1
|
Sun Y, Ma S, Shi Y, Chen M, Lan Y, Hu L, Yang X. Overcoming biological inertness: multifaceted strategies to optimize PEEK bioactivity for interdisciplinary clinical applications. Biomater Sci 2025; 13:3106-3122. [PMID: 40314180 DOI: 10.1039/d4bm01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Polyether ether ketone (PEEK), characterized by a comparable elastic modulus to human bone with high wear resistance, radiolucency, and biocompatibility, demonstrates considerable promise for clinical applications. However, due to the significant limitations in clinical applications caused by the biological inertness of PEEK, it should first be modified to meet clinical needs. Currently, the field of PEEK modifications is rapidly advancing, with a particular emphasis on enhancing its biological properties. Most of the previous reviews have separately discussed strategies like antibacterial, osteogenic, and angiogenic enhancements for PEEK. This review combines cross-domain insights to update and synthesize recent research on PEEK composites, focusing on advanced multi-component sustained release platforms that mimic postoperative biological processes. Such temporal alignment between material functionality and physiological healing phases demonstrates unprecedented potential for expanding PEEK's clinical versatility.
Collapse
Affiliation(s)
- Yingjia Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Shixing Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yang Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Lingling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Xiaofeng Yang
- Hangzhou City University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
2
|
Zhao M, Yang H, Yang Q, Zhang C, Liu J, Wu Z, Wang L, Zhang W, Wang B, Liu W. A Multifunctional PEEK Composite Scaffold with Immunomodulatory, Angiogenic, and Osteogenic Properties for Enhanced Bone Regeneration. Polymers (Basel) 2025; 17:1206. [PMID: 40362989 PMCID: PMC12073393 DOI: 10.3390/polym17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Polyetheretherketone (PEEK) is a widely used material in bone tissue engineering due to its favorable mechanical properties and radiolucency. However, its bioinert nature and lack of osteogenic activity restrict its ability to support effective bone regeneration. In this study, a novel APS-coated plasma-treated sulfonated bioactive PEEK scaffold (APS/PSBPK) was developed to overcome these limitations. The scaffold integrates strontium-doped bioactive glass (SrBG) to enhance biocompatibility and osteogenic potential, while astragalus polysaccharide (APS) was incorporated via plasma cleaning to modulate immune responses and promote vascularization. In vitro studies demonstrated that the APS/PSBPK scaffold facilitates M2 macrophage polarization, reduces pro-inflammatory cytokines, and enhances the secretion of anti-inflammatory factors. It also promotes endothelial cell migration and angiogenesis while supporting the adhesion, proliferation, and osteogenic differentiation of rBMSCs. In vivo experiments revealed that the scaffold effectively regulates the immune microenvironment, promotes vascularization, and accelerates bone regeneration. Thus, the APS/PSBPK composite scaffold serves as a multifunctional biomaterial with significant potential for applications in bone repair and regeneration by combining immunomodulation, angiogenesis, and osteogenesis.
Collapse
Affiliation(s)
- Mengen Zhao
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen 518057, China; (M.Z.); (H.Y.); (L.W.); (W.Z.)
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China; (Q.Y.); (C.Z.); (J.L.); (Z.W.)
| | - Han Yang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen 518057, China; (M.Z.); (H.Y.); (L.W.); (W.Z.)
| | - Qianwen Yang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China; (Q.Y.); (C.Z.); (J.L.); (Z.W.)
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China; (Q.Y.); (C.Z.); (J.L.); (Z.W.)
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China; (Q.Y.); (C.Z.); (J.L.); (Z.W.)
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China; (Q.Y.); (C.Z.); (J.L.); (Z.W.)
| | - Lijun Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen 518057, China; (M.Z.); (H.Y.); (L.W.); (W.Z.)
| | - Wei Zhang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen 518057, China; (M.Z.); (H.Y.); (L.W.); (W.Z.)
| | - Bing Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen 518057, China; (M.Z.); (H.Y.); (L.W.); (W.Z.)
| | - Wenliang Liu
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen 518057, China; (M.Z.); (H.Y.); (L.W.); (W.Z.)
| |
Collapse
|
3
|
Chan RM, Lee SJ, Wang F, Zhou T, Kishan R, Shum HC, Yang W, Su YX, Tsoi JKH, Diwan AD, Prusty BG, Cho K. Engineered 3D-Printable Nanohydroxyapatite Biocomposites with Cold Plasma-Tailored Surface Features to Boost Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23522-23535. [PMID: 40223336 PMCID: PMC12022952 DOI: 10.1021/acsami.4c22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Medical implants, being biomaterials with increasing global use, continue to attract researchers focused on enhancing clinical performance. In situations requiring bone substitutes, there is a search for advancements in synthetic graft biomaterials, with polymer-based implants being one of the potential materials. Thus, this study aims to develop versatile nanohydroxyapatite (nHAP) biocomposites that can not only be generalized by resin composite systems but also be applicable for 3D printing, overcoming the limitations associated with traditional implants. Polymeric biocomposites are prepared by incorporating nHAPs and strontium-doped SiO2 glass particles (GPs) into a photocurable methacrylate monomer system, followed by 3 min of cold atmosphere plasma irradiation. In light of our findings, this medical implant possesses strong mechanical strength. Its surface hydrophilicity is enhanced through cold plasma treatment, which involves surface dry etching with nanoscale precision and exposing the embedded nanofillers to the outmost surface. This cold plasma treatment also induces osteogenic activity in vitro and bone integration in vivo. Furthermore, the 3D printability is demonstrated through the fabrication of a gyroid lattice structure. Collectively, this nHAP-biocomposite exhibits promising biomechanical and biological properties, providing potential for revolutionizing future implant applications in dental and maxillofacial reconstruction as well as orthopedic interbody fusion.
Collapse
Affiliation(s)
- Rosalind
Sin Man Chan
- Division
of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Sang Jin Lee
- Division
of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Fang Wang
- Department
of Mechanical Engineering, The University
of Hong Kong, Hong Kong
SAR 999077, China
| | - Tianyu Zhou
- Division
of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ravi Kishan
- Division
of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ho Cheung Shum
- Department
of Mechanical Engineering, The University
of Hong Kong, Hong Kong
SAR 999077, China
- Advanced
Biomedical Instrumentation Centre, Hong
Kong Science Park, Shatin,
New Territories, Hong Kong SAR 999077, China
| | - Weifa Yang
- Division
of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yu-xiong Su
- Division
of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - James Kit Hon Tsoi
- Division
of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ashish D. Diwan
- Spine
Labs, St George and Sutherland Clinical School, University of New South Wales, Randwick 2052, NSW, Australia
- Spine Service,
Department of Orthopaedic Surgery, St George and Sutherland Clinical
School, University of New South Wales, Kogarah 2217, NSW, Australia
| | - B. Gangadhara Prusty
- School
of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- ARC
Centre for Automated Manufacture of Advanced Composites, School of
Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - Kiho Cho
- Division
of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
- School
of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
4
|
Al Maruf DSA, Ren J, Cheng K, Xin H, Lewin W, Pickering E, Kruse HV, Leinkram D, Parthasarathi K, Wise I, Filippi B, Beirne S, Froggatt C, Wykes J, Howes D, Suchowerska N, Woodruff MA, Crook JM, McKenzie DR, Clark JR. Evaluation of osseointegration of plasma treated polyaryletherketone maxillofacial implants. Sci Rep 2025; 15:1895. [PMID: 39805882 PMCID: PMC11731023 DOI: 10.1038/s41598-024-80335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues. In this investigation, plasma ion immersion implantation (PIII)-treated polyether ether ketone (PEEK) and polyether ketone (PEK) implants were assessed in a sheep maxilla and mandible model. Defects were filled with PIII-treated PEEK and PEK implants, produced through fused filament fabrication (FFF) and selective laser sintering (SLS), respectively. Positive controls were grade 23 titanium implants via selective laser melting, while untreated PEEK implants served as negative controls. Surface analyses using scanning electron microscopy and atomic force microscopy revealed favorable properties. Osseointegration was qualitatively and quantitatively assessed at 8-, 10-, and 12-weeks post-implantation, showing significantly improved outcomes for both PIII-treated PEEK and PEK implants compared to untreated controls. The study suggests PIII treatment enhances FFF-printed PEEK's osseointegration, and PIII-treated SLS-printed PEK achieves comparable osseointegration to 3D printed titanium. These findings underscore surface modification strategies' potential for polymeric biomaterials, offering insights into developing alternative implant materials for craniofacial surgeries, with enhanced biocompatibility and osseointegration capabilities for improved clinical outcomes.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia.
| | - Jiongyu Ren
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Central Analytical Research Facility, Research Infrastructure, Queensland University of Technology, Brisbane, Australia
- ARC Training Centre for Cells and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Will Lewin
- Arto Hardy Family Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, Australia
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Hedi Verena Kruse
- Arto Hardy Family Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, Australia
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - David Leinkram
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - Krishnan Parthasarathi
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Innes Wise
- Laboratory Animal Services, The University of Sydney, Camperdown, Australia
| | - Benjamin Filippi
- AIIM Facility, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
| | - Stephen Beirne
- AIIM Facility, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
| | - Cate Froggatt
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
| | - James Wykes
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Dale Howes
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
- School of Dentistry, Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - Natalka Suchowerska
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Jeremy M Crook
- Arto Hardy Family Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, Australia
- AIIM Facility, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
- School of Dentistry, Faculty of Medicine, University of Sydney, Camperdown, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, Australia
| | - David R McKenzie
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Jonathan R Clark
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia.
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia.
| |
Collapse
|
5
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
6
|
Qin B, Zeng B, Shen D, Deng J, Hu H, Wang X, Li H, Yang T, Xu L, Wu C. Exploration of mechanical properties and osseointegration capacity of porous PEEK composites containing strontium and alendronate under 3D printing: an emerging bone implant. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-16. [PMID: 39674954 DOI: 10.1080/09205063.2024.2438498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/13/2024] [Indexed: 12/17/2024]
Abstract
The aim of this study was to evaluate the biomechanical and osseointegrative properties of 3D printed porous PEEK materials loaded with strontium (Sr) and alendronate (ALN), which prepared porous cylindrical material by a fused deposition molding process, coated with Sr and ALN by hydrothermal reaction and dopamine assistance. According to the different coating materials, it could be divided into the PEEK group, PEEK-ALN group, PEEK-Sr group and PEEK-ALN-Sr group. After completing the mechanical analyses, the materials were implanted into the femoral condyles of New Zealand rabbits and the osteogenic capacity of the bracket materials was assessed by Micro-CT scanning, histology and fluorescence staining. The results showed that ALN and Sr were successfully loaded onto the surface of the material, and the elastic modulus and porosity of the material were not changed significantly after loading. The Micro-CT revealed that the PEEK-ALN-Sr group exhibited differences in bone volume/total Volume (BV/TV), trabecular spacing (TB.Sp),trabecular thickness (TB.Th)and trabeculae number (TB.N) in comparison to the PEEK group and PEEK-ALN group. And more new bone tissues could be observed in the PEEK-ALN-Sr group under 3D reconstruction of the bone proliferation model, toluidine blue and fluorescence staining. Thus, we can conclude that the 3D printed porous PEEK material has stable pore size and porosity, which has an ideal structure for bone growth. The PEEK- ALN-Sr composite material can be used as an emerging bone implant due to its excellent elastic modulus and osseointegration ability and provides a clinically viable treatment for patients with bone defects.
Collapse
Affiliation(s)
- Binwei Qin
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Baifang Zeng
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Danwei Shen
- Institute of Digital Medicine, Zigong Academy of Big Data for Medical Science and Artificial Intelligence, Zigong, China
| | - Jiayan Deng
- Institute of Digital Medicine, Zigong Academy of Big Data for Medical Science and Artificial Intelligence, Zigong, China
| | - Haigang Hu
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
| | - Xiangyu Wang
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
| | - Hong Li
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
| | - Taicong Yang
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
| | - Lian Xu
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
| | - Chao Wu
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
| |
Collapse
|
7
|
Yang H, Ding H, Tian Y, Wu C, Chen Y, Shi H, Chan YK, Deng Y, Liao L, Lai S. Metal element-fusion peptide heterostructured nanocoatings endow polyetheretherketone implants with robust anti-bacterial activities and in vivo osseointegration. NANOSCALE 2024; 16:12934-12946. [PMID: 38913123 DOI: 10.1039/d4nr01453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Polyetheretherketone (PEEK), renowned for its exceptional mechanical properties and bio-stability, is considered a promising alternative to traditional metal-based implants. However, the inferior bactericidal activity and the limited angiogenic and osteogenic properties of PEEK remain the three major obstacles to osseointegration in vivo. To overcome these obstacles, in this work, a versatile heterostructured nanocoating was conceived and equipped on PEEK. This nanocoating was designed to endow PEEK with the ability of photo-activated pathogen disinfection, along with enhanced angiogenesis and osteogenesis, effectively addressing the triple-barrier challenge towards osseointegration. The crafted nanocoating, encompassing diverse nutritional metal elements (Fe3+, Mg2+, and Sr2+) and a fusion peptide adept at promoting angiogenesis and osteogenesis, was seamlessly decorated onto PEEK. The engineered implant exhibited an antibacterial activity of over 94% upon near-infrared illumination by virtue of the photothermal conversion of the polyphenol nanocoating. Simultaneously, the decorated hierarchical nanocoatings synergistically promoted cellular adhesion and proliferation and up-regulated angiogenesis-/osteogenesis-associated cytokine expression in endothelial/osteoblast cells, resulting in superior angiogenic differentiation and osteoinductive capability in vitro. Moreover, an in vivo assay in a rabbit femoral defect model revealed that the decorated implant can achieve ameliorative osseointegrative fixation. Collectively, this work offers a practical and instructive clinical strategy to address the triple-barrier challenge associated with PEEK-based implants.
Collapse
Affiliation(s)
- Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Haiyang Ding
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yu Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao Wu
- Department of Orthopedics, Zigong Fourth People's Hospital; Institute of Digital Medicine, Zigong Academy of Big Data for Medical Science and Artificial Intelligence, Zigong, China
| | - Yanbai Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hongxing Shi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Li Liao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shuangquan Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| |
Collapse
|
8
|
Serino G, Distefano F, Zanetti EM, Pascoletti G, Epasto G. Multiscale Mechanical Characterization of Polyether-2-ketone (PEKK) for Biomedical Application. Bioengineering (Basel) 2024; 11:244. [PMID: 38534517 DOI: 10.3390/bioengineering11030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Polyether-ether-2-ketone (PEKK) is a high-performance thermoplastic polymer used in various fields, from aerospace to medical applications, due to its exceptional mechanical and thermal properties. Nonetheless, the mechanical behavior of 3D-printed PEKK still deserves to be more thoroughly investigated, especially in view of its production by 3D printing, where mechanical properties measured at different scales are likely to be correlated to one another and to all play a major role in determining biomechanical properties, which include mechanical strength on one side and osteointegration ability on the other side. This work explores the mechanical behavior of 3D-printed PEKK through a multiscale approach, having performed both nanoindentation tests and standard tensile and compression tests, where a detailed view of strain distribution was achieved through Digital Image Correlation (DIC) techniques. Furthermore, for specimens tested up to failure, their fractured surfaces were analyzed through Scanning Electron Microscopy (SEM) to clearly outline fracture modes. Additionally, the internal structure of 3D-printed PEKK was explored through Computed Tomography (CT) imaging, providing a three-dimensional view of the internal structure and the presence of voids and other imperfections. Finally, surface morphology was analyzed through confocal microscopy. The multiscale approach adopted in the present work offers information about the global and local behavior of the PEKK, also assessing its material properties down to the nanoscale. Due to its novelty as a polymeric material, no previous studies have approached a multiscale analysis of 3D-printed PEKK. The findings of this study contribute to a comprehensive understanding of 3D-printed PEKK along with criteria for process optimization in order to customize its properties to meet specific application requirements. This research not only advances the knowledge of PEKK as a 3D-printing material but also provides insights into the multifaceted nature of multiscale material characterization.
Collapse
Affiliation(s)
- Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- PolitoBIOMed Laboratory, Politecnico di Torino, 10129 Torino, Italy
| | - Fabio Distefano
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | | | - Giulia Pascoletti
- Department of Engineering, University of Perugia, 06125 Perugia, Italy
| | - Gabriella Epasto
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| |
Collapse
|
9
|
Aditya T, Mesa-Restrepo A, Civantos A, Cheng MK, Jaramillo-Correa C, Posada VM, Koyn Z, Allain JP. Ion Bombardment-Induced Nanoarchitectonics on Polyetheretherketone Surfaces for Enhanced Nanoporous Bioactive Implants. ACS APPLIED BIO MATERIALS 2023; 6:4922-4934. [PMID: 37932955 DOI: 10.1021/acsabm.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In spite of the biocompatible, nontoxic, and radiolucent properties of polyetheretherketone (PEEK), its biologically inert surface compromises its use in dental, orthopedic, and spine fusion industries. Many efforts have been made to improve the biological performance of PEEK implants, from bioactive coatings to composites using titanium alloys or hydroxyapatite and changing the surface properties by chemical and physical methods. Directed plasma nanosynthesis (DPNS) is an atomic-scale nanomanufacturing technique that changes the surface topography and chemistry of solids via low-energy ion bombardment. In this study, PEEK samples were nanopatterned by using argon ion irradiation by DPNS to yield active nanoporous biomaterial surface. PEEK surfaces modified with two doses of low and high fluence, corresponding to 1.0 × 1017 and 1.0 × 1018 ions/cm2, presented pore sizes of 15-25 and 60-90 nm, respectively, leaving exposed PEEK fibers and an increment of roughness of nearly 8 nm. The pores per unit area were closely related for high fluence PEEK and low fluence PEEK surfaces, with 129.11 and 151.72 pore/μm2, respectively. The contact angle significantly decreases in hydrophobicity-hydrophilicity tests for the irradiated PEEK surface to ∼46° from a control PEEK value of ∼74°. These super hydrophilic substrates had 1.6 times lower contact angle compared to the control sample revealing a rough surface of 20.5 nm only at higher fluences when compared to control and low fluences of 12.16 and 14.03 nm, respectively. These super hydrophilic surfaces in both cases reached higher cell viability with ∼13 and 34% increase, respectively, compared to unmodified PEEK, with an increased expression of alkaline phosphatase at 7 days on higher fluences establishing a higher affinity for preosteblasts with increased cellular activity, thus revealing successful and improved integration with the implant material, which can potentially be used in bone tissue engineering.
Collapse
Affiliation(s)
- Teresa Aditya
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Ming-Kit Cheng
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Camilo Jaramillo-Correa
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| | - Viviana M Posada
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Zachariah Koyn
- Editekk, Inc., State College, Pennsylvania 16803, United States
| | - Jean Paul Allain
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
- Department of Bioengineering, University of Illinois at Urbana─Champaign, Champaign, Illinois 61801-3028, United States
| |
Collapse
|
10
|
Su J, Wu Q, Xing X, Li D, Ou Y, He K, Lin H, Qiu Y, Rausch-Fan X, Chen J. Effect of sulfonation time on physicochemical, osteogenic, antibacterial properties and biocompatibility of carbon fiber reinforced polyether ether ketone. J Mech Behav Biomed Mater 2023; 145:105979. [PMID: 37467553 DOI: 10.1016/j.jmbbm.2023.105979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The carbon fiber reinforced polyetheretherketone (CFR-PEEK) has been increasingly used in orthopedics dentistry due to its excellent biocompatibility and mechanical properties. However, the biological inertness and poor antibacterial activity limit its clinical applications. This paper focused on the performances of CFR-PEEK with porous morphology that were exposed to different sulfonation periods (1, 3, 5, and 10 min, corresponding to CP-S1, CP-S3, CP-S5, and CP-S10, respectively). Residual sulfuric acid was removed by acetone rinsing, NaOH immersion, and hydrothermal treatment before in vitro and in vivo studies. The results showed some significant difference in the physicochemical properties, including energy dispersive X-ray spectroscopy (EDS) map of sulfur atoms, X-ray photoelectron spectroscopy (XPS) of valences of sulfur ions, Fourier transformation infrared spectroscopy (FTIR), hydrophilicity, hardness, and elastic modulus among CP-S3, CP-S5, and CP-S10. However, CP-S5 and CP-S10 were more effective in promoting the proliferation, adhesion, and osteogenic differentiation of seeded bone mesenchymal stem cells (BMSCs) and growth inhibition of S. aureus and P. gingivalis compared with other groups. Furthermore, the CP-S5 and CP-S10 samples achieved better cranial bone repair than the non-sulfonation group in a rat model. Therefore, it can be inferred that both 5 and 10 min are viable sulfonation durations for 30% CFR-PEEK. These findings provide a theoretical basis for developing CFR-PEEK for clinical applications.
Collapse
Affiliation(s)
- Jingjing Su
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Qingshi Wu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Xiaojie Xing
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Dexiong Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Yanjing Ou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Kaixun He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Hanyu Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Yubei Qiu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria.
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
11
|
Zhang R, Jo JI, Kanda R, Nishiura A, Hashimoto Y, Matsumoto N. Bioactive Polyetheretherketone with Gelatin Hydrogel Leads to Sustained Release of Bone Morphogenetic Protein-2 and Promotes Osteogenic Differentiation. Int J Mol Sci 2023; 24:12741. [PMID: 37628923 PMCID: PMC10454083 DOI: 10.3390/ijms241612741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Polyetheretherketone (PEEK) is one of the most promising implant materials for hard tissues due to its similar elastic modulus; however, usage of PEEK is still limited owing to its biological inertness and low osteoconductivity. The objective of the study was to provide PEEK with the ability to sustain the release of growth factors and the osteogenic differentiation of stem cells. The PEEK surface was sandblasted and modified with polydopamine (PDA). Moreover, successful sandblasting and PDA modification of the PEEK surface was confirmed through physicochemical characterization. The gelatin hydrogel was then chemically bound to the PEEK by adding a solution of glutaraldehyde and gelatin to the surface of the PDA-modified PEEK. The binding and degradation of the gelatin hydrogel with PEEK (GPEEK) were confirmed, and the GPEEK mineralization was observed in simulated body fluid. Sustained release of bone morphogenetic protein (BMP)-2 was observed in GPEEK. When cultured on GPEEK with BMP-2, human mesenchymal stem cells (hMSCs) exhibited osteogenic differentiation. We conclude that PEEK with a gelatin hydrogel incorporating BMP-2 is a promising substrate for bone tissue engineering.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Ryuhei Kanda
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| | - Yoshiya Hashimoto
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan;
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (R.Z.); (A.N.); (N.M.)
| |
Collapse
|
12
|
Bi X, Li M, Zhang Y, Yin M, Che W, Bi Z, Yang Y, Ouyang J. Polyetheretherketone (PEEK) as a Potential Material for the Repair of Maxillofacial Defect Compared with E-poly(tetrafluoroethylene) (e-PTFE) and Silicone. ACS Biomater Sci Eng 2023; 9:4328-4340. [PMID: 37276458 DOI: 10.1021/acsbiomaterials.2c00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silicone and e-poly(tetrafluoroethylene) (e-PTFE) are the most commonly used artificial materials for repairing maxillofacial bone defects caused by facial trauma and tumors. However, their use is limited by poor histocompatibility, unsatisfactory support, and high infection rates. Polyetheretherketone (PEEK) has excellent mechanical strength and biocompatibility, but its application to the repair of maxillofacial bone defects lacks a theoretical basis. The microstructure and mechanical properties of e-PTFE, silicone, and PEEK were evaluated by electron microscopy, BOSE machine, and Fourier transformed infrared spectroscopy. Mouse fibroblast L929 cells were incubated on the surface of the three materials to assess cytotoxicity and adhesion. The three materials were implanted onto the left femoral surface of 90 male mice, and samples of the implants and surrounding soft tissues were evaluated histologically at 1, 2, 4, 8, and 12 weeks post-surgery. PEEK had a much higher Young's modulus than either e-PTFE or silicone (p < 0.05 each), and maintained high stiffness without degradation long after implantation. Both PEEK and e-PTFE facilitated L929 cell adhesion, with PEEK having lower cytotoxicity than e-PTFE and silicone (p < 0.05 each). All three materials similarly hindered the motor function of mice 12 weeks after implantation (p > 0.05 each). Connective tissue ingrowth was observed in PEEK and e-PTFE, whereas a fibrotic peri-prosthetic capsule was observed on the surface of silicone. The postoperative infection rate was significantly lower for both PEEK and silicone than for e-PTFE (p < 0.05 each). PEEK shows excellent biocompatibility and mechanical stability, suggesting that it can be effective as a novel implant to repair maxillofacial bone defects.
Collapse
Affiliation(s)
- Xin Bi
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, No. 1038, Guangzhou Road North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Mingdong Li
- Department of Orthopedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou, Hainan 570300, China
| | - Yuchen Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, No. 1038, Guangzhou Road North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Ming Yin
- Department of Imaging, Nanfang Hospital, Southern Medical University, No. 1038, Guangzhou Road North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Wuqiang Che
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Zhenyu Bi
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong 510515, China
| |
Collapse
|
13
|
Liu S, Liu W, Yang Q, Yang S, Yang Y, Fan L, Zhang Y, Qi B, Shi Z, Wei X, Zhu L, Li T. Non-Coding-RNA-Activated Core/Chitosan Shell Nanounits Coated with Polyetheretherketone for Promoting Bone Regeneration and Osseointegration via Osteoimmunology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12653-12668. [PMID: 36868875 DOI: 10.1021/acsami.2c19186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bone implant outcome and bone regeneration properties can be improved by the immunomodulation of exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs), which contain cytokines, signaling lipids, and regulatory miRNAs. Analysis of miRNAs in BMSCs-derived exosomes showed that miR-21a-5p exhibited the highest expression and was associated with the NF-κB pathway. Hence, we developed an implant with miR-21a-5p functionality to promote bone incorporation by immunoregulation. Mediated by the potent interaction between tannic acid (TA) and biomacromolecules, the tannic acid modified mesoporous bioactive glass nanoparticles coated with miR-21a-5p (miR-21a-5p@T-MBGNs) were reversibly attached to TA-modified polyetheretherketone (T-PEEK). Cocultured cells could phagocytose miR-21a-5p@T-MBGNs slowly released from miR-21a-5p@T-MBGNs loaded T-PEEK (miMT-PEEK). Moreover, miMT-PEEK boosted macrophage M2 polarization via the NF-κB pathway to increase BMSCs osteogenic differentiation. In vivo testing of miMT-PEEK in the rat air-pouch model and rat femoral drilling model indicated effective macrophage M2 polarization, new bone formation, and excellent osseointegration. Overall, the osteoimmunomodulation of the miR-21a-5p@T-MBGNs-functionalized implant promoted osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yili Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Tao Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
14
|
Senra MR, Marques MDFV, Monteiro SN. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers (Basel) 2023; 15:373. [PMID: 36679253 PMCID: PMC9861117 DOI: 10.3390/polym15020373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
The global orthopedic market is forecasted to reach US$79.5 billion by the end of this decade. Factors driving the increase in this market are population aging, sports injury, road traffic accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is of utmost importance to develop bone implants with superior mechanical and biological properties to face the demand and improve patients' quality of life. Today, metallic implants still hold a dominant position in the global orthopedic implant market, mainly due to their superior mechanical resistance. However, their performance might be jeopardized due to the possible release of metallic debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone) (PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates to be used in manufacturing bone implants due to its similarity to the mechanical properties of bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration. Notwithstanding, PEEK's bioactivity can be improved through surface modification techniques and by the development of bioactive composites. This paper overviews the advantages of using PEEK for manufacturing implants and addresses the most common strategies to improve the bioactivity of PEEK in order to promote enhanced biomechanical performance.
Collapse
Affiliation(s)
- Mônica Rufino Senra
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering, IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro CEP 22290-270, RJ, Brazil
| |
Collapse
|
15
|
Pidhatika B, Widyaya VT, Nalam PC, Swasono YA, Ardhani R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers (Basel) 2022; 14:polym14245526. [PMID: 36559893 PMCID: PMC9787615 DOI: 10.3390/polym14245526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
This comprehensive review focuses on polyetheretherketone (PEEK), a synthetic thermoplastic polymer, for applications in dentistry. As a high-performance polymer, PEEK is intrinsically robust yet biocompatible, making it an ideal substitute for titanium-the current gold standard in dentistry. PEEK, however, is also inert due to its low surface energy and brings challenges when employed in dentistry. Inert PEEK often falls short of achieving a few critical requirements of clinical dental materials, such as adhesiveness, osseoconductivity, antibacterial properties, and resistance to tribocorrosion. This study aims to review these properties and explore the various surface modification strategies that enhance the performance of PEEK. Literatures searches were conducted on Google Scholar, Research Gate, and PubMed databases using PEEK, polyetheretherketone, osseointegration of PEEK, PEEK in dentistry, tribology of PEEK, surface modifications, dental applications, bonding strength, surface topography, adhesive in dentistry, and dental implant as keywords. Literature on the topics of surface modification to increase adhesiveness, tribology, and osseointegration of PEEK were included in the review. The unavailability of full texts was considered when excluding literature. Surface modifications via chemical strategies (such as sulfonation, plasma treatment, UV treatment, surface coating, surface polymerization, etc.) and/or physical approaches (such as sandblasting, laser treatment, accelerated neutral atom beam, layer-by-layer assembly, particle leaching, etc.) discussed in the literature are summarized and compared. Further, approaches such as the incorporation of bioactive materials, e.g., osteogenic agents, antibacterial agents, etc., to enhance the abovementioned desired properties are explored. This review presents surface modification as a critical and essential approach to enhance the biological performance of PEEK in dentistry by retaining its mechanical robustness.
Collapse
Affiliation(s)
- Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
- Collaborative Research Center for Biomedical Scaffolds, National Research and Innovation Agency of the Republic Indonesia and Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Vania Tanda Widyaya
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Prathima C. Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260-1900, USA
| | - Yogi Angga Swasono
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
- Correspondence:
| |
Collapse
|
16
|
Strategies for Improved Wettability of Polyetheretherketone (PEEK) Polymers by Non-Equilibrium Plasma Treatment. Polymers (Basel) 2022; 14:polym14235319. [PMID: 36501716 PMCID: PMC9739015 DOI: 10.3390/polym14235319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Polyetheretherketone (PEEK) is the material of choice in several applications ranging from the automotive industry to medicine, but the surface properties are usually not adequate. A standard method for tailoring surface properties is the application of gaseous plasma. The surface finish depends enormously on the processing parameters. This article presents a review of strategies adapted for improved wettability and adhesion of PEEK. The kinetics of positively charged ions, neutral reactive plasma species, and vacuum ultraviolet radiation on the surface finish are analyzed, and synergies are stressed where appropriate. The reviewed articles are critically assessed regarding the plasma and surface kinetics, and the surface mechanisms are illustrated. The directions for obtaining optimal surface finish are provided together with the scientific explanation of the limitations of various approaches. Super-hydrophilic surface finish is achievable by treatment with a large dose of vacuum ultraviolet radiation in the presence of oxidizing gas. Bombardment with positively charged ions of kinetic energy between about 100 and 1000 eV also enable high wettability, but one should be aware of excessive heating when using the ions.
Collapse
|
17
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
18
|
Chai H, Wang W, Yuan X, Zhu C. Bio-Activated PEEK: Promising Platforms for Improving Osteogenesis through Modulating Macrophage Polarization. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120747. [PMID: 36550953 PMCID: PMC9774947 DOI: 10.3390/bioengineering9120747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The attention on orthopedic biomaterials has shifted from their direct osteogenic properties to their osteoimmunomodulation, especially the modulation of macrophage polarization. Presently, advanced technologies endow polyetheretherketone (PEEK) with good osteoimmunomodulation by modifying PEEK surface characteristics or incorporating bioactive substances with regulating macrophage polarization. Recent studies have demonstrated that the fabrication of a hydrophilic surface and the incorporation of bioactive substances into PEEK (e.g., zinc, calcium, and phosphate) are good strategies to promote osteogenesis by enhancing the polarization of M2 macrophages. Furthermore, the modification by other osteoimmunomodulatory composites (e.g., lncRNA-MM2P, IL-4, IL-10, and chitosan) and their controlled and desired release may make PEEK an optimal bio-activated implant for regulating and balancing the osteogenic system and immune system. The purpose of this review is to comprehensively evaluate the potential of bio-activated PEEK in polarizing macrophages into M2 phenotype to improve osteogenesis. For this objective, we retrieved and discussed different kinds of bio-activated PEEK regarding improving osteogenesis through modulating macrophage polarization. Meanwhile, the relevant challenges and outlook were presented. We hope that this review can shed light on the development of bio-activated PEEK with more favorable osteoimmunomodulation.
Collapse
Affiliation(s)
- Haobu Chai
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
| | - Wenzhi Wang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
| | - Xiangwei Yuan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (X.Y.); (C.Z.)
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (X.Y.); (C.Z.)
| |
Collapse
|
19
|
Chen J, Cao G, Li L, Cai Q, Dunne N, Li X. Modification of polyether ether ketone for the repairing of bone defects. Biomed Mater 2022; 17:042001. [PMID: 35395651 DOI: 10.1088/1748-605x/ac65cd] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022]
Abstract
Bone damage as a consequence of disease or trauma is a common global occurrence. For bone damage treatment-bone implant materials are necessary across three classifications of surgical intervention (i.e. fixation, repair, and replacement). Many types of bone implant materials have been developed to meet the requirements of bone repair. Among them, polyether ether ketone (PEEK) has been considered as one of the next generation of bone implant materials, owing to its advantages related to good biocompatibility, chemical stability, x-ray permeability, elastic modulus comparable to natural bone, as well as the ease of processing and modification. However, as PEEK is a naturally bioinert material, some modification is needed to improve its integration with adjacent bones after implantation. Therefore, it has become a very hot topic of biomaterials research and various strategies for the modification of PEEK including blending, 3D printing, coating, chemical modification and the introduction of bioactive and/or antibacterial substances have been proposed. In this systematic review, the recent advances in modification of PEEK and its application prospect as bone implants are summarized, and the remaining challenges are also discussed.
Collapse
Affiliation(s)
- Junfeng Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| | - Qiang Cai
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
20
|
Buck E, Lee S, Gao Q, Tran SD, Tamimi F, Stone LS, Cerruti M. The Role of Surface Chemistry in the Osseointegration of PEEK Implants. ACS Biomater Sci Eng 2022; 8:1506-1521. [PMID: 35290033 DOI: 10.1021/acsbiomaterials.1c01434] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(etheretherketone) (PEEK) implants suffer from poor osseointegration because of chronic inflammation. In this study, we hypothesized that adding NH2 and COOH groups to the surface of PEEK could modulate macrophage responses by altering protein adsorption and improve its osseointegration. NH2 and COOH-functionalized PEEK surfaces induced pro- and anti-inflammatory macrophage responses, respectively, and differences in protein adsorption patterns on these surfaces were related to the varied inflammatory responses. The macrophage responses to NH2 surfaces significantly reduced the osteogenic differentiation of mesenchymal stem cells (MSCs). MSCs cultured on NH2 surfaces differentiated less than those on COOH surfaces even though NH2 surfaces promoted the most mineralization in simulated body fluid solutions. After 14 days in rat tibia unicortical defects, the bone around NH2 surfaces had thinner trabeculae and higher specific bone surface than the bone around unmodified implants; surprisingly, the NH2 implants significantly increased bone-binding over the unmodified implants, while COOH implants only showed a trend for increasing bone-binding. Taken together, these results suggest that both mineral-binding and immune responses play a role in osseointegration, and PEEK implant integration may be improved with mixtures of these two functional groups to harness the ability to reduce inflammation and bind bone strongly.
Collapse
Affiliation(s)
- Emily Buck
- Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Seunghwan Lee
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada.,Alan Edwards Center for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec H3A 0G1, Canada
| | - Qiman Gao
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada.,Alan Edwards Center for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec H3A 0G1, Canada
| | - Marta Cerruti
- Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
21
|
Fukazawa K, Mu M, Chen SH, Ishihara K. Photoinduced immobilization of 2-methacryloyloxyethyl phosphorylcholine polymers with different molecular architectures on a poly(ether ether ketone) surface. J Mater Chem B 2022; 10:2699-2707. [PMID: 35113114 DOI: 10.1039/d1tb02415a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ether ether ketone) (PEEK) has seen increasing use in biomedical fields as a replacement for metal implants. Accordingly, the surface functionalities of PEEK are important for the development of medical devices. We have focused on the application of photoinduced reactions in PEEK to immobilize a functional polymer via radical generation on the surface, which can react with hydrocarbon groups. In this study, we used zwitterionic copolymers comprising 2-methacryloyloxyethyl phosphorylcholine (MPC) units and n-butyl methacrylate (BMA) units with various molecular architectures for surface modification. A random copolymer (poly(MPC-co-BMA) (r-PMB)), an AB-type diblock copolymer (di-PMB), and an ABA-type triblock copolymer (tri-PMB) (A segment: poly(BMA); B segment: poly(MPC)) were synthesized with the same monomer compositions. All PMBs were successfully immobilized on the PEEK surface via UV irradiation after the dip-coating process, regardless of their molecular structure. In this reaction, the alkyl group of the BMA unit functioned as a photoreactive site on the PEEK surface. This indicates that the molecular structure differences affect the surface properties. For example, compared to r-PMB and tri-PMB, di-PMB-modified surfaces exhibited an extremely low water contact angle of approximately 10°. The findings of this study demonstrate that this surface functionalization method does not require a low-molecular-weight compound, such as an initiator, and can be applied to the surface of inert PEEK through a simple photoreaction under room temperature, atmospheric pressure, and dry state conditions.
Collapse
Affiliation(s)
- Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Mingwei Mu
- Department of Bioengineering, School of Food and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Sheng-Han Chen
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
22
|
Yu D, Lei X, Zhu H. Modification of polyetheretherketone (PEEK) physical features to improve osteointegration. J Zhejiang Univ Sci B 2022; 23:189-203. [PMID: 35261215 DOI: 10.1631/jzus.b2100622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polyetheretherketone (PEEK) has been widely applied in orthopedics because of its excellent mechanical properties, radiolucency, and biocompatibility. However, the bioinertness and poor osteointegration of PEEK have greatly limited its further application. Growing evidence proves that physical factors of implants, including their architecture, surface morphology, stiffness, and mechanical stimulation, matter as much as the composition of their surface chemistry. This review focuses on the multiple strategies for the physical modification of PEEK implants through adjusting their architecture, surface morphology, and stiffness. Many research findings show that transforming the architecture and incorporating reinforcing fillers into PEEK can affect both its mechanical strength and cellular responses. Modified PEEK surfaces at the macro scale and micro/nano scale have positive effects on cell-substrate interactions. More investigations are necessary to reach consensus on the optimal design of PEEK implants and to explore the efficiency of various functional implant surfaces. Soft-tissue integration has been ignored, though evidence shows that physical modifications also improve the adhesion of soft tissue. In the future, ideal PEEK implants should have a desirable topological structure with better surface hydrophilicity and optimum surface chemistry.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyue Lei
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
23
|
Li M, Bai J, Tao H, Hao L, Yin W, Ren X, Gao A, Li N, Wang M, Fang S, Xu Y, Chen L, Yang H, Wang H, Pan G, Geng D. Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioact Mater 2022; 8:309-324. [PMID: 34541403 PMCID: PMC8427090 DOI: 10.1016/j.bioactmat.2021.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Polyetheretherketone (PEEK) has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance. However, its biological inertness, poor osteoinduction, and weak antibacterial activity make the clinical applications in a dilemma. Inspired by the mussel adhesion mechanism, here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins (Mfps)-mimic peptide with clickable azido terminal. The peptide enables mussel-like adhesion on PEEK biomaterial surfaces, leaving azido groups for the further steps of biofunctionalizations. In this study, antimicrobial peptide (AMP) and osteogenic growth peptide (OGP) were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair. Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios, an optimal PEEK surface was finally obtained in this research, which could long-term inhibit bacterial growth, stabilize bone homeostasis and facilitate interfacial bone regeneration. In a word, this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants, in particular, achieving rational integration of multiple biofunctions to match clinical requirements.
Collapse
Affiliation(s)
- Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Li Hao
- Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Weiling Yin
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiaoxue Ren
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Ning Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Shiyuan Fang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, Anhui, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Liang Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
24
|
Shimatani A, Toyoda H, Orita K, Hirakawa Y, Aoki K, Oh JS, Shirafuji T, Nakamura H. In vivo study on the healing of bone defect treated with non-thermal atmospheric pressure gas discharge plasma. PLoS One 2021; 16:e0255861. [PMID: 34634068 PMCID: PMC8504758 DOI: 10.1371/journal.pone.0255861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Medical treatment using non-thermal atmospheric pressure plasma (NTAPP) is rapidly gaining recognition. NTAPP is thought to be a new therapeutic method because it could generate highly reactive species in an ambient atmosphere which could be exposed to biological targets (e.g., cells and tissues). If plasma-generated reactive species could stimulate bone regeneration, NTAPP can provide a new treatment opportunity in regenerative medicine. Here, we investigated the impact of NTAPP on bone regeneration using a large bone defect in New Zealand White rabbits and a simple atmospheric pressure plasma (helium microplasma jet). We observed the recovery progress of the large bone defects by X-ray imaging over eight weeks after surgery. The X-ray results showed a clear difference in the occupancy of the new bone of the large bone defect among groups with different plasma treatment times, whereas the new bone occupancy was not substantial in the untreated control group. According to the results of micro-computed tomography analysis at eight weeks, the most successful bone regeneration was achieved using a plasma treatment time of 10 min, wherein the new bone volume was 1.51 times larger than that in the plasma untreated control group. Using H&E and Masson trichrome stains, nucleated cells were uniformly observed, and no inclusion was confirmed, respectively, in the groups of plasma treatment. We concluded the critical large bone defect were filled with new bone. Overall, these results suggest that NTAPP is promising for fracture treatment.
Collapse
Affiliation(s)
- Akiyoshi Shimatani
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
- * E-mail: (HT); (J-SO)
| | - Kumi Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Kodai Aoki
- Department of Physical Electronics and Informatics, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Jun-Seok Oh
- Department of Physical Electronics and Informatics, Graduate School of Engineering, Osaka City University, Osaka, Japan
- BioMedical Engineering Center, Graduate School of Engineering, Osaka City University, Osaka, Japan
- * E-mail: (HT); (J-SO)
| | - Tatsuru Shirafuji
- Department of Physical Electronics and Informatics, Graduate School of Engineering, Osaka City University, Osaka, Japan
- BioMedical Engineering Center, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
25
|
Rodzeń K, McIvor MJ, Sharma PK, Acheson JG, McIlhagger A, Mokhtari M, McFerran A, Ward J, Meenan BJ, Boyd AR. The Surface Characterisation of Fused Filament Fabricated (FFF) 3D Printed PEEK/Hydroxyapatite Composites. Polymers (Basel) 2021; 13:3117. [PMID: 34578018 PMCID: PMC8471434 DOI: 10.3390/polym13183117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedics and has shown a lot of promise for 'made-to-measure' implants via additive manufacturing approaches. However, PEEK is bioinert and needs to undergo surface modification to make it at least osteoconductive to ensure a more rapid, improved, and stable fixation that will last longer in vivo. One approach to solving this issue is to modify PEEK with bioactive agents such as hydroxyapatite (HA). The work reported in this study demonstrates the direct 3D printing of PEEK/HA composites of up to 30 weight percent (wt%) HA using a Fused Filament Fabrication (FFF) approach. The surface characteristics and in vitro properties of the composite materials were investigated. X-ray diffraction revealed the samples to be semi-crystalline in nature, with X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealing HA materials were available in the uppermost surface of all the 3D printed samples. In vitro testing of the samples at 7 days demonstrated that the PEEK/HA composite surfaces supported the adherence and growth of viable U-2 OS osteoblast like cells. These results demonstrate that FFF can deliver bioactive HA on the surface of PEEK bio-composites in a one-step 3D printing process.
Collapse
Affiliation(s)
- Krzysztof Rodzeń
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Mary Josephine McIvor
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Preetam K. Sharma
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Jonathan G. Acheson
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Alistair McIlhagger
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Mozaffar Mokhtari
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Aoife McFerran
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Joanna Ward
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Brian J. Meenan
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| | - Adrian R. Boyd
- School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (M.J.M.); (P.K.S.); (J.G.A.); (A.M.); (M.M.); (A.M.); (J.W.); (B.J.M.)
| |
Collapse
|
26
|
He M, Huang Y, Xu H, Feng G, Liu L, Li Y, Sun D, Zhang L. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics. Acta Biomater 2021; 129:18-32. [PMID: 34020056 DOI: 10.1016/j.actbio.2021.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Polyetheretherketone (PEEK) is a popular thermoplastic material widely used in engineering applications due to its favorable mechanical properties and stability at high temperatures. With the first implantable grade PEEK being commercialized in 1990s, the use of PEEK has since grown exponentially in the biomedical field and has rapidly transformed a large section of the medical devices landscape. Nowadays, PEEK is a standard biomaterial used across a wide range of implant applications, however, its bioinertness remains a limitation for bone repair applications. The increasing demand for enhanced treatment efficacy/improved patient quality of life, calls for next-generation implants that can offer fast bone integration as well as other desirable therapeutic functions. As such, modification of PEEK implants has progressively shifted from offering desirable mechanical properties, enhancing bioactivity/fast osteointegration, to more recently, tackling post-surgery bacterial infection/biofilm formation, modulation of inflammation and management of bone cancers. Such progress is also accompanied by the evolution of the PEEK manufacturing technologies, to meet the ever increasing demand for more patient specific devices. However, no review has comprehensively covered the recently engaged application areas to date. This paper provides an up-to-date review on the development of PEEK-based biomedical devices in the past 10 years, with particularly focus on modifying PEEK for multi-modal therapeutics. The aim is to provide the peers with a timely update, which may guide and inspire the research and development of next generation PEEK-based healthcare products. STATEMENT OF SIGNIFICANCE: Significant progress has been made in PEEK processing and modification techniques in the past decades, which greatly contributed to its wide applications in the biomedical field. Despite the high volume of published literature on PEEK implant related research, there is a lack of review on its emerging applications in multi-modal therapeutics, which involve bone regeneration, anti-bacteria/anti-inflammation, and cancer inhibition, etc. This timely review covers the state-of-the-art in these exciting areas and provides the important guidance for next generation PEEK based biomedical device research and development.
Collapse
|
27
|
AlOtaibi NM, Dunne M, Ayoub AF, Naudi KB. A novel surgical model for the preclinical assessment of the osseointegration of dental implants: a surgical protocol and pilot study results. J Transl Med 2021; 19:276. [PMID: 34183031 PMCID: PMC8240288 DOI: 10.1186/s12967-021-02944-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dental implants are considered the gold standard replacement for missing natural teeth. The successful clinical performance of dental implants is due to their ability to osseointegrate with the surrounding bone. Most dental implants are manufactured from Titanium and it alloys. Titanium does however have some shortcomings so alternative materials are frequently being investigated. Effective preclinical studies are essential to transfer the innovations from the benchtop to the patients. Many preclinical studies are carried out in the extra-oral bones of small animal models to assess the osseointegration of the newly developed materials. This does not simulate the oral environment where the dental implants are subjected to several factors that influence osseointegration; therefore, they can have limited clinical value. AIM This study aimed to develop an appropriate in-vivo model for dental implant research that mimic the clinical setting. The study evaluated the applicability of the new model and investigated the impact of the surgical procedure on animal welfare. MATERIALS AND METHODS The model was developed in male New Zealand white rabbits. The implants were inserted in the extraction sockets of the secondary incisors in the maxilla. The model allows a split-mouth comparative analysis. The implants' osseointegration was assessed clinically, radiographically using micro-computed tomography (µ-CT), and histologically. A randomised, controlled split-mouth design was conducted in 6 rabbits. A total of twelve implants were inserted. In each rabbit, two implants; one experimental implant on one side, and one control implant on the other side were applied. Screw-shaped implants were used with a length of 8 mm and a diameter of 2 mm. RESULTS All the rabbits tolerated the surgical procedure well. The osseointegration was confirmed clinically, histologically and radiographically. Quantitative assessment of bone volume and mineral density was measured in the peri-implant bone tissues. The findings suggest that the new preclinical model is excellent, facilitating a comprehensive evaluation of osseointegration of dental implants in translational research pertaining to the human application. CONCLUSION The presented model proved to be safe, reproducible and required basic surgical skills to perform.
Collapse
Affiliation(s)
- Noura M AlOtaibi
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK
- Oral and Maxillofacial Surgery, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Michael Dunne
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ashraf F Ayoub
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK
| | - Kurt B Naudi
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK.
| |
Collapse
|
28
|
Chen T, Chen Q, Fu H, Wang D, Gao Y, Zhang M, Liu H. Construction and performance evaluation of a sustained release implant material polyetheretherketone with antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112109. [PMID: 34082931 DOI: 10.1016/j.msec.2021.112109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to construct a tightly binding antibiotic sustained release system on the polyetheretherketone (PEEK) surface and investigate the cellular activity and antibacterial properties of the new oral implant materials. METHODS Low-temperature argon plasma under certain parameters was used to prepare P-PEEK with nano-topology, and chemical deposition technology was adopted to form a polydopamine (PDA) coating on the PEEK surface to build a biological binding platform, PDA/P-PEEK. Subsequently, vancomycin gelatin nanoparticles (Van-GNPs) were prepared by two-step desolvation method. Finally, Van-GNPs were combined with PEEK implant material surface to form a new composite material, Van-GNPs/PEEK. scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), and contact angle tester were used to comprehensively characterize the materials. The in vitro release test of Van was performed by dynamic dialysis with ultraviolet spectrophotometer. The cell cytotoxicity and adhesion tests were studied by mouse embryonic osteoblasts. The antibacterial properties were evaluated by bacterial adhesion test, plate colony counting, and antimicrobial ring test with Staphylococcus aureus and Streptococcus mutans. RESULTS PEEK was treated with low-temperature argon plasma and attached to PDA to form a biological binding platform. The synthesized Van-GNPs were smooth, round, with uniform particle size distribution, and bound to PEEK to form a new composite material, which can release Van constantly. Cell experiments showed that Van-GNPs/PEEK had no cytotoxicity and had good interaction with osteoblasts. Bacterial experiments showed that surface conjugation with Van-GNPs could significantly improve the antibacterial performance of PEEK against S. aureus and S. mutans. SIGNIFICANCE This study demonstrated that Van-GNPs/PEEK have good cellular compatibility and autonomous antibacterial properties, which provide a theoretical basis for the wide application of PEEK in the field of stomatology.
Collapse
Affiliation(s)
- Tianjie Chen
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Qinchao Chen
- Department of Stomatology, Central Hospital of Zibo city, 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, PR China
| | - Haibo Fu
- Department of Pediatrics, Central Hospital of Zibo city, 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, PR China
| | - Defei Wang
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Yunbo Gao
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Meiqin Zhang
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Hong Liu
- Department of General Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
29
|
Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, Zhou L, Ning C. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater 2021; 6:2754-2766. [PMID: 33665507 PMCID: PMC7897935 DOI: 10.1016/j.bioactmat.2021.02.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The host immune response effecting on biomaterials is critical to determine implant fates and bone regeneration property. Bone marrow stem cells (BMSCs) derived exosomes (Exos) contain multiple biosignal molecules and have been demonstrated to exhibit immunomodulatory functions. Herein, we develop a BMSC-derived Exos-functionalized implant to accelerate bone integration by immunoregulation. BMSC-derived Exos were reversibly incorporated on tannic acid (TA) modified sulfonated polyetheretherketone (SPEEK) via the strong interaction of TA with biomacromolecules. The slowly released Exos from SPEEK can be phagocytosed by co-cultured cells, which could efficiently improve the biocompatibilities of SPEEK. In vitro results showed the Exos loaded SPEEK promoted macrophage M2 polarization via the NF-κB pathway to enhance BMSCs osteogenic differentiation. Further in vivo rat air-pouch model and rat femoral drilling model assessment of Exos loaded SPEEK revealed efficient macrophage M2 polarization, desirable new bone formation, and satisfactory osseointegration. Thus, BMSC-derived Exos-functionalized implant exerted osteoimmunomodulation effect to promote osteogenesis.
Collapse
Affiliation(s)
- Lei Fan
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Guan
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cairong Xiao
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Huiquan Wen
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiyou Wang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Can Liu
- Department of Spine Surgery, the First Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yian Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Lei Zhou
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
30
|
Gu X, Sun X, Sun Y, Wang J, Liu Y, Yu K, Wang Y, Zhou Y. Bioinspired Modifications of PEEK Implants for Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 8:631616. [PMID: 33511108 PMCID: PMC7835420 DOI: 10.3389/fbioe.2020.631616] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, polyetheretherketone (PEEK) has been increasingly employed as an implant material in clinical applications. Although PEEK is biocompatible, chemically stable, and radiolucent and has an elastic modulus similar to that of natural bone, it suffers from poor integration with surrounding bone tissue after implantation. To improve the bioactivity of PEEK, numerous strategies for functionalizing the PEEK surface and changing the PEEK structure have been proposed. Inspired by the components, structure, and function of bone tissue, this review discusses strategies to enhance the biocompatibility of PEEK implants and provides direction for fabricating multifunctional implants in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
31
|
Liu C, Bai J, Wang Y, Chen L, Wang D, Ni S, Liu H. The effects of three cold plasma treatments on the osteogenic activity and antibacterial property of PEEK. Dent Mater 2021; 37:81-93. [DOI: 10.1016/j.dental.2020.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
|
32
|
Zhang Y, Jiang W, Yuan S, Zhao Q, Liu Z, Yu W. Impacts of a Nano-Laponite Ceramic on Surface Performance, Apatite Mineralization, Cell Response, and Osseointegration of a Polyimide-Based Biocomposite. Int J Nanomedicine 2020; 15:9389-9405. [PMID: 33262594 PMCID: PMC7699455 DOI: 10.2147/ijn.s273240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Polyimide (PI) exhibits good biocompatibility and high mechanical strength, but biological inertness that does not stimulate bone regeneration, while laponite possesses excellent bioactivity. METHODS In this study, to improve the bioactivity of PI, nano-laponite ceramic (LC)-PI composites (LPCs) were fabricated by melt processing as implantable materials for bone repair. RESULTS The compressive strength, hydrophilicity, and surface roughness of LPCs with 40 w% LC content (LPC40s) were higher than LPC20s, and LPC20s higher than pure PI. In addition, no apatite mineralization occurred on PI, while apatite mineralized on LPCs in simulated body fluid. Compared with LPC20, more apatite deposited on LPC40, indicating good bioactivity. Moreover, the adhesion, proliferation, and alkaline phosphatase activity of rat bone mesenchymal stem cells on LPCs significantly increased with LC content increasing in vitro. Furthermore, the evaluations of animal experiments (micro-CT, histology, and pushout load) revealed that compared with LPC20 and PI, LPC40 significantly enhanced osteogenesis and osseointegration in vivo. DISCUSSION Incorporation of LC into PI obviously improved not only surface physicochemical properties but also biological properties of LPCs. LPC40 with high LC content displayed good biocompatibility and bioactivity, which markedly promoted osteogenesis and osseointegration. Therefore, with its superior biocompatibility and bioactivity, LPC40 could be an alternative candidate as an implant for orthopedic applications.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Hand Surgery, China–Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Weibo Jiang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun130022, People’s Republic of China
| | - Sheng Yuan
- Department of Orthopedics, Peoples’ Hospital of Huolinguole City, Tongliao029200, People’s Republic of China
| | - Qinghui Zhao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200123, People’s Republic of China
| | - Zhongling Liu
- Department of Hospital Infection Control, China–Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Wei Yu
- Department of Hand Surgery, China–Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| |
Collapse
|
33
|
Abstract
Biomechanical function, specifically implantation technique and immediate surgical fixation, of orthopaedic implants is the primary consideration during the development of orthopaedic implants. Biologic and material characteristics are additional factors to include in the design process because of the direct impact on short- and long-term implant performance. The body's initial interaction with implant materials can affect protein- and cell-based function, thereby either promoting or impeding osseointegration. An understanding and inclusion of the biologic response, material surface morphology, and material surface chemistry in implant design is crucial because these factors ultimately determine implant function and patient outcomes. Highlighting the biologic- and material-related advantages and inadequacies of current and potential implant materials as well as applications may guide further research and development of implant materials and designs.
Collapse
|
34
|
Feng X, Ma L, Liang H, Liu X, Lei J, Li W, Wang K, Song Y, Wang B, Li G, Li S, Yang C. Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS OMEGA 2020; 5:26655-26666. [PMID: 33110992 PMCID: PMC7581231 DOI: 10.1021/acsomega.0c03489] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 05/02/2023]
Abstract
Polyetheretherketone (PEEK) constitutes a preferred alternative material for orthopedic implants owing to its good mechanical properties and biocompatibility. However, the poor osseointegration property of PEEK implants has limited their clinical applications. To address this issue, in this study, we investigated the mechanical and biological properties of fully porous PEEK scaffolds with different pore sizes both in vitro and in vivo. PEEK scaffolds with designed pore sizes of 300, 450, and 600 μm and a porosity of 60% were manufactured via fused deposition modeling (FDM) to explore the optimum pore size. Smooth solid PEEK cylinders (PEEK-S) were used as the reference material. The mechanical, cytocompatibility, proliferative, and osteogenic properties of PEEK scaffolds were characterized in comparison to those of PEEK-S. In vivo dynamic contrast-enhanced magnetic resonance imaging, microcomputed tomography, and histological observation were performed after 4 and 12 weeks of implantation to evaluate the microvascular perfusion and bone formation afforded by the various PEEK implants using a New Zealand white rabbit model with distal femoral condyle defects. Results of in vitro testing supported the good biocompatibility of the porous PEEK scaffolds manufactured via FDM. In particular, the PEEK-450 scaffolds were most beneficial for cell adhesion, proliferation, and osteogenic differentiation. Results of in vivo analysis further indicated that PEEK-450 scaffolds exhibited preferential potential for bone ingrowth and vascular perfusion. Together, our findings support that porous PEEK implants designed with a suitable pore size and fabricated via three-dimensional printing constitute promising alternative biomaterials for bone grafting and tissue engineering applications with marked potential for clinical applications.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Liang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department
of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqiang Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bingjin Wang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department
of Orthopaedics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
35
|
Cheng Q, Yuan B, Chen X, Yang X, Lin H, Zhu X, Zhang K, Zhang X. Regulation of surface micro/nano structure and composition of polyetheretherketone and their influence on the behavior of MC3T3-E1 pre-osteoblasts. J Mater Chem B 2020; 7:5713-5724. [PMID: 31482931 DOI: 10.1039/c9tb00943d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The bio-inertness and inferior osseointegration of polyetheretherketone (PEEK) affect its long-term lifetime in clinical applications, and appropriate surface modification is an effective way to enhance osseointegration of PEEK implants. In the present study, a strategy of combining sulfonation with alkali treatment was proposed to endow PEEK with rapid apatite deposition and thus enhanced bioactivity. After 3 min of sulfonation with 98% H2SO4, the sample (PEEK-S-3) showed an optimized surface microporous network and obviously improved hydrophilicity. Its contact angle reduced from the original 106 ± 2.3° to 88 ± 4.0°. After a further 24 h of NaOH treatment on PEEK-S-3, Na element was introduced into the obtained sample (PEEK-Na-24), which had a similar surface morphology and chemical structure with PEEK-S-3 and had a further reduced contact angle (77.9 ± 2.9°). The in vitro bioactivity tests showed that after only 3 days of immersion in simulated body fluid (SBF), PEEK-Na-24 was fully covered with a layer of uniform bone-like apatite. The apatite deposition sharply decreased the contact angle of the sample (PEEK-HA) to 16.6 ± 2.6° and increased its surface roughness to 1.05 ± 0.27 μm, leading to the enhanced adsorption of serum proteins on PEEK-HA. The in vitro cell culture indicated that all the three surface-modified samples (PEEK-S-3, PEEK-Na-24 and PEEK-HA) could promote the adhesion, spreading, proliferation and osteoblastic differentiation of MC3T3-E1 pre-osteoblasts, and PEEK-HA presented the best effect. Thus, the surface bioactive PEEK resulting from the optimized surface modification, i.e. combination of sulfonation, alkali treatment and biomimetic apatite deposition, could have good potential in clinical application.
Collapse
Affiliation(s)
- Qinwen Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu K, Wang G, Guo S, Liu J, Qu W, Liu N, Wang H, Ji J, Chu PK, Gu B, Zhang W. High-Potential surface on zirconia ceramics for bacteriostasis and biocompatibility. Colloids Surf B Biointerfaces 2020; 193:111074. [PMID: 32416519 DOI: 10.1016/j.colsurfb.2020.111074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Bacteria easily adhere, colonize, and form biofilm on oral implants subsequently causing periimplantation periarthritis and mechanical loosening. Previous studies show that a high potential surface on polymeric implants can achieve surface bacteriostasis without side effects. In this study, a high surface potential is introduced to zirconia ceramics to mitigate bacterial infection. Carbon and nitrogen plasma immersion ion implantation (C-PIII and N-PIII) are conducted on zirconia ceramic samples sequentially to elevate the surface potential. The surface with a high potential but without ion leaching exhibits excellent antibacterial effects against oral bacteria and little bacterial resistance is triggered. The surface also has high strength and excellent biocompatibility. The nitrogen-containing inorganic structure with high potential can actualize bacteriostasis and biocompatibility on zirconia ceramics simultaneously and this new strategy can enhance the antibacterial ability of oral implants.
Collapse
Affiliation(s)
- Ke Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guomin Wang
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuqin Guo
- Stomatology Department of the First Medical Center of the General Hospital of Chinese PLA, 28 FuXing Road, Beijing 100853, China
| | - Jun Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Qu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Liu
- Stomatology Department of the First Medical Center of the General Hospital of Chinese PLA, 28 FuXing Road, Beijing 100853, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Junhui Ji
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Bin Gu
- Stomatology Department of the First Medical Center of the General Hospital of Chinese PLA, 28 FuXing Road, Beijing 100853, China.
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
37
|
Niu Y, Guo L, Hu F, Ren L, Zhou Q, Ru J, Wei J. Macro-Microporous Surface with Sulfonic Acid Groups and Micro-Nano Structures of PEEK/Nano Magnesium Silicate Composite Exhibiting Antibacterial Activity and Inducing Cell Responses. Int J Nanomedicine 2020; 15:2403-2417. [PMID: 32308391 PMCID: PMC7155204 DOI: 10.2147/ijn.s238287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To improve the surface bio-properties of polyetheretherketone (PEEK)/nano magnesium silicate (n-MS) composite (PC). Materials and Methods The surface of PC was firstly treated by particle impact (PCP) and subsequently modified by concentrated sulfuric acid (PCPS). Results PCPS surface exhibited not only macropores with sizes of about 150 μm (fabricated by particle impact) but also micropores with sizes of about 2 μm (created by sulfonation of PEEK) on the macroporous walls, and sulfonic acid (-SO3H) groups were introduced on PCPS surface. In addition, many n-MS nanoparticles were exposed on the microporous walls, which formed micro-nano structures. Moreover, the surface roughness and hydrophilicity of PCPS were obviously enhanced as compared with PC and PCP. Moreover, the apatite mineralization of PCPS in simulated body fluid (SBF) was obviously improved as compared with PC. Furthermore, compared with PC and PCP, PCPS exhibited antibacterial performances due to the presence of -SO3H groups. In addition, the responses (eg, adhesion and proliferation as well as differentiation) of bone marrow mesenchymal stem cell of rat to PCPS were significantly promoted as compared with PC and PCP. Conclusion PCPS with macro-microporous surface containing -SO3H groups and micro-nano structures exhibited antibacterial activity and induced cell responses, which might possess large potential for bone substitute and repair.
Collapse
Affiliation(s)
- Yunfei Niu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Lieping Guo
- Department of Oncology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, People's Republic of China
| | - Fangyong Hu
- Department of Orthopaedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Lishu Ren
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qirong Zhou
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jiangying Ru
- Department of Orthopaedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
38
|
Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO 4·2H 2O) and antibiotics for anti-infection and enhanced osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110782. [PMID: 32279744 DOI: 10.1016/j.msec.2020.110782] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Polyetheretherketone (PEEK) is an ideal implant material for orthopedic and dental application due to its high biocompatibility and mechanical property. However, biological inertness of PEEK hinders the effective clinical applications in treating bone defect, especially in the situation accompanied by bacterial infection. In this study, a layer-by-layer (LBL) deposition method with controlled cycles was developed to rapidly construct brushite (CaHPO4·2H2O) (CaP) layers containing gentamicin sulfate (GS) on PEEK to obtain CaP-and-GS modified PEEK, named as PEEK/CaP-GS. Different PEEK/CaP-GS, like PEEK/CaP-GS*3, PEEK/CaP-GS*6 and PEEK/CaP-GS*9 were conveniently prepared by repeating the LBL cycles to 3, 6 and 9 times, respectively. The morphology, structure and surface property of the fabricated PEEK/CaP-GS were carefully characterized. In vitro antibacterial experiments illustrated that all of the PEEK/CaP-GS samples had excellent and sustained antibacterial property. Cell proliferation experiments revealed the acceptable biocompatibility and cell osteogenic differentiation of PEEK/CaP-GS, especially in PEEK/CaP-GS*6. X-ray, μ-CT, and histological analysis showed that PEEK/CaP-GS exhibited in vivo antibacterial activity and osseointegration ability in the treatment of bone defect with infection. In both the in vitro and the in vivo experiments, PEEK/CaP-GS*6 prepared from the 6 LBL cycles exhibited the best antibacterial and osseointegration ability for bone healing. This work opens new avenue of the facile and effective modification of PEEK with special biological functions for clinical application, especially for the implants requiring excellent antibacterial and osseointegration ability.
Collapse
|
39
|
Buck E, Li H, Cerruti M. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromol Biosci 2019; 20:e1900271. [DOI: 10.1002/mabi.201900271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Emily Buck
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Hao Li
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| |
Collapse
|
40
|
Zhu Y, Zhang CN, Gu YX, Shi JY, Mo JJ, Qian SJ, Qiao SC, Lai HC. The responses of human gingival fibroblasts to magnesium-doped titanium. J Biomed Mater Res A 2019; 108:267-278. [PMID: 31606920 DOI: 10.1002/jbm.a.36813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
The titanium (Ti) implant is widely used in implant dentistry; yet peri-implantitis has always been one of the most common and serious complications. Here, we demonstrated that magnesium-doping would be an effective way of enhancing the integration between implant surfaces and gingival tissues, which is critical to peri-implant health. The magnesium (2.76-6.35 at %) was immobilized onto the titanium substrate by a magnesium plasma immersion ion implantation (Mg-PIII) technique. Mg-PIII treatments did not alter surface topographies of the original titanium substrate but improved its hydrophilicity. The in vitro study including cell viability, adhesion, proliferation, migration, and real-time polymerase chain reaction assays disclosed improved adhesion, proliferation, migration, and extracellular matrix remodeling abilities of human gingival fibroblasts (HGFs) on the magnesium-doped titanium. The results of western blot suggested that the Mg-modified titanium induced the phosphorylation of AKT through the activation of PI3K. Our results revealed that magnesium-doping would potentially enhance soft tissue sealings by promoting cellular functions of HGFs in a dose-dependent manner, boding well for its applications on surfaces of implant necks in early peri-implant soft tissue integrations.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chu-Nan Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ying-Xin Gu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun-Yu Shi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jia-Ji Mo
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shu-Jiao Qian
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shi-Chong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hong-Chang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
41
|
Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Masamoto K, Fujibayashi S, Yabutsuka T, Hiruta T, Otsuki B, Okuzu Y, Goto K, Shimizu T, Shimizu Y, Ishizaki C, Fukushima K, Kawai T, Hayashi M, Morizane K, Kawata T, Imamura M, Matsuda S. In vivo and in vitro bioactivity of a "precursor of apatite" treatment on polyetheretherketone. Acta Biomater 2019; 91:48-59. [PMID: 31009758 DOI: 10.1016/j.actbio.2019.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
We recently developed a surface treatment, "precursor of apatite" (PrA), for polyetheretherketone (PrA-PEEK) via a simple, low-temperature process aiming to achieve stronger and faster adhesion to bone. The treatment involves three steps: H2SO4 immersion, exposure to O2 plasma discharge, and alkaline simulated body fluid (alkaline SBF) treatment. This method produces homogeneous fine particles of amorphous calcium phosphate on the PEEK, and we confirmed that PrA-PEEK had excellent apatite formation ability in an SBF immersion test. In the present study using PEEK implants in rabbit tibia, mechanical tests, and histological and radiological analyses revealed that PrA provided the PEEK substrate with excellent bone-bonding properties and osteo-conductivity at early stages (4 and 8 weeks), extending to 16 weeks. In vitro study using MC3T3-E1 cells revealed via XTT assay that PrA on the PEEK substrate resulted in no cytotoxicity, though PrA treatment seemed to suppress gene expression of integrin β-1 and Alp after 7-day incubation as shown by real-time PCR. On the whole, PrA treatment succeeded in giving in vivo bone-bonding properties to the PEEK substrate, and the treatment is a safe and promising method that can be applied in clinical settings. There was an inconsistency between in vivo and in vitro bioactivity, and this discrepancy indicated that apatite formation does not always need activation of osteoblasts at very early stage and that optimal conditions at cell and organism level may be different. STATEMENT OF SIGNIFICANCE: Polyetheretherketone (PEEK) is an attractive engineering polymer used for spine and dental surgery. To further improve clinical outcome of PEEK-based materials, we developed "Precursor of apatite" (PrA) treatment on the PEEK surface to confer bone-bonding properties. The advantages of this treatment are that it does not require high-temperature processing or special chemicals, and it is inexpensive. The present study clarified excellent in vivo bone-bonding property of PrA treatment. In addition, the results revealed important insights indicating that optimal conditions, especially wettability and crystallinity in calcium phosphate, differ at cell and organism levels. Moreover, our results indicated that prediction of in vivo bioactivity should be done in combination with multiple in vitro tests.
Collapse
|
43
|
Griffin M, Kalaskar D, Butler P. Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering. J Nanobiotechnology 2019; 17:51. [PMID: 30954085 PMCID: PMC6451776 DOI: 10.1186/s12951-019-0477-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/13/2019] [Indexed: 02/01/2023] Open
Abstract
Background Children born with a small or absent ear undergo surgical reconstruction to create a suitable replacement using rib cartilage. To overcome the donor site morbidity and long-term pain of harvesting rib cartilage, synthetic materials can be a useful alternative. Medpor, is the currently used synthetic polyethylene material to replace missing facial cartilage but unfortunately it has high levels of surgical complications including infection and extrusion, making it an unsuitable replacement. New materials for facial cartilage reconstruction are required to improve the outcomes of surgical reconstruction. This study has developed a new nanomaterial with argon surface modification for auricular cartilage replacement to overcome the complications with Medpor. Results Polyurethanes nanocomposites scaffolds (PU) were modified with argon plasma surface modification (Ar) and compared to Medpor in vitro and in vivo. Ar scaffolds allowed for greater protein adsorption than Medpor and PU after 48 h (p < 0.05). Cell viability and DNA assays demonstrated over 14-days greater human dermal fibroblast adhesion and cell growth on Ar than PU and Medpor nanocomposites scaffolds (p < 0.05). Gene expression using RT-qPCR of collagen-I, fibronectin, elastin, and laminin was upregulated on Ar scaffolds compared to Medpor and PU after 14-days (p < 0.05). Medpor, unmodified polyurethane and plasma modified polyurethane scaffolds were subcutaneously implanted in the dorsum of mice for 12 weeks to assess tissue integration and angiogenesis. Subcutaneous implantation of Ar scaffolds in mice dorsum, demonstrated significantly greater tissue integration by H&E and Massons trichrome staining, as well as angiogenesis by CD31 vessel immunohistochemistry staining over 12-weeks (p < 0.05). Conclusions Argon modified polyurethane nanocomposite scaffolds support cell attachment and growth, tissue integration and angiogenesis and are a promising alternative for facial cartilage replacement. This study demonstrates polyurethane nanocomposite scaffolds with argon surface modification are a promising biomaterial for cartilage tissue engineering applications. Electronic supplementary material The online version of this article (10.1186/s12951-019-0477-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle Griffin
- Division of Surgery & Interventional Science, University College London (UCL), London, UK. .,Plastic and Reconstructive Surgery Department, NHS Foundation Trust Hospital, Royal Free London, Pond Street, London, UK. .,The Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
| | - Deepak Kalaskar
- Division of Surgery & Interventional Science, University College London (UCL), London, UK.,UCL Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Stanmore, Middlesex, HA7 4LP, UK
| | - Peter Butler
- Division of Surgery & Interventional Science, University College London (UCL), London, UK.,Plastic and Reconstructive Surgery Department, NHS Foundation Trust Hospital, Royal Free London, Pond Street, London, UK.,The Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
| |
Collapse
|
44
|
Wang S, Yang Y, Li Y, Shi J, Zhou J, Zhang L, Deng Y, Yang W. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant. Colloids Surf B Biointerfaces 2018; 176:38-46. [PMID: 30592990 DOI: 10.1016/j.colsurfb.2018.12.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Polyetheretherketone (PEEK)-based implants have become popular in hard tissue orthopedic and dental field. However, its inherent bio-inertness limited its applications for bone repair/substitution of osteoporosis patients, with poor osteogenesis capability. In order to ameliorate their bioactivity, the 3D porous PEEK substrate was created by sulfonate processing, and the substrate was subsequently incorporated with strontium (Sr) through a hydrothermal reaction in Sr(OH)2 solutions. The adiponectin (APN) protein membrane was deposited on the substrate via polydopamine-assisted deposition. Surface characterization results disclosed that the nanostructures had been formed on sPEEK-Sr-APN surafces, and APN coatings on the substrates could adjust Sr release rate and further mediate cell-material interactions. in vitro experiments indicated that the cellular effects (proliferation and differentiation) of MC3T3-E1 were significantly increased with Sr/APN coordinated regulation. This study provides bioactive Sr and APN as promising active components for bio-functional bone regeneration/substitution, and optimizes the osteointegration of PEEK implants in clinic.
Collapse
Affiliation(s)
- Shengnan Wang
- School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yuanyi Yang
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
| | - Yunfei Li
- School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jiacheng Shi
- School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jianshu Zhou
- Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China
| | - Li Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610064, China; Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China.
| | - Weizhong Yang
- School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
45
|
Griffin M, Palgrave R, Baldovino-Medrano VG, Butler PE, Kalaskar DM. Argon plasma improves the tissue integration and angiogenesis of subcutaneous implants by modifying surface chemistry and topography. Int J Nanomedicine 2018; 13:6123-6141. [PMID: 30349241 PMCID: PMC6181122 DOI: 10.2147/ijn.s167637] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Tissue integration and vessel formation are important criteria for the successful implantation of synthetic biomaterials for subcutaneous implantation. OBJECTIVE We report the optimization of plasma surface modification (PSM) using argon (Ar), oxygen (O2) and nitrogen (N2) gases of a polyurethane polymer to enhance tissue integration and angiogenesis. METHODS The scaffold's bulk and surface characteristics were compared before and after PSM with either Ar, O2 and N2. The viability and adhesion of human dermal fibroblasts (HDFs) on the modified scaffolds were compared. The formation of extracellular matrix by the HDFs on the modified scaffolds was evaluated. Scaffolds were subcutaneously implanted in a mouse model for 3 months to analyze tissue integration, angiogenesis and capsule formation. RESULTS Surface analysis demonstrated that interfacial modification (chemistry, topography and wettability) achieved by PSM is unique and varies according to the gas used. O2 plasma led to extensive changes in interfacial properties, whereas Ar treatment caused moderate changes. N2 plasma caused the least effect on surface chemistry of the polymer. PSM-treated scaffolds significantly (P<0.05) enhanced HDF activity and growth over 21 days. Among all three gases, Ar modification showed the highest protein adsorption. Ar-modified scaffolds also showed a significant upregulation of adhesion-related proteins (vinculin, focal adhesion kinase, talin and paxillin; P<0.05) and extracellular matrix marker genes (collagen type I, fibronectin, laminin and elastin) and deposition of associated proteins by the HDFs. Subcutaneous implantation after 3 months demonstrated the highest tissue integration and angiogenesis and the lowest capsule formation on Ar-modified scaffolds compared with O2- and N2-modified scaffolds. CONCLUSION PSM using Ar is a cost-effective and efficient method to improve the tissue integration and angiogenesis of subcutaneous implants.
Collapse
Affiliation(s)
- Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- Royal Free London NHS Foundation Trust Hospital, London, UK
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Robert Palgrave
- Department of Chemistry, University College London, London, UK
| | | | - Peter E Butler
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- Royal Free London NHS Foundation Trust Hospital, London, UK
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Deepak M Kalaskar
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK,
- UCL Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, London, UK,
| |
Collapse
|
46
|
Li C, Qin R, Liu R, Miao S, Yang P. Functional amyloid materials at surfaces/interfaces. Biomater Sci 2018; 6:462-472. [PMID: 29435550 DOI: 10.1039/c7bm01124e] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the development of nanotechnology, functional amyloid materials are drawing increasing attention, and numerous remarkable applications are emerging. Amyloids, defined as a class of supramolecular assemblies of misfolded proteins or peptides into β-sheet fibrils, have evolved in many new respects and offer abundant chemical/biological functions. These proteinaceous micro/nano-structures provide excellent biocompatibility, rich phase behaviours, strong mechanical properties, and stability at interfaces not only in nature but also in functional materials, displaying versatile interactions with surfaces/interfaces that have been widely adopted in bioadhesion, synthetic biology, and composites. Overall, functional amyloids at surfaces/interfaces have excellent potential applications in next-generation biotechnology and biomaterials.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Xi'an 710119, China.
| | | | | | | | | |
Collapse
|
47
|
Wakelin EA, Yeo GC, McKenzie DR, Bilek MMM, Weiss AS. Plasma ion implantation enabled bio-functionalization of PEEK improves osteoblastic activity. APL Bioeng 2018; 2:026109. [PMID: 31069306 PMCID: PMC6481719 DOI: 10.1063/1.5010346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Slow appositional growth of bone in vivo is a major problem associated with polyether ether ketone (PEEK) based orthopaedic implants. Early stage promotion of osteoblast activity, particularly bone nodule formation, would help to improve contact between PEEK implantable materials and the surrounding bone tissue. To improve interactions with bone cells, we explored here the use of plasma immersion ion implantation (PIII) treatment of PEEK to covalently immobilize biomolecules to the surface. In this study, a single step process was used to covalently immobilize tropoelastin on the surface of PIII modified PEEK through reactions with radicals generated by the treatment. Improved bioactivity was observed using the human osteoblast-like cell line, SAOS-2. Cells on surfaces that were PIII-treated or tropoelastin-coated exhibited improved attachment, spreading, proliferation, and bone nodule formation compared to cells on untreated samples. Surfaces that were both PIII-treated and tropoelastin-coated triggered the most favorable osteoblast-like responses. Surface treatment or tropoelastin coating did not alter alkaline phosphatase gene expression and activity of bound cells but did influence the expression of other bone markers including osteocalcin, osteonectin, and collagen I. We conclude that the surface modification of PEEK improves osteoblast interactions, particularly with respect to bone apposition, and enhances the orthopedic utility of PEEK.
Collapse
Affiliation(s)
- Edgar A. Wakelin
- Applied and Plasma Physics, School of Physics, The University of Sydney, NSW 2006, Australia
| | | | - David R. McKenzie
- Applied and Plasma Physics, School of Physics, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
48
|
Wang C, Wang S, Yang Y, Jiang Z, Deng Y, Song S, Yang W, Chen ZG. Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1595-1611. [PMID: 29764301 DOI: 10.1080/09205063.2018.1477316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In this study, we develop an osteopromotive polyetheretherketone (PEEK) implant decorated with silk fibroin and bone forming peptide, in which the surface of bioinert PEEK implant is firstly sulfonated to form a three-dimensional, porous topography and then is functionalized with silk fibroin via spin-coating process and peptide decoration. The bio-test results show that cells on the functional bioinert implants exhibit better cell adhesion, proliferation and spreading, when compared with the uncoated ones. Moreover, the peptide-decorated silk fibroin coatings have ability to hasten the osteogenic differentiation and maturation of osteoblast-like cells. Our findings show the potential of the functional PEEK implants with superior bioactivity and osteoinductive property in orthopedics and dentistry. Besides, the facile, bioinspired, osteopromotive modification strategy can be used in other orthopedic and dental implants, such as titanium, zirconium dioxide.
Collapse
Affiliation(s)
- Chunyan Wang
- a School of Materials Science and Engineering , Sichuan University , Chengdu , China
| | - Shengnan Wang
- a School of Materials Science and Engineering , Sichuan University , Chengdu , China
| | - Yuanyi Yang
- b Department of Materials Engineering , Sichuan College of Architectural Technology , Deyang , China
| | - Zhuo Jiang
- c College of Food Science , South China Agriculture University , Guangzhou , China
| | - Yi Deng
- d School of Chemical Engineering , Sichuan University , Chengdu , China.,e Department of Mechanical Engineering , The University of Hong Kong , Hong Kong , China
| | - Shaoli Song
- f Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Weizhong Yang
- a School of Materials Science and Engineering , Sichuan University , Chengdu , China
| | - Zhi-Gang Chen
- g Centre for Future Materials , The University of Southern Queensland , Springfield , Australia.,h Materials Engineering , The University of Queensland , Brisbane , Australia
| |
Collapse
|
49
|
One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:70-78. [PMID: 29636140 DOI: 10.1016/j.msec.2018.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/28/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
Polyetheretherketone (PEEK) has an elastic modulus similar to that of the bone; however, its use as a material for bone repair is limited by bio-inert surface chemistry and poor osteogenesis-inducing capacity. To address this issue, the PEEK surface was activated by ultraviolet radiation-induced grafting of methacrylated hyaluronic acid (MeHA) and titanium dioxide (TiO2) nanofibers via a one-step process. The modified PEEK surface was characterized by X-ray photoelectron and Fourier-transform infrared spectroscopy, and the extent of surface modification was evaluated by measuring static contact angles. Atomic force microscopy revealed that the PEEK surface grafted with electrospun TiO2 had abundant nanofibers and a roughness that was comparable to that of human cortical bone. In vitro experiment, rat bone mesenchymal stem cells showed increased adhesion, proliferation, and osteogenic differentiation capacity on TiO2-modified as compared to unmodified PEEK. Thus, PEEK that is surface-modified with electrospun TiO2 and MeHA has enhanced biocompatibility and can be an effective material for use in orthopedic implants and medical devices.
Collapse
|
50
|
Zhang J, Cai L, Wang T, Tang S, Li Q, Tang T, Wei S, Qian J, Wei J, Su J. Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:965-976. [PMID: 29408735 DOI: 10.1016/j.nano.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Osseointegration is crucial for early fixation as well as long-term success of orthopedic implants. Bioactive composite containing lithium doping silica nanospheres (LSNs) and poly(dopamine) (PDA) were coated on polyetheretherketone (PK) surface (LPPK), and effects of the LSNs/PDA composite (LPC) coating on the biological properties of LPPK were assessed both in vitro and in vivo. Results showed that LPPK with improved bioactivity remarkably promoted apatite mineralization in simulated body fluid (SBF) compared with PDA coated on PK (PPK) and PK. Moreover, the LPPK remarkably stimulated rat bone marrow stromal cells (rBMSCs) responses compared with PPK and PK. Furthermore, the LPPK significantly promoted bone tissues responses in vivo compared with PPK and PK. It could be suggested that the improvements of cells and bone tissues responses were attributed to the surface characteristics of the bioactive LPC coating on LPPK. The LPPK would be a great candidate for orthopedic and dental applications.
Collapse
Affiliation(s)
- Jue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Liang Cai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Tinglan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Quan Li
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, PR China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Jun Qian
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China.
| | - Jiacan Su
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|