel HA/Gen-FO-Cub displayed optimum nanosize (198.2 ± 4.5 nm), PDI (0.27 ± 0.01), zeta-potential (-34.7 ± 1.2 mV), Gen entrapment (99.3 ± 0.01 %), and controlled Gen release (43.7 ± 1.2 % after 120 h). HA/Gen-FO-Cub exerted selective anticancer activity on pancreatic cancer cells (PANC-1; 8-fold drop in IC50), cellular uptake and anti-migratory effect compared to Gen solution. HA/Gen-FO-Cub revealed prominent cytocompatibility (100 ± 5.9 % viability of human dermal fibroblast). Moreover, HA/Gen-FO-Cub boosted the in vivo anticancer activity of Gen in an orthotopic cancer model, affording tumor growth suppression (2.5-fold drop) and downregulation of NFκB and VEGF (2.9- and 1.8-fold decrease, respectively), compared to Gen suspension. Antimetastatic efficacy and Bcl-2-downexpression was histologically confirmed. Our findings demonstrate the promising anticancer aptitude of HA/Gen-FO-Cub as an effective phytotherapeutic nanodelivery system for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Nourhan G Sallam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
17
|
Zhan H, Ding S, Shen R, Lv Y, Tian X, Liu G, Li C, Wang J. A Green Synthesis of Au-Ag Alloy Nanoparticles using Polydopamine Chemistry: Evaluation of their Anticancer Potency Towards Both MCF-7 Cells and their Cancer Stem Cells Subgroup. Anticancer Agents Med Chem 2024; 24:969-981. [PMID: 38616743 DOI: 10.2174/0118715206296123240331050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Limited chemotherapy efficacy and cancer stem cells (CSCs)-induced therapeutic resistance are major difficulties for tumour treatment. Adopting more efficient therapies to eliminate bulk-sensitive cancer cells and resistant CSCs is urgently needed. METHODS Based on the potential and functional complementarity of gold and silver nanoparticles (AuNPs or AgNPs) on tumour treatment, bimetallic NPs (alloy) have been synthesized to obtain improved or even newly emerging bioactivity from a combination effect. This study reported a facile, green and economical preparation of Au-Ag alloy NPs using biocompatible polydopamine (PDA) as a reductant, capping, stabilizing and hydrophilic agent. RESULTS These alloy NPs were quasi-spherical with rough surfaces and recorded in diameters of 80 nm. In addition, these alloy NPs showed good water dispersity, stability and photothermal effect. Compared with monometallic counterparts, these alloy NPs demonstrated a dramatically enhanced cytotoxic/pro-apoptotic/necrotic effect towards bulk-sensitive MCF-7 and MDA-MB-231 cells. The underlying mechanism regarding the apoptotic action was associated with a mitochondria-mediated pathway, as evidenced by Au3+/Ag+ mediated Mitochondria damage, ROS generation, DNA fragmentation and upregulation of certain apoptotic-related genes (Bax, P53 and Caspase 3). Attractively, these Au-Ag alloy NPs showed a remarkably improved inhibitory effect on the mammosphere formation capacity of MCF-7 CSCs. CONCLUSION All the positive results were attributed to incorporated properties from Au, Ag and PDA, the combination effect of chemotherapy and photothermal therapy and the nano-scaled structure of Au-Ag alloy NPs. In addition, the high biocompatibility of Au-Ag alloy NPs supported them as a good candidate in cancer therapy.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Shiyu Ding
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Ruiyu Shen
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Yulong Lv
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Xinran Tian
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Guie Liu
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Chaoyue Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Jihui Wang
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, Guangzhou Province, P.R. China
| |
Collapse
|
18
|
Kumar M, Gupta S, Kalia K, Kumar D. Role of Phytoconstituents in Cancer Treatment: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:115-137. [PMID: 38369892 DOI: 10.2174/012772574x274566231220051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024]
Abstract
Over the years, natural compounds have become a significant advancement in cancer treatment, primarily due to their effectiveness, safety, bio-functionality, and wide range of molecular structures. They are now increasingly preferred in drug discovery due to these attributes. These compounds, whether occurring naturally or with synthetic modifications, find applications in various fields like biology, medicine, and engineering. While chemotherapy has been a successful method for treating cancer, it comes with systemic toxicity. To address this issue, researchers and medical practitioners are exploring the concept of combinational chemotherapy. This approach aims to reduce toxicity by using a mix of natural substances and their derivatives in clinical trials and prescription medications. Among the most extensively studied natural anticancer compounds are quercetin, curcumin, vincristine, and vinblastine. These compounds play crucial roles as immunotherapeutics and chemosensitizers, both as standalone treatments and in combination therapies with specific mechanisms. This review article provides a concise overview of the functions, potentials, and combinations of natural anticancer compounds in cancer treatment, along with their mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| | | | | | - Dharmendra Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| |
Collapse
|
19
|
Yenurkar D, Nayak M, Mukherjee S. Recent advances of nanocrystals in cancer theranostics. NANOSCALE ADVANCES 2023; 5:4018-4040. [PMID: 37560418 PMCID: PMC10408581 DOI: 10.1039/d3na00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Emerging cancer cases across the globe and treating them with conventional therapies with multiple limitations have been challenging for decades. Novel drug delivery systems and alternative theranostics are required for efficient detection and treatment. Nanocrystals (NCs) have been established as a significant cancer diagnosis and therapeutic tool due to their ability to deliver poorly water-soluble drugs with sustained release, low toxicity, and flexibility in the route of administration, long-term sustainable drug release, and noncomplicated excretion. This review summarizes several therapies of NCs, including anticancer, immunotherapy, radiotherapy, biotheranostics, targeted therapy, photothermal, and photodynamic. Further, different imaging and diagnostics using NCs are mentioned, including imaging, diagnosis through magnetic resonance imaging (MRI), computed tomography (CT), biosensing, and luminescence. In addition, the limitations and potential solutions of NCs in the field of cancer theranostics are discussed. Preclinical and clinical data depicting the importance of NCs in the spotlight of cancer, its current status, future aspects, and challenges are covered in detail.
Collapse
Affiliation(s)
- Devyani Yenurkar
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Malay Nayak
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| |
Collapse
|
20
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
22
|
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm 2023; 637:122886. [PMID: 36966982 DOI: 10.1016/j.ijpharm.2023.122886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
DNA topoisomerase I plays a key role in lubricatingthe wheels of DNA replication or RNA transcription through breaking and reconnecting DNA single-strand. It is widely known that camptothecin and its derivatives (CPTs) have inhibitory effects on topoisomerases I, and have obtained some clinical benefits in cancer treatment. The potent cytotoxicity makes 7-ethyl-10-hydroxycamptothecin (SN-38) become a brilliant star among these derivatives. However, some undesirable physical and chemical properties of this compound, including poor solubility and stability, seriously hinder its effective delivery to tumor sites. In recent years, strategies to alleviate these defects have aroused extensive research interest. By focusing on the loading mechanism, basic nanodrug delivery systems with SN-38 loaded, like nanoparticles, liposomes and micelles, are demonstrated here. Additionally, functionalized nanodrug delivery systems of SN-38 including prodrug and active targeted nanodrug delivery systems and delivery systems designed to overcome drug resistance are also reviewed. At last, challenges for future research in formulation development and clinical translation of SN-38 drug delivery system are discussed.
Collapse
|
23
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
24
|
Jin H, Li M, Tian F, Yu F, Zhao W. An Overview of Antitumour Activity of Polysaccharides. Molecules 2022; 27:molecules27228083. [PMID: 36432183 PMCID: PMC9692906 DOI: 10.3390/molecules27228083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer incidence and mortality are rapidly increasing worldwide; therefore, effective therapies are required in the current scenario of increasing cancer cases. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, and they have become the focus of current antitumour drug research owing to their significant antitumour effects. In addition to the direct antitumour activity of some natural polysaccharides, their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in natural polysaccharides and polysaccharide-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hongzhen Jin
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Maohua Li
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Feng Tian
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| |
Collapse
|
25
|
Xiang H, Xu S, Li J, Li Y, Xue X, Liu Y, Li J, Miao X. Functional drug nanocrystals for cancer-target delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Wang J, Liu N, Su Q, Lv Y, Yang C, Zhan H. Green Synthesis of Gold Nanoparticles and Study of Their Inhibitory Effect on Bulk Cancer Cells and Cancer Stem Cells in Breast Carcinoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193324. [PMID: 36234451 PMCID: PMC9565927 DOI: 10.3390/nano12193324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 05/29/2023]
Abstract
Chemo-resistance from cancer stem cells (CSCs) subpopulation is a current issue in cancer treatment. It is important to select alternative therapies to efficiently eradicate both bulk cancer cells and CSCs. Here, gold nanoparticles (AuNPs) have been selected regarding their biocompatibility, facile and controllable synthesis, potent anti-cancer activity and photothermal conversion performance. We reported a green synthesis of functionalized AuNPs using hyaluronic acid (HA) as a reductant, capping, stabilizing and hydrophilic substance. The resultant AuNPs were spherical-shaped with an average diameter of around 30 nm. These AuNPs displayed improved physico-chemical (yield, stability, photothermal effect) and biological properties (cellular uptake, cytotoxicity and apoptotic effect) against bulk MDA-MB-231 cells, in comparison with other organic anti-cancer drugs. The intensified bioactivity was dependent on a mitochondria-mediated cascade, reflected by the damage in mitochondria, oxidative stress, intensified Caspase 3 activity and increased/decreased expression of certain pro-apoptotic (Bax, P53, Caspase 3)/anti-apoptotic (Bcl-2) genes. Moreover, these AuNPs posed a dramatically improved inhibitory effect in cell viability and self-renewable capacity on CSC subpopulation. All the results were attributed from the nano-scaled structure of AuNPs and combined effect from NIR-induced hyperthermia. In addition, the biocompatible nature of these AuNPs supported them to be a potential candidate in the development of novel chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jihui Wang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Na Liu
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qing Su
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yulong Lv
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chang Yang
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Honglei Zhan
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
27
|
Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases. CRYSTALS 2022. [DOI: 10.3390/cryst12070926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a leading cause of death worldwide. It is a global quandary that requires the administration of many different active pharmaceutical ingredients (APIs) with different characteristics. As is the case with many APIs, cancer treatments exhibit poor aqueous solubility which can lead to low drug absorption, increased doses, and subsequently poor bioavailability and the occurrence of more adverse events. Several strategies have been envisaged to overcome this drawback, specifically for the treatment of neoplastic diseases. These include crystal engineering, in which new crystal structures are formed to improve drug physicochemical properties, and/or nanoengineering in which the reduction in particle size of the pristine crystal results in much improved physicochemical properties. Co-crystals, which are supramolecular complexes that comprise of an API and a co-crystal former (CCF) held together by non-covalent interactions in crystal lattice, have been developed to improve the performance of some anti-cancer drugs. Similarly, nanosizing through the formation of nanocrystals and, in some cases, the use of both crystal and nanoengineering to obtain nano co-crystals (NCC) have been used to increase the solubility as well as overall performance of many anticancer drugs. The formulation process of both micron and sub-micron crystalline formulations for the treatment of cancers makes use of relatively simple techniques and minimal amounts of excipients aside from stabilizers and co-formers. The flexibility of these crystalline formulations with regards to routes of administration and ability to target neoplastic tissue makes them ideal strategies for effectiveness of cancer treatments. In this review, we describe the use of crystalline formulations for the treatment of various neoplastic diseases. In addition, this review attempts to highlight the gaps in the current translation of these potential treatments into authorized medicines for use in clinical practice.
Collapse
|
28
|
Zhang J, Lou B, Qin X, Li Y, Yuan H, Zhang L, Liu X, Zhang Y, Lu J. Using Amphiphilic Polymer Micelles as the Templates of Antisolvent Crystallization to Produce Drug Nanocrystals. ACS OMEGA 2022; 7:21000-21013. [PMID: 35755329 PMCID: PMC9219533 DOI: 10.1021/acsomega.2c01792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible and biodegradable amphiphilic polymeric micelles (PLA-CMCS-g-OA) were prepared by surface grafting of oleic acid and polylactic acid onto carboxymethyl chitosan and were used as templates for the crystallization of camptothecin. The camptothecin (CPT) nanocrystals prepared by the novel micelle-templated antisolvent crystallization (mt-ASC) method demonstrated higher crystallinity, narrower particle size distribution, and slower release characteristic than those prepared by conventional antisolvent crystallization (c-ASC) using a high initial concentration and fast addition rate. In particular, the CPT release behavior of mt-ASC products in phosphate buffer solutions presented a pH-responsive characteristic with the increasing release rate of CPT under lower pH conditions. This work confirmed that amphiphilic nanomicelle-templated crystallization was an effective method for preparing drug nanocrystals.
Collapse
Affiliation(s)
- Jianghao Zhang
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Boxuan Lou
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiaolan Qin
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yinwen Li
- Materials
Science & Engineering School, Linyi
University, Linyi 276000, China
| | - Haikuan Yuan
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lijuan Zhang
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yan Zhang
- Process
Engineering Department, Memorial University
of Newfoundland, St John’s, NL A1B 3X5, Canada
| | - Jie Lu
- Chemical
Engineering Department, Frontier Medical Technologies Institute, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
29
|
Dual-targeted and controlled release delivery of doxorubicin to breast adenocarcinoma: In vitro and in vivo studies. Int J Pharm 2022; 623:121892. [PMID: 35671850 DOI: 10.1016/j.ijpharm.2022.121892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug that belongs to the anthracyclines family. Cardiotoxicity is one of the main limiting factor of prescribing DOX. To reduce its side effects and enhance the drug delivery to the targeted tissues, we aimed to establish a new targeted and controlled release drug delivery system for treatment of breast cancer. In this article, we tried to synthesize a new nanoplatform consisted of DOX conjugate with hydrazide and disulfide bonds to the hyaluronic acid (HA). Firstly, 4,4'-Dithiodibutyric acid (DTBH) was conjugated with HA. Then, 3-aminophenyl boronic acid monohydrate (APBA) was conjugated with DTBH-HA. Subsequently, DOX was added to DTBH-HA-APBA. HA is a natural polymer with the ability to target CD44, a cell surface adhesion receptor, which are highly overexpressed on the surface of variety of cancer cells. Other targeting agent, APBA can target sialic acid on the cancer cells surface and improve the tumor uptake. Formation of The DTBH-HA-APBA conjugate was confirmed by proton nuclear magnetic resonance (1H-NMR) spectroscopy. Scanning emission electron microscopy (SEM) images of the DOX-DTBH-HA-APBA displayed a spherical shape with an average diameter of about 70 nm. In vitro drug release study showed considerably different release pattern of DOX from the formulation at acidic pH (5.4) which was higher than normal pH (7.4). Cellular uptake and cellular cytotoxicity analysis were examined in human breast adenocarcinoma cell line (MCF-7) and mouse breast cancer cells (4T1) as positive cell lines and Chinese Hamster Ovary cells (CHO) as negative cell line. Results confirmed that there is a remarkable difference between dual-targeted (DOX-DTBH-HA-APBA) and single targeted (DOX-DTBH-HA) formulations in both positive cell lines regarding internalization and cytotoxicity. In vivo studies indicated that dual-targeted formulation has the best efficacy with minimum side effects in mouse model. Fluorescence imaging of organs revealed that DOX-DTBH-HA-APBA showed greater DOX accumulation compared with DOX-DTBH-HA and free DOX in tumor site. Also, pathological evaluation indicated that there is no observable cardiotoxicity with final formulation.
Collapse
|
30
|
Wang J, Zhao H, Song W, Gu M, Liu Y, Liu B, Zhan H. Gold Nanoparticle-Decorated Drug Nanocrystals for Enhancing Anticancer Efficacy and Reversing Drug Resistance Through Chemo-/Photothermal Therapy. Mol Pharm 2022; 19:2518-2534. [PMID: 35549267 DOI: 10.1021/acs.molpharmaceut.2c00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited chemotherapeutic efficiency, drug resistance, and side effects are primary obstacles for cancer treatment. The development of co-delivery systems with synergistic treatment modes should be a promising strategy. Here, we fabricated a multifunctionalized nanocarrier with a combination of chemotherapeutic agents and gold nanoparticles (AuNPs), which could integrate chemo-photothermal therapy, thus enhancing overall anticancer efficacy, sensitizing drug-resistant cancer cells, and diminishing cancer stem cells (CSCs). To be specific, camptothecin nanocrystals (CPT NCs) were prepared as a platform, on the surface of which AuNPs were decorated and a hyaluronic acid layer acted as capping, stabilizing, targeting, and hydrophilic agents for CPT NCs, and reducing agents for AuNPs, providing a bridge connecting AuNPs to CPT. These AuNP-decorated CPT NCs exhibited good physico-chemical properties such as optimal sizes, payload, stability, and photothermal efficiency. Compared to other CPT formulations, they displayed considerably improved biocompatibility, selectivity, intracellular uptake, cytotoxicity, apoptosis induction activity, Pgp inhibitory capability, and anti-CSC activity, owing to a synergistic/cooperative effect from AuNPs, CPT, near-infrared treatment, pH/photothermal-triggered drug release, and nanoscaled structure. A mitochondrial-mediated signaling pathway is the underlying mechanism for cytotoxic and apoptotic effects from AuNP-decorated CPT NCs, in terms of mitochondrial dysfunction, intensified oxidative stress, DNA fragmentation, caspase 3 activation, upregulation of proapoptotic genes such as p53, Bax, and caspase 3, and lower levels of antiapoptotic Bcl-2.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangzhou Province, P. R. China
| | - He Zhao
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Wenjing Song
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Mingyang Gu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Yujia Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Bingnan Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Honglei Zhan
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| |
Collapse
|
31
|
Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh P, Tabassum H, Alka, Singh S, Guleria A, Saraf SA. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma. Int J Pharm 2022; 622:121848. [DOI: 10.1016/j.ijpharm.2022.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
|
32
|
Lu L, Xu Q, Wang J, Wu S, Luo Z, Lu W. Drug Nanocrystals for Active Tumor-Targeted Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040797. [PMID: 35456631 PMCID: PMC9026472 DOI: 10.3390/pharmaceutics14040797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Drug nanocrystals, which are comprised of active pharmaceutical ingredients and only a small amount of essential stabilizers, have the ability to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs; in turn, drug nanocrystal technology can be utilized to develop novel formulations of chemotherapeutic drugs. Compared with passive targeting strategy, active tumor-targeted drug delivery, typically enabled by specific targeting ligands or molecules modified onto the surface of nanomedicines, circumvents the weak and heterogeneous enhanced permeability and retention (EPR) effect in human tumors and overcomes the disadvantages of nonspecific drug distribution, high administration dosage and undesired side effects, thereby contributing to improving the efficacy and safety of conventional nanomedicines for chemotherapy. Continuous efforts have been made in the development of active tumor-targeted drug nanocrystals delivery systems in recent years, most of which are encouraging and also enlightening for further investigation and clinical translation.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence:
| |
Collapse
|
33
|
Zhan H, Song W, Gu M, Zhao H, Liu Y, Liu B, Wang J. A New Gold Nanoparticles and Paclitaxel Co-Delivery System for Enhanced Anti-Cancer Effect Through Chemo-Photothermal Combination. J Biomed Nanotechnol 2022; 18:957-975. [PMID: 35854456 DOI: 10.1166/jbn.2022.3309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Limited chemotherapeutic efficiency, drug resistance and side effect are primary obstacles for cancer treatment. The development of co-delivery system with synergistic treatment modes should be a promising strategy. Here, we fabricated a multi-functionalized nanocarrier with a combination of chemotherapeutic agent and gold nanoparticles (AuNPs), which could integrate chemo-photothermal therapy and improve entire anti-cancer index. Particularly, Paclitaxel nanocrystals (PTX NC) were first fabricated as a platform, on surface of which AuNPs were decorated and polydopamine (PDA) layer act as capping, stabilizing and hydrophilic agents for PTX NC, providing a bridge connecting AuNPs to PTX. These AuNPs decorated PTX NC exhibited good physico-chemical properties like optimal sizes, stability and photothermal efficiency. Compared to other PTX formulations, they displayed considerably improved biocompatibility, selectivity, intracellular uptake, cytotoxicity, apoptosis induction activity and P-glycoprotein (Pgp) inhibitory capability, owing to a synergistic/ cooperative effect from AuNPs, PTX and NIR treatment, photothermal-triggered drug release and nano-scaled structure. Mitochondria-mediated signaling pathway is underlying mechanism for cytotoxic and apoptotic effect from AuNPs decorated PTX NC, in terms of Mitochondria damage, a loss of Mitochondrial membrane potential, intensified oxidative stress, DNA breakage, Caspase 3 activation, up-regulated expression in pro-apoptotic genes like p53, Caspase 3 and Bax and down-regulated level in anti-apoptotic gene like Bcl-2.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P. R. China
| | - Wenjing Song
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P. R. China
| | - Mingyang Gu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P. R. China
| | - He Zhao
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P. R. China
| | - Yujia Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P. R. China
| | - Bingnan Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P. R. China
| | - Jihui Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P. R. China
| |
Collapse
|
34
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
35
|
Bai M, Yang M, Gong J, Xu H, Wei Z. Progress and Principle of Drug Nanocrystals for Tumor Targeted Delivery. AAPS PharmSciTech 2021; 23:41. [PMID: 34964079 DOI: 10.1208/s12249-021-02200-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
Drugs are referred to as drug nanocrystals when they exist as nanoscale crystal structures. This kind of nanocarrier has been widely utilized to increase the solubility and absorption for poorly aqueous soluble drugs after oral administration, or prolong the drug circulation when intravenous administration. The systemic cytotoxicity caused by antitumor drugs usually come from the nonspecific drug distribution. To solve the disadvantage of poor targetability, drug nanocrystals for tumor targeted delivery have been developed in recent years. In this review, the targeting mechanisms of various surface modified drug nanocrystals are introduced with the focus on passive targeting, active targeting and stimuli-responsive targeting in details. Function and application of common surface modified materials are also discussed.
Collapse
|
36
|
Laksee S, Supachettapun C, Muangsin N, Lertsarawut P, Rattanawongwiboon T, Sricharoen P, Limchoowong N, Chutimasakul T, Kwamman T, Hemvichian K. Targeted Gold Nanohybrids Functionalized with Folate-Hydrophobic-Quaternized Pullulan Delivering Camptothecin for Enhancing Hydrophobic Anticancer Drug Efficacy. Polymers (Basel) 2021; 13:2670. [PMID: 34451205 PMCID: PMC8400492 DOI: 10.3390/polym13162670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023] Open
Abstract
This study presented a green, facile and efficient approach for a new combination of targeted gold nanohybrids functionalized with folate-hydrophobic-quaternized pullulan delivering hydrophobic camptothecin (CPT-GNHs@FHQ-PUL) to enhance the efficacy, selectivity, and safety of these systems. New formulations of spherical CPT-GNHs@FHQ-PUL obtained by bio-inspired strategy were fully characterized by TEM, EDS, DLS, zeta-potential, UV-vis, XRD, and ATR-FTIR analyses, showing a homogeneous particles size with an average size of approximately 10.97 ± 2.29 nm. CPT was successfully loaded on multifunctional GNHs@FHQ-PUL via intermolecular interactions. Moreover, pH-responsive CPT release from newly formulated-CPT-GNHs@FHQ-PUL exhibited a faster release rate under acidic conditions. The intelligent CPT-GNHs@FHQ-PUL (IC50 = 6.2 μM) displayed a 2.82-time higher cytotoxicity against human lung cancer cells (Chago-k1) than CPT alone (IC50 = 2.2 μM), while simultaneously exhibiting less toxicity toward normal human lung cells (Wi-38). These systems also showed specific uptake by folate receptor-mediated endocytosis, exhibited excellent anticancer activity, induced the death of cells by increasing apoptosis pathway (13.97%), and arrested the cell cycle at the G0-G1 phase. The results of this study showed that the delivery of CPT by smart GNHs@FHQ-PUL systems proved to be a promising strategy for increasing its chemotherapeutic effects.
Collapse
Affiliation(s)
- Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Chamaiporn Supachettapun
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pattra Lertsarawut
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Thitirat Rattanawongwiboon
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Phitchan Sricharoen
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand;
| | - Threeraphat Chutimasakul
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Tanagorn Kwamman
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| | - Kasinee Hemvichian
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand; (P.L.); (T.R.); (P.S.); (T.C.); (T.K.); (K.H.)
| |
Collapse
|
37
|
Tian Z, Mai Y, Meng T, Ma S, Gou G, Yang J. Nanocrystals for Improving Oral Bioavailability of Drugs: Intestinal Transport Mechanisms and Influencing Factors. AAPS PharmSciTech 2021; 22:179. [PMID: 34128132 DOI: 10.1208/s12249-021-02041-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
With the limitation of solubility and dissolution rate of insoluble drugs, following oral administration, they would rifely prove poor and volatile bioavailability, which may fail to realize its therapeutic value. The drug nanocrystals are perceived as effective tactic for oral administration of insoluble drugs attributes to possess many prominent properties such as elevating dissolution rate and saturation solubility, high drug loading capacity, and improving oral bioavailability. Based on these advantages, the application of nanocrystals in oral drug delivery has acquired significant achievement, and so far more than 20 products of drug nanocrystals have been confirmed in the market. However, the oral absorption of drug nanocrystals is still facing huge challenges due to the limitation of many factors. Intrinsic properties of the drugs and complex physiological environment of the intestinal tract are the two most important factors affecting the oral bioavailability of drugs. In addition, the research on the multi-aspect mechanisms of nanocrystals promoting gastrointestinal absorption and bioavailability has been gradually deepened. In this review, we summarized recent advances of the nanocrystals delivered orally, and provided an overview to the research progress for crossing the intestinal tract transport mechanisms of the nanocrystals by some new research techniques. Meanwhile, the factors relevant to the transport of drug nanocrystals were also elaborated in detail. Graphical Abstract.
Collapse
|
38
|
Zahiri M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Fabrication of versatile targeted lipopolymersomes for improved camptothecin efficacy against colon adenocarcinoma in vitro and in vivo. Expert Opin Drug Deliv 2021; 18:1309-1322. [PMID: 33970721 DOI: 10.1080/17425247.2021.1928631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hybrid vesicular systems (lipopolymersomes) are promising platforms for minimizing the liposomes and polymersomes disadvantages in terms of chemotherapeutic transportation. In this regard, lipopolymersome has been designed to integrate the advantage of both polymersomes and liposomes to enable better structural integrity of the bilayer after encapsulation of hydrophobic drugs while maintaining the soft nature of liposomes, superior serum stability, and high encapsulation efficiency of cargos in the bilayer segment. RESEARCH DESIGN AND METHODS In the present study, we reported preparation and characterization of five camptothecin (CPT)-loaded lipopolymersomal formulations composed of poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) and dipalmitoylphosphatidylcholine (DPPC) at different molar ratios using film rehydration method. Afterward, the preferred formulation was tagged with AS1411 DNA aptamer in order to evaluate the therapeutic index using nucleolin-positive colon cancer cell lines (HT29 and C26). RESULTS The obtained data indicated that the prepared CPT-loaded lipopolymersome at a PEG-PLA: DPPC ratio of 75:25 exhibited superior stability and high loading capacity compared to other systems. Moreover, high cytotoxicity of the aptamer-targeted lipopolymersome and increased tumor accumulation were observed in comparison with non-targeted one. CONCLUSIONS The designed polymer-rich lipopolymersomal platform offers bright future for the development of potent nanomedicine against cancer.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Muhammad N, Zhao H, Song W, Gu M, Li Q, Liu Y, Li C, Wang J, Zhan H. Silver nanoparticles functionalized Paclitaxel nanocrystals enhance overall anti-cancer effect on human cancer cells. NANOTECHNOLOGY 2021; 32:085105. [PMID: 33197899 DOI: 10.1088/1361-6528/abcacb] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For chemotherapeutic drugs, precise tumor-targeting and high anti-cancer efficiency is equally important in order to enhance chemotherapy and reverse drug resistance. The combination of multifunctional agents to achieve synergy should be a promising strategy. In our study, we have successfully developed novel multifunctionalized drug nanocrystals to realize co-delivery of the organic drug Paclitaxel (PTX), inorganic silver nanoparticles (AgNPs) and a tumor targeting agent. To be specific, PTX nanocrystals were first prepared as a template, then coated with polydopamine (PDA). The PDA layer was utilized as the connection bridge to produce and deposit AgNPs in situ, and provide sites for tumor-targeting peptide NR1 (RGDARF) grafting. As a result, these NR1/AgNP-decorated drug nanocrystals exhibited dramatically improved cellular uptake efficiency, in vitro anti-cancer activity and an anti-migratory effect against a variety of cancer cells, which was attributable to the synergistic, or at least additive, effect of the AgNPs and PTX, enhanced cellular uptake efficiency through NR1-receptor interaction, pH-responsive drug release and the nanoscaled nature. In particular, high anti-cancer activity and low side effects from these NR1/AgNP-decorated PTX nanocrystals were well balanced in terms of good selectivity and biocompatibility. Moreover, these novel drug nanocrystals displayed strong apoptotic-inducing potency, resulting in cell membrane lysis, nuclear damage, mitochondria dysfunction, excessive ROS release and double-stranded DNA breakage. The potential acting mechanism and molecular basis of these novel drug nanocrystals is relevant to the regulation of mitochondria-mediated apoptosis with a greater Bax-to-Bcl-2 ratio and the activation of pro-apoptotic P53 and caspase 3.
Collapse
Affiliation(s)
- Nazim Muhammad
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - He Zhao
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Wenjing Song
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Mingyang Gu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Qian Li
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Yujia Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Cheng Li
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| | - Jihui Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, Guangzhou Province, People's Republic of China
| | - Honglei Zhan
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, People's Republic of China
| |
Collapse
|