1
|
Chaparro D, Goudeli E. Design of engineered nanoparticles for biomedical applications by computational modeling. NANOSCALE 2025; 17:9705-9737. [PMID: 40190149 DOI: 10.1039/d4nr05199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Engineered nanoparticles exhibit superior physicochemical, antibacterial, optical, and sensing properties compared to their bulk counterparts, rendering them attractive for biomedical applications. However, given that nanoparticle properties are sensitive to their nanostructural characteristics and their chemical stability is largely affected by physiological conditions, nanoparticle behavior can be unpredictable in vivo, requiring careful surface modification to ensure biocompatibility, prevent rapid aggregation, and maintain functionality under biological environments. Therefore, understanding the mechanisms of nanoparticle formation and macroscopic behavior in physiological media is essential for the development of structure-property relationships and, their rational design for biomedical applications. Computational simulations provide insight into nanoscale phenomena and nanoparticle dynamics, expediting material discovery and innovation. This review provides an overview of the process design and characterization of metallic and metal oxide nanoparticles with an emphasis on atomistic and mesoscale simulations for their application in bionanomedicine.
Collapse
Affiliation(s)
- Diego Chaparro
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| | - Eirini Goudeli
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
2
|
Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
4
|
Qiao H, Chen Z, Fu S, Yu X, Sun M, Zhai Y, Sun J. Emerging platinum(0) nanotherapeutics for efficient cancer therapy. J Control Release 2022; 352:276-287. [PMID: 36273531 DOI: 10.1016/j.jconrel.2022.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Platinum (Pt)-based chemotherapy has been necessary for clinical cancer treatment. However, traditional bivalent drugs are hindered by poor physicochemical properties, severe toxic side effects, and drug resistance. Currently, elemental Pt(0) nanotherapeutics (NTs) have emerged to tackle the dilemma. The inherent acid-responsiveness of Pt(0) NTs could help to improve tumor selectivity and alleviate toxic effects. Moreover, the metal nature of Pt facilitates the great combination of Pt(0) NTs with photothermal and photodynamic therapy and imaging-guided diagnosis. Based on recent important researches, this review provides an updated introduction to Pt(0) NTs. First, the challenges of traditional Pt-based chemotherapy have been outlined. Then, Pt(0) NTs with multiple applications of tumor theranostics have been overviewed. Furthermore, the combinations of Pt(0) NTs with other therapeutical modalities are introduced. Last but not least, we envision the possible challenges and prospects associated with Pt(0) NTs.
Collapse
Affiliation(s)
- Han Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhichao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shuwen Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiang Yu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
5
|
Pan Y, Wei X. A novel FRET immunosensor for rapid and sensitive detection of dicofol based on bimetallic nanoclusters. Anal Chim Acta 2022; 1224:340235. [DOI: 10.1016/j.aca.2022.340235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2022]
|
6
|
Wang X, Wang Y, Yin L, Zhang Q, Wang S. Surfactant-free synthesis of fluorescent platinum nanoclusters using HEPES buffer for hypochlorous acid sensing and imaging. RSC Adv 2022; 12:10395-10400. [PMID: 35424968 PMCID: PMC8978884 DOI: 10.1039/d1ra09064j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
A surfactant-free synthesis of noble-metal nanoclusters (NMNCs) with specific function has recently remained more attractive and superior in bio-applications. Herein, by employing the weak reducibility of non-toxic HEPES, we prepared novel water-soluble fluorescent HEPES@Pt NCs by a simple surfactant-free synthesis strategy for hypochlorous acid (HClO) sensing. The as-prepared Pt NCs featured ultra-small size (∼2 nm), bright blue fluorescence, high stability and biocompatibility, and the fluorescence of the Pt NC nanoprobe can be specifically quenched with hypochlorous acid by a static quenching process. Moreover, the surfactant-free Pt NC probe displays fascinating performances for HClO sensing, including fast response to HClO, high stability and specificity, and is further applied for imaging the fluctuations of the HClO concentration in living cells with satisfactory results for the first time. Thereby, we anticipate that it is a reliable and attractive approach to develop versatile NMNCs through the surfactant-free synthesis for further applications in biological research.
Collapse
Affiliation(s)
- Xiaoying Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| | - Yusong Wang
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College Wuhu 241002 P. R. China
| | - Liping Yin
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College Wuhu 241002 P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 P. R. China
| | - Shaozhen Wang
- AnHui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College Wuhu 241002 P. R. China
| |
Collapse
|
7
|
Mi W, Tang S, Guo S, Li H, Shao N. In situ synthesis of red fluorescent gold nanoclusters with enzyme-like activity for oxidative stress amplification in chemodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Montague SJ, Patel P, Martin EM, Slater A, Quintanilla LG, Perrella G, Kardeby C, Nagy M, Mezzano D, Mendes PM, Watson SP. Platelet activation by charged ligands and nanoparticles: platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021; 32:1018-1030. [PMID: 34266346 DOI: 10.1080/09537104.2021.1945571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pushpa Patel
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Diego Mezzano
- Laboratorio de Trombosis y Hemostasia, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paula M Mendes
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| |
Collapse
|
9
|
Sneha KR, Sailaja GS. Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. J Mater Chem B 2021; 9:8569-8593. [PMID: 34585717 DOI: 10.1039/d1tb01513c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray attenuation ability, otherwise known as radiopacity of a material, could be indisputably tagged as the central and decisive parameter that produces contrast in an X-ray image. Radiopaque biomaterials are vital in the healthcare sector that helps clinicians to track them unambiguously during pre and post interventional radiological procedures. Medical imaging is one of the most powerful resources in the diagnostic sector that aids improved treatment outcomes for patients. Intrinsically radiopaque biomaterials enable themselves for visual targeting/positioning as well as to monitor their fate and further provide the radiologists with critical insights about the surgical site. Moreover, the emergence of advanced real-time imaging modalities is a boon to the contemporary healthcare systems that allow to perform minimally invasive surgical procedures and thereby reduce the healthcare costs and minimize patient trauma. X-ray based imaging is one such technologically upgraded diagnostic tool with many variants like digital X-ray, computed tomography, digital subtraction angiography, and fluoroscopy. In light of these facts, this review is aimed to briefly consolidate the physical principles of X-ray attenuation by a radiopaque material, measurement of radiopacity, classification of radiopaque biomaterials, and their recent advanced applications.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India.
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India. .,Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi - 682022, India.,Centre for Advanced Materials, CUSAT, Kochi - 682022, India
| |
Collapse
|
10
|
Semcheddine F, El Islem Guissi N, Liu W, Gang L, Jiang H, Wang X. Rapid and label-free cancer theranostics via in situ bio-self-assembled DNA-gold nanostructures loaded exosomes. MATERIALS HORIZONS 2021; 8:2771-2784. [PMID: 34605844 DOI: 10.1039/d1mh00880c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemically engineered nanomaterials have been extensively used in early tumor detection and cancer therapy. Despite the promise shown, their chemical or exogenous nature hinders their application due to their unknown adverse effects. Herein, using a cancer cell environment, fluorescent DNA-gold nanostructures were bio-self-assembled through simple incubation of DNA and Au solutions with cancer cells. In situ, ex vivo, bio-responsive self-assembly of ring-shaped DNA-Au nanostructures is reported for the first time. Subsequently, the exosomes released by the above-mentioned cancer cells were found to carry the self-assembled DNA-Au nanostructures, exhibiting strong in vivo dual fluorescence properties. Interestingly, these exosomes could be immediately taken up in vitro by their parent cells, reaching the nucleus within 10 min after incubation. Taking advantage of the unique endogenous properties of exosomes, and their advanced cargo delivery capacity, we further exploited the DNA-Au nanostructure loaded exosomes with mitoxantrone for accurate cancer theranostics. The in vitro and in vivo results showed that the exosomes could effectively deliver the drug cargo to cancerous cells, hence, displaying an enhanced targeting effect towards parent cancer cells, and a synergistic tumor inhibition effect, while showing great biocompatibility towards normal cells and vital organs. Hence, exosomes carrying the in situ bio-self-assembled DNA-Au nanostructures could be an outstanding delivery system for dye-free targeted cancer detection and therapy.
Collapse
Affiliation(s)
- Farouk Semcheddine
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China.
| | - Nida El Islem Guissi
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China.
| | - Lv Gang
- Mathematical & Physical Science School, North China Electric Power University, Baoding, 071003, P. R. China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China.
| |
Collapse
|
11
|
Yao Y, Wang D, Hu J, Yang X. Tumor-targeting inorganic nanomaterials synthesized by living cells. NANOSCALE ADVANCES 2021; 3:2975-2994. [PMID: 36133644 PMCID: PMC9419506 DOI: 10.1039/d1na00155h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 05/09/2023]
Abstract
Inorganic nanomaterials (NMs) have shown potential application in tumor-targeting theranostics, owing to their unique physicochemical properties. Some living cells in nature can absorb surrounding ions in the environment and then convert them into nanomaterials after a series of intracellular/extracellular biochemical reactions. Inspired by that, a variety of living cells have been used as biofactories to produce metallic/metallic alloy NMs, metalloid NMs, oxide NMs and chalcogenide NMs, which are usually automatically capped with biomolecules originating from the living cells, benefitting their tumor-targeting applications. In this review, we summarize the biosynthesis of inorganic nanomaterials in different types of living cells including bacteria, fungi, plant cells and animal cells, accompanied by their application in tumor-targeting theranostics. The mechanisms involving inorganic-ion bioreduction and detoxification as well as biomineralization are emphasized. Based on the mechanisms, we describe the size and morphology control of the products via the modulation of precursor ion concentration, pH, temperature, and incubation time, as well as cell metabolism by a genetic engineering strategy. The strengths and weaknesses of these biosynthetic processes are compared in terms of the controllability, scalability and cooperativity during applications. Future research in this area will add to the diversity of available inorganic nanomaterials as well as their quality and biosafety.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
12
|
Yu J, Liu S, Wang Y, He X, Zhang Q, Qi Y, Zhou D, Xie Z, Li X, Huang Y. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact Mater 2021; 7:389-400. [PMID: 34466740 PMCID: PMC8379359 DOI: 10.1016/j.bioactmat.2021.05.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The combination of tumor ablation and immunotherapy is a promising strategy against tumor relapse and metastasis. Photothermal therapy (PTT) triggers the release of tumor-specific antigens and damage associated molecular patterns (DAMPs) in-situ. However, the immunosuppressive tumor microenvironment restrains the activity of the effector immune cells. Therefore, systematic immunomodulation is critical to stimulate the tumor microenvironment and augment the anti-tumor therapeutic effect. To this end, polyethylene glycol (PEG)-stabilized platinum (Pt) nanoparticles (Pt NPs) conjugated with a PD-L1 inhibitor (BMS-1) through a thermo-sensitive linkage were constructed. Upon near-infrared (NIR) exposure, BMS-1 was released and maleimide (Mal) was exposed on the surface of Pt NPs, which captured the antigens released from the ablated tumor cells, resulting in the enhanced antigen internalization and presentation. In addition, the Pt NPs acted as immune adjuvants by stimulating dendritic cells (DCs) maturation. Furthermore, BMS-1 relieved T cell exhaustion and induced the infiltration of effector T cells into the tumor tissues. Thus, Pt NPs can ablate tumors through PTT, and augment the anti-tumor immune response through enhanced antigen presentation and T cells infiltration, thereby preventing tumor relapse and metastasis. Pt NPs ablated tumor cells through PTT and served as immune adjuvants. Released BMS-1 and deprotected maleimide by thermo-sensitive Diels-Alder reaction. Pt NPs captured the antigens with exposed maleimide and stimulated dendritic cells maturation. Controlled release of BMS-1 in response to PTT relieved T cell exhaustion.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Sha Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yupeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xidong He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaoyuan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.,Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| |
Collapse
|
13
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
14
|
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11:1175-1199. [PMID: 34094827 PMCID: PMC8144895 DOI: 10.1016/j.apsb.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle. The resultant nanoparticles possess combinatorial properties and synergistic efficacy, such as simplicity, active bio-responsiveness, improved applicability, and low cost, for combination therapy, such as accurate targeting, bioimaging, and enhanced therapeutic and biocatalytic effects. In contrast to larger nanoparticles, bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems. Notably, advances in nanoscience, interfacial chemistry, and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes. The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications, with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds. In the different hybrid platform, we summarize the current challenges and emerging perspectives, which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.
Collapse
Affiliation(s)
- Peng Gao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Chang
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Mostafavi E, Medina-Cruz D, Vernet-Crua A, Chen J, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv 2021; 18:715-736. [PMID: 33332168 DOI: 10.1080/17425247.2021.1865306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Current brain cancer treatments, based on radiotherapy and chemotherapy, are sometimes successful, but they are not free of drawbacks.Areas covered: Traditional methods for the treatment of brain tumors are discussed here with new solutions presented, among which the application of nanotechnology has demonstrated promising results over the past decade. The traditional synthesis of nanostructures, which relies on the use of physicochemical methodologies are discussed, and their associated concerns in terms of environmental and health impact due to the production of toxic by-products, need for toxic catalysts, and their lack of biocompatibility are presented. An overview of the current situation for treating brain tumors using nanotechnological-based approaches is introduced, and some of the latest advances in the application of green nanomaterials (NMs) for the effective targeting of brain tumors are presented.Expert opinion: Green nanotechnology is introduced as a potential solution to toxic NMs through the application of environmentally friendly and cost-effective protocols using living organisms and biomolecules. The current status of this field, such as those involving clinical trials, is included, and the possible limitations of green-NMs and potential ways to avoid those limitations are discussed so that the field can potentially evolve.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Chen
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
16
|
Tayyaba, Rehman FU, Shaikh S, Tanziela, Semcheddine F, Du T, Jiang H, Wang X. In situ self-assembled Ag-Fe 3O 4 nanoclusters in exosomes for cancer diagnosis. J Mater Chem B 2021; 8:2845-2855. [PMID: 32175535 DOI: 10.1039/c9tb02610j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, exosomes have gained attention as an effective tool for early cancer detection. Almost all types of cells release exosomes, making them substantially important for disease diagnosis. In this study, we have utilized HepG2 cancer cells for the in situ biosynthesis of silver and iron oxide nanoclusters (NCs) from their respective salts (i.e., AgNO3 and FeCl2, respectively) in the presence of glutathione (GSH). The self-assembled biosynthesized silver and iron NCs were readily loaded on exosomes as payloads and secreted into the cell culture medium. The cargo loaded exosomes were then isolated and characterized by electron microscopy for nano-silver and iron oxide NC confirmation. Ag NCs have potential as a fluorescent probe and Fe3O4 NCs as a contrast agent for CT and MRI. Furthermore, these isolated exosomes from HepG2 cancer cells have a significant influence on cellular uptake and cell viability when exposed to both HepG2 and U87 cancer cells. These findings demonstrate that the biocompatible nature of these self-assembled NCs loaded on exosomes could be utilized to bioimage cancer in the initial stages through fluorescence imaging.
Collapse
Affiliation(s)
- Tayyaba
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Sana Shaikh
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Tanziela
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Farouk Semcheddine
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Tianyu Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
17
|
|
18
|
Cui Y, Li B, Wang X, Tang R. Organism–Materials Integration: A Promising Strategy for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yihao Cui
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Benke Li
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Department of Chemistry Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies Zhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
19
|
Tan KB, Sun D, Huang J, Odoom-Wubah T, Li Q. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ. Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines. Int J Nanomedicine 2021; 16:161-184. [PMID: 33447033 PMCID: PMC7802788 DOI: 10.2147/ijn.s288236] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of nanotechnology as a key enabling technology over the past years has opened avenues for new and innovative applications in nanomedicine. From the business aspect, the nanomedicine market was estimated to worth USD 293.1 billion by 2022 with a perception of market growth to USD 350.8 billion in 2025. Despite these opportunities, the underlying challenges for the future of engineered nanomaterials (ENMs) in nanomedicine research became a significant obstacle in bringing ENMs into clinical stages. These challenges include the capability to design bias-free methods in evaluating ENMs' toxicity due to the lack of suitable detection and inconsistent characterization techniques. Therefore, in this literature review, the state-of-the-art of engineered nanomaterials in nanomedicine, their toxicology issues, the working framework in developing a toxicology benchmark and technical characterization techniques in determining the toxicity of ENMs from the reported literature are explored.
Collapse
Affiliation(s)
- Fahad Albalawi
- Department of Medical Laboratory and Blood Bank, King Fahad Specialist Hospital-Tabuk, Tabuk, Saudi Arabia
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory Institute of Bioscience, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Pang J, Lu Y, Gao X, He L, Sun J, Yang F, Liu Y. Single-strand DNA-scaffolded copper nanoclusters for the determination of inorganic pyrophosphatase activity and screening of its inhibitor. Mikrochim Acta 2020; 187:672. [PMID: 33225389 DOI: 10.1007/s00604-020-04647-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/15/2020] [Indexed: 11/30/2022]
Abstract
A fluorescence method for the determination of inorganic pyrophosphatase (PPase) activity has been established based on copper nanoclusters (CuNCs). The polythymine of 40 mer (T40) acts as a template for the reduction reaction from Cu2+ to Cu0 by ascorbic acid (AA). This reaction leads to the formation of fluorescent CuNCs with excitation/emission peaks at 340/640 nm. However, the higher binding affinity between inorganic pyrophosphate (PPi) and Cu2+ hinders the effective formation of CuNCs. This shows low fluorescence intensity. PPase catalyzes the hydrolysis of PPi into Pi during which free Cu2+ ions are produced. This facilitates the formation of fluorescent CuNCs. Thus, the fluorescence intensity was restored. The fluorescence enhancement of the system has a linear relationship with PPase activity in the range 0.3 to 20 mU·mL-1, and the detection limit is0.2 mU·mL-1. The relative intensity (I/I0) at 640 nm for the analytical solution versus system is also employed to screen the inhibitor for PPase with high efficiency. Graphical abstract Schematic representation of a fluorescent assay for the determination of inorganic pyrophosphatase activity and screening its inhibitor based on single-strand polythymine-scaffolded copper nanoclusters.
Collapse
Affiliation(s)
- Jiawei Pang
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinyu Gao
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Liuying He
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Jingwei Sun
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Fengyi Yang
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China
| | - Yueying Liu
- Department of Chemistry, Capital Normal University, Xisanhuan North Rd. 105, Beijing, 100048, People's Republic of China.
| |
Collapse
|
22
|
Tanaka SI, Wadati H, Sato K, Yasuda H, Niioka H. Red-Fluorescent Pt Nanoclusters for Detecting and Imaging HER2 in Breast Cancer Cells. ACS OMEGA 2020; 5:23718-23723. [PMID: 32984690 PMCID: PMC7513347 DOI: 10.1021/acsomega.0c02578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with more frequent cancer recurrence and metastasis. Sensitive sensing of HER2 in living breast cancer cells is crucial in the early stages of cancer and to further understand its role in cells. Biomedical imaging has become an indispensable tool in the fields of early cancer diagnosis and therapy. In this study, we designed and synthesized platinum (Pt) nanocluster bionanoprobes with red emission (Ex/Em = 535/630 nm) for fluorescence imaging of HER2. Our Pt nanoclusters, which were synthesized using polyamidoamine (PAMAM) dendrimer and preequilibration, exhibited approximately 1% quantum yield and possessed low cytotoxicity, ultrasmall size, and excellent photostability. Furthermore, combined with ProteinA as an adapter protein, we developed Pt bionanoprobes with minimal nonspecific binding and utilized them as fluorescent probes for highly sensitive optical imaging of HER2 at the cellular level. More importantly, molecular probes with long-wavelength emission have allowed visualization of deep anatomical features because of enhanced tissue penetration and a decrease in background noise from tissue scattering. Our Pt nanoclusters are promising fluorescent probes for biomedical applications.
Collapse
Affiliation(s)
- Shin-ichi Tanaka
- National
Institute of Technology, Kure College, 2-2-11 Agaminami, Kure, Hiroshima 737-8506, Japan
| | - Hiroki Wadati
- Graduate
School of Material Science, University of
Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kazuhisa Sato
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1
Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidehiro Yasuda
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1
Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirohiko Niioka
- Institute
for Datability Science, Osaka University, TechnoAlliance Building C503, 2-8
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Agans R, Dymond CE, Jimenez RE, Bunce NJ, Perry KJ, Salisbury RL, Hussain SM, Gupta RK, Karna SP. Human Nontumorigenic Microglia Synthesize Strongly Fluorescent Au/Fe Nanoclusters, Retaining Bioavailability. ACS OMEGA 2020; 5:20983-20990. [PMID: 32875234 PMCID: PMC7450618 DOI: 10.1021/acsomega.0c02455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The ability for cells to self-synthesize metal-core nanoclusters (mcNCs) offers increased imaging and identification opportunities. To date, much work has been done illustrating the ability for human tumorigenic cell lines to synthesize mcNCs; however, this has not been illustrated for nontumorigenic cell lines. Here, we present the ability for human nontumorigenic microglial cells, which are the major immune cells in the central nervous system, to self-synthesize gold (Au) and iron (Fe) core nanoclusters, following exposures to metallic salts. We also show the ability for cells to internalize presynthesized Au and Fe mcNCs. Cellular fluorescence increased in most exposures and in a dose dependent manner in the case of Au salt. Scanning transmission electron microscopic imaging confirmed the presence of the metal within cells, while transmission electron microscopy images confirmed nanocluster structures and self-synthesis. Interestingly, self-synthesized nanoclusters were of similar size and internal structure as presynthesized mcNCs. Toxicity assessment of both salts and presynthesized NCs illustrated a lack of toxicity from Au salt and presynthesized NCs. However, Fe salt was generally more toxic and stressful to cells at similar concentrations.
Collapse
Affiliation(s)
- Richard
T. Agans
- Henry M. Jackson
Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20187, United States
- Molecular
Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance
Wing, AFRL, Wright
Patterson AFB, Ohio 45433, United States
| | - Cayley E. Dymond
- Molecular
Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance
Wing, AFRL, Wright
Patterson AFB, Ohio 45433, United States
| | - Rebecca E. Jimenez
- CCDC Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United
States
| | - Nile J. Bunce
- CCDC Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United
States
| | - Karima J. Perry
- CCDC Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United
States
| | - Richard L. Salisbury
- Henry M. Jackson
Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20187, United States
- Molecular
Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance
Wing, AFRL, Wright
Patterson AFB, Ohio 45433, United States
| | - Saber M. Hussain
- Molecular
Mechanisms Branch, Human Centered ISR Division, Airman Systems Directorate, 711 Human Performance
Wing, AFRL, Wright
Patterson AFB, Ohio 45433, United States
| | - Raj K. Gupta
- DoD Blast Injury Research Program Coordination Office, Medical Research and Development Command, Fort Detrick, Maryland 21702, United States
| | - Shashi P. Karna
- CCDC Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United
States
| |
Collapse
|
24
|
Ma T, Yang C, Guo W, Lin H, Zhang F, Liu H, Zhao L, Zhang Y, Wang Y, Cui Y, Zhao J, Qu F. Flexible Pt 3Ni-S-Deposited Teflon Membrane with High Surface Mechanical Properties for Efficient Solar-Driven Strong Acidic/Alkaline Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27140-27149. [PMID: 32452665 DOI: 10.1021/acsami.0c04682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solar-driven water evaporation provides a promising solution to the energy crisis and environmental issues. Capitalizing on the high photothermal conversion efficiency and excellent resistance to strong acids or strong alkalis of Pt3Ni-S nanowires, we strategically design and prepare a flexible Pt3Ni-S-deposited Teflon (PTFE) membrane for achieving efficient strong acid/alkaline water evaporation under simulated sunlight irradiation (1 sun). By comparing the surface morphology, mechanical properties, and water evaporation performance of the as-prepared three different membranes, we have screened out a high-performance photothermal membrane that has good hydrophobicity (water contact angle = 106°), strong mechanical properties, high light-to-heat conversion efficiency (η = 80%), and excellent durability (10 cycles in a range of pH = 1.2-12). In particular, we explore the mechanism of high surface mechanical properties of the as-prepared membrane using density functional theory. The results demonstrate that the related mechanism can be ascribed to two main reasons: (1) hydrogen bonds can be formed between the 2-pyrrolidone ring and PTFE-3 and (2) the O atom in PTFE-3 carries more negative charge (-0.19 |e|) than PTFE-1 (-0.16 |e|) and PTFE-2 (-0.15 |e|). Our work highlights the great potentials of a Pt3Ni-S-deposited PTFE membrane as a device for implementing solar energy-driven evaporation of industrial wastewater with strong acidity or alkalinity and provides a new strategy for improving the surface mechanical properties of a photothermal membrane.
Collapse
Affiliation(s)
- Tianyue Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Chunyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Haixia Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ye Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yitong Cui
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingxiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
25
|
Thangudu S, Kalluru P, Vankayala R. Preparation, Cytotoxicity, and In Vitro Bioimaging of Water Soluble and Highly Fluorescent Palladium Nanoclusters. Bioengineering (Basel) 2020; 7:bioengineering7010020. [PMID: 32098070 PMCID: PMC7175340 DOI: 10.3390/bioengineering7010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Fluorescent probes offer great potential to identify and treat surgical tumors by clinicians. To this end, several molecular probes were examined as in vitro and in vivo bioimaging probes. However, due to their ultra-low extinction coefficients as well as photobleaching problems, conventional molecular probes limit its practical utility. To address the above mentioned challenges, metal nanoclusters (MNCs) can serve as an excellent alternative with many unique features such as higher molar extinction coefficients/light absorbing capabilities, good photostability and appreciable fluorescence quantum yields. Herein, we reported a green synthesis of water soluble palladium nanoclusters (Pd NCs) and characterized them by using various spectroscopic and microscopic characterization techniques. These nanoclusters showed excellent photophysical properties with the characteristic emission peak centered at 500 nm under 420 nm photoexcitation wavelength. In vitro cytotoxicity studies in human cervical cancer cells (HeLa) cells reveal that Pd NCs exhibited good biocompatibility with an IC50 value of >100 µg/mL and also showed excellent co-localization and distribution throughout the cytoplasm region with a significant fraction translocating into cell nucleus. We foresee that Pd NCs will carry huge potential to serve as a new generation bioimaging nanoprobe owing to its smaller size, minimal cytotoxicity, nucleus translocation capability and good cell labelling properties.
Collapse
Affiliation(s)
- Suresh Thangudu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Poliraju Kalluru
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
- Correspondence:
| |
Collapse
|
26
|
Wang Y, Feng H, Zhang H, Chen Y, Huang W, Zhang J, Jiang X, Wang M, Jiang H, Wang X. Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst 2020; 145:1294-1301. [PMID: 31909779 DOI: 10.1039/c9an02390a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Compared with normal cells, cancer or tumor cells have a specific microenvironment and apparently possess a relatively large amount of ROS/RNS, and their overexpression is one of the important reasons for tumor development and deterioration. Therefore, monitoring the changes of intracellular ROS/RNS can improve the awareness of the clinical manifestations of the disease, which will be beneficial for the early diagnosis of cancer and improving treatment efficiency. Herein, in this study we have exploited and constructed a novel strategy based on the SiC@C nanowire electrode for intracellular electrochemical analysis to monitor ROS levels in cancer or tumor cells. Firstly, the SiC@C nanowire electrode was utilized to detect the intracellular ROS radical changes involved in the relevant biological processes of cancer cells where fluorescent zinc nanoclusters were biosynthesized in situ in target cancer cells by using the intracellular microenvironment and specificity of these cancer cells. By combining a confocal fluorescence microscopy study simultaneously, our observations illustrate that accompanied by the apparent change of the intracellular ROS, these in situ biosynthesized fluorescent nanoclusters gradually accumulate inside the cytosolic area with the increase of the reaction time. Moreover, it is evident that the size of the SiC@C nanoelectrodes can match the single cell dimensions, and its unique high spatial resolution provides the possibility of relevant intracellular molecular detection. These nanoelectrochemical biosensors can be adopted to quantitatively determine the change of the ROS content in target single cells in the relevant biological microenvironment or during the in situ biosynthesis process, and are also beneficial for understanding the related mechanism of some specific biological processes including the in situ synthesis at the single cell level.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Porret E, Le Guével X, Coll JL. Gold nanoclusters for biomedical applications: toward in vivo studies. J Mater Chem B 2020; 8:2216-2232. [DOI: 10.1039/c9tb02767j] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In parallel with the rapidly growing and widespread use of nanomedicine in the clinic, we are also witnessing the development of so-called theranostic agents that combine diagnostic and therapeutic properties.
Collapse
Affiliation(s)
- Estelle Porret
- Université Grenoble Alpes – INSERM U1209 – CNRS UMR 5309
- 38000 Grenoble
- France
| | - Xavier Le Guével
- Université Grenoble Alpes – INSERM U1209 – CNRS UMR 5309
- 38000 Grenoble
- France
| | - Jean-Luc Coll
- Université Grenoble Alpes – INSERM U1209 – CNRS UMR 5309
- 38000 Grenoble
- France
| |
Collapse
|
28
|
Rozhkova EA, Lee B, Prasad JA, Liu Y, Shevchenko EV. Hypoxia-induced biosynthesis of gold nanoparticles in the living brain. NANOSCALE 2019; 11:19285-19290. [PMID: 31539009 DOI: 10.1039/c9nr05794c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While a large number of studies deal with biomedical applications of various types of nanoparticles synthesized using wet chemistry, we propose the concept of targeted biosynthesis of nanoparticles in the living brain. Here we demonstrate that the pathological biochemical process of accumulation of reduced pyridine nucleotides under deleterious conditions of brain hypoxia can be redirected to drive the biosynthesis of biocompatible Au nanoparticles from a precursor salt in situ in the immediate vicinity of the hypoxia site, thereby restoring the redox status of the brain.
Collapse
Affiliation(s)
- Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA
| | - Judy A Prasad
- Department of Neurobiology, the University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
| |
Collapse
|
29
|
Deng Z, Jiang M, Li Y, Liu H, Zeng S, Hao J. Endogenous H 2S-Triggered In Situ Synthesis of NIR-II-Emitting Nanoprobe for In Vivo Intelligently Lighting Up Colorectal Cancer. iScience 2019; 17:217-224. [PMID: 31301632 PMCID: PMC6625970 DOI: 10.1016/j.isci.2019.06.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/22/2019] [Indexed: 12/30/2022] Open
Abstract
Overexpression of endogenous H2S is one of the key characteristic in colon cancer. However, developing endogenous H2S-activated optical probes for specific diagnosis of colorectal cancer is rarely explored. Herein, an in situ H2S-activatable second near-infrared (NIR-II)-emitting nanoprobe based on Ag-chicken egg white (Ag-CEW) complex for intelligently lighting up colorectal cancer was explored. The designed Ag-CEW complex holds efficient NIR-II emission of 1,000-1,400 nm via endogenous H2S-induced in situ chemical reaction to form Ag2S quantum dots (QDs). After reaction, the designed Ag-CEW complex with high photo-stability and biocompatibility was successfully used for NIR-II imaging-guided specific visualization and precise location of colorectal cancer via endogenous H2S activation. Therefore, our findings provide a new route for specifically targeting diagnosis of colon cancer based on the in situ-activatable NIR-II probe.
Collapse
Affiliation(s)
- Zhiming Deng
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mingyang Jiang
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Youbin Li
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Hongrong Liu
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China
| | - Songjun Zeng
- School of Physics and Electronics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
30
|
Hu S, Ren Y, Wang Y, Li J, Qu J, Liu L, Ma H, Tang Y. Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:22-31. [PMID: 30680276 PMCID: PMC6334792 DOI: 10.3762/bjnano.10.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/16/2018] [Indexed: 05/06/2023]
Abstract
Biological applications of core/shell near-infrared quantum dots (QDs) have attracted broad interest due to their unique optical and chemical properties. Additionally, the use of multifunctional nanomaterials with near-infrared QDs and plasmonic functional nanoparticles are promising for applications in electronics, bioimaging, energy, and environmental-related studies. In this work, we experimentally demonstrate how to construct a multifunctional nanoparticle comprised of CdSe/ZnS QDs and gold nanorods (GNRs) where the GNRs were applied to enhance the photoluminescence (PL) of the CdSe/ZnS QDs. In particular, we have obtained the scattering PL spectrum of a single CdSe/ZnS QD and GNR@CdSe/ZnS nanoparticle and comparison results show that the CdSe/ZnS QDs have an apparent PL enhancement of four-times after binding with GNRs. In addition, in vitro experimental results show that the biostability of the GNR@CdSe/ZnS nanoparticles can be improved by using folic acid. A bioimaging study has also been performed where GNR@CdSe/ZnS nanoparticles were used as an optical process for MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Yu Ren
- School of Science, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Yue Wang
- School of Science, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Jinhua Li
- School of Science, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Junle Qu
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Liwei Liu
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Yuguo Tang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| |
Collapse
|
31
|
Wang F, Li X, Li W, Bai H, Gao Y, Ma J, Liu W, Xi G. Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:46-56. [DOI: 10.1016/j.msec.2018.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/05/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
|
32
|
Rehman FU, Du T, Shaikh S, Jiang X, Chen Y, Li X, Yi H, Hui J, Chen B, Selke M, Wang X. Nano in nano: Biosynthesized gold and iron nanoclusters cargo neoplastic exosomes for cancer status biomarking. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2619-2631. [PMID: 30130583 DOI: 10.1016/j.nano.2018.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023]
Abstract
Timely detection is crucial for successful treatment of cancer. The current study describes a new approach that involves utilization of the tumor cell environment for bioimaging with in-situ biosynthesized nanoscale gold and iron probes and subsequent dissemination of Au-Fe nanoclusters from cargo exosomes within the circulatory system. We have isolated the Au-Fe cargo exosomes from the blood of the treated murine models after in situ biosyntheses from their respective pre-ionic solutions (HAuCl4, FeCl2), whereas Na2SeO3 supplementation added into Au lethal effect. The microarray data of various differentially expressed genes revealed the up-regulated tumor ablation and metal binding genes in SGC-7901 cell lines after treatment with Au-Fe-Se triplet ionic solution. The isolation of Au-Fe nanoclusters cargo exosomes (nano in nano) after secretion from deeply seated tumors may help in early diagnosis and reveal the tumor ablation status during and after the relevant treatment like radio-chemo therapies et al.
Collapse
Affiliation(s)
- Fawad Ur Rehman
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tianyu Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Sana Shaikh
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xuerui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoqi Li
- NanJing Foreign Language School, Nanjing, China
| | - Huan Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jiang Hui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, USA
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
33
|
Shaikh S, Rehman FU, Du T, Jiang H, Yin L, Wang X, Chai R. Real-Time Multimodal Bioimaging of Cancer Cells and Exosomes through Biosynthesized Iridium and Iron Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26056-26063. [PMID: 30011179 DOI: 10.1021/acsami.8b08975] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Multimodal bioimaging is a powerful tool for visualizing the abnormal state at the target site of the related disease. In this study, we used multimodal imaging techniques such as computed tomography, fluorescence, and magnetic resonance imaging to improve early and precise diagnosis of tumor. Herein, we reported the facile in situ biosynthesis of iridium and iron oxide nanoclusters (NCs) in cancer cells or tumor tissue. These NCs are used as a multimodal bioimaging probe to improve the image sensitivity and specificity toward the tumor. These NCs are applied for the in vivo multimodal imaging in the form of an imaging probe capable of enhancing the sensitivity of the image and specificity toward the tumor tissue. Our observation demonstrates that highly luminescent and magnetic NCs are not only biocompatible but also tumor-targeted because NC formation does not take place in normal cells and tissues. In addition, we isolated exosomes and the biosynthesized NCs internalized within exosomes, and these exosomes can be used as cancer biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | | | - Renjie Chai
- Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| |
Collapse
|
34
|
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 2018; 46:4951-4975. [PMID: 28696452 DOI: 10.1039/c7cs00152e] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Collapse
Affiliation(s)
- Deborah Pedone
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | |
Collapse
|
35
|
Jin J, Liu T, Li M, Yuan C, Liu Y, Tang J, Feng Z, Zhou Y, Yang F, Gu N. Rapid in situ biosynthesis of gold nanoparticles in living platelets for multimodal biomedical imaging. Colloids Surf B Biointerfaces 2018; 163:385-393. [DOI: 10.1016/j.colsurfb.2018.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
|
36
|
Arora N, Gavya S L, Ghosh SS. Multi-facet implications of PEGylated lysozyme stabilized-silver nanoclusters loaded recombinant PTEN cargo in cancer theranostics. Biotechnol Bioeng 2018; 115:1116-1127. [PMID: 29384195 DOI: 10.1002/bit.26553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/14/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Amalgamation of delivery and tracking of therapeutically relevant moieties on a single platform is made possible by the application of metal nanoclusters, an innovative class of luminescent nanomaterials. Metal nanoclusters, possessing molecule-like attributes, display extraordinary size and shape tunable properties befitting theranostic applications. Herein, we report successful assembly of therapeutically significant phosphatase protein PTEN and fluorescent lysozyme-stabilized silver nanoclusters to accomplish delivery and tracking of the protein. Down-regulation of PTEN perturbs the cellular networking leading to copious pathological conditions. The integration of purified recombinant PTEN with silver nanoclusters was evaluated by fluorescence spectroscopy study. A key feature of this study is the use of polyethylene glycol coating that allows fabrication of the assembly into spherical nanocomposites as characterized by transmission electron microscope along with retention of both optical functionality of the cluster and biological activity of the protein. Prior to cellular application, the functional integrity of PTEN in the composite was determined in vitro, by enzymatic assay employing para-nitrophenylphosphate as substrate. Cellular internalization of the cargo was studied by confocal microscopy and flow cytometry analysis. The efficacy of the payload on modulation of cellular signaling was assessed on cell lines that expressed PTEN differentially. PTEN null U-87 MG and PTEN expressing MCF7 cell lines displayed successful alteration of AKT and FAK signaling proteins culminating in cell cycle arrest and reduced wound healing capacity. A dose dependent reduction in cell proliferation of MCF7 cells was achieved. For U-87 MG, treatment with the payload resulted in chemosensitization toward anti-cancer drug erlotinib. Thus, PEG coated GST-PTEN loaded silver nanoclusters serves as a comprehensive system encompassing cellular imaging and protein delivery with potential biomedical implications.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Lalitha Gavya S
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha S Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
37
|
Walther T, Herzog R, Kaluđerović MR, Wagner C, Schmidt H, Kaluđerović GN. Traceable platinum(II) complexes with alkylene diamine-derived ligands: synthesis, characterization and in vitro studies. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1431392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Till Walther
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Renate Herzog
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena R. Kaluđerović
- Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Christoph Wagner
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Harry Schmidt
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Goran N. Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle (Saale), Germany
| |
Collapse
|
38
|
Zhang Q, Yang M, Zhu Y, Mao C. Metallic Nanoclusters for Cancer Imaging and Therapy. Curr Med Chem 2018; 25:1379-1396. [PMID: 28393695 PMCID: PMC6349033 DOI: 10.2174/0929867324666170331122757] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/11/2017] [Accepted: 03/15/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Nanoclusters are made of a few to tens of atoms with a size below 2 nm. Compared with nanoparticles, they exhibited excellent properties, such as tunable fluorescence, ease of conjugation, high quantum yield and biocompatibility, which are highly desired in the development of cancer nanotheranostics. Hence, the metallic nanoclusters have emerged as a newcomer in cancer nanomedicines. This review aims to summarize recently developed approaches to preparing metallic nanoclusters, highlight their applications in cancer theranostics, and provide a brief outlook for the future developments of nanoclusters in nanomedicine. METHOD We carried out a thorough literature search using online databases. The search was focused on a centered question. Irrelevant articles were excluded after further examination and directly relevant articles were included. The relevant articles were classified by the subjects and the information from these articles was synthesized. RESULTS One hundred and forty-three articles were included in this review. About eighty articles outlined the development in the synthetic methods of nanoclusters. The synthesis approaches include chemical reduction, photoreduction and so on. The progress in the application of gold and silver nanoclusters to cancer theranostics was described in fifteen and eight articles, respectively. The rest articles were about the advancements in the use of other metal nanoclusters and nanocluster nanocomposites as cancer theranostic agents. CONCLUSION This review summarizes the synthesis and use of metallic nanoclusters or their nanocomposites as cancer theranostic agents. It confirms their importance, advantages and potentials in serving as a new generation of cancer theranostics in clinics.
Collapse
Affiliation(s)
- Qing Zhang
- School of Materials Science and Engineering, Zhejiang
University, Hangzhou, Zhejiang, 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of
Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang,
310058, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman,
OK, 73019, USA
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang
University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman,
OK, 73019, USA
| |
Collapse
|
39
|
Rehman FU, Jiang H, Selke M, Wang X. Mammalian cells: a unique scaffold forin situbiosynthesis of metallic nanomaterials and biomedical applications. J Mater Chem B 2018; 6:6501-6514. [DOI: 10.1039/c8tb01955j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoscale materials biosynthesis by using mammalian scaffold is green and highly biocompatible.
Collapse
Affiliation(s)
- Fawad Ur Rehman
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University
- Nanjing 210096
- People's Republic of China
- International Joint Center for Biomedical Innovation, Henan University
- Kaifeng
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University
- Nanjing 210096
- People's Republic of China
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University
- Los Angeles
- USA
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University
- Nanjing 210096
- People's Republic of China
| |
Collapse
|
40
|
|
41
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 163.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
42
|
Zheng Y, Lai L, Liu W, Jiang H, Wang X. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Interface Sci 2017; 242:1-16. [PMID: 28223074 DOI: 10.1016/j.cis.2017.02.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
Abstract
Fluorescent gold nanoclusters (AuNCs) are emerging as novel fluorescent materials and have attracted more and more attention in the field of biolabeling, biosensing, bioimaging and targeted cancer treatment because of their unusual physicochemical properties, such as long fluorescence lifetime, ultrasmall size, large Stokes shift, strong photoluminescence, as well as excellent biocompatibility and photostability. Recently, significant efforts have been committed to the preparation, functionalization and biomedical application studies of fluorescent AuNCs. In this review, we have summarized the strategies for preparation and surface functionalization of fluorescent AuNCs in the past several years, and highlighted recent advances in the biomedical applications of the relevant fluorescent AuNCs. Based on these observations, we also give a discussion on the current problems and future developments of the fluorescent AuNCs for biomedical applications.
Collapse
|
43
|
Su X, Liu J. pH-Guided Self-Assembly of Copper Nanoclusters with Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3902-3910. [PMID: 28067503 DOI: 10.1021/acsami.6b13914] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We here report a facile pH-guided strategy for the fabrication of water-soluble protein/copper nanoclusters (CuNCs) hybrid nanostructures with stable and bright luminescence resulted from aggregation-induced emission. Using l-cysteine as both the reducing and capping agents, the synthesized CuNCs showed a good reversible pH-responsive aggregation and dispersion in the solution. The CuNCs formed insoluble macroscopic aggregates with stable red-colored emission (620 nm) at pH 3.0 but became soluble with weak luminescence at pH <1.5 or pH >4.0. The highly reversible pH-responsive properties of the CuNCs made it feasible to achieve water-soluble protein/CuNCs hybrid nanostructures in the presence of protein without any external forces (e.g., sonication). The weak luminescent CuNCs were first mixed with protein under neutral condition (e.g., pH 7.0), followed by tuning of the pH to acidic conditions (e.g., pH 3.0) to form luminescent protein/CuNCs hybrid nanostructures, the sizes of which were much smaller than those of the protein-free macroscopic CuNC aggregates. This strategy was easily applicable to other dispersing agents (e.g., glucose oxidase), opening a new pathway for the construction of many other smart water-soluble luminescent biomolecule/nanocluster hybrid nanostructures with various applications.
Collapse
Affiliation(s)
- Xuxian Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
44
|
Khandelwal P, Poddar P. Fluorescent metal quantum clusters: an updated overview of the synthesis, properties, and biological applications. J Mater Chem B 2017; 5:9055-9084. [DOI: 10.1039/c7tb02320k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A brief history of metal quantum clusters, their synthesis methods, physical properties, and an updated overview of their applications is provided.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| | - Pankaj Poddar
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| |
Collapse
|
45
|
Xu N, Li HW, Wu Y. Hydrothermal synthesis of polyethylenimine-protected high luminescent Pt-nanoclusters and their application to the detection of nitroimidazoles. Anal Chim Acta 2016; 958:51-58. [PMID: 28110684 DOI: 10.1016/j.aca.2016.12.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
A novel one-step hydrothermal synthesis of highly fluorescent platinum nanoclusters protected by polyethylenimine (Pt-NCs@PEI) is described. The products are characterized well by UV-vis absorption, fluorescence spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The Pt-NCs@PEI possess high quantum yield at 28%, which is the relatively high one among the reported Pt-NCs; especially, the synthesis is in one-step and the reaction time is much shorter (<1 h) than the related methods. In addition, the Pt-NCs@PEI have large Stocks-shift (∼150 nm), high tolerability to the extreme pH and high ionic strengths, and excellent photo-stability under UV-vis irradiation, lay the foundation for the practical bio-applications. Finally, the obtained Pt-NCs@PEI are used to determine trace amount of metronidazole (MTZ) in buffer solution in showing a linear response over a concentration range of 0.25-300 μM and a low detection limit of 0.1 μM. Furthermore, the related investigation on response mechanism will be helpful to design and synthesize new metal nanoclusters as fluorescent probe to detect the trace amount of harmful medicine residuum as nitroimidazoles in human body.
Collapse
Affiliation(s)
- Na Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China; College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
46
|
Shim K, Kim J, Heo YU, Jiang B, Li C, Shahabuddin M, Wu KCW, Hossain MSA, Yamauchi Y, Kim JH. Synthesis and Cytotoxicity of Dendritic Platinum Nanoparticles with HEK-293 Cells. Chem Asian J 2016; 12:21-26. [PMID: 27911052 DOI: 10.1002/asia.201601239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 11/09/2022]
Abstract
Dendritic platinum nanoparticles (DPNs) have been synthesized from l-ascorbic acid and an amphiphilic non-ionic surfactant (Brij-58) via a sonochemical method. The particle size and shape of the DPNs could be tuned by changing the reduction temperature, resulting in a uniform DPN with a size of 23 nm or 60 nm. The facets of DPNs have been studied by high-resolution transmission electron microscopy. The cytotoxicity of DPNs has been investigated using human embryonic kidney cells (HEK-293), and the biological adaptability exhibited by DPNs has opened a pathway to biomedical applications such as drug-delivery systems, photothermal treatment, and biosensors.
Collapse
Affiliation(s)
- Kyubin Shim
- Institute for Superconducting & Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Jeonghun Kim
- Institute for Superconducting & Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Yoon-Uk Heo
- Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang, 790-784, Republic of Korea
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Cuiling Li
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Mohammed Shahabuddin
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kevin C-W Wu
- Division of Medical Engineering Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 350, Taiwan
| | - Md Shahriar A Hossain
- Institute for Superconducting & Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Yusuke Yamauchi
- Institute for Superconducting & Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jung Ho Kim
- Institute for Superconducting & Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia
| |
Collapse
|
47
|
Zhao C, Du T, Rehman FU, Lai L, Liu X, Jiang X, Li X, Chen Y, Zhang H, Sun Y, Luo S, Jiang H, Selke M, Wang X. Biosynthesized Gold Nanoclusters and Iron Complexes as Scaffolds for Multimodal Cancer Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6255-6265. [PMID: 27672010 DOI: 10.1002/smll.201602526] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 05/24/2023]
Abstract
Cancer treatment has a far greater chance of success if the neoplasm is diagnosed before the onset of metastasis to vital organs. Hence, cancer early diagnosis is extremely important and remains a major challenge in modern therapeutics. In this contribution, facile and new method for rapid multimodal tumor bioimaging is reported by using biosynthesized iron complexes and gold nanoclusters via simple introduction of AuCl4- and Fe2+ ions. The observations demonstrate that the biosynthesized Au nanoclusters may act as fluorescent and computed tomography probes for cancer bioimaging while the iron complexes behave as effective contrast agent for magnetic resonance imaging. The biosynthesized iron complexes and gold nanoclusters are found biocompatible in vitro (MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay) and in vivo for all the vital organs of circulatory and excretory system. These observations raise the possibility that the biosynthesized probes may find applications in future clinical diagnosis for deep seated early neoplasms by multimodal imaging.
Collapse
Affiliation(s)
- Chunqiu Zhao
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianyu Du
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lanmei Lai
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoli Liu
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuerui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoqi Li
- Nanjing Foreign Language School, Nanjing, 210096, China
| | - Yun Chen
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hang Zhang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yi Sun
- Laboratory of the Signal and Image Processing, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shouhua Luo
- Laboratory of the Signal and Image Processing, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA, 90032, USA
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
48
|
Xu N, Li HW, Yue Y, Wu Y. Synthesis of bovine serum albumin-protected high fluorescence Pt16-nanoclusters and their application to detect sulfide ions in solutions. NANOTECHNOLOGY 2016; 27:425602. [PMID: 27631174 DOI: 10.1088/0957-4484/27/42/425602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Highly fluorescent (quantum yield, QY = 17%) Pt16-nanoclusters (Pt16-NCs@BSA) have been prepared via a one-step ultrasonic-assistance method by using cheap and easily available ascorbic acid as reductant and bovine serum albumin (BSA) as a stabilizing agent in aqueous solution. The fluorescence properties of the Pt-NCs@BSA can be easily controlled by optimizing conditions, and the products are extremely stable and could be used for the detection of sulfide ions (S(2-)) in solutions as a specific luminescence sensor. The present synthesis method is performed in one step, being cost-effective with a particularly short reaction time, which could be extended to the synthesis of other kinds of protein-protected Pt-NCs.
Collapse
Affiliation(s)
- Na Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, People's Republic of China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yuan Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- School of Pharmaceutical Sciences, Jilin University, Changchun 130033, People's Republic of China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
49
|
West AL, Schaeublin NM, Griep MH, Maurer-Gardner EI, Cole DP, Fakner AM, Hussain SM, Karna SP. In situ Synthesis of Fluorescent Gold Nanoclusters by Nontumorigenic Microglial Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21221-21227. [PMID: 27328035 DOI: 10.1021/acsami.6b06624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs.
Collapse
Affiliation(s)
| | - Nicole M Schaeublin
- Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory , Wright-Patterson AFB, Ohio 45433, United States
| | | | - Elizabeth I Maurer-Gardner
- Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory , Wright-Patterson AFB, Ohio 45433, United States
| | | | | | - Saber M Hussain
- Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory , Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
50
|
Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D. Facile Synthesis of Enhanced Fluorescent Gold–Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity. Anal Chem 2016; 88:8886-92. [DOI: 10.1021/acs.analchem.6b02543] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Zhou
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Youxiu Lin
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Mingdi Xu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Zhuangqiang Gao
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Huanghao Yang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|