1
|
Kim YS, Zhu M, Hossain MT, Sanders D, Shah R, Gao Y, Moore JS, Sottos NR, Ewoldt RH, Geubelle PH, Tawfick SH. Morphogenic Growth 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2406265. [PMID: 40059572 PMCID: PMC12087709 DOI: 10.1002/adma.202406265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/29/2025] [Indexed: 05/20/2025]
Abstract
Inspired by nature's morphogenesis, a new 3D printing process -growth printing (GP)- takes advantage of a self-propagating curing front to produce 3D polymeric parts following a growth-like development plan. The propagation of the curing front is driven by the exothermic polymerization of dicyclopentadiene (DCPD), which transforms the liquid resin into a stiff polymer as it propagates at 1 mm s-1. GP is triggered when a heated initiator contacts the uncured liquid resin in an open container. The initiator nucleates the frontal polymerization reaction and the isotropic radial propagation of the growth front. Simultaneously, the initiator is moved up across the free surface of the resin, pulling the cured object out of the uncured resin. The motion trajectory of the initiator with respect to the free resin surface controls the growth morphology of the 3D part. An inverse design algorithm is developed to produce 3D parts by modeling the reaction-diffusion-driven solidification process. This process has substantial energy savings and high printing speeds.
Collapse
Affiliation(s)
- Yun Seong Kim
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Minjiang Zhu
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Aerospace Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Mohammad Tanver Hossain
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Derrick Sanders
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Rohan Shah
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Yuan Gao
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Huazhong University of Science and TechnologyWuhanHubei430074China
| | - Jeffrey S. Moore
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Material Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Nancy R. Sottos
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Material Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Randy H. Ewoldt
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Philippe H. Geubelle
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Aerospace Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Sameh H. Tawfick
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and Engineering, Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
2
|
Chen G, Wu J, Wang Z, Zhu H, Zhu S, Zhang Q. Armored polymer-fluid gels with integrated damping and impact protection across broad temperatures. SCIENCE ADVANCES 2025; 11:eadv5292. [PMID: 40203106 PMCID: PMC11980849 DOI: 10.1126/sciadv.adv5292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Unpreferable vibrations and impacts pose substantial risks to sensitive devices, structures, and the human body, demanding materials capable of providing both high energy dissipation and impact protection across a broad temperature range. Traditional damping materials often fail to meet these demands because of a trade-off between damping and mechanical strength. We introduce an innovative strategy to fabricate armored polymer-fluid gels (APFGs) that combine high damping and high modulus for effective damping and impact protection under extreme conditions. By using a controlled surface cross-linking process through diffusion, we greatly enhance the mechanical strength of polymer-fluid gels without sacrificing their damping capabilities. This asymmetric design results in an unprecedented loss factor (tanδ > 0.5 from -45 degrees to 135 degrees Celsius, peaking at tanδ = 2.2) while achieving a tensile modulus of 20 megapascals. This method resolves the long-standing damping-modulus trade-off, positioning APFGs as promising candidates for robust damping and impact protection in electronics and human motion applications.
Collapse
Affiliation(s)
- Guoqing Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Jiabin Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | | | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| |
Collapse
|
3
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
4
|
Kantaros A, Petrescu FIT, Ganetsos T. From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Biomimetics (Basel) 2025; 10:125. [PMID: 39997148 PMCID: PMC11853600 DOI: 10.3390/biomimetics10020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
The sector of 4D printing represents a new frontier in additive manufacturing that allows for a material's capability to adapt and respond to various stimuli, such as thermal transitions, humidity, and pH levels. The adaptability of such a material has great potential in healthcare applications, especially in designing personalized and responsive medical devices. This article looks into the revolutionary potential of healthcare applications of 4D printing, referencing applications in self-repairable implants, smart stents, personalized drug delivery systems, and response-based prosthetic devices. The advances in 3D printing have created a platform for such innovations to take place, while the material properties unique to 4D printing allow new methods of tackling existing health issues. However, the large-scale application of 4D printing in medicine is currently hampered by material limitations, regulation challenges, and financial challenges. In spite of these challenges, ongoing advances in technologies, combined with artificial intelligence and machine learning, provide the potential to surpass such challenges, hence improving the precision, efficacy, and personalization of medical devices. This work outlines existing applications, looks at potential areas of application in the future, and analyzes potential applications of 4D printing contributing to healthcare, recognizing challenges that need to be overcome in order to unlock its full potential.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece;
| | - Florian Ion Tiberiu Petrescu
- “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania
| | - Theodore Ganetsos
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece;
| |
Collapse
|
5
|
Zhang H, Wang P, Zhang H, Chen G, Wang K, Chen X, Chen Z, Jiang M, Yang J, Chen M, Li J. One-Step Digital Light Processing 3D Printing of Robust, Conductive, Shape-Memory Hydrogel for Customizing High-Performance Soft Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68131-68143. [PMID: 39614415 DOI: 10.1021/acsami.4c18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Mechanically robust and electrically conductive hydrogels hold significant promise for flexible device applications. However, conventional fabrication methods such as casting or injection molding meet challenges in delivering hydrogel objects with complex geometric structures and multicustomized functionalities. Herein, a 3D printable hydrogel with excellent mechanical properties and electrical conductivity is implemented via a facile one-step preparation strategy. With vat polymerization 3D printing technology, the hydrogel can be solidified based on a hybrid double-network mechanism involving in situ chemical and physical dual cross-linking. The hydrogel consists of two chemical networks including covalently cross-linked poly(acrylamide-co-acrylic acid) and chitosan, and zirconium ions are induced to form physically cross-linked metal-coordination bonds across both chemical networks. The 3D-printed hydrogel exhibits multiple excellent functionalities including enhanced mechanical properties (680% stretchability, 15.1 MJ/m3 toughness, and 7.30 MPa tensile strength), rapid printing speed (0.7-3 s/100 μm), high transparency (91%), favorable ionic conductivity (0.75 S/m), large strain gauge factor (≥7), and fast solvent transfer induced phase separation (in ∼3 s), which enable the development of high-performance flexible wearable sensors, shape memory actuators, and soft pneumatic robotics. The 3D printable multifunctional hydrogel provides a novel path for customizing next-generation intelligent soft devices.
Collapse
Affiliation(s)
- Hanqiang Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Peiren Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Heng Zhang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gangsheng Chen
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoyi Chen
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhen Chen
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Mingxing Jiang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Junhui Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Min Chen
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Ji Li
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Appavoo D, Azim N, Elshatoury M, Antony DX, Rajaraman S, Zhai L. Four-Dimensional Printing of Multi-Material Origami and Kirigami-Inspired Hydrogel Self-Folding Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5028. [PMID: 39459734 PMCID: PMC11509088 DOI: 10.3390/ma17205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Four-dimensional printing refers to a process through which a 3D printed object transforms from one structure into another through the influence of an external energy input. Self-folding structures have been extensively studied to advance 3D printing technology into 4D using stimuli-responsive polymers. Designing and applying self-folding structures requires an understanding of the material properties so that the structural designs can be tailored to the targeted applications. Poly(N-iso-propylacrylamide) (PNIPAM) was used as the thermo-responsive material in this study to 3D print hydrogel samples that can bend or fold with temperature changes. A double-layer printed structure, with PNIPAM as the self-folding layer and polyethylene glycol (PEG) as the supporting layer, provided the mechanical robustness and overall flexibility to accommodate geometric changes. The mechanical properties of the multi-material 3D printing were tested to confirm the contribution of the PEG support to the double-layer system. The desired folding of the structures, as a response to temperature changes, was obtained by adding kirigami-inspired cuts to the design. An excellent shape-shifting capability was obtained by tuning the design. The experimental observations were supported by COMSOL Multiphysics® software simulations, predicting the control over the folding of the double-layer systems.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Maged Elshatoury
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Dennis-Xavier Antony
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
7
|
Ji T, Shi H, Yang X, Li H, Kaplan DL, Yeo J, Huang W. Bioinspired Genetic and Chemical Engineering of Protein Hydrogels for Programable Multi-Responsive Actuation. Adv Healthc Mater 2024; 13:e2401562. [PMID: 38852041 DOI: 10.1002/adhm.202401562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Protein hydrogels with tailored stimuli-responsive features and tunable stiffness have garnered considerable attention due to the growing demand for biomedical soft robotics. However, integrating multiple responsive features toward intelligent yet biocompatible actuators remains challenging. Here, a facile approach that synergistically combines genetic and chemical engineering for the design of protein hydrogel actuators with programmable complex spatial deformation is reported. Genetically engineered silk-elastin-like proteins (SELPs) are encoded with stimuli-responsive motifs and enzymatic crosslinking sites via simulation-guided genetic engineering strategies. Chemical modifications of the recombinant proteins are also used as secondary control points to tailor material properties, responsive features, and anisotropy in SELP hydrogels. As a proof-of-concept example, diazonium coupling chemistry is exploited to incorporate sulfanilic acid groups onto the tyrosine residues in the elastin domains of SELPs to achieve patterned SELP hydrogels. These hydrogels can be programmed to perform various actuations, including controllable bending, buckling, and complex deformation under external stimuli, such as temperature, ionic strength, or pH. With the inspiration of genetic and chemical engineering in natural organisms, this work offers a predictable, tunable, and environmentally sustainable approach for the fabrication of programmed intelligent soft actuators, with implications for a variety of biomedical materials and biorobotics needs.
Collapse
Affiliation(s)
- Ting Ji
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Xinyi Yang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hu Li
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenwen Huang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Dong X, Wang C, Song H, Shao J, Lan G, Zhang J, Li X, Li M. Advancement in Soft Hydrogel Grippers: Comprehensive Insights into Materials, Fabrication Strategies, Grasping Mechanism, and Applications. Biomimetics (Basel) 2024; 9:585. [PMID: 39451793 PMCID: PMC11505285 DOI: 10.3390/biomimetics9100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Soft hydrogel grippers have attracted considerable attention due to their flexible/elastic bodies, stimuli-responsive grasping and releasing capacity, and novel applications in specific task fields. To create soft hydrogel grippers with robust grasping of various types of objects, high load capability, fast grab response, and long-time service life, researchers delve deeper into hydrogel materials, fabrication strategies, and underlying actuation mechanisms. This article provides a systematic overview of hydrogel materials used in soft grippers, focusing on materials composition, chemical functional groups, and characteristics and the strategies for integrating these responsive hydrogel materials into soft grippers, including one-step polymerization, additive manufacturing, and structural modification are reviewed in detail. Moreover, ongoing research about actuating mechanisms (e.g., thermal/electrical/magnetic/chemical) and grasping applications of soft hydrogel grippers is summarized. Some remaining challenges and future perspectives in soft hydrogel grippers are also provided. This work highlights the recent advances of soft hydrogel grippers, which provides useful insights into the development of the new generation of functional soft hydrogel grippers.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Chen Wang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Haoxin Song
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jinqiang Shao
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Guiyao Lan
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Jiaming Zhang
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Xiangkun Li
- College of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (C.W.); (H.S.); (J.S.); (G.L.); (J.Z.); (X.L.)
| | - Ming Li
- Center for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Cho YE, Park JM, Song WJ, Lee MG, Sun JY. Solvent Engineering of Thermo-Responsive Hydrogels Facilitates Strong and Large Contractile Actuations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406103. [PMID: 39036840 DOI: 10.1002/adma.202406103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Indexed: 07/23/2024]
Abstract
Thermo-responsive hydrogels can generate the actuation force through volumetric transitions in response to temperature changes. However, their weak mechanical properties and fragile actuation performance limit robust applications. Existing approaches to enhance these properties have typically depended on additional components, leading to an unavoidable interference to the actuation performance. In this work, robust thermo-responsive hydrogels are fabricated through solvent engineering. A particular solvent, N-methylformamide, interacts affinitively with the carbonyl group of N-isopropylacrylamide monomer, solubilizes the monomer with extremely high concentration, stabilizes chain propagation during polymerization, and greatly increases chain lengths and entanglements of the resulting polymer. The synthesized hydrogels are highly elastic, strong, and tough, displaying remarkable thermo-responsive contractile actuation. The simple synthetic process can broaden its applicability in designing robust functional hydrogel applications.
Collapse
Affiliation(s)
- Yong Eun Cho
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Man Park
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Jun Song
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Gyu Lee
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Yun Sun
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Wu D, Wu S, Narongdej P, Duan S, Chen C, Yan Y, Liu Z, Hong W, Frenkel I, He X. Fast and Facile Liquid Metal Printing via Projection Lithography for Highly Stretchable Electronic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307632. [PMID: 38126914 DOI: 10.1002/adma.202307632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.
Collapse
Affiliation(s)
- Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Poom Narongdej
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Chi Chen
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yichen Yan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Zixiao Liu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Wen Hong
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Imri Frenkel
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
11
|
Ghelardini MM, Geisler M, Weigel N, Hankwitz JP, Hauck N, Schubert J, Fery A, Tracy JB, Thiele J. 3D-Printed Hydrogels as Photothermal Actuators. Polymers (Basel) 2024; 16:2032. [PMID: 39065349 PMCID: PMC11281285 DOI: 10.3390/polym16142032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Thermoresponsive hydrogels were 3D-printed with embedded gold nanorods (GNRs), which enable shape change through photothermal heating. GNRs were functionalized with bovine serum albumin and mixed with a photosensitizer and poly(N-isopropylacrylamide) (PNIPAAm) macromer, forming an ink for 3D printing by direct ink writing. A macromer-based approach was chosen to provide good microstructural homogeneity and optical transparency of the unloaded hydrogel in its swollen state. The ink was printed into an acetylated gelatin hydrogel support matrix to prevent the spreading of the low-viscosity ink and provide mechanical stability during printing and concurrent photocrosslinking. Acetylated gelatin hydrogel was introduced because it allows for melting and removal of the support structure below the transition temperature of the crosslinked PNIPAAm structure. Convective and photothermal heating were compared, which both triggered the phase transition of PNIPAAm and induced reversible shrinkage of the hydrogel-GNR composite for a range of GNR loadings. During reswelling after photothermal heating, some structures formed an internally buckled state, where minor mechanical agitation recovered the unbuckled structure. The BSA-GNRs did not leach out of the structure during multiple cycles of shrinkage and reswelling. This work demonstrates the promise of 3D-printed, photoresponsive structures as hydrogel actuators.
Collapse
Affiliation(s)
- Melanie M. Ghelardini
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Martin Geisler
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Niclas Weigel
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jameson P. Hankwitz
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Nicolas Hauck
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jonas Schubert
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Physical Chemistry and Polymer Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Joseph B. Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Julian Thiele
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
12
|
Jiang Z, Tran BH, Jolfaei MA, Abbasi BBA, Spinks GM. Crack-Resistant and Tissue-Like Artificial Muscles with Low Temperature Activation and High Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402278. [PMID: 38657958 DOI: 10.1002/adma.202402278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bach H Tran
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
13
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
14
|
Dong M, Liu W, Dai CF, Jiao D, Zhu QL, Hong W, Yin J, Zheng Q, Wu ZL. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. MATERIALS HORIZONS 2024; 11:2143-2152. [PMID: 38376773 DOI: 10.1039/d3mh02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Hydrogels are an ideal material to develop soft robots. However, it remains a grand challenge to develop miniaturized hydrogel robots with mechanical robustness, rapid actuation, and multi-gait motions. Reported here is a facile strategy to fabricate hydrogel-based soft robots by three-dimensional (3D) printing of responsive and nonresponsive tough gels for programmed morphing and locomotion upon stimulations. Highly viscoelastic poly(acrylic acid-co-acrylamide) and poly(acrylic acid-co-N-isopropyl acrylamide) aqueous solutions, as well as their mixtures, are printed with multiple nozzles into 3D constructs followed by incubation in a solution of zirconium ions to form robust carboxyl-Zr4+ coordination complexes, to produce tough metallo-supramolecular hydrogel fibers. Gold nanorods are incorporated into ink to afford printed gels with response to light. Owing to the mechanical excellence and small diameter of gel fibers, the printed hydrogel robots exhibit high robustness, fast response, and agile motions when remotely steered by dynamic light. The design of printed constructs and steering with spatiotemporal light allow for multimodal motions with programmable trajectories of the gel robots. The hydrogel robots can walk, turn, flip, and transport cargos upon light stimulations. Such printed hydrogels with good mechanical performances, fast response, and agile locomotion may open opportunities for soft robots in biomedical and engineering fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Weixuan Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Fei Dai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Dejin Jiao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Wei Hong
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering Zhejiang University, Hangzhou 310058, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
16
|
Zhou Z, Tang W, Yang J, Fan C. Application of 4D printing and bioprinting in cardiovascular tissue engineering. Biomater Sci 2023; 11:6403-6420. [PMID: 37599608 DOI: 10.1039/d3bm00312d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cardiovascular diseases have remained the leading cause of death worldwide for the past 20 years. The current clinical therapeutic measures, including bypass surgery, stent implantation and pharmacotherapy, are not enough to repair the massive loss of cardiomyocytes after myocardial ischemia. Timely replenishment with functional myocardial tissue via biomedical engineering is the most direct and effective means to improve the prognosis and survival rate of patients. It is widely recognized that 4D printing technology introduces an additional dimension of time in comparison with traditional 3D printing. Additionally, in the context of 4D bioprinting, both the printed material and the resulting product are designed to be biocompatible, which will be the mainstream of bioprinting in the future. Thus, this review focuses on the application of 4D bioprinting in cardiovascular diseases, discusses the bottleneck of the development of 4D bioprinting, and finally looks forward to the future direction and prospect of this revolutionary technology.
Collapse
Affiliation(s)
- Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, 410011 Changsha, China.
| |
Collapse
|
17
|
Bin Asghar Abbasi B, Gigliotti M, Aloko S, Jolfaei MA, Spinks GM, Jiang Z. Designing strong, fast, high-performance hydrogel actuators. Chem Commun (Camb) 2023; 59:7141-7150. [PMID: 37194593 DOI: 10.1039/d3cc01545a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel actuators displaying programmable shape transformations are particularly attractive for integration into future soft robotics with safe human-machine interactions. However, these materials are still in their infancy, and many significant challenges remain presenting impediments to their practical implementation, including poor mechanical properties, slow actuation speed and limited actuation performance. In this review, we discuss the recent advances in hydrogel designs to address these critical limitations. First, the material design concepts to improve mechanical properties of hydrogel actuators will be introduced. Examples are also included to highlight strategies to realize fast actuation speed. In addition, recent progress about creating strong and fast hydrogel actuators are sumarized. Finally, a discussion of different methods to realize high values in several aspects of actuation performance metrics for this class of materials is provided. The advances and challenges discussed in this highlight could provide useful guidelines for rational design to manipulate the properties of hydrogel actuators toward widespread real-world applications.
Collapse
Affiliation(s)
- Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Matthew Gigliotti
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Sinmisola Aloko
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
18
|
Bauman L, Zhao B. Multi-thermo responsive double network composite hydrogel for 3D printing medical hydrogel mask. J Colloid Interface Sci 2023; 638:882-892. [PMID: 36796134 DOI: 10.1016/j.jcis.2023.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
3D printing of multifunctional hydrogels offers great opportunities for developing innovative biomedical technologies as it can provide custom-designed shapes and structures conformal to arbitrary contours. There have been significant improvements of the 3D printing techniques, but the available printable hydrogel materials limit the progress. Here, we investigated the use of a poloxamer diacrylate (Pluronic P123) to augment the thermo-responsive network composed of poly(N-isopropylacrylamide) and develop a multi-thermoresponsive hydrogel for photopolymerization 3D printing. The hydrogel precursor resin was synthesised to be printable with high-fidelity of fine structures and once cured can form a robust thermo-responsive hydrogel. By utilizing N-isopropyl acrylamide monomer and a Pluronic P123 diacrylate crosslinker as 2 separate thermo-responsive components it was found that the final hydrogel displayed 2 distinct lower critical solution temperature (LCST) switches. This enables the loading of hydrophilic drugs at fridge temperature and improving the strength of the hydrogel at room temperature while still maintaining a drug release at body temperature. The thermo-responsive material properties of this multifunctional hydrogel material system were investigated, showing a significant promise as a medical hydrogel mask. Furthermore, it is demonstrated that it can be printed in sizes large enough to fit and adhere to a human face at 1:1 scale with high dimensional accuracy, as well as its ability to load with hydrophilic drugs.
Collapse
Affiliation(s)
- Lukas Bauman
- Surface Science and Bio-nanomaterials Laboratory, Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Bioengineering and Biotechnology, Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- Surface Science and Bio-nanomaterials Laboratory, Waterloo Institute for Nanotechnology, Institute for Polymer Research, Centre for Bioengineering and Biotechnology, Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
19
|
Jiang Y, Zhong H, Tan Q, Zhan D, Wang A, Zhang D. A UV-induced self-reinforced hydrogel based on in situ hydrophobic aggregation of strained 1,2-dithiolane rings. Chem Commun (Camb) 2023; 59:1789-1792. [PMID: 36722415 DOI: 10.1039/d2cc06124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel responsive hydrogel exhibiting self-reinforcement and self-healing capacity was developed based on the hydrophobic aggregation of strained 1,2-dithiolane rings. Oligomerization of 1,2-dithiolane within hydrophobic domains under UV irradiation not only reinforced the hydrogel but also maintained its dynamic cross-linked nature by converting the intraring dynamic S-S bond to an outer one.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Huiqing Zhong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Qinwen Tan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Dezhi Zhan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Aolin Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
20
|
Deng Z, Liu Y, Dai Z. Gel Electrolytes for Electrochemical Actuators and Sensors Applications. Chem Asian J 2023; 18:e202201160. [PMID: 36537994 DOI: 10.1002/asia.202201160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Advanced functional materials, especially gel electrolytes, play a very important role in the preparation of electrochemical actuators and sensors, and have received extensive attention. In this review, a general classification of gel electrolytes is firstly introduced according to the type of medium. Then, the research progress of gel electrolytes with different types used to fabricate electrochemical actuators is summarized. Next, the current research progress of gel electrolytes used in different types of electrochemical sensors, including strain sensors, stress sensors, and gas sensors is introduced. Finally, the future challenges and development prospects of electrochemical actuators and sensors based on gel electrolytes are discussed. The huge application prospects of gel electrolyte are worthy of further focusing by researchers, which will have an indispensable impact on human life and development.
Collapse
Affiliation(s)
- Zhenzhen Deng
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
21
|
Zhang C, Liao E, Li C, Zhang Y, Chen Y, Lu A, Liu Y, Geng C. 3D Printed Silicones with Shape Morphing and Low-Temperature Ultraelasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4549-4558. [PMID: 36642888 DOI: 10.1021/acsami.2c20392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
3D printed silicones have demonstrated great potential in diverse areas by combining the advantageous physiochemical properties of silicones with the unparalleled design freedom of additive manufacturing. However, their low-temperature performance, which is of particular importance for polar and space applications, has not been addressed. Herein, a 3D printed silicone foam with unprecedented low-temperature elasticity is presented, which is featured with extraordinary fatigue resistance, excellent shape recovery, and energy-absorbing capability down to a low temperature of -60 °C after extreme compression (an intensive load of over 66000 times its own weight). The foam is achieved by direct writing of a phenyl silicone-based pseudoplastic ink embedded with sodium chloride as sacrificial template. During the water immersion process to create pores in the printed filaments, a unique osmotic pressure-driven shape morphing strategy is also reported, which offers an attractive alternative to traditional 4D printed hydrogels in virtue of the favorable mechanical robustness of the silicone material. The underlying mechanisms for shape morphing and low-temperature elasticity are discussed in detail.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Enze Liao
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Changlin Li
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | - Yaling Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | | | - Ai Lu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| | | | - Chengzhen Geng
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
| |
Collapse
|
22
|
Kumar A, Rajamanickam R, Hazra J, Mahapatra NR, Ghosh P. Engineering the Nonmorphing Point of Actuation for Controlled Drug Release by Hydrogel Bilayer across the pH Spectrum. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56321-56330. [PMID: 36475612 DOI: 10.1021/acsami.2c16658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogel-based pH-responsive bilayer actuators exhibit bidirectional actuation due to the differences in the concentration gradient developed across the thickness, the volume expansion due to swelling, and the mechanical stiffness of the layers involved. At a pH value (point), where the sum of these factors generates moments of equal magnitudes, the moments cancel each other and result in no net actuation. This pH point is termed here as a "nonmorphing point". In this work, we present a bilayer of chitosan (CS) and carboxymethyl cellulose (CMC) cross-linked with citric acid (CA) with tunable nonmorphing points across the pH spectrum by modulating the concentration and cross-linking density of the layers involved. The standard CS/CMC bilayer films took about 40 s to completely fold (clockwise) in 0.1 M HCl and 78 s to completely fold (anticlockwise) in 0.1 M NaOH. Generally, pH-responsive actuators are designed for targeted drug delivery to a specific site inside the body as they show bidirectional (clockwise/anticlockwise) actuation around a single nonmorphing point. The same pH-responsive system cannot be applied for drug release at another site with a different functioning pH. Thus, having a pH-responsive system with multiple nonmorphing points is highly desirable. Drug release experiments were performed with FITC and EtBr as model drugs loaded in CS and CMC layers. Moreover, the clockwise/anticlockwise actuation of the bilayer around the nonmorphing point can facilitate or inhibit the release of a drug. The clockwise actuation resulted in 55% FITC release and inhibited EtBr release to 4%; anticlockwise actuation resulted in 50% EtBr release and inhibited FITC release to 5%. We demonstrated morphing induced drug release by hydrogel bilayer films with tunable nonmorphing points across the pH spectrum.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Raja Rajamanickam
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pijush Ghosh
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Responsive Soft Matter, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
23
|
Wu Q, Ma C, Chen L, Sun Y, Wei X, Ma C, Zhao H, Yang X, Ma X, Zhang C, Duan G. A Tissue Paper/Hydrogel Composite Light-Responsive Biomimetic Actuator Fabricated by In Situ Polymerization. Polymers (Basel) 2022; 14:polym14245454. [PMID: 36559822 PMCID: PMC9785941 DOI: 10.3390/polym14245454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Stimulus-responsive hydrogels are an important member of smart materials owing to their reversibility, soft/wet properties, and biocompatibility, which have a wide range of applications in the field of intelligent actuations. However, poor mechanical property and complicated fabrication process limit their further applications. Herein, we report a light-responsive tissue paper/hydrogel composite actuator which was developed by combining inkjet-printed tissue paper with poly(N-isopropylacrylamide) (PNIPAM) hydrogel through simple in situ polymerization. Due to the high strength of natural tissue paper and the strong interaction within the interface of the bilayer structure, the mechanical property of the composite actuator was highly enhanced, reaching 1.2 MPa of tensile strength. Furthermore, the light-responsive actuation of remote manipulation can be achieved because of the stamping graphite with high efficiency of photothermal conversion. Most importantly, we also made a few remotely controlled biomimetic actuating devices based on the near-infrared (NIR) light response of this composite actuator. This work provides a simple strategy for the construction of biomimetic anisotropic actuators and will inspire the exploration of new intelligent materials.
Collapse
Affiliation(s)
- Qijun Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xianshuo Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| | - Hongliang Zhao
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| |
Collapse
|
24
|
Zhang CW, Zou W, Yu HC, Hao XP, Li G, Li T, Yang W, Wu ZL, Zheng Q. Manta Ray Inspired Soft Robot Fish with Tough Hydrogels as Structural Elements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52430-52439. [PMID: 36351752 DOI: 10.1021/acsami.2c17009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of soft robots capable of navigation underwater has received tremendous research interest due to the robots' versatile applications in marine explorations. Inspired by marine animals such as jellyfish, scientists have developed various soft robotic fishes by using elastomers as the major material. However, elastomers have a hydrophobic network without embedded water, which is different from the gel-state body of the prototypes and results in high contrast to the surrounding environment and thus poor acoustic stealth. Here, we demonstrate a manta ray-inspired soft robot fish with tailored swimming motions by using tough and stiff hydrogels as the structural elements, as well as a dielectric elastomer as the actuating unit. The switching between actuated and relaxed states of this unit under wired power leads to the flapping of the pectoral fins and swimming of the gel fish. This robot fish has good stability and swims with a fast speed (∼10 cm/s) in freshwater and seawater over a wide temperature range (4-50 °C). The high water content (i.e., ∼70 wt %) of the robot fish affords good optical and acoustic stealth properties under water. The excellent mechanical properties of the gels also enable easy integration of other functional units/systems with the robot fish. As proof-of-concept examples, a temperature sensing system and a soft gripper are assembled, allowing the robot fish to monitor the local temperature, raise warning signals by lighting, and grab and transport an object on demand. Such a robot fish should find applications in environmental detection and execution tasks under water. This work should also be informative for the design of other soft actuators and robots with tough hydrogels as the building blocks.
Collapse
Affiliation(s)
- Chuan Wei Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weifeng Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Hai Chao Yu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guorui Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Tiefeng Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wei Yang
- Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Jiang Y, Wang J, Zhang H, Chen G, Zhao Y. Bio-inspired natural platelet hydrogels for wound healing. Sci Bull (Beijing) 2022; 67:1776-1784. [PMID: 36546063 DOI: 10.1016/j.scib.2022.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/07/2023]
Abstract
Wound healing has invariably been a fundamental health concern, demanding manpower and materials and causing financial burdens. In this research, inspired by the hemostatic function of platelets, we proposed a novel bionic hydrogel by covalent amidation crosslinking natural platelet and alginate for wound healing. With the natural functional groups, the platelet-derived hydrogel exhibited outstanding biocompatibility and blood compatibility. By changing the addition ratio of platelets to alginates, the mechanical properties of the achieved hydrogel were variable to cater to different wound environments. Furthermore, silver nanoparticles could be loaded into the void space of the hydrogel which endowed the composites with superior anti-infective properties. We have demonstrated that the bio-inspired platelet hydrogel could promote hemostasis of acute tissue damage, prevent bacterial proliferation, and promote angiogenesis, collagen deposition, and granulation tissue formation in wound healing. These features signify the potential values of the bio-inspired platelet hydrogel in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Wang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210096, China; Children's Hospital of Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
26
|
Chen X, Han S, Wu W, Wu Z, Yuan Y, Wu J, Liu C. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106824. [PMID: 35060321 DOI: 10.1002/smll.202106824] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Indexed: 05/13/2023]
Abstract
The development of programmable functional biomaterials makes 4D printing add a new dimension, time (t), based on 3D structures (x, y, z), therefore, 4D printed constructs could transform their morphology or function over time in response to environmental stimuli. Nowadays, highly efficient bone defect repair remains challenging in clinics. Combining programmable biomaterials, living cells, and bioactive factors, 4D bioprinting provides greater potential for constructing dynamic, personalized, and precise bone tissue engineering scaffolds by complex structure formation and functional maturation. Therefore, 4D bioprinting has been regarded as the next generation of bone repair technology. This review focuses on 4D printing and its advantages in orthopedics. The applications of different smart biomaterials and 4D printing strategies are briefly introduced. Furthermore, one summarizes the recent advancements of 4D printing in bone tissue engineering, uncovering the addressed and unaddressed medical requirements. In addition, current challenges and future perspectives are further discussed, which will offer more inspiration about the clinical transformation of this emerging 4D bioprinting technology in bone regeneration.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weihui Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
27
|
Chen C, Wang Y, Zhang H, Zhang H, Dong W, Sun W, Zhao Y. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact Mater 2022; 15:194-202. [PMID: 35386338 PMCID: PMC8940762 DOI: 10.1016/j.bioactmat.2021.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of diabetic wounds remains a great challenge for medical community. Here, we present a novel structural color supramolecular hydrogel patch for diabetic wound treatment. This hydrogel patch was created by using N-acryloyl glycinamide (NAGA) and 1-vinyl-1,2,4-triazole (VTZ) mixed supramolecular hydrogel as the inverse opal scaffold, and temperature responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel loaded with vascular endothelial cell growth factor (VEGF) as a filler. Supramolecular hydrogel renders hydrogel patch with superior mechanical properties, in which NAGA and VTZ also provide self-healing and antibacterial properties, respectively. Besides, as the existence of PNIPAM, the hydrogel patch was endowed with thermal-responsiveness property, which could release actives in response to temperature stimulus. Given these excellent performances, we have demonstrated that the supramolecular hydrogel patch could significantly enhance the wound healing process in diabetes rats by downregulating the expression of inflammatory factors, promoting collagen deposition and angiogenesis. Attractively, due to responsive optical property of inverse opal scaffold, the hydrogel patch could display color-sensing behavior that was suitable for the wound monitoring and management as well as guidance of clinical treatment. These distinctive features indicate that the presented hydrogel patches have huge potential values in biomedical fields.
Collapse
Affiliation(s)
- Canwen Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
28
|
Cao X, Zhang Z, Sun L, Luo Z, Zhao Y. Multifunctional fish gelatin hydrogel inverse opal films for wound healing. J Nanobiotechnology 2022; 20:355. [PMID: 35918727 PMCID: PMC9344764 DOI: 10.1186/s12951-022-01564-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background Wound healing has become a worldwide healthcare issue. Attempts in the area focus on developing patches with the capabilities of avoiding wound infection, promoting tissue remolding, and reporting treatment status that are of great value for wound treatment. Results In this paper, we present a novel inverse opal film (IOF) patch based on a photo-crosslinking fish gelatin hydrogel with the desired features for wound healing and dynamic monitoring. The film with vibrant structure colors was constructed by using the mixture of fish gelatin methacryloyl, chitosan, and polyacrylic acid (PAA) to replicate colloidal crystal templates. As the structures of these natural biomolecules are well-retained during the fabrication, the resultant IOF was with brilliant biocompatibility, low immunogenicity, antibacterial property, as well as with the functions of promoting tissue growth and wound healing. In addition, the IOF presented interconnected nanopores and high specific surface areas for vascular endothelial growth factor loading, which could further improve its angiogenesis capability. More attractively, as the pH-responsive PAA was incorporated, the IOF patch could report the wound healing status through its real-time structural colors or reflectance spectra. Conclusions These features implied the practical value of the multifunctional fish gelatin hydrogel IOFs in clinical wound management. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01564-w.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuohao Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
29
|
Dong M, Han Y, Hao XP, Yu HC, Yin J, Du M, Zheng Q, Wu ZL. Digital Light Processing 3D Printing of Tough Supramolecular Hydrogels with Sophisticated Architectures as Impact-Absorption Elements. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204333. [PMID: 35763430 DOI: 10.1002/adma.202204333] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Processing tough hydrogels into sophisticated architectures is crucial for their applications as structural elements. However, Digital Light Processing (DLP) printing of tough hydrogels is challenging because of the low-speed gelation and toughening process. Described here is a simple yet versatile system suitable for DLP printing to form tough hydrogel architectures. The aqueous precursor consists of commercial photoinitiator, acrylic acid, and zirconium ion (Zr4+ ), readily forming tough metallo-supramolecular hydrogel under digital light because of in situ formation of carboxyl-Zr4+ coordination complexes. The high-stiffness and antiswelling properties of as-printed gel enable high-efficiency printing to form high-fidelity constructs. Furthermore, swelling-induced morphing of the gel is also achieved by encoding structure gradients during the printing with grayscale digital light. Mechanical properties of the printed hydrogels are further improved after incubation in water due to the variation of local pH and rearrangement of coordination complex. The swelling-enhanced stiffness affords the printed hydrogel with shape fixation ability after manual deformations, and thereby provides an additional avenue to form more complex configurations. These printed hydrogels are used to devise an impact-absorption element or a high-sensitivity pressure sensor as proof-of-concept examples. This work should merit engineering of other tough gels and extend their scope of applications in diverse fields.
Collapse
Affiliation(s)
- Min Dong
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Han
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hai Chao Yu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
30
|
Wu D, Yao B, Wu S, Hingorani H, Cui Q, Hua M, Frenkel I, Du Y, Hsiai TK, He X. Room-Temperature Annealing-Free Gold Printing via Anion-Assisted Photochemical Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201772. [PMID: 35703311 PMCID: PMC9884391 DOI: 10.1002/adma.202201772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Indexed: 05/30/2023]
Abstract
Metal patterning via additive manufacturing has been phasing-in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal-patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one-step gold printing technique based on anion-assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107 S m-1 ) under ambient conditions without post-annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Cl- ions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD-printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical-deposition-based metal patterning in flexible electronic manufacturing.
Collapse
Affiliation(s)
- Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Bowen Yao
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Hardik Hingorani
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Qingyu Cui
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Mutian Hua
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Imri Frenkel
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
31
|
Pardeshi S, Damiri F, Zehravi M, Joshi R, Kapare H, Prajapati MK, Munot N, Berrada M, Giram PS, Rojekar S, Ali F, Rahman MH, Barai HR. Functional Thermoresponsive Hydrogel Molecule to Material Design for Biomedical Applications. Polymers (Basel) 2022; 14:polym14153126. [PMID: 35956641 PMCID: PMC9371082 DOI: 10.3390/polym14153126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels’ minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Al-Kharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision Nanosystems Inc., Vancouver, BC V6P 6T7, Canada;
| | - Harshad Kapare
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur 425405, Maharashtra, India;
| | - Neha Munot
- Department of Pharmaceutics, School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Faraat Ali
- Laboratory Services, Department of Licensing and Enforcement, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| |
Collapse
|
32
|
Liu S, Li X, Chen Y, Huang Y, Zhang S, Dai H. Dual-readout immunosensor based on multifunctional MXene probe triggers the signal amplification for detection of autoimmune hepatitis marker. Mikrochim Acta 2022; 189:248. [PMID: 35678888 DOI: 10.1007/s00604-022-05350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
A dual-readout immunosensor coupled with electrochemical impedance and temperature signal was successfully proposed to detect autoimmune hepatitis markers (ASGPR). Nb2C MXene with excellent conductivity, abundant surface functional groups, and extraordinary photothermal conversion efficiency, was designed to be a multifunctional biological probe, whose specific binding with antigen enhanced steric hindrance to generate electrochemical impedance signal, and at the same time, it had a strong optical response in the near-infrared band to achieve temperature output. In addition, poly(N-isopropyl acrylamide) (PNIPAM) was a temperature-sensitive polymer, which was adopted as the sensing matrix. When the multifunctional probe was specifically bound to the antigen, under 808-nm laser irradiation, the captured Nb2C MXene achieved photothermal conversion to increase the electrode surface temperature, and the conformation of PNIPAM changed from a free spiral to a spherical shape, further realizing double amplification of the EIS signal. Under the optimized experimental conditions, the impedance values and the temperature changes increased proportionally with the increase of the ASGPR concentration from 10-5 to 1 ng/mL, and the detection limit of the immunosensor was 3.3 × 10-6 ng/mL. The established dual-readout immunosensor exhibited good selectivity and acceptable stability and provided an effective detection method for autoimmune hepatitis marker detection.
Collapse
Affiliation(s)
- Sha Liu
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Xiaofeng Li
- Department of Neurology, Union Hospital, Fuzhou, 350002, Fujian, China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 32400, Zhejiang, China
| | - Hong Dai
- College of Chemistry and Material, Fujian Normal University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
33
|
Dynamic and structural studies on synergetic energy dissipation mechanisms of single-, double-, and triple-network hydrogels sequentially crosslinked by multiple non-covalent interactions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Abstract
Plant cells inspire a hydrogel actuator that achieves ultrastrong and fast actuation.
Collapse
Affiliation(s)
- Zhen Jiang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia.,School of Agriculture and Environmental Science, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| |
Collapse
|
35
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
36
|
Hou LX, Ding H, Hao XP, Zhu CN, Du M, Wu ZL, Zheng Q. Multi-level encryption of information in morphing hydrogels with patterned fluorescence. SOFT MATTER 2022; 18:2149-2156. [PMID: 35212340 DOI: 10.1039/d2sm00083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescent hydrogels have attracted tremendous attention recently in the field of information security due to the booming development of information technology. Along this line, it is highly desired to improve the security level of concealed information by the advancements of materials and encryption technologies. Here we report multi-level encryption of information in a bilayer hydrogel with shape-morphing ability and patterned fluorescence. This hydrogel is composed of a fluorescence layer containing chromophore units in the poly(acrylic acid) network and an active layer with UV-absorption agents in the poly(N-isopropylacrylamide-co-acrylic acid) network. The former layer exhibits tunable fluorescence tailored by UV light irradiation to induce unimer-to-dimer transformation of the chromophores, facilitating the write-in of information through photolithography. The latter layer is responsive to temperature, enabling morphing of the bilayer hydrogel. Therefore, the bilayer hydrogel encoded with patterned fluorescent patterns can deform into three-dimensional configurations at room temperature to conceal the information, which is readable only after successive procedures of shape recovery at an appropriate temperature and under UV light irradiation from the right direction. The combination of morphing materials and patterned fluorescence as a new avenue to improve the encryption level of information should merit the design of other smart materials with integrated functions for specific applications.
Collapse
Affiliation(s)
- Li Xin Hou
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hongyao Ding
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xing Peng Hao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Chao Nan Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
37
|
|
38
|
Mallakpour S, Tabesh F, Hussain CM. A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: Process and applications. Adv Colloid Interface Sci 2022; 301:102605. [PMID: 35144173 DOI: 10.1016/j.cis.2022.102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Recently, 3D/4D printing technologies have been the researchers' interest, and they are getting improved more important. They are applicable in various fields like medical fields, pharmaceutics, construction, tissue engineering, dentistry, water treatment, etc. These technologies overcame the difficulty of the conventional methods in producing complicated structures. They can be fed by different materials such as nanomaterials, smart polymers, responsive polymers, metamaterials, synthetic polymers, natural polymers, and so forth. One of the smart and stimuli-responsive polymers is poly(vinyl alcohol) (PVA). In addition to numerous applications of PVA like medicine, environmental fields, etc., researchers are showing a tendency to use PVA in 3D/4D printing technologies. The main reasons for PVA's increased interest in 3D/4D printing technologies are suitable flowability, stimuli-responsivity, extrudability, biocompatibility, biodegradability, cost-effectiveness, and other features. This review aims to introduce the 3D/4D printing technologies' knowledge and then the applications of PVA as a feed in these novel technologies.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Farbod Tabesh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark N J 07102, USA
| |
Collapse
|
39
|
Wang L, Sun L, Bian F, Wang Y, Zhao Y. Self-Bonded Hydrogel Inverse Opal Particles as Sprayed Flexible Patch for Wound Healing. ACS NANO 2022; 16:2640-2650. [PMID: 35068135 DOI: 10.1021/acsnano.1c09388] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wound healing is an important issue for regenerative medicine. Attempts in this area tend to develop functional wound patches to promote the healing. Here, we present self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing. Such particles were fabricated by infusing drugs-loaded gelatin (GT) and carrageenan (CG) pregel into inverse opal scaffolds, which were composed of biocompatible hyaluronic acid methacryloyl (HAMA) and gelatin methacryloyl (GelMA) with graphene oxide quantum dots (GO QDs) doping. Due to the photothermal conversion capability of GO QDs and temperature reversible phase-changing performance of GT/CG, the hybrid particles could undergo GT/CG liquid transformation under the near-infrared (NIR) irradiation, which made them adhere to each other and finally form a flexible patch. Following by the phase-change of GT/CG hydrogel, the encapsulated drugs were also controllably released from the inverse opal scaffold. As the inverse opal scaffolds of the hybrid particles were maintained, their drug release induced refractive index changes could be detected as visual structural color shifting, which could be utilized to monitor their delivery processes. Based on these features, we have demonstrated that the self-bonded particles, administered in the form of spray, could be applied for wound tissue healing and drug delivery monitoring. These results indicate that the self-bonded hydrogel particles have potential value as a multifunctional patch for clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Feika Bian
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
| |
Collapse
|
40
|
|
41
|
Du C, Hu J, Wu X, Shi H, Yu HC, Qian J, Yin J, Gao C, Wu ZL, Zheng Q. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. J Mater Chem B 2022; 10:468-476. [PMID: 34982091 DOI: 10.1039/d1tb02465e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To mimic biological tissues with high toughness such as cartilage, it is highly desired to fabricate stable and tough hydrogels with intricate shapes to act as a structural support. Extrusion-based 3D printing is a promising method to fabricate 3D scaffolds with various architectures; however, printing tough hydrogel structures with high fidelity and resolution is still a challenge. In this work, we adopt the fast sol-to-gel transition of κ-carrageenan in the solution of acrylamide upon cooling to fix the printed scaffolds and polymerize the precursor solution to form the second network. The printed constructs of κ-carrageenan/polyacrylamide double-network gels are toughened by soaking in an aqueous solution of zirconyl chloride to form coordination complexes between the Zr4+ ions and sulfate groups of κ-carrageenan. The obtained hydrogels are stable in water and possess good mechanical properties, with a tensile breaking stress of 1-2 MPa, breaking strain of 100-150%, and Young's modulus of 4-10 MPa. The printed grid can hold 150 times its own weight. 3D printed constructs with a high aspect ratio and shape fidelity are obtained by optimizing the printing parameters. Furthermore, a biomimetic strategy is applied to construct a hydrogel composite by filling the printed tough hydrogel scaffold with a cell-laden fibrin hydrogel as the soft substance. Chondrocytes in the hydrogel composite maintain high viability after cyclic compression, demonstrating the load-bearing capacity of the tough scaffold and favorable microenvironment for cells provided by the embedded soft fibrin gel. We envision that this printing strategy for hydrogel constructs with high toughness and good stability, as well as the method to form tough-soft hydrogel composites, can be extended to other systems to develop structural elements and scaffolds towards applications in biomedical devices and tissue engineering.
Collapse
Affiliation(s)
- Cong Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyu Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huimin Shi
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Hai Chao Yu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jun Yin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Changyou Gao
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
42
|
Abstract
Hydrogels have three-dimensional network structures, high water content, good flexibility, biocompatibility, and stimulation response, which have provided a unique role in many fields such as industry, agriculture, and medical treatment. Poly(vinyl alcohol) PVA hydrogel is one of the oldest composite hydrogels. It has been extensively explored due to its chemical stability, nontoxic, good biocompatibility, biological aging resistance, high water-absorbing capacity, and easy processing. PVA-based hydrogels have been widely investigated in drug carriers, articular cartilage, wound dressings, tissue engineering, and other intelligent materials, such as self-healing and shape-memory materials, supercapacitors, sensors, and other fields. In this paper, the discovery, development, preparation, modification methods, and applications of PVA functionalized hydrogels are reviewed, and their potential applications and future research trends are also prospected.
Collapse
|
43
|
Zhang B, Jia L, Jiang J, Wu S, Xiang T, Zhou S. Biomimetic Microstructured Hydrogels with Thermal-Triggered Switchable Underwater Adhesion and Stable Antiswelling Property. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36574-36586. [PMID: 34304555 DOI: 10.1021/acsami.1c10051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of hydrogels with switchable adhesion and stable antiswelling property in a wet environment has remained a challenge. Here, we report a biomimetic hydrogel that can adhere and detach on-demand on various material surfaces, which is realized by thermal-triggered switchable shape transformation on hexagonal micropillar patterned hydrogels. The hydrogels are cross-linked by two cross-linkers of poly(ethylene glycol) dimethacrylate and 2-ureidoethyl methacrylate, which guarantee the strong mechanical property and stable antiswelling property in a wet environment. The hydrogels can maintain stable water content in solutions with variable pH, temperature, and salt concentration, and the change in volume does not exceed 2%. In addition, due to the dynamical hydrogen bonds and dipole-dipole interaction in the hydrogels, the hydrogels exhibit a thermal-triggered shape-memory effect. The hydrogel can recover shape more than 80% in 15 s. Furthermore, inspired by the surface structure of tree-frog footpads, the hexagonal micropillar patterned hydrogels exhibit improved underwater adhesion strength. The underwater adhesion strength of hexagonal micropillar patterned hydrogels is seven times more than that of flat hydrogels. Based on the shape-memory effect of hydrogels, the adhesion strength can be altered by a thermal stimulus. The adhesion strength of the microstructures recovered from the hydrogel surface decreased to 15.4% of the initial adhesion strength. The switchable underwater adhesion of hydrogels can be applied in the fields of transfer printing, medical adhesives, mobile robots, etc.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lianghao Jia
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinrui Jiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shanshan Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
44
|
He J, Lin D, Chen Y, Zhang L, Tan J. One-Step Preparation of Thermo-Responsive Poly(N-isopropylacrylamide)-Based Block Copolymer Nanoparticles by Aqueous Photoinitiated Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2021; 42:e2100201. [PMID: 34145660 DOI: 10.1002/marc.202100201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Indexed: 12/18/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is an important thermo-responsive polymer that finds applications in many areas. However, the preparation of PNIPAM-based block copolymer nanoparticles with higher-order morphologies at high solids is challenging. Herein, aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) of N-isopropylacrylamide (NIPAM) using an asymmetrical cross-linker is developed for one-step preparation of PNIPAM-based block copolymer nanoparticles with various morphologies (spheres, worms, and vesicles). It is demonstrated that reaction temperature has a great effect on both polymerization kinetics and morphologies of block copolymer nanoparticles. Reversible addition-fragmentation chain transfer (RAFT) reactive groups embedded inside the PNIPAM core provide a landscape for further functionalization. PNIPAM-based block copolymer nanoparticles with different surface properties are prepared by seeded photo-PISA at room temperature. Finally, these block copolymer nanoparticles are also used as additives to tune mechanical properties of hydrogels via covalent cross-linking.
Collapse
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongni Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
45
|
Qi HJ, Ionov L, Zhao R. Preface: Forum on Novel Stimuli-Responsive Materials for 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12637-12638. [PMID: 33761585 DOI: 10.1021/acsami.1c03782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
46
|
Wu B, Lu H, Le X, Lu W, Zhang J, Théato P, Chen T. Recent progress in the shape deformation of polymeric hydrogels from memory to actuation. Chem Sci 2021; 12:6472-6487. [PMID: 34040724 PMCID: PMC8132948 DOI: 10.1039/d0sc07106d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
Shape deformation hydrogels, which are one of the most promising and essential classes of stimuli-responsive polymers, could provide large-scale and reversible deformation under external stimuli. Due to their wet and soft properties, shape deformation hydrogels are anticipated to be a candidate for the exploration of biomimetic materials, and have shown various potential applications in many fields. Here, an overview of the mechanisms of shape deformation hydrogels and methods for their preparation is presented. Some innovative and efficient strategies to fabricate programmable deformation hydrogels are then introduced. Moreover, successful explorations of their potential applications, including information encryption, soft robots and bionomic systems, are discussed. Finally, remaining great challenges including the achievement of multiple stable deformation states and the combination of shape deformation and sensing are highlighted.
Collapse
Affiliation(s)
- Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Huanhuan Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Patrick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces IIII, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT) Enge Sser Str. 18 D-76131 Karlsruhe Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| |
Collapse
|