1
|
Han W, Wei P, Xie L, Zhu L, He B, Cao X. Functional black phosphorus-based sensors for food safety applications: A review. Food Res Int 2024; 192:114775. [PMID: 39147465 DOI: 10.1016/j.foodres.2024.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Food safety has garnered global attention, necessitating advanced methods for the quick and accurate detection of contaminants. Sensors, notable for their ease of use, high sensitivity, and fast analysis, are prominent. Two-dimensional (2D) nanomaterials have been employed to improve sensor performance. Particularly, black phosphorus (BP) stands out with its multifunctional capabilities, attributed to unique layered structure, ultra-high charge mobility, easy surface functionalization, enhanced optical absorption, and tunable direct bandgap. These characteristics suggest that BP could significantly enhance sensor selectivity, sensitivity, and response speed for contaminant detection. Despite numerous studies on BP-based sensors in food safety, few reviews have been comprehensively summarized. Moreover, challenges in BP's preparation and stability restrict its wider use. This paper reviews recent research on BP's role in food safety, covering preparation, passivation, and applications. Through analysis of challenges and prospects, this review aims to provide insightful guidance for upcoming research in this area.
Collapse
Affiliation(s)
- Wei Han
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Peiyuan Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Limin Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
2
|
Huang X, Li Y, Qu G, Yu XF, Cao D, Liu Q, Jiang G. Molecular-level degradation pathways of black phosphorus revealed by mass spectrometry fingerprinting. Chem Sci 2023; 14:6669-6678. [PMID: 37350838 PMCID: PMC10284102 DOI: 10.1039/d2sc06297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Understanding the molecular mechanism of material transformation raises a great challenge for material characterization techniques. As a promising 2D material, the application potential of black phosphorus (BP) is seriously compromised by its environmental instability. However, until now, the degradation mechanism of BP remains ambiguous. Here we show that by using laser desorption ionization mass spectrometry (LDI-MS) fingerprinting it is possible to unravel the degradation pathways of BP at the molecular level without any chemical labeling. We found that BP-based materials can generate intrinsic phosphorus cluster (Pn+ or Pn-) fingerprint peaks in LDI-MS in both positive-ion and negative-ion modes, which allows the degradation processes of BP materials to be monitored by providing abundant mass information about intermediates and products with the sample-to-sample RSDs in the range of 1.0-28.4%. The stability of BP or cerium-encapsulated BP was monitored under ambient and increased temperature conditions for up to 20 or 180 days. Notably, by using LDI-MS fingerprinting, we reveal an unreported BP degradation pathway, i.e., nitrogen (N2)-addition oxidation, in addition to the direct oxidation pathway. Our results not only enable an in-depth understanding of the chemical instability of BP, but also, importantly, demonstrate a new powerful platform for monitoring and characterization of material transformation.
Collapse
Affiliation(s)
- Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu 610065 China
| | - Yong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- Institute of Environment and Health, Jianghan University Wuhan 430056 China
- College of Resources and Environment, University of Chinese Academy of Sciences Beijing 100190 China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- College of Resources and Environment, University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
3
|
Ishiguro Y, Suzuki R, Yangzhou Z, Kodama N, Takai K. Correlation between charge density wave phase transition and hydrogen adsorption in 1T-TaS 2thin film devices. NANOTECHNOLOGY 2023; 34:275701. [PMID: 36996805 DOI: 10.1088/1361-6528/acc8db] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Thin films of tantalum disulfide in the 1T-polytype structural phase (1T-TaS2), a type of metallic two-dimensional (2D) transition metal dichalcogenides (TMDs), are reactive to H2. Interestingly, in the incommensurate charge-density wave (ICCDW) phase with a metallic state, the electrical resistance of the 1T-TaS2thin film decreases when H2is adsorbed on it and returns to its initial value upon desorption. In contrast, the electrical resistance of the film in the nearly commensurate CDW (NCCDW) phase, which has a subtle band overlap or a small bandgap, does not change upon H2adsorption/desorption. This difference in H2reactivity is a result of differences in the electronic structure of the two 1T-TaS2phases, namely, the ICCDW and NCCDW phases. Compared to other semiconductor 2D-TMDs such as MoS2and WS2, the metallic TaS2has been theoretically proven to capture gas molecules more easily because Ta has a stronger positive charge than Mo or W. Our experimental results provide evidence of this. Notably, this study is the first example of H2sensing using 1T-TaS2thin films and demonstrates the possibility of controlling the reactivity of the sensors to the gas by changing the electronic structure via CDW phase transitions.
Collapse
Affiliation(s)
- Yasushi Ishiguro
- Department of Electrical and Electronic Engineering, Tokyo Denki University, Senju Asahi-cho 5, Adachi-ku, Tokyo, 120-8551, Japan
| | - Rintaro Suzuki
- Department of Chemical Science and Engineering, Hosei University, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan
| | - Zhao Yangzhou
- Department of Applied Chemistry, Hosei University, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan
| | - Naoko Kodama
- Department of Applied Chemistry, Hosei University, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan
| | - Kazuyuki Takai
- Department of Chemical Science and Engineering, Hosei University, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan
- Department of Applied Chemistry, Hosei University, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan
| |
Collapse
|
4
|
Chen X, Li Q, Yuan T, Ma M, Ye Z, Wei X, Fang X, Mao S. Highly Specific Antibiotic Detection on Water-Stable Black Phosphorus Field-Effect Transistors. ACS Sens 2023; 8:858-866. [PMID: 36701186 DOI: 10.1021/acssensors.2c02562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional (2D) black phosphorus (BP) has been reported to have appealing semiconducting properties as the sensing channel in field-effect transistor (FET) sensors. However, the intrinsic instability of BP in water greatly hinders its application, and little is known about its sensing performance and mechanism in aqueous medium. Herein, a water-stable BP FET sensor for antibiotic detection is reported. A novel surface engineering strategy with Ag+ coordination and melamine cyanurate (MC) supramolecular passivation is utilized to enhance the stability and transistor performance of BP. With molecularly imprinted polymers (MIPs) as the detection probe for tetracycline, the BPAg(+)/MC/MIPs sensor shows high sensitivity to tetracycline with a detection limit of 7.94 nM and a quick response within 6 s as well as high selectivity against other antibiotics with similar molecular structures. A new sensing mechanism relying on the conjugation effect of the probe structure is proposed, and new knowledge about alkalinity-enhanced and ionic strength-related response from the electrostatic gating effect is given based on the solution chemistry impact study. This work offers an efficient surface engineering strategy to enable the application of 2D BP for antibiotic detection in aqueous medium and presents a new sensing mechanism in chemical analysis by FET sensors.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Qiuju Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Taoyue Yuan
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu210037, China
| | - Ziwei Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| | - Xian Fang
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai200092, China
| |
Collapse
|
5
|
Mohsseni Ahangar R, Farmanzadeh D. O-doping effects on the adsorption and detection of acetaldehyde and ethylene oxide on phosphorene monolayer: A DFT investigation. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Nene A, Geng S, Zhou W, Yu XF, Luo H, Ramakrishna S. Black Phosphorous Aptamer-based Platform for Biomarker Detection. Curr Med Chem 2023; 30:935-952. [PMID: 35220933 DOI: 10.2174/0929867329666220225110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shengyong Geng
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Hongrong Luo
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, 117576, Singapore
| |
Collapse
|
7
|
He H, Zhao J, Huang P, Sheng R, Yu Q, He Y, Cheng N. Performance improvement in monolayered SnS 2 double-gate field-effect transistors via point defect engineering. Phys Chem Chem Phys 2022; 24:21094-21104. [PMID: 36018265 DOI: 10.1039/d2cp03427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the relatively high carrier mobility and on/off current ratio, monolayered SnS2 has the advantage of suppressing drain-to-source tunneling for short channels, rendering it a promising candidate in field-effect transistor (FET) applications. To extend the scaling limit of the channel length, we propose to rationally modulate the electronic properties of monolayered SnS2 through the customized design of point defects and simulate its performance limit in sub-5 nm double-gate FETs (DGFETs), using density functional theory combined with nonequilibrium Green's function formalism. Among all types of point defects, the Se atom as a substitutional dopant (SeS) can nondegenerately inject electrons into each monolayered (ML) SnS2 2 × 4 × 1 supercell, whereas the Sn vacancy (VSn) defect exhibits an opposite doping effect. By adjusting the lateral Schottky barrier height between electrodes and the channel region, the on-state current (Ion), on/off ratio, delay time, and power-delay product in the formed n-type SeS-doped SnS2 and p-type VSn-doped SnS2 DGFETs with a channel length of 4.5 nm have been remarkably improved, fulfilling the requirements of the International Technology Roadmap for Semiconductors (ITRS) for high-performance applications in the 2028 horizon. Our work unveils the great significance of point defect engineering for applications in ultimately scaled electronics.
Collapse
Affiliation(s)
- Haibo He
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China.
| | - Jianwei Zhao
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China.
| | - Pengru Huang
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Rongfei Sheng
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China.
| | - Qiaozhen Yu
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China.
| | - Yuanyuan He
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China.
| | - Na Cheng
- College of Material and Textile Engineering, Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China.
| |
Collapse
|
8
|
Ling Z, Li P, Zhang SY, Arif N, Zeng YJ. Stability and passivation of 2D group VA elemental materials: black phosphorus and beyond. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:224004. [PMID: 35259736 DOI: 10.1088/1361-648x/ac5bce] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Since the successful isolation of graphene in 2004, two-dimensional (2D) materials have become one of the focuses in material science owing to their extraordinary physical and chemical properties. In particular, 2D group VA elemental materials exhibit fascinating thickness-dependent band structures. Unfortunately, the well-known instability issue hinders their fundamental researches and practical applications. In this review, we first discuss the degradation mechanism of black phosphorus (BP), a most studied group VA material. Next, we summarize the methods to enhance BP stability with the focus of multifunctional passivation. Finally, we briefly discuss the protection strategies of other emerging group VA materials in recent years. This review provides insight for the degradation mechanism and protecting strategy for 2D group VA elements materials, which will promote their potential applications in electronics, optoelectronics, and biomedicine.
Collapse
Affiliation(s)
- Zhaoheng Ling
- Key laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Peng Li
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Su-Yun Zhang
- Key laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Nayab Arif
- Key laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yu-Jia Zeng
- Key laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
9
|
Chen J, Pu H, Hersam MC, Westerhoff P. Molecular Engineering of 2D Nanomaterial Field-Effect Transistor Sensors: Fundamentals and Translation across the Innovation Spectrum. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106975. [PMID: 34921575 DOI: 10.1002/adma.202106975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Indexed: 06/14/2023]
Abstract
Over the last decade, 2D layered nanomaterials have attracted significant attention across the scientific community due to their rich and exotic properties. Various nanoelectronic devices based on these 2D nanomaterials have been explored and demonstrated, including those for environmental applications. Here, the fundamental attributes of 2D layered nanomaterials for field-effect transistor (FET) sensors and tunneling FET (TFET) sensors, which provide versatile detection of water contaminants such as heavy-metal ions, bacteria, nutrients, and organic pollutants, are discussed. The major challenges and opportunities are also outlined for designing and fabricating 2D nanomaterial FET/TFET sensors with superior performance. Translation of these FET/TFET sensors from fundamental research to applied technology is illustrated through a case study on graphene-based real-time FET water sensors. A second case study centers on large-scale sensor networks for water-quality monitoring to enable intelligent drinking water and river-water systems. Overall, 2D nanomaterial FET sensors have significant potential for enabling a human-centered intelligent water system that can likely be applied to other precarious water supplies around the globe.
Collapse
Affiliation(s)
- Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Haihui Pu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
10
|
Kajale SN, Yadav S, Cai Y, Joy B, Sarkar D. 2D material based field effect transistors and nanoelectromechanical systems for sensing applications. iScience 2021; 24:103513. [PMID: 34934930 DOI: 10.1016/j.isci.2021.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Sensors are ubiquitous in modern society because of their wide applications in healthcare, security, forensic industries as well as environmental protection. Specifically, sensors which can be microfabricated employing very-large-scale-integration (VLSI) compatible microfabrication techniques are particularly desirable. This is because they can provide several advantages: small size, low cost, and possibility of mass fabrication. 2D materials are a promising building block for such sensors. Their atomically thin nature, flat surfaces and ability to form van der Waals hetero junctions opens up the pathway for versatile functionalities. Here, we review 2D material-based field-effect-transistors (FETs) and nano-electro-mechanical systems (NEMs) for applications in detecting different gases, chemicals, and biomolecules. We will provide insights into the unique advantages of these materials for these sensing applications and discuss the fabrication methods, detection schemes and performance pertaining to these technologies. Finally, we will discuss the current challenges and prospects for this field.
Collapse
Affiliation(s)
- Shivam Nitin Kajale
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shubham Yadav
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yubin Cai
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Baju Joy
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Deblina Sarkar
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Falina S, Syamsul M, Rhaffor NA, Sal Hamid S, Mohamed Zain KA, Abd Manaf A, Kawarada H. Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. BIOSENSORS 2021; 11:478. [PMID: 34940235 PMCID: PMC8699440 DOI: 10.3390/bios11120478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 05/16/2023]
Abstract
Heavy metal pollution remains a major concern for the public today, in line with the growing population and global industrialization. Heavy metal ion (HMI) is a threat to human and environmental safety, even at low concentrations, thus rapid and continuous HMI monitoring is essential. Among the sensors available for HMI detection, the field-effect transistor (FET) sensor demonstrates promising potential for fast and real-time detection. The aim of this review is to provide a condensed overview of the contribution of certain semiconductor substrates in the development of chemical and biosensor FETs for HMI detection in the past decade. A brief introduction of the FET sensor along with its construction and configuration is presented in the first part of this review. Subsequently, the FET sensor deployment issue and FET intrinsic limitation screening effect are also discussed, and the solutions to overcome these shortcomings are summarized. Later, we summarize the strategies for HMIs' electrical detection, mechanisms, and sensing performance on nanomaterial semiconductor FET transducers, including silicon, carbon nanotubes, graphene, AlGaN/GaN, transition metal dichalcogenides (TMD), black phosphorus, organic and inorganic semiconductor. Finally, concerns and suggestions regarding detection in the real samples using FET sensors are highlighted in the conclusion.
Collapse
Affiliation(s)
- Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Mohd Syamsul
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Nuha Abd Rhaffor
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Sofiyah Sal Hamid
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Khairu Anuar Mohamed Zain
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia; (S.F.); (N.A.R.); (S.S.H.); (K.A.M.Z.)
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| |
Collapse
|
12
|
Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. PROG SOLID STATE CH 2021. [DOI: 10.1016/j.progsolidstchem.2021.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lin S, Tao B, Zhao X, Chen G, Wang DY. Surface Functionalization of Black Phosphorus via Amine Compounds and Its Impacts on the Flame Retardancy and Thermal Decomposition Behaviors of Epoxy Resin. Polymers (Basel) 2021; 13:polym13213635. [PMID: 34771191 PMCID: PMC8588435 DOI: 10.3390/polym13213635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, lots of effort has been placed into stabilizing black phosphorus (BP) in the air to improve its compatibility with polymers. Herein, BP was chemically functionalized by aliphatic amine (DETA), aromatic amine (PPDA) and cyclamine (Pid) via a nucleophilic substitution reaction, aiming to develop an intensively reactive BP flame retardant for epoxy resin (EP). The -NH2 group on BP-DETA, BP-PPDA and BP-Pid reacted with the epoxide group at different temperatures. The lowest temperature was about 150 °C for BP-DETA. The impacts of three BP-NH2 were compared on the flame retardancy and thermal decomposition of EP. At 5 wt% loading, EP/BP-NH2 all passed UL 94 V 0 rating. The limiting oxygen index (LOI) of EP/BP-PPDA was as high as 32.3%. The heat release rate (HRR) of EP/BP-DETA greatly decreased by 46% and char residue increased by 73.8%, whereas HRR of EP/BP-Pid decreased by 11.5% and char residue increased by 50.8%, compared with EP. Average effective heat of combustion (av-EHC) of EP/BP-Pid was lower than that of EP/BP-DETA and EP/BP-PPDA. In view of the flame-retardant mechanism, BP nanosheets functionalized with aliphatic amine and aromatic amine played a dominant role in the condensed phase, while BP functionalized with cyclamine was more effective in the gas phase.
Collapse
Affiliation(s)
- Shaoling Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
| | - Boqing Tao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
| | - Xiaomin Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
- Correspondence: (X.Z.); (D.-Y.W.)
| | - Guohua Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (B.T.); (G.C.)
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Spain
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, 28223 Pozuelo de Alarcón, Spain
- Correspondence: (X.Z.); (D.-Y.W.)
| |
Collapse
|
14
|
Aasi A, Aghaei SM, Bajgani SE, Panchapakesan B. Computational Study on Sensing Properties of Pd‐Decorated Phosphorene for Detecting Acetone, Ethanol, Methanol, and Toluene—A Density Functional Theory Investigation. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aref Aasi
- Small Systems Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute Worcester MA 01609 USA
| | - Sadegh Mehdi Aghaei
- Small Systems Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute Worcester MA 01609 USA
| | | | - Balaji Panchapakesan
- Small Systems Laboratory Department of Mechanical Engineering Worcester Polytechnic Institute Worcester MA 01609 USA
| |
Collapse
|
15
|
Liu C, Ye Z, Wei X, Mao S. Recent advances in field‐effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Chengbin Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Ziwei Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| |
Collapse
|
16
|
Moschetto S, Bolognesi M, Prescimone F, Brucale M, Mezzi A, Ortolani L, Caporali M, Pingue P, Serrano-Ruiz M, Pisignano D, Peruzzini M, Persano L, Toffanin S. Large-Area Oxidized Phosphorene Nanoflakes Obtained by Electrospray for Energy-Harvesting Applications. ACS APPLIED NANO MATERIALS 2021; 4:3476-3485. [PMID: 35874274 PMCID: PMC9301623 DOI: 10.1021/acsanm.0c03465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bidimensional (2D) materials are nowadays being developed as outstanding candidates for electronic and optoelectronic components and devices. Targeted applications include sensing, energy conversion, and storage. Phosphorene is one of the most promising systems in this context, but its high reactivity under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. However, phosphorene oxides in the form of low-dimensional structures (2D PO x ) should behave as an electroresponsive material according to recent theoretical studies. In the present work, we introduce electrospraying for the deposition of stoichiometric and large-area 2D PO x nanoflakes starting from a suspension of liquid-phase-exfoliated phosphorene. We obtained 2D PO x nanostructures with a mean surface area two orders of magnitude larger than phosphorene structures obtained with standard mechanical and liquid exfoliation techniques. X-ray spectroscopy and high-resolution electron microscopy confirmed the P2O5-like crystallographic structure of the electrosprayed flakes. Finally, we experimentally demonstrated for the first time the electromechanical responsivity of the 2D P2O5 nanoflakes, through piezoresponse force microscopy (PFM). This work sheds light on the possible implementation of phosphorus oxide-based 2D nanomaterials in the value chain of fabrication and engineering of devices, which might be easily scaled up for energy-harvesting/conversion applications.
Collapse
Affiliation(s)
- Salvatore Moschetto
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)—Consiglio
Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Margherita Bolognesi
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)—Consiglio
Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Federico Prescimone
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)—Consiglio
Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Marco Brucale
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)—Consiglio
Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alessio Mezzi
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)—Consiglio
Nazionale delle Ricerche (CNR), P.O.
Box 10, Monterotondo Scalo, I-00016 Rome, Italy
| | - Luca Ortolani
- Istituto
per la microelettronica e microsistemi (IMM)—Consiglio Nazionale
delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Maria Caporali
- Istituto
di Chimica dei Composti Organometallici (ICCOM)—Consiglio Nazionale
delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Pasqualantonio Pingue
- Laboratorio
NEST, Scuola Normale Superiore and Istituto
Nanoscienze—Consiglio Nazionale delle Ricerche (CNR), Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Manuel Serrano-Ruiz
- Istituto
di Chimica dei Composti Organometallici (ICCOM)—Consiglio Nazionale
delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Dario Pisignano
- Laboratorio
NEST, Scuola Normale Superiore and Istituto
Nanoscienze—Consiglio Nazionale delle Ricerche (CNR), Piazza San Silvestro 12, I-56127 Pisa, Italy
- Dipartimento
di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Maurizio Peruzzini
- Istituto
di Chimica dei Composti Organometallici (ICCOM)—Consiglio Nazionale
delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Luana Persano
- Laboratorio
NEST, Scuola Normale Superiore and Istituto
Nanoscienze—Consiglio Nazionale delle Ricerche (CNR), Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Stefano Toffanin
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN)—Consiglio
Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
17
|
An D, Fu J, Xie Z, Xing C, Zhang B, Wang B, Qiu M. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J Mater Chem B 2021; 8:7076-7120. [PMID: 32648567 DOI: 10.1039/d0tb00824a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wonderful black phosphorus (BP) and some BP analogs (BPAs) have been increasingly studied for their biomedical applications owing to their fascinating properties and biodegradability, but opportunities and challenges have always coexisted in their study. Poor stability upon exposure to the natural environment is the major obstacle hampering their in vivo applications. BP/polymer and BPAs/polymer nanocomposites can not only efficiently prevent their oxidation and aggregation but also exhibit "biological activity" due to synergistic effects. In this review, we briefly describe the synthesis methods and stability strategies of BP/polymer and BPAs/polymer. Then, advances pertaining to their exciting therapeutic applications in various fields are systematically introduced, such as cancer therapy (phototherapy, drug delivery, and synergistic immunotherapy), bone regeneration, and neurogenesis. Some challenges for future clinical trials and possible directions for further study are finally discussed.
Collapse
Affiliation(s)
- Dong An
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Jianye Fu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, P. R. China
| | - Chenyang Xing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bing Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| |
Collapse
|
18
|
Zeng M, Chen M, Huang D, Lei S, Zhang X, Wang L, Cheng Z. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. MATERIALS HORIZONS 2021; 8:758-802. [PMID: 34821315 DOI: 10.1039/d0mh01358g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity has become an increasingly complex challenge with the growth of the global population, economic expansion, and climate change, highlighting the demand for advanced water treatment technologies that can provide clean water in a scalable, reliable, affordable, and sustainable manner. Recent advancements on 2D nanomaterials (2DM) open a new pathway for addressing the grand challenge of water treatment owing to their unique structures and superior properties. Emerging 2D nanostructures such as graphene, MoS2, MXene, h-BN, g-C3N4, and black phosphorus have demonstrated an unprecedented surface-to-volume ratio, which promises ultralow material use, ultrafast processing time, and ultrahigh treatment efficiency for water cleaning/monitoring. In this review, we provide a state-of-the-art account on engineered 2D nanomaterials and their applications in emerging water technologies, involving separation, adsorption, photocatalysis, and pollutant detection. The fundamental design strategies of 2DM are discussed with emphasis on their physicochemical properties, underlying mechanism and targeted applications in different scenarios. This review concludes with a perspective on the pressing challenges and emerging opportunities in 2DM-enabled wastewater treatment and water-quality monitoring. This review can help to elaborate the structure-processing-property relationship of 2DM, and aims to guide the design of next-generation 2DM systems for the development of selective, multifunctional, programmable, and even intelligent water technologies. The global significance of clean water for future generations sheds new light and much inspiration in this rising field to enhance the efficiency and affordability of water treatment and secure a global water supply in a growing portion of the world.
Collapse
Affiliation(s)
- Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Pai YH, Chen CH. Long-term can-sealing protection: a stable black phosphorus nanoassembly achieved through heterogeneous hydrophobic functionalization. NANOSCALE 2021; 13:763-775. [PMID: 33367356 DOI: 10.1039/d0nr08364j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP), a promising 2D material, has sparked a research boom in various areas, while its fatal atmospheric instability seriously obstructs the progress of most practical applications. To realize the novel scalable concept of can-sealing protection, the selective deposition of a series of hydrophobically- or hydrophilically-functionalized Al2O3 nanostructured capping layers has been successfully achieved to seal the top surface of the exfoliated BP flake assemblies on Ag-patterned substrates. The hydrophobic Al2O3 columnar capping is evidenced as the most promising candidate to provide comprehensive protection against the severe rapid degradation of pristine BP even under a very high-humidity environment (RH = 85%) for a long period of time. The present work provides valuable insight into the distinct anisotropic degradation of the sealed BP flake assemblies evidently induced by the deposited hydrophobically- or hydrophilically-functionalized Al2O3 capping.
Collapse
Affiliation(s)
- Ying-Hao Pai
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010 Taiwan, Republic of China.
| | - Chun-Hua Chen
- Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010 Taiwan, Republic of China.
| |
Collapse
|
20
|
Thurakkal S, Feldstein D, Perea‐Causín R, Malic E, Zhang X. The Art of Constructing Black Phosphorus Nanosheet Based Heterostructures: From 2D to 3D. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005254. [PMID: 33251663 PMCID: PMC11468607 DOI: 10.1002/adma.202005254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Assembling different kinds of 2D nanosheets into heterostructures presents a promising way of designing novel artificial materials with new and improved functionalities by combining the unique properties of each component. In the past few years, black phosphorus nanosheets (BPNSs) have been recognized as a highly feasible 2D material with outstanding electronic properties, a tunable bandgap, and strong in-plane anisotropy, highlighting their suitability as a material for constructing heterostructures. In this study, recent progress in the construction of BPNS-based heterostructures ranging from 2D hybrid structures to 3D networks is discussed, emphasizing the different types of interactions (covalent or noncovalent) between individual layers. The preparation methods, optical and electronic properties, and various applications of these heterostructures-including electronic and optoelectronic devices, energy storage devices, photocatalysis and electrocatalysis, and biological applications-are discussed. Finally, critical challenges and prospective research aspects in BPNS-based heterostructures are also highlighted.
Collapse
Affiliation(s)
- Shameel Thurakkal
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4GöteborgSE‐412 96Sweden
| | - David Feldstein
- Division of Condensed Matter and Materials TheoryDepartment of PhysicsChalmers University of TechnologyKemigården 1GöteborgSE‐412 96Sweden
| | - Raül Perea‐Causín
- Division of Condensed Matter and Materials TheoryDepartment of PhysicsChalmers University of TechnologyKemigården 1GöteborgSE‐412 96Sweden
| | - Ermin Malic
- Division of Condensed Matter and Materials TheoryDepartment of PhysicsChalmers University of TechnologyKemigården 1GöteborgSE‐412 96Sweden
| | - Xiaoyan Zhang
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4GöteborgSE‐412 96Sweden
| |
Collapse
|
21
|
Li P, Zhang Z. Self-Powered 2D Material-Based pH Sensor and Photodetector Driven by Monolayer MoSe 2 Piezoelectric Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58132-58139. [PMID: 33326209 DOI: 10.1021/acsami.0c18028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The large piezoelectricity of monolayer MoSe2, which is predicted to be stronger than that of all of the other group VIB transition-metal dichalcogenides (including MoS2), has only been theoretically investigated. Here, we report experimental evidence of in-plane piezoelectricity in MoSe2. Monolayer single-crystalline MoSe2 flake derived from chemical vapor deposition demonstrates a peak output voltage of 60 mV at 0.6% strain, which is ∼50% larger than that of MoS2. Piezoelectric signal along the armchair orientation of MoSe2 is ∼6 times larger than that along the zigzag orientation, indicative of strong anisotropic piezoelectricity. Piezoelectric nanogenerator based on a single MoSe2 flake illustrates remarkable electromechanical conversion ability, and thus is able to noninvasively monitor vital health signs, such as respiratory rate and heart rate. Despite the extremely small size, MoSe2 nanogenerator is able to drive pH sensor based on MoS2 and photodetector based on MoS2/WSe2 heterojunction due to the outstanding piezoelectricity of MoSe2 and the ultralow power consumption of two-dimensional (2D) material sensors. The self-powered, solely 2D-material-based sensor units demonstrate superb sensing performance. Therefore, the discovery of piezoelectricity in monolayer MoSe2 provides a route for achieving self-powered atomic-scale electromechanical systems that could stimulate further fundamental research and potential applications.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Zekun Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Laghrib F, Saqrane S, El Bouabi Y, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem J 2020; 160:105606. [PMID: 33052148 PMCID: PMC7543751 DOI: 10.1016/j.microc.2020.105606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 infection poses a serious risk to human life by causing acute lung damage. Various techniques used to identify and quantify COVID-19 infection. Major challenges for containing the spread of COVID-19 is the ability to identify asymptomatic cases. Currently available diagnostic methods, biosensing technology developed during COVID-19 infection.
The technologies used for coronavirus testing consist of a pre-existing device developed to examine different pathologies, such as bacterial infections, or cancer biomarkers. However, for the 2019 pandemic, researchers knew that their technology could be modified to detect a low viral load at an early stage. Today, countries around the world are working to control the new coronavirus disease (n-SARS-CoV-2). From this perspective, laboratories, universities, and companies around the world have embarked on a race to develop and produce much-needed test kits. This review has been developed to provide an overview of current trends and strategies in n-SARS-CoV-2 diagnostics based on traditional and new emerging assessment technologies, to continuous innovation. It focuses on recent trends in biosensors to build a fast, reliable, more sensitive, accessible, user-friendly system and easily adaptable technology n-SARS-CoV-2 detection and monitoring. On the whole, we have addressed and identified research evidence supporting the use of biosensors on the premise that screening people for n-SARS-CoV-2 is the best way to contain its spread.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - Y El Bouabi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| |
Collapse
|
23
|
Jang JS, Jung HJ, Chong S, Kim DH, Kim J, Kim SO, Kim ID. 2D Materials Decorated with Ultrathin and Porous Graphene Oxide for High Stability and Selective Surface Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002723. [PMID: 32700344 DOI: 10.1002/adma.202002723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Indexed: 06/11/2023]
Abstract
2D black phosphorus (BP) and MXenes have triggered enormous research interest in catalysis, energy storage, and chemical sensing. Unfortunately, the low stability of these materials under practical operating conditions remains a critical bottleneck, particularly as they are prone to oxidization under moisture. In this work, the design and application of stable 2D heterostructures obtained from decorating BP and MXene (Ti3 C2 Tx ) with few-layer holey graphene oxide (FHGO) membranes are presented. In the resulting heterostructured systems, FHGO serves as a multifunctional passivation layer that shields BP or MXene from oxidative degradation, while allowing the selective diffusion of target gas molecules through its micropores and toward the underlying 2D material. Through a case study of dilute NO2 sensing, it is demonstrated that these heterostructures show a greatly enhanced sensing performance under humid conditions, where fast sensing speed and response are consistently observed, and high stability is impressively retained upon repetitive sensing cycles for 1000 min. These results corroborate the efficacy of material decoration with porous FHGO membranes and suggest that this is a generalizable strategy for reliable high-performance applications of 2D materials.
Collapse
Affiliation(s)
- Ji-Soo Jang
- Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hong Ju Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- National Creative Research Initiative (CRI) Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sanggyu Chong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
- National Creative Research Initiative (CRI) Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
24
|
Zhang C, Wang Y, Ma J, Zhang Q, Wang F, Liu X, Xia T. Black phosphorus for fighting antibiotic-resistant bacteria: What is known and what is missing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137740. [PMID: 32163736 DOI: 10.1016/j.scitotenv.2020.137740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Recently, two-dimensional black phosphorus (BP) nanomaterial has captured much attention due to its superb physiochemical and electronic properties and various promising biomedical applications. However, relatively few studies have explored its antimicrobial properties, particularly for targeting antibiotic-resistant pathogens. A comprehensive understanding of the bactericidal mechanisms of BP is essential for application of this material as an antimicrobial. This review discusses the physicochemical and electronic properties of BP that are relevant for antimicrobial applications, especially the unique characteristics that may play a role in overcoming drug resistance. The literature is discussed in the context of what is known and what information is missing. We also highlight the differences and advantages of BP over other two-dimensional nanomaterials (i.e., graphene oxide and molybdenum disulfide) for bactericidal activity. Finally, we analyze existing challenges and note topics that require future investigation to overcome current inadequacies, aiming to assist the safe development of BP-based nanotechnology for pathogen control.
Collapse
Affiliation(s)
- Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yating Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junjie Ma
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qiurong Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fang Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinhui Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
25
|
Fan Q, Wang L, Xu D, Duo Y, Gao J, Zhang L, Wang X, Chen X, Li J, Zhang H. Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. NANOSCALE 2020; 12:11364-11394. [PMID: 32428057 DOI: 10.1039/d0nr01125h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) materials have been the focus of materials research for many years due to their unique fascinating properties and large specific surface area (SSA). They are very sensitive to the analytes (ions, glucose, DNA, protein, etc.), resulting in their wide-spread development in the field of sensing. New 2D materials, as the basis of applications, are constantly being fabricated and comprehensively studied. In a variety of sensing applications, the solution-gated transistor (SGT) is a promising biochemical sensing platform because it can work at low voltage in different electrolytes, which is ideal for monitoring body fluids in wearable electronics, e-skin, or implantable devices. However, there are still some key challenges, such as device stability and reproducibility, that must be faced in order to pave the way for the development of cost-effective, flexible, and transparent SGTs with 2D materials. In this review, the device preparation, device physics, and the latest application prospects of 2D materials-based SGTs are systematically presented. Besides, a bold perspective is also provided for the future development of these devices.
Collapse
Affiliation(s)
- Qin Fan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lude Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P. R. China.
| | - Duo Xu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Yanhong Duo
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P. R. China.
| | - Jie Gao
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Lei Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Xiang Chen
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
26
|
Tan T, Jiang X, Wang C, Yao B, Zhang H. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000058. [PMID: 32537415 PMCID: PMC7284198 DOI: 10.1002/advs.202000058] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
Abstract
Graphene and the following derivative 2D materials have been demonstrated to exhibit rich distinct optoelectronic properties, such as broadband optical response, strong and tunable light-mater interactions, and fast relaxations in the flexible nanoscale. Combining with optical platforms like fibers, waveguides, grating, and resonators, these materials has spurred a variety of active and passive applications recently. Herein, the optical and electrical properties of graphene, transition metal dichalcogenides, black phosphorus, MXene, and their derivative van der Waals heterostructures are comprehensively reviewed, followed by the design and fabrication of these 2D material-based optical structures in implementation. Next, distinct devices, ranging from lasers to light emitters, frequency convertors, modulators, detectors, plasmonic generators, and sensors, are introduced. Finally, the state-of-art investigation progress of 2D material-based optoelectronics offers a promising way to realize new conceptual and high-performance applications for information science and nanotechnology. The outlook on the development trends and important research directions are also put forward.
Collapse
Affiliation(s)
- Teng Tan
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China)School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiantao Jiang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Cong Wang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Baicheng Yao
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China)School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Han Zhang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
27
|
Roy PK, Luxa J, Sofer Z. Emerging pnictogen-based 2D semiconductors: sensing and electronic devices. NANOSCALE 2020; 12:10430-10446. [PMID: 32377656 DOI: 10.1039/d0nr02932g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pnictogens are an intensively studied group of monoelemental two-dimensional materials. This group of elements consists of phosphorus, arsenic, antimony, and bismuth. In this group, the elements adopt two different layered structural allotropes, orthorhombic structure with true van der Waals layered interactions and rhombohedral structure, where covalent interactions between layers are also present. The orthorhombic structure is well known for phosphorus and arsenic, and the rhombohedral structure is the most thermodynamically stable allotropic modification of arsenic, antimony, and bismuth. Due to the electronic structure of pnictogen layers and their semiconducting character, these materials have huge application potential for electronic devices such as transistors and sensors including photosensitive devices as well as gas and electrochemical sensors. While photodetection and gas sensing applications are often related to lithography processed materials, chemical sensing proceeds in a liquid environment (either aqueous or non-aqueous) and can be influenced by surface oxidation of these materials. In this review, we explore the current state of pnictogen applications in sensing and electronic devices including transistors, photodetectors, gas sensors, and chemical/electrochemical sensors.
Collapse
Affiliation(s)
- Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | | | | |
Collapse
|
28
|
Yin H, Truskewycz A, Cole IS. Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Mikrochim Acta 2020; 187:336. [PMID: 32430591 DOI: 10.1007/s00604-020-04297-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Heavy metal contamination is a major global concern and additive toxicity resulting from the exposure to multiple heavy metal ions is more pronounced than that induced by a single metal species. Quantum dots (QDs) have demonstrated unique properties as sensing materials for heavy metal ions over the past two decades. With the rapid development and deep understanding on determination of single heavy metal ion using QD probes, this technology has been employed for sensing multiple metal ions. This review (with 97 refs.) summarizes the progress made in recent years in methods for multiplexed determination of heavy metal ions using QDs. Following an introduction into the importance of simultaneous quantitation of multiple heavy metal ions in environmentally relevant settings, the review discusses the applications of different types of QDs, i.e. chalcogenide, carbon, polymer and graphene in this field. Determination strategies based on fluorometric, colorimetric and electrochemical responses were reviewed including the testing mechanisms and differentiation between various metal ions. In addition, current state of the art sensor constructions, i.e. immobilization of QDs on solid substrate and sensor arrays have been highlighted. A concluding section describes the limitations, opportunities and future challenges of the QD probes. We also compiled a comprehensive table of currently available literature. The listed papers provided information in the following categories, i.e. type of QDs used, ligands or other components in the probe, metal ions tested, medium/substrate of the probe, transduction methods, discrimination mechanism, limit of detection (LOD) and concentration range. Graphic abstract.
Collapse
Affiliation(s)
- Hong Yin
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Adam Truskewycz
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ivan S Cole
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
29
|
Catalysis Mediated by 2D Black Phosphorus Either Pristine or Decorated with Transition Metals Species. SURFACES 2020. [DOI: 10.3390/surfaces3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Among the novel class of mono-elemental two-dimensional (2D) materials, termed Xenes, phosphorene is emerging as a great promise for its peculiar chemical and physical properties. This review collects a selection of the recent breakthroughs that are related to the application of phosphorene in catalysis and electrocatalysis. Noteworthy, thanks to its intrinsic Lewis basic character, pristine phosphorene turned out to be more efficient and more selective than other non-metal catalysts, in chemical processes as the electroreduction of nitrogen to ammonia or the alkylation of nucleophiles with esters. Once functionalized with transition metals nanoparticles (Co, Ni, Pd, Pt, Ag, Au), its catalytic activity has been evaluated in several processes, mainly hydrogen and oxygen evolution reactions. Under visible light irradiation, it has shown a great improvement of the activity, demonstrating high potential as a photocatalyst.
Collapse
|
30
|
Chen X, Ponraj JS, Fan D, Zhang H. An overview of the optical properties and applications of black phosphorus. NANOSCALE 2020; 12:3513-3534. [PMID: 31904052 DOI: 10.1039/c9nr09122j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the year 2014, when scientists first obtained black phosphorus using a sticky tape to peel the layers off, it has attracted tremendous interest as a novel two-dimensional material. After it was successfully produced, its outstanding optical properties have been unveiled. Various applications based on these properties have been reported. This study mainly reviews the unique optical properties and potential applications of black phosphorus. The optical performances of black phosphorus mainly include linear optical properties and nonlinear optical properties. Some examples include the anisotropic optical response, saturable absorption effect and Kerr effect. The researchers found that the nonlinear saturable absorption coefficients of black phosphorus are better than that of MoS2 and WS2 from the visible region to the near-infrared region. Compared with graphene, black phosphorus has a better nonlinear saturable absorption performance. After passivation or surface modification, black phosphorus is stable when exposed to oxygen and water. Herein, black phosphorus has the potential to be used in detector/sensors, solar energy harvesting, photocatalysts, optical saturable absorbers in ultrafast lasers, all optical switches, optical modulation, nanomedicine and some others in the near future.
Collapse
Affiliation(s)
- Xing Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| | | | - Dianyuan Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| |
Collapse
|
31
|
Maity A, Sui X, Pu H, Bottum KJ, Jin B, Chang J, Zhou G, Lu G, Chen J. Sensitive field-effect transistor sensors with atomically thin black phosphorus nanosheets. NANOSCALE 2020; 12:1500-1512. [PMID: 31859311 DOI: 10.1039/c9nr09354k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomically thin black phosphorus (BP) field-effect transistors have excellent potential for sensing applications. However, commercial scaling of PFET sensors is still in the early stage due to various technical challenges, such as tedious fabrication, low response% caused by rapid oxidation, non-ideal response output (spike/bidirectional), and large device variation due to poor control over layer thickness among devices. Attempts have been made to address these issues. First, a theoretical model for response% dependence on the number of layers is developed to show the role of atomically thin BP for better responses. A position-tracked, selected-area-exfoliation method has been developed to rapidly produce thin BP layers with a narrow distribution (∼1-7 layers), which can harness excellent gate control over the PFET channel. The typical current on/off ratio is in the range of ∼300-500. The cysteine-modified Al2O3-gated PFET sensors show high responses (∼30-900%) toward a wide detection range (∼1-400 ppb) of lead ions in water with a typical response time of ∼10-30 s. A strategy to minimize device variation is proposed by correlating PFETs' on/off ratio with sensitivity parameters. The thickness variation of the gate oxide is investigated to explain non-ideal and ideal response transient kinetics.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Thurakkal S, Zhang X. Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902359. [PMID: 31993294 PMCID: PMC6974947 DOI: 10.1002/advs.201902359] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/10/2019] [Indexed: 05/25/2023]
Abstract
Owing to their tunable direct bandgap, high charge carrier mobility, and unique in-plane anisotropic structure, black phosphorus nanosheets (BPNSs) have emerged as one of the most important candidates among the 2D materials beyond graphene. However, the poor ambient stability of black phosphorus limits its practical application, due to the chemical degradation of phosphorus atoms to phosphorus oxides in the presence of oxygen and/or water. Chemical functionalization is demonstrated as an efficient approach to enhance the ambient stability of BPNSs. Herein, various covalent strategies including radical addition, nitrene addition, nucleophilic substitution, and metal coordination are summarized. In addition, efficient noncovalent functionalization methods such as van der Waals interactions, electrostatic interactions, and cation-π interactions are described in detail. Furthermore, the preparations, characterization, and diverse applications of functionalized BPNSs in various fields are recapped. The challenges faced and future directions for the chemical functionalization of BPNSs are also highlighted.
Collapse
Affiliation(s)
- Shameel Thurakkal
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| | - Xiaoyan Zhang
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| |
Collapse
|
33
|
Li Z, Xu B, Liang D, Pan A. Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials. RESEARCH (WASHINGTON, D.C.) 2020; 2020:5464258. [PMID: 33029588 PMCID: PMC7521027 DOI: 10.34133/2020/5464258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/26/2020] [Indexed: 01/12/2023]
Abstract
The development of optoelectronic devices requires breakthroughs in new material systems and novel device mechanisms, and the demand recently changes from the detection of signal intensity and responsivity to the exploration of sensitivity of polarized state information. Two-dimensional (2D) materials are a rich family exhibiting diverse physical and electronic properties for polarization device applications, including anisotropic materials, valleytronic materials, and other hybrid heterostructures. In this review, we first review the polarized-light-dependent physical mechanism in 2D materials, then present detailed descriptions in optical and optoelectronic properties, involving Raman shift, optical absorption, and light emission and functional optoelectronic devices. Finally, a comment is made on future developments and challenges. The plethora of 2D materials and their heterostructures offers the promise of polarization-dependent scientific discovery and optoelectronic device application.
Collapse
Affiliation(s)
- Ziwei Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Boyi Xu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Delang Liang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
34
|
Yang SH, Lin CY, Chang YM, Li M, Lee KC, Chen CF, Yang FS, Lien CH, Ueno K, Watanabe K, Taniguchi T, Tsukagoshi K, Lin YF. Oxygen-Sensitive Layered MoTe 2 Channels for Environmental Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47047-47053. [PMID: 31746187 DOI: 10.1021/acsami.9b15036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The oxygen (O2)-dependent resistance change of multilayered molybdenum ditelluride (MoTe2) channels was characterized. A variation of the channel resistance could reproducibly determine relative O2 content (denoted as the O2 index). We found that Joule heating in a layered MoTe2 field-effect transistor caused the O2 index to decrease drastically from 100 to 12.1% in back gate modulation. Furthermore, Joule heating caused effective O2 desorption from the MoTe2 surface and repeatable O2 detection by multilayered MoTe2 channels was realized. This work not only explored the influence of O2 on the electrical properties of multilayered MoTe2 channels but also revealed that MoTe2 channels are promising for sensing O2 in an environmental condition.
Collapse
Affiliation(s)
- Shih-Hsien Yang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics , Shenzhen University , Shenzhen 518060 , China
| | - Che-Yi Lin
- Department of Electrophysics , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | | | | | - Ko-Chun Lee
- Department of Electrical Engineering and Institute of Electronic Engineering , National Tsing Hua University , Hsinchu 30010 , Taiwan
| | | | - Feng-Shou Yang
- Department of Electrical Engineering and Institute of Electronic Engineering , National Tsing Hua University , Hsinchu 30010 , Taiwan
| | - Chen-Hsin Lien
- Department of Electrical Engineering and Institute of Electronic Engineering , National Tsing Hua University , Hsinchu 30010 , Taiwan
| | - Keiji Ueno
- Department of Chemistry, Graduate School of Science and Engineering , Saitama University , Saitama 338-8570 , Japan
| | | | | | | | | |
Collapse
|
35
|
Mohamad Nasir MZ, Pumera M. Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: From borophene to bismuthene. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115696] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Cai Y, Chen S, Gao J, Zhang G, Zhang YW. Evolution of intrinsic vacancies and prolonged lifetimes of vacancy clusters in black phosphorene. NANOSCALE 2019; 11:20987-20995. [PMID: 31660564 DOI: 10.1039/c9nr06608j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the relatively low formation energies and highly mobile characteristics of atomic vacancies in phosphorene, understanding their evolution becomes crucial for its structural integrity, chemical activities and applications. Herein, by combining first-principles calculations and kinetic Monte Carlo simulation, we investigate the time evolution and formation of atomic vacancy clusters from isolated monovacancies (MVs), aiming to uncover the mechanisms of diffusion, annihilation, and reaction of these atomic vacancies. We find that while isolated MVs possess a highly mobile characteristic, they react and form MV pairs which possess much lower mobility and high stability under ambient conditions. We also show that the disappearance of MVs at the edge is quite slow due to the relatively high energy barrier, and as a result, around 80% of MVs remain even after two years under ambient conditions. Our findings on one hand provide useful information for the structural repairing of phosphorene through chemical functionalization of these vacancy clusters, and on the other hand, suggest that these rather stable vacancy clusters may be used as activated catalysts.
Collapse
Affiliation(s)
- Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China and Institute of High Performance Computing, A*STAR, Singapore 138732.
| | - Shuai Chen
- Institute of High Performance Computing, A*STAR, Singapore 138732.
| | - Junfeng Gao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian, 116024, China
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR, Singapore 138732.
| | - Yong-Wei Zhang
- Institute of High Performance Computing, A*STAR, Singapore 138732.
| |
Collapse
|
37
|
Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosens Bioelectron 2019; 144:111691. [DOI: 10.1016/j.bios.2019.111691] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023]
|
38
|
Zhou L, Liu C, Sun Z, Mao H, Zhang L, Yu X, Zhao J, Chen X. Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens Bioelectron 2019; 137:140-147. [DOI: 10.1016/j.bios.2019.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/21/2019] [Indexed: 01/24/2023]
|
39
|
Zhang J, Ma Y, Hu K, Feng Y, Chen S, Yang X, Fong-Chuen Loo J, Zhang H, Yin F, Li Z. Surface Coordination of Black Phosphorus with Modified Cisplatin. Bioconjug Chem 2019; 30:1658-1664. [PMID: 31070357 DOI: 10.1021/acs.bioconjchem.9b00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Black phosphorus (BP) is a two-dimensional (2D) nanomaterial with high charge-carrier mobility, a tunable direct bandgap, and a unique in-plane anisotropic structure; however, the easiness of BP oxidation into P xO y species in ambient conditions largely limits its applications. In this study, modified cisplatin-Pt-NO3 [Pt(NH3)2(NO3)2] is used for surface coordination with BP nanosheets to generate Pt@BP, which maintains the surface morphology and properties of BP nanosheets for more than 24 h in ambient conditions. In addition, Pt@BP interacts with DNA both in vitro and in cell. Pt@BP shows a good cellular uptake rate and significantly increases the drug sensitivity of cisplatin-resistant cancer cell lines (A2780 and HepG2) compared with unmodified cisplatin. Our study is the first attempt to stabilize bare BP with cationic cisplatin species, and the generated Pt@BP could be used for potential synergistic photothermal/chemotherapy of cisplatin-resistant cancer.
Collapse
Affiliation(s)
- Jianing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Kuan Hu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yuan Feng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Si Chen
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Xiaoyang Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Jacky Fong-Chuen Loo
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , SAR 999077 , China
| | - Han Zhang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| |
Collapse
|
40
|
Abstract
Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications.
Collapse
|
41
|
Peruzzini M, Bini R, Bolognesi M, Caporali M, Ceppatelli M, Cicogna F, Coiai S, Heun S, Ienco A, Benito II, Kumar A, Manca G, Passaglia E, Scelta D, Serrano‐Ruiz M, Telesio F, Toffanin S, Vanni M. A Perspective on Recent Advances in Phosphorene Functionalization and Its Applications in Devices. Eur J Inorg Chem 2019; 2019:1476-1494. [PMID: 31007576 PMCID: PMC6472490 DOI: 10.1002/ejic.201801219] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 01/01/2023]
Abstract
Phosphorene, the 2D material derived from black phosphorus, has recently attracted a lot of interest for its properties, suitable for applications in materials science. The physical features and the prominent chemical reactivity on its surface render this nanolayered substrate particularly promising for electrical and optoelectronic applications. In addition, being a new potential ligand for metals, it opens the way for a new role of the inorganic chemistry in the 2D world, with special reference to the field of catalysis. The aim of this review is to summarize the state of the art in this subject and to present our most recent results in the preparation, functionalization, and use of phosphorene and its decorated derivatives. We discuss several key points, which are currently under investigation: the synthesis, the characterization by theoretical calculations, the high pressure behavior of black phosphorus, as well as its decoration with nanoparticles and encapsulation in polymers. Finally, device fabrication and electrical transport measurements are overviewed on the basis of recent literature and the new results collected in our laboratories.
Collapse
Affiliation(s)
- Maurizio Peruzzini
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
| | - Roberto Bini
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
- LENS ‐ European Laboratory for Non‐Linear SpectroscopyVia N. Carrara 1, I‐50019Sesto Fiorentino (FI)Italy
- Dipartimento di Chimica “Ugo SchiffUniversità degli Studi di FirenzeVia della Lastruccia 3, I‐50019Sesto Fiorentino (FI)Italy
| | - Margherita Bolognesi
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiVia Piero Gobetti, 10140129Bologna BOItaly
| | - Maria Caporali
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
| | - Matteo Ceppatelli
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
- LENS ‐ European Laboratory for Non‐Linear SpectroscopyVia N. Carrara 1, I‐50019Sesto Fiorentino (FI)Italy
| | - Francesca Cicogna
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciSS PisaVia Moruzzi 156124PisaItaly
| | - Serena Coiai
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciSS PisaVia Moruzzi 156124PisaItaly
| | - Stefan Heun
- NESTIstituto Nanoscienze‐CNR and Scuola Normale SuperiorePiazza San Silvestro 1256127PisaItaly
| | - Andrea Ienco
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
| | - Iñigo Iglesias Benito
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
- Dipartimento di Biotecnologie, Chimica e FarmaciaUniversità di Siena53100SienaItaly
| | - Abhishek Kumar
- NESTIstituto Nanoscienze‐CNR and Scuola Normale SuperiorePiazza San Silvestro 1256127PisaItaly
| | - Gabriele Manca
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
| | - Elisa Passaglia
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciSS PisaVia Moruzzi 156124PisaItaly
| | - Demetrio Scelta
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
- LENS ‐ European Laboratory for Non‐Linear SpectroscopyVia N. Carrara 1, I‐50019Sesto Fiorentino (FI)Italy
| | - Manuel Serrano‐Ruiz
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
| | - Francesca Telesio
- NESTIstituto Nanoscienze‐CNR and Scuola Normale SuperiorePiazza San Silvestro 1256127PisaItaly
| | - Stefano Toffanin
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiVia Piero Gobetti, 10140129Bologna BOItaly
| | - Matteo Vanni
- Consiglio Nazionale delle Ricerche ‐ Istituto di Chimica dei Composti OrganometalliciVia Madonna del Piano 1050019Sesto Fiorentino, FlorenceItaly
- Dipartimento di Biotecnologie, Chimica e FarmaciaUniversità di Siena53100SienaItaly
| |
Collapse
|
42
|
Qiu S, Zhou Y, Zhou X, Zhang T, Wang C, Yuen RKK, Hu W, Hu Y. Air-Stable Polyphosphazene-Functionalized Few-Layer Black Phosphorene for Flame Retardancy of Epoxy Resins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805175. [PMID: 30714318 DOI: 10.1002/smll.201805175] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/24/2019] [Indexed: 05/17/2023]
Abstract
Similar to graphene, few-layer black phosphorus (BP) features thermal stability, mechanical properties, and characteristic dimension effects, which has potential as a new member of nanofillers for fabricating polymer nanocomposites. Herein, a cross-linked polyphosphazene-functionalized BP (BP-PZN) is developed with abundant -NH2 groups via a one-pot polycondensation of 4,4'-diaminodiphenyl ether and hexachlorocyclotriphosphazene on the surface of BP nanosheets. Whereafter, the resulting BP-PZN is incorporated into epoxy resin (EP) to study the flame-retardant property and smoke suppression performance. Cone results show that the introduction of 2 wt% BP-PZN distinctly improves the flame-retardant property of EP, for instance, 59.4% decrease in peak heat release rate and 63.6% reduction in total heat release. The diffusion of pyrolysis products from EP during combustion is obviously suppressed after incorporating the BP-PZN nanosheets. Meanwhile, the EP/BP-PZN nanocomposites exhibit air stability after exposure to ambient conditions for four months. The air stability of the BP nanosheets in EP matrix is assigned to surface wrapping by PZN and embedded in the polymer matrix as dual protection. As a new member of the 2D nanomaterials, BP nanosheets have potential to be a new choice for fabricating high-performance nanocomposites.
Collapse
Affiliation(s)
- Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Xia Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Tao Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Chenyu Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Richard K K Yuen
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
43
|
Korotcenkov G. Black Phosphorus-New Nanostructured Material for Humidity Sensors: Achievements and Limitations. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1010. [PMID: 30818818 PMCID: PMC6427353 DOI: 10.3390/s19051010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
The prospects of using nanostructured black phosphorus for the development of humidity sensors are considered. It was shown that black phosphorus has a set of parameters that distinguish it from other two-dimensional (2D) materials such as graphene, silicone, and dichalcogenides. At the same time, an analysis of shortcomings, limiting the use of black phosphorus as a humidity sensitive material in devices aimed for market of humidity sensors, was also conducted.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova.
| |
Collapse
|
44
|
Zhuge Z, Tang Y, Tao J, Zhao Y. Functionalized Black Phosphorus Nanocomposite for Biosensing. ChemElectroChem 2019. [DOI: 10.1002/celc.201801439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Zhuge
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| | - Yi‐Hong Tang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| | - Jian‐Wei Tao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| | - Yun Zhao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
45
|
Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem Rev 2019; 119:478-598. [PMID: 30604969 DOI: 10.1021/acs.chemrev.8b00311] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrically-transduced sensors, with their simplicity and compatibility with standard electronic technologies, produce signals that can be efficiently acquired, processed, stored, and analyzed. Two dimensional (2D) nanomaterials, including graphene, phosphorene (BP), transition metal dichalcogenides (TMDCs), and others, have proven to be attractive for the fabrication of high-performance electrically-transduced chemical sensors due to their remarkable electronic and physical properties originating from their 2D structure. This review highlights the advances in electrically-transduced chemical sensing that rely on 2D materials. The structural components of such sensors are described, and the underlying operating principles for different types of architectures are discussed. The structural features, electronic properties, and surface chemistry of 2D nanostructures that dictate their sensing performance are reviewed. Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules. The sensing performance is discussed in the context of the molecular design, structure-property relationships, and device fabrication technology. The outlook of challenges and opportunities for 2D nanomaterials for the future development of electrically-transduced sensors is also presented.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Lukasz Mendecki
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
46
|
Anju S, Ashtami J, Mohanan PV. Black phosphorus, a prospective graphene substitute for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:978-993. [PMID: 30678986 DOI: 10.1016/j.msec.2018.12.146] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/21/2022]
Abstract
2D materials have gained spectacular status across various scientific and technological disciplines owing to their exceptional unique properties. The very recent member of 2D family, Black Phosphorus monolayers, known as Phosphorene have attracted recent scientific attention since its first exfoliation and appreciable rediscovery in 2014. Compared to other 2D materials and graphene analogs, it has outstanding properties like tunable band gap, good carrier mobility, excellent ON-OFF current ratio, potent in vivo biocompatibility and non-toxic biodegradability. Although the outlook of this material seems to be a promising candidate for future biomedical technology, its practical applications are still highly challenging. Unveiling those challenges by proper characterization and functionalization makes this material a mile stone for future theranostic and biomedicine scenario. This review has given precise attention to familiarize with the unique fundamental properties of black phosphorus, which makes it an excellent platform for future biomedical applications. Also underlines various synthesis procedures applicable for BP nanosheets and quantum dot synthesis. Its various biomedical applications including biosensors, cancer therapy, imaging and photothermal/photo acoustic/photodynamic therapy, drug delivery, neuronal regeneration, 3D printing scaffold etc., are subsequently reviewed. Furthermore this review briefly focused on the toxicity of this emerging material.
Collapse
Affiliation(s)
- Surendranath Anju
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Thiruvananthapuram 695 012, Kerala, India
| | - Jayakumar Ashtami
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Thiruvananthapuram 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Thiruvananthapuram 695 012, Kerala, India.
| |
Collapse
|
47
|
Das S, Bera S, Maji A, Nayim S, Jana GC, Hossain M. A compact prospective investigation on the colorimetric recognition of Hg 2+ ion and photostimulated degradation of discharged toxic organic dyes motivated by H. mutabilis directed silver nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj04326h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colorimetric sensing method for Hg2+ ion was developed using H. mutabilis motivated silver NPs. The calculated detection limit was estimated ∼48 pM. The nanoparticles also work as a good photo catalyst for degradation of TB and Rh-B.
Collapse
Affiliation(s)
- Somnath Das
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Sharmistha Bera
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Anukul Maji
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Sk Nayim
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Gopal Ch. Jana
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| | - Maidul Hossain
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore-721102
- India
| |
Collapse
|
48
|
Zhang S, Zhang X, Lei L, Yu XF, Chen J, Ma C, Wu F, Zhao Q, Xing B. pH-Dependent Degradation of Layered Black Phosphorus: Essential Role of Hydroxide Ions. Angew Chem Int Ed Engl 2018; 58:467-471. [PMID: 30417515 DOI: 10.1002/anie.201809989] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 11/10/2022]
Abstract
The practical application of layered black phosphorus (LBP) is compromised by fast decomposition in the presence of H2 O and/or O2 . The role of H2 O is controversial. Herein, we propose a hydroxide ion (OH- )-initiated degradation mechanism for LBP to elucidate the role of H2 O. We found that LBP degraded faster in alkaline solutions than in neutral or acidic solutions with or without O2 . Degradation rates of LBP increased linearly from pH 4 to 10. Density functional theory (DFT) calculations showed that OH- initiated the decomposition of LBP through breaking the P-P bond and forming a P-O bond. The detection of hypophosphite, generated from OH- reacting with P atoms, confirmed the hypothesis. Protons acted in a way distinctive from OH- , by inducing deposition/aggregation or forming a cation-π layer to protect LBP from degradation. This work reveals the degradation mechanism of LBP and thus facilitates the development of effective stabilization technologies.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology Chinese Academy of Sciences, Shenyang, 110016, China.,Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Feng Yu
- Center for Biomedical Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
49
|
Zhang S, Zhang X, Lei L, Yu X, Chen J, Ma C, Wu F, Zhao Q, Xing B. pH‐Dependent Degradation of Layered Black Phosphorus: Essential Role of Hydroxide Ions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
- Stockbridge School of AgricultureUniversity of Massachusetts Amherst MA 01003 USA
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Lei
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xue‐Feng Yu
- Center for Biomedical Materials and InterfacesShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)School of Environmental Science and TechnologyDalian University of Technology Dalian 116024 China
| | - Chuanxin Ma
- Department of Analytical ChemistryThe Connecticut Agricultural Experiment Station New Haven CT 06504 USA
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoshan Xing
- Stockbridge School of AgricultureUniversity of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
50
|
Chang J, Maity A, Pu H, Sui X, Zhou G, Ren R, Lu G, Chen J. Impedimetric phosphorene field-effect transistors for rapid detection of lead ions. NANOTECHNOLOGY 2018; 29:375501. [PMID: 29974868 DOI: 10.1088/1361-6528/aacb6a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive field-effect transistors (FETs) based on 2D nanomaterials have been considered as attractive candidates for sensing applications due to their rapid response, high sensitivity, and real-time monitoring capabilities. Here we report on an impedance spectroscopy technique for FET sensor applications with ultra-high sensitivity and good reproducibility. An alumina-gated FET, using an ultra-thin black phosphorus flake as the channel material, shows significantly improved stability and ultra-high sensitivity to lead ions in water. In addition, the phase angle in the low frequency region was found to change significantly in the presence of lead ion solutions, whereas it was almost unchanged in the high frequency region. The dominant sensing performance was found at low frequency phase spectrum around 50 Hz and a systematic change in the phase angle in different lead ion concentrations was found. Applying the impedance spectroscopy technique to insulator-gated FET sensors could open a new avenue for real-world sensor applications.
Collapse
Affiliation(s)
- Jingbo Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | | | | | | | | | | | | | | |
Collapse
|