1
|
Lv Q, Zhou D, He Y, Xu T, Qiu X, Zeng J. Engineering functional electroconductive hydrogels for targeted therapy in myocardial infarction repair. Bioact Mater 2025; 49:172-192. [PMID: 40124599 PMCID: PMC11929901 DOI: 10.1016/j.bioactmat.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 03/25/2025] Open
Abstract
Myocardial infarction (MI) is characterized by a paucity of cardiomyocyte regeneration, leading to significant morbidity and mortality. Contemporary therapeutic modalities, while mitigating ischemic effects, fail to reconstitute the impaired electromechanical coupling within the infracted myocardium. Emerging evidence supports the utility of electroconductive hydrogels (ECHs) in facilitating post-MI cardiac function recovery by restoring the conductive microenvironment of the infarcted tissue. This comprehensive review delineates the taxonomy of ECHs predicated on their constituent conductive materials. It also encapsulates prevailing research trends in ECH-mediated MI repair, encompassing innovative design paradigms and microenvironment-sensitive strategies. The review also provides a critical appraisal of various implantation techniques, underscored by a thorough examination of the attendant considerations. It elucidates the mechanistic underpinnings by which hydrogels exert salutary effects on myocardial repair, namely by augmenting mechanical and electrical integrity, exerting anti-inflammatory actions, fostering angiogenesis, and curtailing adverse remodeling processes. Furthermore, the review engages with the pressing challenge of optimizing ECH functionality to achieve superior reparative outcomes post-MI. The discourse concludes with an anticipatory perspective on the evolution of ECH scaffolds, advocating for a tailored approach that integrates multifaceted physicochemical properties to cater to the nuances of personalized medicine.
Collapse
Affiliation(s)
- Qianqian Lv
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
- International Center for Translational Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528300, PR China
| | - Dandan Zhou
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
- International Center for Translational Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528300, PR China
| | - Yutong He
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Xiaozhong Qiu
- International Center for Translational Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528300, PR China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| |
Collapse
|
2
|
Xu L, Qiu J, Ren Q, Wang D, Guo A, Wang L, Hou K, Wang R, Liu Y. Gold nanoparticles modulate macrophage polarization to promote skeletal muscle regeneration. Mater Today Bio 2025; 32:101653. [PMID: 40151803 PMCID: PMC11937682 DOI: 10.1016/j.mtbio.2025.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Skeletal muscle regeneration is a complex process that depends on the interplay between immune responses and muscle stem cell (MuSC) activity. Macrophages play a crucial role in this process, exhibiting distinct polarization states-M1 (pro-inflammatory) and M2 (anti-inflammatory)-that significantly affect tissue repair outcomes. Recent advancements in nanomedicine have positioned gold nanoparticles (Au NPs) as promising tools for modulating macrophage polarization and enhancing muscle regeneration. This review examines the role of Au NPs in influencing macrophage behavior, focusing on their physicochemical properties, biocompatibility, and mechanisms of action. We discuss how Au NPs can promote M2 polarization, facilitating tissue repair through modulation of cytokine production, interaction with cell surface receptors, and activation of intracellular signaling pathways. Additionally, we highlight the benefits of Au NPs on MuSC function, angiogenesis, and extracellular matrix remodeling. Despite the potential of Au NPs in skeletal muscle regeneration, challenges remain in optimizing nanoparticle design, developing targeted delivery systems, and understanding long-term effects. Future directions should focus on personalized medicine approaches and combination therapies to enhance therapeutic efficacy. Ultimately, this review emphasizes the transformative potential of Au NPs in regenerative medicine, offering hope for improved treatments for muscle injuries and diseases.
Collapse
Affiliation(s)
- Lining Xu
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jiahuang Qiu
- Research Center of Nano Technology and Application Engineering, School of Public Health,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, 523808, China
| | - Quanzhong Ren
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Dingding Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Anyi Guo
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Ling Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Kedong Hou
- Department of Orthopedics, Beijing Pinggu District Hospital, Beijing, 101200, China
| | - Renxian Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yajun Liu
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
3
|
Alagarsamy KN, Saleth LR, Diedkova K, Zahorodna V, Gogotsi O, Pogorielov M, Dhingra S. MXenes in healthcare: transformative applications and challenges in medical diagnostics and therapeutics. NANOSCALE 2025; 17:11785-11811. [PMID: 40261131 DOI: 10.1039/d4nr04853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
MXenes, a novel class of two-dimensional transition metal carbides, exhibit exceptional physicochemical properties that make them highly promising for biomedical applications. Their application has been explored in bioinstrumentation, tissue engineering, and infectious disease management. In bioinstrumentation, MXenes enhance the sensitivity and response time of wearable sensors, including piezoresistive, electrochemical, and electrophysiological sensors. They also function effectively as contrast agents in MRI and CT imaging for cancer diagnostics and therapy. In tissue engineering, MXenes contribute to both hard and soft tissue regeneration, playing a key role in neural, cardiac, skin and bone repair. Additionally, they offer innovative solutions in combating infectious and inflammatory diseases by facilitating antimicrobial surfaces and immune modulation. Despite their potential, several challenges hinder the clinical translation of MXene-based technologies. Issues related to synthesis, scalability, biocompatibility, and long-term safety must be addressed to ensure their practical implementation in medical applications. This review provides a comprehensive overview of MXenes in next-generation medical diagnostics, including the role they play in wearable sensors and imaging contrast agents. It further explores their applications in tissue engineering and infectious disease management, highlighting their antimicrobial and immunomodulatory properties. Finally, we discuss the key barriers to clinical translation and propose strategies for overcoming these limitations. This review aims to bridge current advancements with future opportunities for integration of MXenes in healthcare.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Kateryna Diedkova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Veronika Zahorodna
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Oleksiy Gogotsi
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Maksym Pogorielov
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| |
Collapse
|
4
|
Abu Elella MH, Kamel AM, López-Maldonado EA, Uzondu SW, Abdallah HM. A review of recent progress in alginate-based nanocomposite materials for tissue engineering applications. Int J Biol Macromol 2025; 297:139840. [PMID: 39814276 DOI: 10.1016/j.ijbiomac.2025.139840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications. This review thoroughly overviews various nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanomaterials, MXenes, and hydroxyapatite, that modify alginate-based nanocomposites. It covers multiple preparation techniques, including layer-by-layer assembly, blending, 3D printing, and in situ synthesis. These techniques apply to tissue engineering applications, including bone tissue engineering, cardiac tissue engineering, neural tissue engineering, wound healing, and skin regeneration. Additionally, it highlights current advancements, challenges, and future perspectives.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Amira M Kamel
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico
| | | | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Gao J, Zhou Y, Xu G, Wei Z, Ding L, Zhang W, Huang Y. Hybrid hydrogels containing gradients in gold nanoparticles for localized delivery of mesenchymal stem cells and enhanced nerve tissues remodeling in vivo. Mater Today Bio 2025; 30:101411. [PMID: 39811605 PMCID: PMC11730570 DOI: 10.1016/j.mtbio.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated. Herein, firstly reported as specific ROS scavenging agents and paracrine stimulators, gold nanoparticles (GNPs) were incorporated in the chitosan/polyvinyl alcohol hydrogel networks. The GNPs/hydrogel composite can support the survival of mesenchymal stem cells (MSCs) with excellent expansion efficiency and protect MSCs in a simulated ROS microenvironment, decreasing the intracellular ROS levels and simultaneously enhancing cell viability. Moreover, biodegradable scaffolds, along with MSCs, were implanted into sciatic nerve defects in a rat model to show good application value in vivo. Our work demonstrated that the GNPs/hydrogel shows great promise in MSCs therapy for peripheral nerve injury with convincing biological evidence.
Collapse
Affiliation(s)
- Jie Gao
- Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China
| | - Yiduo Zhou
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin 14195, Germany
| | - Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Zhongqing Wei
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
| | - Liucheng Ding
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Yi Huang
- Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China
| |
Collapse
|
6
|
Liang Q, Chen S, Hua S, Jiang W, Zhan J, Pu C, Lin R, He Y, Hou H, Qiu X. Biomimetic Versatile Anisotropic, Electroactive Cellulose Hydrogel Scaffolds Tailored from Fern Stem Serving as Nerve Conduit and Cardiac Patch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2400002. [PMID: 39629973 PMCID: PMC11789595 DOI: 10.1002/advs.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 11/06/2024] [Indexed: 01/30/2025]
Abstract
Peripheral nerve injury (PNI) and myocardial infarction (MI) are the two most clinically common soft excitable tissue injuries. Both nerve and cardiac tissues exhibit structural anisotropy and electrophysiological activity, providing a wide range of biophysical cues for cell and tissue repair. However, balancing microstructural anisotropy, electroactivity, and biocompatibility is challenging. To address this issue, Dicranopteris linearis (D. linearis) is proposed as a low-perceived value fern plant. Moreover, to enhance its usefulness, it can be designed into a tubular structure and a lamellar structure to bridge the damaged tissue. Therefore, a robust yet simple top-down approach is proposed to designing and fabricating the desired biomimetic versatile hydrogels orienting from the D. linearis to customize for different soft excitable tissue repair applications. These anisotropic electroactive hydrogels performed well as nerve guidance conduits (NGC) and engineered cardiac patches (ECP) in the repair of PNI and MI, respectively. Two birds, one stone. Accordingly, the biomimetic strategy of D. linearis to NGC and D. linearis to ECP is first proposed, opening a new horizon for constructing tissue engineering using natural sources.
Collapse
Affiliation(s)
- Qinghui Liang
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Shuhui Chen
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Shaofeng Hua
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Weihong Jiang
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Jiamian Zhan
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Chunyi Pu
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Rurong Lin
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Yutong He
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Honghao Hou
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Xiaozhong Qiu
- Department of AnatomyGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| |
Collapse
|
7
|
Ramirez SP, Hernandez I, Balcorta HV, Kumar P, Kumar V, Poon W, Joddar B. Microcomputed Tomography for the Microstructure Evaluation of 3D Bioprinted Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:7799-7808. [PMID: 37871142 DOI: 10.1021/acsabm.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This study implemented the application of microcomputed tomography (micro-CT) as a characterization technique for the study and investigation of the microstructure of 3D scaffold structures produced via three-dimensional bioprinting (3DBP). The study focused on the preparation, characterization, and cytotoxicity analysis of gold nanoparticles (Au-NPs) incorporated into 3DBP hydrogels for micro-CT evaluation. The Au-NPs were characterized by using various techniques, including UV-vis spectrometry, dynamic light scattering (DLS), zeta potential measurement, and transmission electron microscopy (TEM). The characterization results confirmed the successful coating of the Au-NPs with 2 kDa methoxy-PEG and revealed their spherical shape with a mean core diameter of 66 nm. Cytotoxicity analysis using live-dead fluorescent microscopy indicated that all tested Au-NP solutions were nontoxic to AC16 cardiomyocytes in both 2D and 3D culture conditions. Scanning electron microscopy (SEM) showed distinguishable differences in image contrast and intensity between samples with and without Au-NPs, with high concentrations of Au-NPs displaying nanoparticle aggregates. Micro-CT imaging demonstrated that scaffolds containing Au-NPs depicted enhanced imaging resolution and quality, allowing for visualization of the microstructure. The 3D reconstruction of scaffold structures from micro-CT imaging using Dragonfly software further supported the improved visualization. Mechanical analysis revealed that the addition of Au-NPs enhanced the mechanical properties of acellular scaffolds, including their elastic moduli and complex viscosity, but the presence of cells led to biodegradation and reduced mechanical strength. These findings highlight the successful preparation and characterization of Au-NPs, their nontoxic nature in both 2D and 3D culture conditions, their influence on imaging quality, and the impact on the mechanical properties of 3D-printed hydrogels. These results contribute to the development of functional and biocompatible materials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Salma P Ramirez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ivana Hernandez
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Hannia V Balcorta
- Department of Metallurgical, Materials, and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Delivery Systems and Nano-Therapeutics Innovation Laboratory (DESTINATION), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Piyush Kumar
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Vinod Kumar
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Wilson Poon
- Department of Metallurgical, Materials, and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Delivery Systems and Nano-Therapeutics Innovation Laboratory (DESTINATION), The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials, and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
8
|
Ding R, Zhu Y, Jing L, Chen S, Lu J, Zhang X. Sulfhydryl functionalized chitosan-covalent organic framework composites for highly efficient and selective recovery of gold from complex liquids. Int J Biol Macromol 2024; 282:137037. [PMID: 39486726 DOI: 10.1016/j.ijbiomac.2024.137037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Developing candidate adsorbents with high capacity and selectivity for adsorption is a critical approach to recover gold from secondary sources such as electronic waste (e-waste). This measure not only contributes to the recycling of valuable resources but also benefits environment protection and mitigates the detriment to the ecosystem. Traditional covalent organic frameworks (COFs) have garnered great potential in various fields owing to their unique structures and innate functional sites. However, the construction of specific functionalized COFs and their application in efficient gold extraction are still in their nascent stages. Herein, inspired by the photo-induced thiol-ene click reaction, a novel chitosan-modified COFs material (DhaTab-V@chitosan-SH) was first demonstrated by choosing a precursor COF (DhaTab-V) abundant with vinyl groups to crosslink with a thiol-functionalized chitosan (chitosan-SH). Significantly, the coexistence of imine, amide, hydroxyl and thioether groups in the skeleton could serve as functional adsorption sites to combine with the Au (III) via electrostatic interaction and coordination, imparting DhaTab-V@chitosan-SH with prominent adsorption potential for swift, selective and efficient gold capture (970.15 mg·g-1). Additionally, DhaTab-V@chitosan-SH exhibited superior reusability, and realized real gold capture from the leaching solution of e-waste.
Collapse
Affiliation(s)
- Rui Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yancheng Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lu Jing
- Geological and Mineral Exploration Institute of Shandong Province, Jinan, Shandong Province 250100, China
| | - Shenghuang Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jitao Lu
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
9
|
Zhao Z, Wang C, Liu A, Bai N, Jiang B, Mao Y, Ying T, Dong D, Yi C, Li D. Multiple applications of metal-organic frameworks (MOFs) in the treatment of orthopedic diseases. Front Bioeng Biotechnol 2024; 12:1448010. [PMID: 39295846 PMCID: PMC11408336 DOI: 10.3389/fbioe.2024.1448010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Pharmacologic treatment of orthopedic diseases is a common challenge for clinical orthopedic surgeons, and as an important step in the stepwise treatment of orthopedic diseases, it is often difficult to achieve satisfactory results with existing pharmacologic treatments. Therefore, it is increasingly important to find new ways to effectively improve the treatment pattern of orthopedic diseases as well as to enhance the therapeutic efficacy. It has been found that metal-organic frameworks (MOFs) possess the advantages of high specific surface area, high porosity, chemical stability, tunability of structure and biocompatibility. Therefore, MOFs are expected to improve the conventional traditional treatment modality for bone diseases. This manuscript reviewed the applications of MOFs in the treatment of common clinical bone diseases and look forward to its future development.
Collapse
Affiliation(s)
- Ziwen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chenxu Wang
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ning Bai
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bo Jiang
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuanfu Mao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Ying
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Daming Dong
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
10
|
Heo D, Kim KJ, Kwon SJ. Superior Single-Entity Electrochemistry Performance of Capping Agent-Free Gold Nanoparticles Compared to Citrate-Capped Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1399. [PMID: 39269061 PMCID: PMC11397711 DOI: 10.3390/nano14171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
In observing the electrocatalytic current of nanoparticles (NPs) using single-entity electrochemistry (SEE), the surface state of the NPs significantly influences the SEE signal. This study investigates the influence of capping agents on the electrocatalytic properties of gold (Au) NPs using SEE. Two inner-sphere reactions, hydrazine oxidation and glucose oxidation, were chosen to explore the SEE characteristics of Au NPs based on the capping agent presence. The results revealed that "capping agent-free" Au NPs exhibited signal magnitudes and frequencies consistent with theoretical expectations, indicating superior stability and catalytic performance in electrolyte solutions. In contrast, citrate-capped Au NPs showed signals varying depending on the applied potential, with larger magnitudes and lower frequencies than expected, likely due to an aggregation of NPs. This study suggests that capping agents play a crucial role in the catalytic performance and stability of Au NPs in SEE. By demonstrating that minimizing capping agent presence can enhance effectiveness in SEE, it provides insights into the future applications of NPs, particularly highlighting their potential as nanocatalysts in energy conversion reactions and environmental applications.
Collapse
Affiliation(s)
- Dain Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ki Jun Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Wei X, Jiang X, Li H. Fundamental characteristics of ultrasonic green formulations using Avena sativa L. extract-mediated gold nanoparticles and electroconductive nanofibers for cardiovascular nursing care. Heliyon 2024; 10:e35018. [PMID: 39170527 PMCID: PMC11336310 DOI: 10.1016/j.heliyon.2024.e35018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
In the pursuit of novel approaches to address chronic heart failure and enhance cardiovascular nursing care, environmentally sustainable nanomaterials have taken center stage. Recent progress in regenerative medicine has opened doors for the use of biocompatible biomaterials that provide mechanical support to damaged heart tissue and facilitate electrical signaling. This study was dedicated to developing advanced electroconductive nanofibers by incorporating eco-friendly Avena sativa L. extract-mediated gold nanoparticles (AuNPs) into polyaniline to create an intricate cardiac patch. The AuNPs were synthesized through an environmentally friendly chemical process aided by ultrasonic conditions. Comprehensive physicochemical analyses, such as UV-Vis spectroscopy, SEM, TEM, DPPH assay, and XRD, were carried out to characterize the AuNPs. These AuNPs were then blended with a polycaprolactone/gelatin polymeric solution and electrospun to fabricate cardiac patches, which underwent thorough evaluation using various techniques. The resulting cardiac patch demonstrated excellent hemocompatibility, antioxidant properties, and cytocompatibility, offering a promising therapeutic approach for myocardial infarctions and the advancement of cardiovascular nursing care.
Collapse
Affiliation(s)
- Xinfang Wei
- Department of Cardiovascular Medicine CCU, Zhongshan People's Hospital, No. 2 Sunwendong Road, Zhongshan City, Guangdong, 528403, China
| | - Xiaoshan Jiang
- Department of Geriatrics, Qingdao Chengyang District People's Hospital, No. 600, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong Province, China
| | - Hongzan Li
- School of Nursing, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake Science and Technology Park, Dongguan, Guangdong, 523808, China
| |
Collapse
|
12
|
Ventisette I, Mattii F, Dallari C, Capitini C, Calamai M, Muzzi B, Pavone FS, Carpi F, Credi C. Gold-Hydrogel Nanocomposites for High-Resolution Laser-Based 3D Printing of Scaffolds with SERS-Sensing Properties. ACS APPLIED BIO MATERIALS 2024; 7:4497-4509. [PMID: 38925631 PMCID: PMC11253086 DOI: 10.1021/acsabm.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Although visible light-based stereolithography (SLA) represents an affordable technology for the rapid prototyping of 3D scaffolds for in vitro support of cells, its potential could be limited by the lack of functional photocurable biomaterials that can be SLA-structured at micrometric resolution. Even if innovative photocomposites showing biomimetic, bioactive, or biosensing properties have been engineered by loading inorganic particles into photopolymer matrices, main examples rely on UV-assisted extrusion-based low-resolution processes. Here, SLA-printable composites were obtained by mixing a polyethylene glycol diacrylate (PEGDA) hydrogel with multibranched gold nanoparticles (NPs). NPs were engineered to copolymerize with the PEGDA matrix by implementing a functionalization protocol involving covalent grafting of allylamine molecules that have C═C pendant moieties. The formulations of gold nanocomposites were tailored to achieve high-resolution fast prototyping of composite scaffolds via visible light-based SLA. Furthermore, it was demonstrated that, after mixing with a polymer and after laser structuring, gold NPs still retained their unique plasmonic properties and could be exploited for optical detection of analytes through surface-enhanced Raman spectroscopy (SERS). As a proof of concept, SERS-sensing performances of 3D printed plasmonic scaffolds were successfully demonstrated with a Raman probe molecule (e.g., 4-mercaptobenzoic acid) from the perspective of future extensions to real-time sensing of cell-specific markers released within cultures. Finally, biocompatibility tests preliminarily demonstrated that embedded NPs also played a key role by inducing physiological cell-cytoskeleton rearrangements, further confirming the potentialities of such hybrid nanocomposites as groundbreaking materials in laser-based bioprinting.
Collapse
Affiliation(s)
- Isabel Ventisette
- Department
of Industrial Engineering, University of
Florence, Florence 50121, Italy
| | - Francesco Mattii
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
| | - Caterina Dallari
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence Sesto Fiorentino 50019, Italy
| | - Claudia Capitini
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence Sesto Fiorentino 50019, Italy
| | - Martino Calamai
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
| | - Beatrice Muzzi
- Institute
of Chemistry of Organometallic Compounds–National Research
Council, Sesto Fiorentino 50019, Italy
| | - Francesco S. Pavone
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence Sesto Fiorentino 50019, Italy
| | - Federico Carpi
- Department
of Industrial Engineering, University of
Florence, Florence 50121, Italy
| | - Caterina Credi
- European
Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics–National Research Council, Sesto Fiorentino 50019, Italy
| |
Collapse
|
13
|
Wu Y, Zou J, Tang K, Xia Y, Wang X, Song L, Wang J, Wang K, Wang Z. From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration. BURNS & TRAUMA 2024; 12:tkae013. [PMID: 38957661 PMCID: PMC11218788 DOI: 10.1093/burnst/tkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/04/2024]
Abstract
The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Junwu Zou
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Jinhai Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
14
|
Rossi A, Pescara T, Gambelli AM, Gaggia F, Asthana A, Perrier Q, Basta G, Moretti M, Senin N, Rossi F, Orlando G, Calafiore R. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol 2024; 12:1393641. [PMID: 38974655 PMCID: PMC11225062 DOI: 10.3389/fbioe.2024.1393641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Amongst the range of bioprinting technologies currently available, bioprinting by material extrusion is gaining increasing popularity due to accessibility, low cost, and the absence of energy sources, such as lasers, which may significantly damage the cells. New applications of extrusion-based bioprinting are systematically emerging in the biomedical field in relation to tissue and organ fabrication. Extrusion-based bioprinting presents a series of specific challenges in relation to achievable resolutions, accuracy and speed. Resolution and accuracy in particular are of paramount importance for the realization of microstructures (for example, vascularization) within tissues and organs. Another major theme of research is cell survival and functional preservation, as extruded bioinks have cells subjected to considerable shear stresses as they travel through the extrusion apparatus. Here, an overview of the main available extrusion-based printing technologies and related families of bioprinting materials (bioinks) is provided. The main challenges related to achieving resolution and accuracy whilst assuring cell viability and function are discussed in relation to specific application contexts in the field of tissue and organ fabrication.
Collapse
Affiliation(s)
- Arianna Rossi
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Teresa Pescara
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alberto Maria Gambelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Quentin Perrier
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Basta
- Laboratory for Endocrine Cell Transplant and Biohybrid Organs, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Moretti
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Nicola Senin
- Smart Manufacturing Laboratory, Engineering Department, University of Perugia, Perugia, Italy
| | - Federico Rossi
- Engineering Department, University of Perugia, Perugia, Italy
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | |
Collapse
|
15
|
Peydayesh M, Boschi E, Donat F, Mezzenga R. Gold Recovery from E-Waste by Food-Waste Amyloid Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310642. [PMID: 38262611 DOI: 10.1002/adma.202310642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Demand for gold recovery from e-waste grows steadily due to its pervasive use in the most diverse technical applications. Current methods of gold recovery are resource-intensive, necessitating the development of more efficient extraction materials. This study explores protein amyloid nanofibrils (AF) derived from whey, a dairy industry side-stream, as a novel adsorbent for gold recovery from e-waste. To do so, AF aerogels are prepared and assessed against gold adsorption capacity and selectivity over other metals present in waste electrical and electronic equipment (e-waste). The results demonstrate that AF aerogel has a remarkable gold adsorption capacity (166.7 mg g-1) and selectivity, making it efficient and an adsorbent for gold recovery. Moreover, AF aerogels are efficient templates to convert gold ions into single crystalline flakes due to Au growth along the (111) plane. When used as templates to recover gold from e-waste solutions obtained by dissolving computer motherboards in suitable solvents, the process yields high-purity gold nuggets, constituted by ≈90.8 wt% gold (21-22 carats), with trace amounts of other metals. Life cycle assessment and techno-economic analysis of the process finally consolidate the potential of protein nanofibril aerogels from food side-streams as an environmentally friendly and economically viable approach for gold recovery from e-waste.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, CH-8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
16
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
17
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
18
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. PDMS nanoparticles-decorated PDMS substrate promotes adhesion, proliferation and differentiation of skin cells. J Colloid Interface Sci 2024; 659:629-638. [PMID: 38198940 DOI: 10.1016/j.jcis.2023.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Polydimethylsiloxane (PDMS) is known to be a common substrate for various cell culture-based applications. However, native PDMS is not very conducive for cell culture and hence, surface modification via cell adhesion moieties is generally needed to make it suitable especially for long-term cell culture. To address this issue, we propose to coat PDMS nanoparticles (NPs) on the surface of PDMS film to improve adhesion, proliferation and differentiation of skin cells. The proposed modification strategy introduces necessary nanotopography without altering the surface chemical properties of PDMS. Due to resemblance in the mechanical properties of PDMS with skin, PDMS NPs can recreate the native extracellular nanoenvironment of skin on the PDMS surface and provide anchoring sites for skin cells to adhere and grow. Human keratinocytes, representing 95% of the epidermal skin cells maintained their characteristic well-spread morphology with the formation of interconnected cell-sheets on this coated PDMS surface. Moreover, our in vitro immunofluorescence studies confirmed expression of distinctive epidermal protein markers on the coated surface indicating close resemblance with the native skin epidermis. Conclusively, our findings suggest that introducing nanotopography via PDMS NPs can be an effective strategy for emulating the native cellular functions of keratinocytes on PDMS based cell culture devices.
Collapse
Affiliation(s)
- Auhin Kumar Maparu
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Prerana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India; Material Science Programme, Thematic Unit of Excellence on Soft Nanofabrication, Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
19
|
Yang Z, Jaiswal A, Yin Q, Lin X, Liu L, Li J, Liu X, Xu Z, Li JJ, Yong KT. Chiral nanomaterials in tissue engineering. NANOSCALE 2024; 16:5014-5041. [PMID: 38323627 DOI: 10.1039/d3nr05003c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Addressing significant medical challenges arising from tissue damage and organ failure, the field of tissue engineering has evolved to provide revolutionary approaches for regenerating functional tissues and organs. This involves employing various techniques, including the development and application of novel nanomaterials. Among them, chiral nanomaterials comprising non-superimposable nanostructures with their mirror images have recently emerged as innovative biomaterial candidates to guide tissue regeneration due to their unique characteristics. Chiral nanomaterials including chiral fibre supramolecular hydrogels, polymer-based chiral materials, self-assembling peptides, chiral-patterned surfaces, and the recently developed intrinsically chiroptical nanoparticles have demonstrated remarkable ability to regulate biological processes through routes such as enantioselective catalysis and enhanced antibacterial activity. Despite several recent reviews on chiral nanomaterials, limited attention has been given to the specific potential of these materials in facilitating tissue regeneration processes. Thus, this timely review aims to fill this gap by exploring the fundamental characteristics of chiral nanomaterials, including their chiroptical activities and analytical techniques. Also, the recent advancements in incorporating these materials in tissue engineering applications are highlighted. The review concludes by critically discussing the outlook of utilizing chiral nanomaterials in guiding future strategies for tissue engineering design.
Collapse
Affiliation(s)
- Zhenxu Yang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arun Jaiswal
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiankun Yin
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhejun Xu
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- The Biophotonics and Mechanobioengineering Laboratory, Faculty of Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
21
|
Liao W, Ni C, Ge R, Li Y, Jiang S, Yang W, Yan F. Nel-like Molecule Type 1 Combined with Gold Nanoparticles Modulates Macrophage Polarization, Osteoclastogenesis, and Oral Microbiota in Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8442-8458. [PMID: 38335323 DOI: 10.1021/acsami.3c17862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The disruption of host-microbe homeostasis and uncontrolled inflammatory response have been considered as vital causes for developing periodontitis, subsequently leading to an imbalance between the bone and immune system and the collapse of bone homeostasis. Consequently, strategies to modulate the immune response and bone metabolization have become a promising approach to prevent and treat periodontitis. In this study, we investigated the cooperative effects of Nel-like molecule type 1 (Nell-1) and gold nanoparticles (AuNPs) on macrophage polarization, osteoclast differentiation, and the corresponding functions in an experimental model of periodontitis in rats. Nell-1-combined AuNPs in in vitro studies were found to reduce the production of inflammatory factors (TNF-α, p < 0.0001; IL-6, p = 0.0012), modulate the ratio of M2/M1 macrophages by inducing macrophage polarization into the M2 phenotype, and inhibit cell fusion, maturation, and activity of osteoclasts. Furthermore, the local application of Nell-1-combined AuNPs in in vivo studies resulted in alleviation of damages to the periodontal and bone tissues, modulation of macrophage polarization and the activity of osteoclasts, and alteration of the periodontal microbiota, in which the relative abundance of the probiotic Bifidobacterium increased (p < 0.05). These findings reveal that Nell-1-combined AuNPs could be a promising drug candidate for the prevention and treatment of periodontitis. However, Nell-1-combined AuNPs did not show organ toxicity or impair the integrity of intestinal epithelium but alter the gut microbiota, leading to the dysbiosis of gut microbiota. The adverse impact of changes in gut microbiota needs to be further investigated. Nonetheless, this study provides a novel perspective and direction for the biological safety assessment of biomaterials in oral clinical applications.
Collapse
Affiliation(s)
- Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Ruiyang Ge
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi 563099, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-Level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; Shenzhen Clinical Research Center for Oral Diseases, Shenzhen 5180036, Guangdong, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| |
Collapse
|
22
|
Sesena-Rubfiaro A, Prajapati NJ, Lou L, Ghimire G, Agarwal A, He J. Improving the development of human engineered cardiac tissue by gold nanorods embedded extracellular matrix for long-term viability. NANOSCALE 2024; 16:2983-2992. [PMID: 38259163 DOI: 10.1039/d3nr05422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A myocardial infarction (MI), commonly called a heart attack, results in the death of cardiomyocytes (CMs) in the heart. Tissue engineering provides a promising strategy for the treatment of MI, but the maturation of human engineered cardiac tissue (hECT) still requires improvement. Conductive polymers and nanomaterials have been incorporated into the extracellular matrix to enhance the mechanical and electrical coupling between cardiac cells. Here we report a simple approach to incorporate gold nanorods (GNRs) into the fibrin hydrogel to form a GNR-fibrin matrix, which is used as the major component of the extracellular matrix for forming a 3D hECT construct suspended between two flexible posts. The hECTs made with GNR-fibrin hydrogel showed markers of maturation such as higher twitch force, synchronous beating activity, sarcomere maturation and alignment, t-tubule network development, and calcium handling improvement. Most importantly, the GNR-hECTs can survive over 9 months. We envision that the hECT with GNRs holds the potential to restore the functionality of the infarcted heart.
Collapse
Affiliation(s)
| | - Navin J Prajapati
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Lihua Lou
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Govinda Ghimire
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Jin He
- Department of Physics, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
23
|
Lisboa ES, Serafim C, Santana W, Dos Santos VLS, de Albuquerque-Junior RLC, Chaud MV, Cardoso JC, Jain S, Severino P, Souto EB. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs. J Control Release 2024; 365:617-639. [PMID: 38043727 DOI: 10.1016/j.jconrel.2023.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.
Collapse
Affiliation(s)
- Erika S Lisboa
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Carine Serafim
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Wanessa Santana
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Victoria L S Dos Santos
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Ricardo L C de Albuquerque-Junior
- Post-Graduate Program in Dentistry, Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil; Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology of UNISO (LaBNUS), University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Juliana C Cardoso
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Sona Jain
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Patrícia Severino
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
24
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
25
|
Dang Z, Ma X, Yang Z, Wen X, Zhao P. Electrospun Nanofiber Scaffolds Loaded with Metal-Based Nanoparticles for Wound Healing. Polymers (Basel) 2023; 16:24. [PMID: 38201687 PMCID: PMC10780332 DOI: 10.3390/polym16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Failures of wound healing have been a focus of research worldwide. With the continuous development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanoparticles provide new ideas and methods for research into new tissue engineering materials due to their excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanoparticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed, and their characteristics and applications are introduced. We discuss in detail the current research on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of these scaffolds for promoting wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Z.D.); (X.M.); (Z.Y.); (X.W.)
| |
Collapse
|
26
|
Wang N, Wang H, Weng D, Wang Y, Yu L, Wang F, Zhang T, Liu J, He Z. Nanomaterials for small diameter vascular grafts: overview and outlook. NANOSCALE ADVANCES 2023; 5:6751-6767. [PMID: 38059025 PMCID: PMC10696638 DOI: 10.1039/d3na00666b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
Small-diameter vascular grafts (SDVGs) cannot meet current clinical demands owing to their suboptimal long-term patency rate. Various materials have been employed to address this issue, including nanomaterials (NMs), which have demonstrated exceptional capabilities and promising application potentials. In this review, the utilization of NMs in different forms, including nanoparticles, nanofibers, and nanofilms, in the SDVG field is discussed, and future perspectives for the development of NM-loading SDVGs are highlighted. It is expected that this review will provide helpful information to scholars in the innovative interdiscipline of cardiovascular disease treatment and NM.
Collapse
Affiliation(s)
- Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Haoyuan Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Yanyang Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Feng Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University Zunyi 563006 Guizhou China
- The Second Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
| | - Zhixu He
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University Zunyi 563003 Guizhou China
- The First Clinical Institute, Zunyi Medical University Zunyi 563003 Guizhou China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University Zunyi 563003 Guizhou China
| |
Collapse
|
27
|
Gil CJ, Evans CJ, Li L, Allphin AJ, Tomov ML, Jin L, Vargas M, Hwang B, Wang J, Putaturo V, Kabboul G, Alam AS, Nandwani RK, Wu Y, Sushmit A, Fulton T, Shen M, Kaiser JM, Ning L, Veneziano R, Willet N, Wang G, Drissi H, Weeks ER, Bauser-Heaton HD, Badea CT, Roeder RK, Serpooshan V. Leveraging 3D Bioprinting and Photon-Counting Computed Tomography to Enable Noninvasive Quantitative Tracking of Multifunctional Tissue Engineered Constructs. Adv Healthc Mater 2023; 12:e2302271. [PMID: 37709282 PMCID: PMC10842604 DOI: 10.1002/adhm.202302271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Indexed: 09/16/2023]
Abstract
3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon-counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom-engineer scaffolds with traceability. Multiple CT-visible hydrogel-based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine-loaded liposome, gold, methacrylated gold (AuMA), and Gd2 O3 ) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2 O3 NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine.
Collapse
Affiliation(s)
- Carmen J. Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Connor J. Evans
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Lan Li
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Merlyn Vargas
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Jing Wang
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Victor Putaturo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Gabriella Kabboul
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Anjum S. Alam
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Roshni K. Nandwani
- Emory University College of Arts and Sciences, Atlanta, GA, United States
| | - Yuxiao Wu
- Emory University College of Arts and Sciences, Atlanta, GA, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Asif Sushmit
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Travis Fulton
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jarred M. Kaiser
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Nick Willet
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hicham Drissi
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Eric R. Weeks
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
28
|
Messina M, Maugeri L, Spoto G, Puccio R, Ruggieri M, Petralia S. Fully Integrated Point-of-Care Platform for the Self-Monitoring of Phenylalanine in Finger-Prick Blood. ACS Sens 2023; 8:4152-4160. [PMID: 37890867 PMCID: PMC10683505 DOI: 10.1021/acssensors.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 10/29/2023]
Abstract
Development of point-of-care platforms combining reliability and ease of use is a challenge for the evolution of sensing in healthcare technologies. Here, we report the development and testing of a fully integrated enzymatic colorimetric assay for the sensing of phenylalanine in blood samples from phenylketonuria patients. The platform works with a customized mobile app for data acquisition and visualization and comprises an electronic system and a disposable sensor. The sensing approach is based on specific enzymatic phenylalanine recognition, and the optical transduction method is based on in situ gold nanostructure formation. The phenylketonuria (PKU) smart sensor platform is conceived to perform self-monitoring on phenylalanine levels and real-time therapy tuning, thanks to the direct connection with clinicians. Validation of the technologies with a population of patients affected by PKU, together with the concurrent validation of the platform through centralized laboratories, has confirmed the good analytical performances in terms of sensitivity and specificity, robustness, and utility for phenylalanine sensing. The self-monitoring of phenylalanine for the daily identification of abnormal health conditions could facilitate rapid therapy tuning, improving the wellness of PKU patients.
Collapse
Affiliation(s)
- Maria
Anna Messina
- Expanded
Newborn Screening Laboratory, A.O.U Policlinico
“G. Rodolico—San Marco”, 95125 Catania, Italy
| | - Ludovica Maugeri
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
| | | | | | - Martino Ruggieri
- Expanded
Newborn Screening Laboratory, A.O.U Policlinico
“G. Rodolico—San Marco”, 95125 Catania, Italy
- Unit
of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Salvatore Petralia
- Department
of Drug and Health Sciences, University
of Catania, 95125 Catania, Italy
- CNR-Institute
of Biomolecular Chemistry, 95126 Catania, Italy
| |
Collapse
|
29
|
Yuan Q, Feng W, Cheng L. Theoretical study of the saturation and nature of the hydrogen bonds to gold. J Chem Phys 2023; 159:174304. [PMID: 37916593 DOI: 10.1063/5.0171292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Traditional hydrogen bonds are well-known to exhibit directionality and saturation. By contrast, gold involved hydrogen bonds (GHBs) have been extensively studied but remain lack of in-depth understanding towards the intrinsic nature and saturation property. This work exemplifies three series of complexes: [L-Au-L]-⋯(HF)n (L = H, CH3, (CH3)3; n = 1-8) containing GHBs to dig into the intrinsic nature with the aid of multiple theoretical analysis methods, finding that the formation of GHB is highly subject to orbital interactions along with steric hindrance. Moreover, the saturation level of GHBs largely depends on the ligand attached to the gold center, since different ligands typically possess varying electron-giving ability and steric volume. This work confirms the coexistence of as many as 6 GHBs for one Au atom and thoroughly studies the saturation level of GHBs, which will provide new insights into GHBs and facilitate future synthesis of more complicated gold complexes.
Collapse
Affiliation(s)
- Qinqin Yuan
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Wanwan Feng
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei 230601, China
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
30
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Pezhouman A, Nguyen NB, Kay M, Kanjilal B, Noshadi I, Ardehali R. Cardiac regeneration - Past advancements, current challenges, and future directions. J Mol Cell Cardiol 2023; 182:75-85. [PMID: 37482238 DOI: 10.1016/j.yjmcc.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Despite improvements in the standard of care for patients with heart diseases, including innovation in pharmacotherapy and surgical interventions, none have yet been proven effective to prevent the progression to heart failure. Cardiac transplantation is the last resort for patients with severe heart failure, but donor shortages remain a roadblock. Cardiac regenerative strategies include cell-based therapeutics, gene therapy, direct reprogramming of non-cardiac cells, acellular biologics, and tissue engineering methods to restore damaged hearts. Significant advancements have been made over the past several decades within each of these fields. This review focuses on the advancements of: 1) cell-based cardiac regenerative therapies, 2) the use of noncoding RNA to induce endogenous cell proliferation, and 3) application of bioengineering methods to promote retention and integration of engrafted cells. Different cell sources have been investigated, including adult stem cells derived from bone marrow and adipose cells, cardiosphere-derived cells, skeletal myoblasts, and pluripotent stem cells. In addition to cell-based transplantation approaches, there have been accumulating interest over the past decade in inducing endogenous CM proliferation for heart regeneration, particularly with the use of noncoding RNAs such as miRNAs and lncRNAs. Bioengineering applications have focused on combining cell-transplantation approaches with fabrication of a porous, vascularized scaffold using biomaterials and advanced bio-fabrication techniques that may offer enhanced retention of transplanted cells, with the hope that these cells would better engraft with host tissue to improve cardiac function. This review summarizes the present status and future challenges of cardiac regenerative therapies.
Collapse
Affiliation(s)
- Arash Pezhouman
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States
| | - Ngoc B Nguyen
- Baylor College of Medicine, Department of Internal Medicine, Houston, Texas 77030, United States
| | - Maryam Kay
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095, United States
| | - Baishali Kanjilal
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, United States
| | - Reza Ardehali
- Baylor College of Medicine, Department of Medicine, Division of Cardiology, Houston, Texas 77030, United States; Texas Heart Institute, Houston, Texas 77030, United States.
| |
Collapse
|
32
|
Yadid M, Hagel M, Labro MB, Le Roi B, Flaxer C, Flaxer E, Barnea AR, Tejman‐Yarden S, Silberman E, Li X, Rauti R, Leichtmann‐Bardoogo Y, Yuan H, Maoz BM. A Platform for Assessing Cellular Contractile Function Based on Magnetic Manipulation of Magnetoresponsive Hydrogel Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207498. [PMID: 37485582 PMCID: PMC10520681 DOI: 10.1002/advs.202207498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Despite significant advancements in in vitro cardiac modeling approaches, researchers still lack the capacity to obtain in vitro measurements of a key indicator of cardiac function: contractility, or stroke volume under specific loading conditions-defined as the pressures to which the heart is subjected prior to and during contraction. This work puts forward a platform that creates this capability, by providing a means of dynamically controlling loading conditions in vitro. This dynamic tissue loading platform consists of a thin magnetoresponsive hydrogel cantilever on which 2D engineered myocardial tissue is cultured. Exposing the cantilever to an external magnetic field-generated by positioning magnets at a controlled distance from the cantilever-causes the hydrogel film to stretch, creating tissue load. Next, cell contraction is induced through electrical stimulation, and the force of the contraction is recorded, by measuring the cantilever's deflection. Force-length-based measurements of contractility are then derived, comparable to clinical measurements. In an illustrative application, the platform is used to measure contractility both in untreated myocardial tissue and in tissue exposed to an inotropic agent. Clear differences are observed between conditions, suggesting that the proposed platform has significant potential to provide clinically relevant measurements of contractility.
Collapse
Affiliation(s)
- Moran Yadid
- The Azrieli Faculty of MedicineBar Ilan University8 Henrietta Szold St.Safed1311502Israel
- The Shmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv69978Israel
| | - Mario Hagel
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | | | - Baptiste Le Roi
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Carina Flaxer
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Eli Flaxer
- AFEKA – Tel‐Aviv Academic College of EngineeringTel‐Aviv69107Israel
| | - A. Ronny Barnea
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Shai Tejman‐Yarden
- The Edmond J. Safra International Congenital Heart CenterSheba Medical CenterRamat Gan52621Israel
- The Engineering Medical Research LabSheba Medical CenterRamat Gan52621Israel
- The Sackler School of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Eric Silberman
- The Shmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel Aviv69978Israel
| | - Xin Li
- Shenzhen Key Laboratory of Soft Mechanics and Smart ManufacturingDepartment of Mechanics and Aerospace EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Rossana Rauti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbino61029Italy
| | | | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics and Smart ManufacturingDepartment of Mechanics and Aerospace EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Ben M. Maoz
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
33
|
Sheikh-Oleslami S, Tao B, D'Souza J, Butt F, Suntharalingam H, Rempel L, Amiri N. A Review of Metal Nanoparticles Embedded in Hydrogel Scaffolds for Wound Healing In Vivo. Gels 2023; 9:591. [PMID: 37504470 PMCID: PMC10379627 DOI: 10.3390/gels9070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration into wound dressings, there has been increasing focus dedicated to investigating the physical, mechanical, and biological characteristics of these nanoparticles as well as their incorporation into biocomposite materials, such as hydrogel scaffolds for use in lieu of antibiotics as well as to accelerate and ameliorate healing. Though rigorously tested and applied in both medical and non-medical applications, further investigations have not been carried out to bring metal nanoparticle-hydrogel composites into clinical practice. In this review, we provide an up-to-date, comprehensive review of advancements in the field, with emphasis on implications on wound healing in in vivo experiments.
Collapse
Affiliation(s)
- Sara Sheikh-Oleslami
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brendan Tao
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jonathan D'Souza
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Fahad Butt
- Faculty of Science, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Hareshan Suntharalingam
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Lucas Rempel
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nafise Amiri
- International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
34
|
Xue Y, Ma X, Feng X, Roberts S, Zhu G, Huang Y, Fan X, Fan J, Chen X. Temperature-Derived Purification of Gold Nano-Bipyramids for Colorimetric Detection of Tannic Acid. ACS APPLIED NANO MATERIALS 2023; 6:11572-11580. [PMID: 37469507 PMCID: PMC10353004 DOI: 10.1021/acsanm.3c01593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
Gold nanostructures have attracted broad attention. Among various nanostructures, gold nanobipyramids have shown great potential in sensing, biomedicine, environmental protection, chemical catalysis, and optics due to their unique physical and optical properties and ease of chemical functionalization. Compared with other plasmonic nanostructures, gold nanobipyramids possess narrow optical resonances, stronger plasmonic local field enhancement, and size- and shape-dependent surface plasmon resonance. However, the synthesis and purification of homogeneous gold nanobipyramids are very challenging. The gold nanobipyramids synthesized via the commonly used seed-mediated growth method have low yields and are often coproduced with spherical nanoparticles. In this study, we reported a temperature-derived purification method for the isolation of gold bipyramids. In the presence of salt, by altering the temperature of the solution, large gold bipyramids can be separated from small spherical nanoparticles. As a result, a yield of as high as 97% gold nanobipyramids can be achieved through a single round of purification, and correspondingly, the ratio between the longitudinal surface plasmon resonance (LSPR) and transverse SPR intensity significantly increases to as high as 6.7. The purified gold nanobipyramids can be used as a colorimetric probe in the detection of tannic acid with a detection limit of 0.86 μM and a linear detection range from 1.25 to 37.5 μM.
Collapse
Affiliation(s)
- Yuxiang Xue
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Xinyao Ma
- Department
of Materials Science and Engineering, City
University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Xue Feng
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Sam Roberts
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Guangyu Zhu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong
Kong, SAR, P. R. China
| | - Yi Huang
- School
of Engineering, Institute for Materials Processing, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Xianfeng Fan
- School
of Engineering, Institute for Materials Processing, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Jun Fan
- Department
of Materials Science and Engineering, City
University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Xianfeng Chen
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| |
Collapse
|
35
|
Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA, Ye Q, Kumeria T. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioact Mater 2023; 24:535-550. [PMID: 36714332 PMCID: PMC9860401 DOI: 10.1016/j.bioactmat.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.
Collapse
Affiliation(s)
- Astha Sharma
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ganesh R. Kokil
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Baboucarr Lowe
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Arwa Salam
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Tariq A. Altalhi
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
36
|
Shilo M, Baruch ES, Wertheim L, Oved H, Shapira A, Dvir T. Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine. Pharmaceutics 2023; 15:pharmaceutics15041298. [PMID: 37111783 PMCID: PMC10141701 DOI: 10.3390/pharmaceutics15041298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
In myocardial infarction, a blockage in one of the coronary arteries leads to ischemic conditions in the left ventricle of the myocardium and, therefore, to significant death of contractile cardiac cells. This process leads to the formation of scar tissue, which reduces heart functionality. Cardiac tissue engineering is an interdisciplinary technology that treats the injured myocardium and improves its functionality. However, in many cases, mainly when employing injectable hydrogels, the treatment may be partial because it does not fully cover the diseased area and, therefore, may not be effective and even cause conduction disorders. Here, we report a hybrid nanocomposite material composed of gold nanoparticles and an extracellular matrix-based hydrogel. Such a hybrid hydrogel could support cardiac cell growth and promote cardiac tissue assembly. After injection of the hybrid material into the diseased area of the heart, it could be efficiently imaged by magnetic resonance imaging (MRI). Furthermore, as the scar tissue could also be detected by MRI, a distinction between the diseased area and the treatment could be made, providing information about the ability of the hydrogel to cover the scar. We envision that such a nanocomposite hydrogel may improve the accuracy of tissue engineering treatment.
Collapse
Affiliation(s)
- Malka Shilo
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ester-Sapir Baruch
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lior Wertheim
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hadas Oved
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Assaf Shapira
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Dvir
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
37
|
Hull OA, Aikens CM. Theoretical Investigations on the Plasmon-Mediated Dissociation of Small Molecules in the Presence of Silver Atomic Wires. J Phys Chem A 2023; 127:2228-2241. [PMID: 36862925 DOI: 10.1021/acs.jpca.2c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Plasmonic nanoparticles can promote bond activation in adsorbed molecules under relatively benign conditions via excitation of the nanoparticle's plasmon resonance. As the plasmon resonance often falls within the visible light region, plasmonic nanomaterials are a promising class of catalysts. However, the exact mechanisms through which plasmonic nanoparticles activate the bonds of nearby molecules are still unclear. Herein, we evaluate Ag8-X2 (X = N, H) model systems via real-time time-dependent density functional theory (RT-TDDFT), linear response time-dependent density functional theory (LR-TDDFT), and Ehrenfest dynamics in order to better understand the bond activation processes of N2 and H2 facilitated by the presence of the atomic silver wire under excitation at the plasmon resonance energies. We find that dissociation is possible for both small molecules at high electric field strength. Activation of each adsorbate is symmetry- and electric field-dependent, and H2 activates at lower electric field strengths than N2. This work serves as a step toward understanding the complex time-dependent electron and electron-nuclear dynamics between plasmonic nanowires and adsorbed small molecules.
Collapse
Affiliation(s)
- Olivia A Hull
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
38
|
Diedkova K, Pogrebnjak AD, Kyrylenko S, Smyrnova K, Buranich VV, Horodek P, Zukowski P, Koltunowicz TN, Galaszkiewicz P, Makashina K, Bondariev V, Sahul M, Čaplovičová M, Husak Y, Simka W, Korniienko V, Stolarczyk A, Blacha-Grzechnik A, Balitskyi V, Zahorodna V, Baginskiy I, Riekstina U, Gogotsi O, Gogotsi Y, Pogorielov M. Polycaprolactone-MXene Nanofibrous Scaffolds for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892008 DOI: 10.1021/acsami.2c22780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New conductive materials for tissue engineering are needed for the development of regenerative strategies for nervous, muscular, and heart tissues. Polycaprolactone (PCL) is used to obtain biocompatible and biodegradable nanofiber scaffolds by electrospinning. MXenes, a large class of biocompatible 2D nanomaterials, can make polymer scaffolds conductive and hydrophilic. However, an understanding of how their physical properties affect potential biomedical applications is still lacking. We immobilized Ti3C2Tx MXene in several layers on the electrospun PCL membranes and used positron annihilation analysis combined with other techniques to elucidate the defect structure and porosity of nanofiber scaffolds. The polymer base was characterized by the presence of nanopores. The MXene surface layers had abundant vacancies at temperatures of 305-355 K, and a voltage resonance at 8 × 104 Hz with the relaxation time of 6.5 × 106 s was found in the 20-355 K temperature interval. The appearance of a long-lived component of the positron lifetime was observed, which was dependent on the annealing temperature. The study of conductivity of the composite scaffolds in a wide temperature range, including its inductive and capacity components, showed the possibility of the use of MXene-coated PCL membranes as conductive biomaterials. The electronic structure of MXene and the defects formed in its layers were correlated with the biological properties of the scaffolds in vitro and in bacterial adhesion tests. Double and triple MXene coatings formed an appropriate environment for cell attachment and proliferation with mild antibacterial effects. A combination of structural, chemical, electrical, and biological properties of the PCL-MXene composite demonstrated its advantage over the existing conductive scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kateryna Diedkova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Alexander D Pogrebnjak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Department of Motor Vehicles, Lublin University of Technology, Nadbystrzycka 38 A, Lublin 20-618, Poland
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Sergiy Kyrylenko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
| | - Kateryna Smyrnova
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | | | - Pawel Horodek
- Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Street, Krakow 31-342, Poland
| | - Pawel Zukowski
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Tomasz N Koltunowicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Piotr Galaszkiewicz
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Kristina Makashina
- East-Kazakhstan State Technical University, D. Serikbayev Street, 19, Ust-Kamenogorsk 070000, Kazakhstan
| | - Vitaly Bondariev
- Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 38 D Nadbystrzycka Street, Lublin 20-618, Poland
| | - Martin Sahul
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, Trnava 917 24, Slovakia
| | - Maria Čaplovičová
- Centre for Nanodiagnostics of Materials, Slovak University of Technology in Bratislava, 5 Vazovova Street, Bratislava 812 43, Slovakia
| | - Yevheniia Husak
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Viktoriia Korniienko
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Agnieszka Stolarczyk
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Agata Blacha-Grzechnik
- Faculty of Chemistry, Silesian University of Technology, 9 Strzody Street, Gliwice 44-100, Poland
| | - Vitalii Balitskyi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Ivan Baginskiy
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Una Riekstina
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Oleksiy Gogotsi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03142, Ukraine
| | - Yury Gogotsi
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga LV-1004, Latvia
| |
Collapse
|
39
|
Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, Akhavan O, Zarrintaj P, Hejna A, Saeb MR, Zarrabi A, Sharifi E, Yousefiasl S, Zare EN. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng Transl Med 2023; 8:e10347. [PMID: 36684103 PMCID: PMC9842069 DOI: 10.1002/btm2.10347] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
Collapse
Affiliation(s)
- Negin Jalilinejad
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | | | - Reza Salarian
- Biomedical Engineering DepartmentMaziar UniversityRoyanMazandaranIran
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐guPohangGyeongbukSouth Korea
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Aleksander Hejna
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | | |
Collapse
|
40
|
Gu N, Sheng J. Introduction to Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
41
|
Mendes C, Thirupathi A, Corrêa MEAB, Gu Y, Silveira PCL. The Use of Metallic Nanoparticles in Wound Healing: New Perspectives. Int J Mol Sci 2022; 23:15376. [PMID: 36499707 PMCID: PMC9740811 DOI: 10.3390/ijms232315376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds represent a challenge for the health area, as they directly impact patients' quality of life and represent a threat to public health and the global economy due to their high cost of treatment. Alternative strategies must be developed for cost-effective and targeted treatment. In this scenario, the emerging field of nanobiotechnology may provide an alternative platform to develop new therapeutic agents for the chronic wound healing process. This manuscript aims to demonstrate that the application of metallic nanoparticles (gold, silver, copper, and zinc oxide) opened a new chapter in the treatment of wounds, as they have different properties such as drug delivery, antimicrobial activity, and healing acceleration. Furthermore, metallic nanoparticles (NPs) produced through green synthesis ensure less toxicity in biological tissues, and greater safety of applicability, other than adding the effects of NPs with those of extracts.
Collapse
Affiliation(s)
- Carolini Mendes
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Maria E A B Corrêa
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Paulo C L Silveira
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| |
Collapse
|
42
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
43
|
Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater 2022; 17:29-48. [PMID: 35386442 PMCID: PMC8958282 DOI: 10.1016/j.bioactmat.2022.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Biotherapy has recently become a hotspot research topic with encouraging prospects in various fields due to a wide range of treatments applications, as demonstrated in preclinical and clinical studies. However, the broad applications of biotherapy have been limited by critical challenges, including the lack of safe and efficient delivery systems and serious side effects. Due to the unique potentials of biomaterials, such as good biocompatibility and bioactive properties, biomaterial-assisted biotherapy has been demonstrated to be an attractive strategy. The biomaterial-based delivery systems possess sufficient packaging capacity and versatile functions, enabling a sustained and localized release of drugs at the target sites. Furthermore, the biomaterials can provide a niche with specific extracellular conditions for the proliferation, differentiation, attachment, and migration of stem cells, leading to tissue regeneration. In this review, the state-of-the-art studies on the applications of biomaterials in biotherapy, including drug delivery, vaccine development, gene therapy, and stem cell therapy, have been summarized. The challenges and an outlook of biomaterial-assisted biotherapies have also been discussed.
Collapse
Affiliation(s)
- Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Li S, Li S, Du K, Zhu J, Shang L, Zhang K. Synthesis and stability of switchable CO 2-responsive foaming coupled with nanoparticles. iScience 2022; 25:105091. [PMID: 36164653 PMCID: PMC9508482 DOI: 10.1016/j.isci.2022.105091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
CO2-responsive foaming has been drawing huge attention due to its unique switching characteristics in academic research and industrial practices, whereas its stability remains questionable for further applications. In this paper, a new CO2-switchable foam was synthesized by adding the preferably selected hydrophilic nanoparticle N20 into the foaming agent C12A, through a series of analytical experiments. Overall, the synergy between cationic surfactants and nanoparticles with a contact angle of 37.83° is the best. More specifically, after adding 1.5 wt% N20, the half-life of foam is 14 times longer than that of pure C12A foam. What’s more, the C12A-N20 solution is validated to own distinctive CO2-N2 switching features because very slight foaming degradations are observed in terms of the foaming volume and half-life time even after three cycles of CO2-N2 injections. This study is of paramount importance pertaining to future CO2 foam research and applications in energy and environmental practices. Cationic surfactants have the best synergy with NPs with a contact angle of 37.83° The foam stability increased with the increase of NPs concentration CO2/N2 can control the foaming properties of C12A-N20 solution and are reversible
Collapse
Affiliation(s)
- Songyan Li
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P. R. China.,School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shaopeng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Kexin Du
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jianzhong Zhu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Liying Shang
- Engineering Technology Branch, CNOOC Energy Development Co., Ltd, Tianjin 300452, P. R. China
| | - Kaiqiang Zhang
- Institute of Energy, Peking University, Beijing 100871, P. R. China.,Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
45
|
New Green Approaches in Nanoparticles Synthesis: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196472. [PMID: 36235008 PMCID: PMC9573382 DOI: 10.3390/molecules27196472] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Nanotechnology is constantly expanding, with nanomaterials being more and more used in common commercial products that define our modern life. Among all types of nanomaterials, nanoparticles (NPs) occupy an important place, considering the great amount that is produced nowadays and the diversity of their applications. Conventional techniques applied to synthesize NPs have some issues that impede them from being appreciated as safe for the environment and health. The alternative to these might be the use of living organisms or biological extracts that can be involved in the green approach synthesis of NPs, a process that is free of harmful chemicals, cost-effective and a low energy consumer. Several factors, including biological reducing agent concentration, initial precursor salt concentration, agitation, reaction time, pH, temperature and light, can influence the characteristics of biologically synthesized NPs. The interdependence between these reaction parameters was not explored, being the main impediment in the implementation of the biological method on an industrial scale. Our aim is to present a brief review that focuses on the current knowledge regarding how the aforementioned factors can control the size and shape of green-synthesized NPs. We also provide an overview of the biomolecules that were found to be suitable for NP synthesis. This work is meant to be a support for researchers who intend to develop new green approaches for the synthesis of NPs.
Collapse
|
46
|
Bazin D. Nanomaterials in medicine: a concise review of nanomaterials intended to treat pathology, nanomaterials induced by pathology, and pathology provoked by nanomaterials. CR CHIM 2022. [DOI: 10.5802/crchim.194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Alamdari SG, Alibakhshi A, de la Guardia M, Baradaran B, Mohammadzadeh R, Amini M, Kesharwani P, Mokhtarzadeh A, Oroojalian F, Sahebkar A. Conductive and Semiconductive Nanocomposite-Based Hydrogels for Cardiac Tissue Engineering. Adv Healthc Mater 2022; 11:e2200526. [PMID: 35822350 DOI: 10.1002/adhm.202200526] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Indexed: 01/27/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide and the most common cause is myocardial infarction. Therefore, appropriate approaches should be used to repair damaged heart tissue. Recently, cardiac tissue engineering approaches have been extensively studied. Since the creation of the nature of cardiovascular tissue engineering, many advances have been made in cellular and scaffolding technologies. Due to the hydrated and porous structures of the hydrogel, they are used as a support matrix to deliver cells to the infarct tissue. In heart tissue regeneration, bioactive and biodegradable hydrogels are required by simulating native tissue microenvironments to support myocardial wall stress in addition to preserving cells. Recently, the use of nanostructured hydrogels has increased the use of nanocomposite hydrogels and has revolutionized the field of cardiac tissue engineering. Therefore, to overcome the limitation of the use of hydrogels due to their mechanical fragility, various nanoparticles of polymers, metal, and carbon are used in tissue engineering and create a new opportunity to provide hydrogels with excellent properties. Here, the types of synthetic and natural polymer hydrogels, nanocarbon-based hydrogels, and other nanoparticle-based materials used for cardiac tissue engineering with emphasis on conductive nanostructured hydrogels are briefly introduced.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, 83111-55181, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94149-75516, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| |
Collapse
|
48
|
Cao J, Zhang Y, Zhang P, Zhang Z, Zhang B, Feng Y, Li Z, Yang Y, Meng Q, He L, Cai Y, Wang Z, Li J, Chen X, Liu H, Hong A, Zheng W, Chen X. Turning gray selenium into a nanoaccelerator of tissue regeneration by PEG modification. Bioact Mater 2022; 15:131-144. [PMID: 35386336 PMCID: PMC8940942 DOI: 10.1016/j.bioactmat.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in nearly all human physiological processes but suffers from a narrow margin between benefit and toxicity. The nanoform of selenium has been proven shown to be more bioavailable and less toxic, yet significant challenges remain regarding the efficient and feasible synthesis of biologically active nanoselenium. In addition, although nanoselenium has shown a variety of biological activities, more interesting nanoselenium features are expected. In this work, hydrosoluble nanoselenium termed Nano-Se in the zero oxidation state was synthesized between gray Se and PEG. A zebrafish screen was carried out in zebrafish larvae cocultured with Nano-Se. Excitingly, Nano-Se promoted the action of the FGFR, Wnt, and VEGF signaling pathways, which play crucial roles in tissue regeneration. As expected, Nano-Se not only achieved the regeneration of zebrafish tail fins and mouse skin but also promoted the repair of skin in diabetic mice while maintaining a profitable safe profile. In brief, the Nano-Se reported here provided an efficient and feasible method for bioactive nanoselenium synthesis and not only expanded the application of nanoselenium to regenerative medicine but also likely reinvigorated efforts for discovering more peculiarunique biofunctions of nanoselenium in a great variety of human diseases. It was found that selenium nanoparticles through FGFR、Wnt、VEGFR signal pathway to promote tissue regeneration; Development a new water-soluble, bio-compatible, zero oxidation state Nano-Se; Development a new efficient and safe nano-biologic agent for promoting tissue regeneration.
Collapse
Affiliation(s)
- Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zilei Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhixin Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qilin Meng
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jie Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xue Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Corresponding author.
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
- Corresponding author.
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510240, China
- Corresponding author. Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
49
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
50
|
Yin Y, Tian BM, Li X, Yu YC, Deng DK, Sun LJ, Qu HL, Wu RX, Xu XY, Sun HH, An Y, He XT, Chen FM. Gold nanoparticles targeting the autophagy-lysosome system to combat the inflammation-compromised osteogenic potential of periodontal ligament stem cells: From mechanism to therapy. Biomaterials 2022; 288:121743. [PMID: 36030103 DOI: 10.1016/j.biomaterials.2022.121743] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/09/2022]
Abstract
Although substantial data indicate that the osteogenic potential of periodontal ligament stem cells (PDLSCs) is compromised under inflammatory conditions, the underlying mechanism remains largely unexplored. In this study, we found that both the autophagy levels and autophagic flux levels were decreased in PDLSCs incubated under inflammatory conditions (I-PDLSCs). Based on the increased expression of LC3 II (at an autophagy level) and decreased accumulation of LC3 II (at an autophagic flux level) in I-PDLSCs, we speculated that the disruption of I-PDLSC autophagy arose from dysfunction of the cellular autophagy-lysosome system. Subsequently, our hypothesis was demonstrated by inhibited autophagosome-lysosome fusion, damaged lysosomal function, and suppressed activation of transcription factor EB (TFEB, a master regulator of the autophagy-lysosome system) in I-PDLSCs and verified by TFEB overexpression in I-PDLSCs. We found that gold nanoparticle (Au NP) treatment rescued the osteogenic potential of I-PDLSCs by restoring the inflammation-compromised autophagy-lysosome system. In this context, Au NP ceased to be effective when TFEB was knocked down in PDLSCs. Our data demonstrate the crucial role of the autophagy-lysosome system in cellular osteogenesis under inflammatory conditions and suggest a new target for rescuing inflammation-induced cell dysfunction using nanomaterials to aid cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yao-Cheng Yu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Juan Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hong-Lei Qu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin-Yue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hai-Hua Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ying An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|