1
|
Park J, Pho T, Bhatnagar N, Mai LD, Rodriguez-Otero MR, Pal SS, Le CTT, Jenison SE, Li C, May GA, Arioka M, Kang SM, Champion JA. Multilayer Adjuvanted Influenza Protein Nanoparticles Improve Intranasal Delivery and Antigen-Specific Immunity. ACS NANO 2025; 19:7005-7025. [PMID: 39954231 PMCID: PMC11867023 DOI: 10.1021/acsnano.4c14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Intranasal vaccination is a desired route for protection against influenza viruses by mucosal and systemic immunity. However, the nasal mucosa impedes the intranasal delivery of vaccines. Here, we formulated layer-by-layer (LBL) influenza vaccine nanoparticles for effective intranasal delivery by coating them with alternating mucoadhesive cationic chitosan and muco-inert anionic CpG adjuvants. The nanoparticle cores were formed by desolvating influenza M2e antigen and coating it with hemagglutinin (HA) antigen via biotin-streptavidin conjugation. LBL modification promoted nasal delivery and interaction with the resident immune cells. Intranasal administration with LBL nanoparticles significantly improved cellular and humoral immune responses against HA and M2e including high IgA titers, a hallmark of potent mucosal immunity and persistence of immune responses. Distinct trends for antigen-specific immune responses were observed for different routes of vaccination. The enhanced immune responses conferred mice protection against the influenza challenge and prominently reduced viral titers, demonstrating the effectiveness of intranasal LBL vaccine nanoparticles.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas Pho
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Noopur Bhatnagar
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Linh D. Mai
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mariela R. Rodriguez-Otero
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Surya Sekhar Pal
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Chau Thuy Tien Le
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Sarah E. Jenison
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chenyu Li
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Grace A. May
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marisa Arioka
- Department
of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sang-Moo Kang
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Julie A. Champion
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Ye T, Zhong Z, Cappellesso F, Deswarte K, Chen Y, Lauwers H, De Lombaerde E, Gontsarik M, Lienenklaus S, Van Lysebetten D, Sanders NN, Lambrecht BN, De Koker S, Laoui D, De Geest BG. CO-DELIVERY of glutamic acid-extended peptide antigen and imidazoquinoline TLR7/8 agonist via ionizable lipid nanoparticles induces protective anti-tumor immunity. Biomaterials 2024; 311:122693. [PMID: 38996672 DOI: 10.1016/j.biomaterials.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Cancer vaccines aim at generating cytotoxic CD8+ T cells that kill cancer cells and confer durable tumor regression. Hereto, CD8+ peptide epitopes should be presented by antigen presenting cells to CD8+ T cells in lymphoid tissue. Unfortunately, in unformulated soluble form, peptide antigens are poorly taken up by antigen presenting cells and do not efficiently reach lymph nodes. Hence, the lack of efficient delivery remains a major limitation for successful clinical translation of cancer vaccination using peptide antigens. Here we propose a generic peptide nanoformulation strategy by extending the amino acid sequence of the peptide antigen epitope with 10 glutamic acid residues. The resulting overall anionic charge of the peptide allows encapsulation into lipid nanoparticles (peptide-LNP) by electrostatic interaction with an ionizable cationic lipid. We demonstrate that intravenous injection of peptide-LNP efficiently delivers the peptide to immune cells in the spleen. Peptide-LNP that co-encapsulate an imidazoquinoline TLR7/8 agonist (IMDQ) induce robust innate immune activation in a broad range of immune cell subsets in the spleen. Peptide-LNP containing the minimal CD8+ T cell epitope of the HPV type 16 E7 oncoprotein and IMDQ induces high levels of antigen-specific CD8+ T cells in the blood, and can confer protective immunity against E7-expressing tumors in both prophylactic and therapeutic settings.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Federica Cappellesso
- Lab of Cellular and Molecular Immunology, Brussel Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Heleen Lauwers
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Brussel Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Lab of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium.
| | | |
Collapse
|
3
|
Di Y, Zhang C, Ren Z, Jiang R, Tang J, Yang S, Wang Z, Yu T, Zhang T, Yu Z, Xu Z, Zhuang X, Jin N, Tian M. The self-assembled nanoparticle-based multi-epitope influenza mRNA vaccine elicits protective immunity against H1N1 and B influenza viruses in mice. Front Immunol 2024; 15:1483720. [PMID: 39445022 PMCID: PMC11497263 DOI: 10.3389/fimmu.2024.1483720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The influenza virus is recognized as the primary cause of human respiratory diseases, with the current influenza vaccine primarily offering strain-specific immunity and limited protection against drifting strains. Considering this, the development of a broad-spectrum influenza vaccine capable of inducing effective immunity is considered the future direction in combating influenza. Methods The present study proposes a novel mRNA-based multi-epitope influenza vaccine, which combines three conserved antigens derived from the influenza A virus. The antigens consist of M2 ion channel's extracellular domain (M2e), the conserved epitope of located in HA2 of hemagglutinin (H1, H3, B), and HA1 of hemagglutinin. At the same time, trimeric sequences and ferritin were conjugated separately to investigate the immune effects of antigen multivalent presentation. Results Immunization studies conducted on C57BL/6 mice with these vaccines revealed that they can elicit both humoral immunity and CD4+ and CD8+ T cell responses, which collectively contribute to enhancing cross-protective effects. The virus challenge results showed that vaccinated groups had significantly reduced lung damage, lower viral loads in the lungs, nasal turbinates, and trachea, as well as decreased levels of pro-inflammatory cytokines. Conclusion These findings clearly demonstrate the wide range of protective effects provided by these vaccines against H1N1 and B influenza viruses. The present finding highlights the potential of mRNA-based influenza vaccines encoding conserved proteins as a promising strategy for eliciting broad-spectrum protective humoral and cellular immunity against H1N1 and B influenza viruses.
Collapse
Affiliation(s)
- Yaxin Di
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Chenchao Zhang
- College of Agriculture, Yanbian University, Yanji, China
| | - Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Renyue Jiang
- College of Agriculture, Yanbian University, Yanji, China
| | - Jiafeng Tang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Songhui Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ziliang Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Tong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziping Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Xu
- College of Agriculture, Yanbian University, Yanji, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| |
Collapse
|
4
|
Lamoot A, Jangra S, Laghlali G, Warang P, Singh G, Chang LA, Park SC, Singh G, De Swarte K, Zhong Z, Louage B, De Lombaerde E, Ye T, Chen Y, Cuadrado-Castano S, Lienenklaus S, Sanders N, Lambrecht BN, García-Sastre A, Schotsaert M, De Geest BG. Lipid Nanoparticle Encapsulation Empowers Poly(I:C) to Activate Cytoplasmic RLRs and Thereby Increases Its Adjuvanticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306892. [PMID: 37867244 PMCID: PMC7617129 DOI: 10.1002/smll.202306892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.
Collapse
Affiliation(s)
- Alexander Lamoot
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren A. Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Korea
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Korea
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kim De Swarte
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Benoit Louage
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | | | - Tingting Ye
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Niek Sanders
- Laboratory of Gene Therapy, Ghent University, 9820 Merelbeke, Belgium
| | - Bart N. Lambrecht
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
5
|
Edwards C, Carey ST, Jewell CM. Harnessing Biomaterials to Study and Direct Antigen-Specific Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:2017-2028. [PMID: 37068126 PMCID: PMC10330265 DOI: 10.1021/acsabm.3c00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Immunotherapies are an evolving treatment paradigm for addressing cancer, autoimmunity, and infection. While exciting, most of the existing therapies are limited by their specificity─unable to differentiate between healthy and diseased cells at an antigen-specific level. Biomaterials are a powerful tool that enable the development of next-generation immunotherapies due to their tunable synthesis properties. Our lab harnesses biomaterials as tools to study antigen-specific immunity and as technologies to enable new therapeutic vaccines and immunotherapies to combat cancer, autoimmunity, and infections. Our efforts have spanned the study of intrinsic immune profiles of biomaterials, development of novel nanotechnologies assembled entirely from immune cues, manipulation of innate immune signaling, and advanced technologies to direct and control specialized immune niches such as skin and lymph nodes.
Collapse
Affiliation(s)
- Camilla Edwards
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sean T Carey
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher M Jewell
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, Maryland 21201, United States
- Robert E. Fischell Institute for Biomedical Devices, College Park, Maryland 20742, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201, United States
| |
Collapse
|
6
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
7
|
Ackun-Farmmer M, Jewell CM. Enhancing the functionality of self-assembled immune signals using chemical crosslinks. Front Immunol 2023; 14:1079910. [PMID: 36814918 PMCID: PMC9940312 DOI: 10.3389/fimmu.2023.1079910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that develops when dysfunctional autoreactive lymphocytes attack the myelin sheath in the central nervous system. There are no cures for MS, and existing treatments are associated with unwanted side effects. One approach for treating MS is presenting distinct immune signals (i.e., self-antigen and immunomodulatory cues) to innate and adaptive immune cells to engage multiple signaling pathways involved in MS. We previously developed immune polyelectrolyte multilayer (iPEM) complexes built through layer-by-layer deposition of self-antigen - myelin oligodendrocyte glycoprotein (MOG) - and toll-like receptor antagonist, GpG to treat MS. Here, glutaraldehyde-mediated stable cross-links were integrated into iPEMs to load multiple classes of therapeutics. These cross-linked iPEMs maintain their immunological features, including the ability of GpG to blunt toll-like-receptor 9 signaling and MOG to expand T cells expressing myelin-specific T cell receptors. Lastly, we show that these functional assemblies can be loaded with a critical class of drug - mTOR inhibitors - associated with inducing regulatory T cells. These studies demonstrate the ability to incorporate small molecule drugs in reinforced self-assembled immune signals juxtaposed at high densities. This precision technology contributes new technologies that could drive antigen-specific immune response by simultaneously modulating innate and adaptive immunity.
Collapse
Affiliation(s)
- Marian Ackun-Farmmer
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
- US Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United States
| |
Collapse
|
8
|
Zhou Y, Liu C, Song H. Innate Immunomodulatory Nanodevices for Cancer Therapy: A Review. J Biomed Nanotechnol 2022; 18:293-318. [PMID: 35484759 DOI: 10.1166/jbn.2022.3241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The newly emerged cancer immunotherapy has shown a great potential in clinical trials. However, most immunotherapeutic strategies focus on restoring and/or enhancing the effector T cell responses, and only a small portion of malignancies respond favorably due to the lacking of T cell infiltration. Recently, the modulation of innate immune system has been applied as an alternative or combined strategy to improve host anti-tumor immunity. In this review, we summarize recent progress in nanotechnology-based innate immunomodulation for cancer therapy. Firstly, we present various types of nanodevices that serve to deliver or mimic the reactions of pathogen-associated molecular patterns (PAMPs), such as bacterial components, viral DNA or viral RNA, for the stimulation of type I interferons (IFNs) and pro-inflammatory cytokines. We also introduce nanodevice-mediated immunogenic cell death (ICD) for the generation of endogenous danger-associated molecular patterns (DAMPs) and improvement of immune responses. Moreover, targeted manipulation of specific types of innate immune cells by nanodevices are discussed. Lastly, we describe typical strategies of combining innate immunomodulatory nanodevices with immune checkpoint blockade to amplify the anti-tumor efficacy.
Collapse
Affiliation(s)
- Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
9
|
Chen Q, Zhang L, Li L, Tan M, Liu W, Liu S, Xie Z, Zhang W, Wang Z, Cao Y, Shang T, Ran H. Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer. J Nanobiotechnology 2021; 19:449. [PMID: 34952587 PMCID: PMC8710014 DOI: 10.1186/s12951-021-01202-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mono-therapeutic modality has limitations in combating metastatic lesions with complications. Although emerging immunotherapy exhibits preliminary success, solid tumors are usually immunosuppressive, leading to ineffective antitumor immune responses and immunotherapeutic resistance. The rational combination of several therapeutic modalities may potentially become a new therapeutic strategy to effectively combat cancer. RESULTS Poly lactic-co-glycolic acid (PLGA, 50 mg) nanospheres were constructed with photothermal transduction agents (PTAs)-Prussian blue (PB, 2.98 mg) encapsulated in the core and chemotherapeutic docetaxel (DTX, 4.18 mg)/ immune adjuvant-imiquimod (R837, 1.57 mg) loaded in the shell. Tumor cell membranes were further coated outside PLGA nanospheres (designated "M@P-PDR"), which acted as "Nano-targeted cells" to actively accumulate in tumor sites, and were guided/monitored by photoacoustic (PA)/ magnetic resonance (MR) imaging. Upon laser irradiation, photothermal effects were triggered. Combined with DTX, PTT induced in situ tumor eradication. Assisted by the immune adjuvant R837, the maturation rate of DCs increased by 4.34-fold compared with that of the control. In addition, DTX polarized M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, relieving the immunosuppressive TME. The proportion of M2-TAMs decreased from 68.57% to 32.80%, and the proportion of M1-TAMs increased from 37.02% to 70.81%. Integrating the above processes, the infiltration of cytotoxic T lymphocytes (CTLs) increased from 17.33% (control) to 35.5%. Primary tumors and metastasis were significantly inhibited when treated with "Nano-targeted cells"-based cocktail therapy. CONCLUSION "Nano-targeted cells"-based therapeutic cocktail therapy is a promising approach to promote tumor regression and counter metastasis/recurrence.
Collapse
Affiliation(s)
- Qiaoqi Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.,Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Lin Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Shuling Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Zhuoyan Xie
- Chongqing General Hospital, University of Chinese Academy of Sciences, No.114 Longshan Road, Yubei District, Chongqing, 401121, People's Republic of China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
10
|
Svenskaya Y, Garello F, Lengert E, Kozlova A, Verkhovskii R, Bitonto V, Ruggiero MR, German S, Gorin D, Terreno E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021; 5:362-377. [PMID: 33850694 PMCID: PMC8040826 DOI: 10.7150/ntno.59458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Francesca Garello
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Ekaterina Lengert
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Valeria Bitonto
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sergey German
- Laboratory of Optics and Spectroscopy of Nanoobjects, Institute of Spectroscopy of the RAS, Troitsk 108840, Russia.,Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
11
|
Froimchuk E, Carey ST, Edwards C, Jewell CM. Self-Assembly as a Molecular Strategy to Improve Immunotherapy. Acc Chem Res 2020; 53:2534-2545. [PMID: 33074649 PMCID: PMC7896133 DOI: 10.1021/acs.accounts.0c00438] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunotherapies harness an individual's immune system to battle diseases such as cancer and autoimmunity. During cancer, the immune system often fails to detect and destroy cancerous cells, whereas during autoimmune disease, the immune system mistakenly attacks self-tissue. Immunotherapies can help guide more effective responses in these settings, as evidenced by recent advances with monoclonal antibodies and adoptive cell therapies. However, despite the transformative gains of immunotherapies for patients, many therapies are not curative, work only for a small subset of patients, and lack specificity in distinguishing between healthy and diseased cells, which can cause severe side effects. From this perspective, self-assembled biomaterials are promising technologies that could help address some of the limitations facing immunotherapies. For example, self-assembly allows precision control over the combination and relative concentration of immune cues and directed cargo display densities. These capabilities support selectivity and potency that could decrease off-target effects and enable modular or personalized immunotherapies. The underlying forces driving self-assembly of most systems in aqueous solution result from hydrophobic interactions or charge polarity. In this Account, we highlight how these forces are being used to self-assemble immunotherapies for cancer and autoimmune disease.Hydrophobic interactions can create a range of intricate structures, including peptide nanofibers, nanogels, micelle-like particles, and in vivo assemblies with protein carriers. Certain nanofibers with hydrophobic domains uniquely benefit from the ability to elicit immune responses without additional stimulatory signals. This feature can reduce nonspecific inflammation but may also limit the nanofiber's application because of their inherent stimulatory properties. Micelle-like particles have been developed with the ability to incorporate a range of tumor-specific antigens for immunotherapies in mouse models of cancer. Key observations have revealed that both the total dose of antigen and display density of antigen per particle can impact immune response and efficacy of immunotherapies. These developments are promising benchmarks that could reveal design principles for engineering more specific and personalized immunotherapies.There has also been extensive work to develop platforms using electrostatic interactions to drive assembly of oppositely charged immune signals. These strategies benefit from the ability to tune biophysical interactions between components by altering the ratio of cationic to anionic charge during formulation, or the density of charge. Using a layer-by-layer assembly method, our lab developed hollow capsules composed entirely of immune signals for therapies in cancer and autoimmune disease models. This platform allowed for 100% of the immunotherapy to be composed of immune signals and completely prevents the onset of disease in a mouse model of multiple sclerosis. Layer-by-layer assembly has also been used to coat microneedle patches to target signals to immune cells in the dermal layer. As an alternative to layer-by-layer assembly, one step assembly can be achieved by mixing cationic and anionic components in solution. Additional approaches have created molecular structures that leverage hydrogen bonding for self-assembly. The creativity of engineered self-assembly has led to key insights that could benefit future immunotherapies and revealed aspects that require further study. The challenge now remains to utilize these insights to push development of new immunotherapeutics into clinical settings.
Collapse
Affiliation(s)
- Eugene Froimchuk
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Sean T. Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21202
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201
| |
Collapse
|
12
|
Mao W, Son YJ, Yoo HS. Gold nanospheres and nanorods for anti-cancer therapy: comparative studies of fabrication, surface-decoration, and anti-cancer treatments. NANOSCALE 2020; 12:14996-15020. [PMID: 32666990 DOI: 10.1039/d0nr01690j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Various gold nanoparticles have been explored as cancer therapeutics because they can be widely engineered for use as efficient drug carriers and diagnostic agents, and in photo-irradiation therapy. In the current review, we focused on shape-dependent biomedical applications of gold nanoparticles including gold nanospheres and nanorods. Fabrication and functionalization strategies of two different gold nanoparticles for anti-cancer therapy are introduced and the distinguishing performance depending on the shape is discussed to suggest the best carrier shape for specific applications. Moreover, recent advances in anti-cancer immunotherapy using gold nano-carriers are discussed. Thus, this comparative review can be helpful in deciding on suitable shapes and surface-modification strategies for preparing various gold nanoparticle-based therapeutics in anti-cancer therapy.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | | | | |
Collapse
|
13
|
Tsoras AN, Wong KM, Paravastu AK, Champion JA. Rational Design of Antigen Incorporation Into Subunit Vaccine Biomaterials Can Enhance Antigen-Specific Immune Responses. Front Immunol 2020; 11:1547. [PMID: 32849524 PMCID: PMC7396695 DOI: 10.3389/fimmu.2020.01547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Peptide subunit vaccines increase safety by reducing the risk of off-target responses and improving the specificity of the induced adaptive immune response. The immunogenicity of most soluble peptides, however, is often insufficient to produce robust and lasting immunity. Many biomaterials and delivery vehicles have been developed for peptide antigens to improve immune response while maintaining specificity. Peptide nanoclusters (PNC) are a subunit peptide vaccine material that has shown potential to increase immunogenicity of peptide antigens. PNC are comprised only of crosslinked peptide antigen and have been synthesized from several peptide antigens as small as 8 amino acids in length. However, as with many peptide vaccine biomaterials, synthesis requires adding residues to the peptide and/or engaging amino acids within the antigen epitope covalently to form a stable material. The impact of antigen modifications made to enable biomaterial incorporation or formation is rarely investigated, since the goal of most studies is to compare the soluble antigen with biomaterial form of antigen. This study investigates PNC as a platform vaccine biomaterial to evaluate how peptide modification and biomaterial formation with different crosslinking chemistries affect epitope-specific immune cell presentation and activation. Several types of PNC were synthesized by desolvation from the model peptide epitope SIINFEKL, which is derived from the immunogenic protein ovalbumin. SIINFEKL was altered to include extra residues on each end, strategically chosen to enable multiple conjugation chemistry options for incorporation into PNC. Several crosslinking methods were used to control which functional groups were used to stabilize the PNC, as well as the reducibility of the crosslinking. These variations were evaluated for immune responses and biodistribution following in vivo immunization. All modified antigen formulations still induced comparable immune responses when incorporated into PNC compared to unmodified soluble antigen alone. However, some crosslinking methods led to a significant increase in desirable immune responses while others did not, suggesting that not all PNC were processed the same. These results help guide future peptide vaccine biomaterial design, including PNC and a wide variety of conjugated and self-assembled peptide antigen materials, to maximize and tune the desired immune response.
Collapse
Affiliation(s)
| | | | | | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
14
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Tsoras AN, Champion JA. Protein and Peptide Biomaterials for Engineered Subunit Vaccines and Immunotherapeutic Applications. Annu Rev Chem Biomol Eng 2020; 10:337-359. [PMID: 31173518 DOI: 10.1146/annurev-chembioeng-060718-030347] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.
Collapse
Affiliation(s)
- Alexandra N Tsoras
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| |
Collapse
|
16
|
Yenkoidiok-Douti L, Jewell CM. Integrating Biomaterials and Immunology to Improve Vaccines Against Infectious Diseases. ACS Biomater Sci Eng 2020; 6:759-778. [PMID: 33313391 PMCID: PMC7725244 DOI: 10.1021/acsbiomaterials.9b01255] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the success of vaccines in preventing many infectious diseases, effective vaccines against pathogens with ongoing challenges - such as HIV, malaria, and tuberculosis - remain unavailable. The emergence of new pathogen variants, the continued prevalence of existing pathogens, and the resurgence of yet other infectious agents motivate the need for new, interdisciplinary approaches to direct immune responses. Many current and candidate vaccines, for example, are poorly immunogenic, provide only transient protection, or create risks of regaining pathogenicity in certain immune-compromised conditions. Recent advances in biomaterials research are creating new potential to overcome these challenges through improved formulation, delivery, and control of immune signaling. At the same time, many of these materials systems - such as polymers, lipids, and self-assembly technologies - may achieve this goal while maintaining favorable safety profiles. This review highlights ways in which biomaterials can advance existing vaccines to safer, more efficacious technologies, and support new vaccines for pathogens that do not yet have vaccines. Biomaterials that have not yet been applied to vaccines for infectious disease are also discussed, and their potential in this area is highlighted.
Collapse
Affiliation(s)
- Lampouguin Yenkoidiok-Douti
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD, 20852, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, United States
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD 21201, United States
| |
Collapse
|
17
|
Gong X, Zhang J, Jiang S. Ionic liquid-induced nanoporous structures of polymer films. Chem Commun (Camb) 2020; 56:3054-3057. [DOI: 10.1039/c9cc08768k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoporous polymer thin films can be fabricated using strong polyelectrolyte pairs in ionic liquid aqueous solutions.
Collapse
Affiliation(s)
- Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
- State Key Laboratory of Polymer Materials Engineering
| | - Jixi Zhang
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Shaohua Jiang
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
18
|
Uppu DSSM, Turvey ME, Sharif ARM, Bidet K, He Y, Ho V, Tambe AD, Lescar J, Tan EY, Fink K, Chen J, Hammond PT. Temporal release of a three-component protein subunit vaccine from polymer multilayers. J Control Release 2019; 317:130-141. [PMID: 31756392 DOI: 10.1016/j.jconrel.2019.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/14/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Sustained antigen and adjuvant availability have been shown to improve antiviral immune responses following vaccination. Transcutaneous delivery of vaccines using microneedles has also shown promise and may be particularly relevant for mosquito-borne viruses. We aim to combine these traits to create a three-component Protein Subunit vaccine on Microneedle Arrays (PSMNs) for transcutaneous delivery using layer-by-layer (LbL) assembly. Polymer multilayer thin films were generated to co-deliver a model combination of three chemically distinct vaccine components, a dengue virus Envelope protein Domain III (EDIII) subunit antigen and two adjuvants, a double-stranded RNA (Poly (inosinic:cytidylic acid) (PolyI:C)) and an amphiphilic hexapeptide, Pam3CSK4. Following application of PSMNs to the skin, implanted thin films facilitated sustained and temporal release of individual vaccine components from polymer multilayers. By modulating LbL composition and architecture, component release profiles in the skin could be independently tuned to allow release of adjuvants and antigen from days up to two weeks. Uptake of antigen and adjuvant from implanted vaccine films by antigen-presenting cells was demonstrated using in vivo mouse and ex vivo human skin models. Overall, we believe that such modular vaccine strategies offer design principles for enhancing the immunogenicity of protein subunit vaccines.
Collapse
Affiliation(s)
- Divakara S S M Uppu
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Michelle E Turvey
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Abdul Rahim Mohammed Sharif
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Katell Bidet
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Yanpu He
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Victor Ho
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore
| | - Anagha D Tambe
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paula T Hammond
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Cano-Mejia J, Bookstaver ML, Sweeney EE, Jewell CM, Fernandes R. Prussian blue nanoparticle-based antigenicity and adjuvanticity trigger robust antitumor immune responses against neuroblastoma. Biomater Sci 2019; 7:1875-1887. [PMID: 30789175 PMCID: PMC6491208 DOI: 10.1039/c8bm01553h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe the synthesis of CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) that function as a nanoimmunotherapy for neuroblastoma, a common childhood cancer. These CpG-PBNPs increase the antigenicity and adjuvanticity of the treated tumors, ultimately driving robust antitumor immunity through a multi-pronged mechanism. CpG-PBNPs are synthesized using a facile layer-by-layer coating scheme resulting in nanoparticles that exhibit monodisperse size distributions and multiday stability without cytotoxicity. The strong intrinsic absorption of PBNPs in the CpG-PBNPs enables ablative photothermal therapy (CpG-PBNP-PTT) that triggers tumor cell death, as well as the release of tumor antigens to increase antigenicity. Simultaneously, the CpG coating functions as an exogenous molecular adjuvant that complements the endogenous adjuvants released by the CpG-PBNP-PTT (e.g. ATP, calreticulin, and HMGB1). In cell culture, coating NPs with CpG increases immunogenicity while maintaining the photothermal activity of PBNPs. When administered in a syngeneic, Neuro2a-based, murine model of neuroblastoma, CpG-PBNP-PTT results in complete tumor regression in a significantly higher proportion (70% at 60 days) of treated animals relative to controls. Furthermore, the long-term surviving, CpG-PBNP-PTT-treated animals reject Neuro2a rechallenge, suggesting that this therapy generates immunological memory. Our findings point to the importance of simultaneous cytotoxicity, antigenicity, and adjuvanticity to generate robust and persistent antitumor immune responses against neuroblastoma.
Collapse
Affiliation(s)
- Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Michelle L. Bookstaver
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth E. Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- United States Department of Veterans Affairs, Maryland VA Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21205, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
20
|
Tostanoski LH, Eppler HB, Xia B, Zeng X, Jewell CM. Engineering release kinetics with polyelectrolyte multilayers to modulate TLR signaling and promote immune tolerance. Biomater Sci 2019; 7:798-808. [PMID: 30656310 PMCID: PMC6391195 DOI: 10.1039/c8bm01572d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoimmune disorders, such as multiple sclerosis and type 1 diabetes, occur when immune cells fail to recognize "self" molecules. Recently, studies have revealed aberrant inflammatory signaling through pathogen sensing pathways, such as toll-like receptors (TLRs), during autoimmune disease. Therapeutic inhibition of these pathways might attenuate disease development, skewing disease-causing inflammatory cells towards cell types that promote tolerance. Delivering antagonistic ligands to a TLR upstream of an inflammatory signaling cascade, TLR9, has demonstrated exciting potential in a mouse model of MS; however, strategies that enable sustained delivery could reduce the need for repeated administration or enhance therapeutic efficacy. We hypothesized that GpG - an oligonucleotide TLR9 antagonist - which is inherently anionic, could be self-assembled into polyelectrolyte multilayers (PEMs) with a cationic, degradable poly(β-amino ester) (Poly1). We hypothesized that degradable Poly1/GpG PEMs could promote sustained release of GpG and modulate inflammatory immune cell functions. Here we demonstrate layer-by-layer assembly of degradable PEMs, as well as subsequent degradation and release of GpG. Following assembly and release, GpG maintains the ability to reduce dendritic cell activation and inflammatory cytokine secretion, restrain TLR9 signaling, and polarize myelin specific T cells towards regulatory phenotypes and functions in primarily immune cells. These results indicate that degradable PEMs may be able to promote tolerogenic immune function in the context of autoimmunity.
Collapse
Affiliation(s)
- Lisa H Tostanoski
- Fischell Department of Bioengineering, A. James Clark Hall, Room 5110, 8278 Paint Branch Drive, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
21
|
Gammon JM, Jewell CM. Engineering Immune Tolerance with Biomaterials. Adv Healthc Mater 2019; 8:e1801419. [PMID: 30605264 PMCID: PMC6384133 DOI: 10.1002/adhm.201801419] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases, rejection of transplanted organs and grafts, chronic inflammatory diseases, and immune-mediated rejection of biologic drugs impact a large number of people across the globe. New understanding of immune function is revealing exciting opportunities to help tackle these challenges by harnessing-or correcting-the specificity of immune function. However, realizing this potential requires precision control over the interaction between regulatory immune cues, antigens attacked during inflammation, and the tissues where these processes occur. Engineered materials-such as polymeric and lipid particles, scaffolds, and inorganic materials-offer powerful features that can help to selectively regulate immune function during disease without compromising healthy immune functions. This review highlights some of the exciting developments to leverage biomaterials as carriers, depots, scaffolds-and even as agents with intrinsic immunomodulatory features-to promote immunological tolerance.
Collapse
Affiliation(s)
- Joshua M. Gammon
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA ; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, Baltimore VA Medical center, 10. N Green Street, Baltimore, Maryland 21201, USA; Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018; 292:256-276. [PMID: 30312721 PMCID: PMC6355332 DOI: 10.1016/j.jconrel.2018.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
The development of therapeutic cancer vaccines as a means to generate immune reactivity against tumors has been explored since the early discovery of tumor-specific antigens by Georg Klein in the 1960s. However, challenges including weak immunogenicity, systemic toxicity, and off-target effects of cancer vaccines remain as barriers to their broad clinical translation. Advances in the design and implementation of biomaterials are now enabling enhanced efficacy and reduced toxicity of cancer vaccines by controlling the presentation and release of vaccine components to immune cells and their microenvironment. Here, we discuss the rational design and clinical status of several classes of cancer vaccines (including DNA, mRNA, peptide/protein, and cell-based vaccines) along with novel biomaterial-based delivery technologies that improve their safety and efficacy. Further, strategies for designing new platforms for personalized cancer vaccines are also considered.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
23
|
Tandon A, Pathak M, Harioudh MK, Ahmad S, Sayeed M, Afshan T, Siddiqi MI, Mitra K, Bhattacharya SM, Ghosh JK. A TLR4-derived non-cytotoxic, self-assembling peptide functions as a vaccine adjuvant in mice. J Biol Chem 2018; 293:19874-19885. [PMID: 30385503 DOI: 10.1074/jbc.ra118.002768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/01/2018] [Indexed: 12/18/2022] Open
Abstract
Vaccination is devised/formulated to stimulate specific and prolonged immune responses for long-term protection against infection or disease. A vaccine component, namely adjuvant, enhances antigen recognition by the host immune system and thereby stimulates its cellular and adaptive responses. Especially synthetic Toll-like receptor (TLR) agonists having self-assembling properties are considered as good candidates for adjuvant development. Here, a human TLR4-derived 20-residue peptide (TR-433), present in the dimerization interface of the TLR4-myeloid differentiation protein-2 (MD2) complex, displayed self-assembly and adopted a nanostructure. Both in vitro studies and in vivo experiments in mice indicated that TR-433 is nontoxic. TR-433 induced pro-inflammatory responses in THP-1 monocytes and HEK293T cells that were transiently transfected with TLR4/CD14/MD2 and also in BALB/c mice. In light of the self-assembly and pro-inflammatory properties of TR-433, we immunized with a mixture of TR-433 and either ovalbumin or filarial antigen trehalose-6-phosphate phosphatase (TPP). A significant amount of IgG titers was produced, suggesting adjuvanting capability of TR-433 that was comparable with that of Freund's complete adjuvant (FCA) and appreciably higher than that of alum. We found that TR-433 preferentially activates type 1 helper T cell (Th1) response rather than type 2 helper T cell (Th2) response. To our knowledge, this is the first report on the identification of a short TLR4-derived peptide that possesses both self-assembling and pro-inflammatory properties and has significant efficacy as an adjuvant, capable of activating cellular responses in mice. These results indicate that TR-433 possesses significant potential for development as a new adjuvant in therapeutic application.
Collapse
Affiliation(s)
| | | | | | | | - Mohd Sayeed
- From the Molecular and Structural Biology Division
| | | | - M I Siddiqi
- From the Molecular and Structural Biology Division
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road Lucknow-226 031, India
| | | | | |
Collapse
|
24
|
Duong HTT, Yin Y, Thambi T, Nguyen TL, Giang Phan VH, Lee MS, Lee JE, Kim J, Jeong JH, Lee DS. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials 2018; 185:13-24. [PMID: 30216806 DOI: 10.1016/j.biomaterials.2018.09.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/30/2022]
Abstract
Despite the tremendous potential of DNA-based cancer vaccines, their efficacious delivery to antigen presenting cells to stimulate both humoral and cellular response remains a major challenge. Although electroporation-based transfection has improved performance, an optimal strategy for safe and pain-free vaccination technique remains elusive. Herein, we report a smart DNA vaccine delivery system in which nanoengineered DNA vaccine was laden on microneedles (MNs) assembled with layer-by-layer coating of ultra-pH-responsive OSM-(PEG-PAEU) and immunostimulatory adjuvant poly(I:C), a synthetic double stranded RNA. Transcutaneous application of MN patches onto the mice skin perforate the stratum corneum with minimal cell damage; subsequent disassembly at the immune-cell-rich epidermis/dermis allows the release of adjuvants and DNA vaccines, owing to the ultra-sharp pH-responsive nature of OSM-(PEG-PAEU). The released adjuvant and DNA vaccine can enhance dendritic cell maturation and induce type I interferons, and thereby produce antigen-specific antibody that can achieve the antibody-dependent cell-mediated cytotoxicity (ADCC) and CD8+ T cell to kill cancer cells. Strikingly, transcutaneous application of smart vaccine formulation in mice elicited 3-fold greater frequencies of Anti-OVA IgG1 serum antibody and 3-fold excess of cytotoxic CD8+ T cell than soluble DNA vaccine formulation. As a consequence, the formulation rejected the murine B16/OVA melanoma tumors in C57BL/6 mice through the synergistic activation of antigen-specific ADCC and cytotoxic CD8+ T cells. The maneuvered use of vaccine and adjuvant poly(I:C) in MNs induces humoral and cellular immunity, which provides a promising vaccine technology that shows improved efficacy, compliance, and safety.
Collapse
Affiliation(s)
- Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yue Yin
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - V H Giang Phan
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Min Sang Lee
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jung Eun Lee
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
25
|
Bookstaver ML, Hess KL, Jewell CM. Self-Assembly of Immune Signals Improves Codelivery to Antigen Presenting Cells and Accelerates Signal Internalization, Processing Kinetics, and Immune Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802202. [PMID: 30146797 PMCID: PMC6252008 DOI: 10.1002/smll.201802202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/15/2018] [Indexed: 04/14/2023]
Abstract
Vaccines and immunotherapies that elicit specific types of immune responses offer transformative potential to tackle disease. The mechanisms governing the processing of immune signals-events that determine the type of response generated-are incredibly complex. Understanding these processes would inform more rational vaccine design by linking carrier properties, processing mechanisms, and relevant timescales to specific impacts on immune response. This goal is pursued using nanostructured materials-termed immune polyelectrolyte multilayers-built entirely from antigens and stimulatory toll-like receptors agonists (TLRas). This simplicity allows isolation and quantification of the rates and mechanisms of intracellular signal processing, and the link to activation of distinct immune pathways. Each vaccine component is internalized in a colocalized manner through energy-dependent caveolae-mediated endocytosis. This process results in trafficking through endosome/lysosome pathways and stimulation of TLRs expressed on endosomes/lysosomes. The maximum rates for these events occur within 4 h, but are detectable in minutes, ultimately driving downstream proimmune functions. Interestingly, these uptake, processing, and activation kinetics are significantly faster for TLRas in particulate form compared with free TLRa. Our findings provide insight into specific mechanisms by which particulate vaccines enhance initiation of immune response, and highlight quantitative strategies to assess other carrier technologies.
Collapse
Affiliation(s)
- Michelle L. Bookstaver
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, Maryland 21201
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201
| |
Collapse
|
26
|
Alford A, Rich M, Kozlovskaya V, Chen J, Sherwood J, Bolding M, Warram J, Bao Y, Kharlampieva E. Ultrasound‐Triggered Delivery of Anticancer Therapeutics from MRI‐Visible Multilayer Microcapsules. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Aaron Alford
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Megan Rich
- Department of Neurobiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Veronika Kozlovskaya
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jun Chen
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL 35487 USA
| | - Mark Bolding
- Department of Radiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jason Warram
- Department of Radiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Yuping Bao
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL 35487 USA
| | - Eugenia Kharlampieva
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| |
Collapse
|
27
|
Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 2018; 29:587-603. [PMID: 29378134 PMCID: PMC10642707 DOI: 10.1021/acs.bioconjchem.7b00808] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.
Collapse
Affiliation(s)
- Bob J. Ignacio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
28
|
Bookstaver ML, Tsai SJ, Bromberg JS, Jewell CM. Improving Vaccine and Immunotherapy Design Using Biomaterials. Trends Immunol 2018; 39:135-150. [PMID: 29249461 PMCID: PMC5914493 DOI: 10.1016/j.it.2017.10.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Polymers, lipids, scaffolds, microneedles, and other biomaterials are rapidly emerging as technologies to improve the efficacy of vaccines against infectious disease and immunotherapies for cancer, autoimmunity, and transplantation. New studies are also providing insight into the interactions between these materials and the immune system. This insight can be exploited for more efficient design of vaccines and immunotherapies. Here, we describe recent advances made possible through the unique features of biomaterials, as well as the important questions for further study.
Collapse
Affiliation(s)
- Michelle L Bookstaver
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Shannon J Tsai
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, 29 South Greene Street, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA; United States Department of Veteran Affairs, 10 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
29
|
Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 2017; 35:575-596. [PMID: 28522213 PMCID: PMC7127164 DOI: 10.1016/j.biotechadv.2017.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Vaccination has been one of the most successful breakthroughs in medical history. In recent years, epitope-based subunit vaccines have been introduced as a safer alternative to traditional vaccines. However, they suffer from limited immunogenicity. Nanotechnology has shown value in solving this issue. Different kinds of nanovaccines have been employed, among which virus-like nanoparticles (VLPs) and self-assembled peptide nanoparticles (SAPNs) seem very promising. Recently, SAPNs have attracted special interest due to their unique properties, including molecular specificity, biodegradability, and biocompatibility. They also resemble pathogens in terms of their size. Their multivalency allows an orderly repetitive display of antigens on their surface, which induces a stronger immune response than single immunogens. In vaccine design, SAPN self-adjuvanticity is regarded an outstanding advantage, since the use of toxic adjuvants is no longer required. SAPNs are usually composed of helical or β-sheet secondary structures and are tailored from natural peptides or de novo structures. Flexibility in subunit selection opens the door to a wide variety of molecules with different characteristics. SAPN engineering is an emerging area, and more novel structures are expected to be generated in the future, particularly with the rapid progress in related computational tools. The aim of this review is to provide a state-of-the-art overview of self-assembled peptide nanoparticles and their use in vaccine design in recent studies. Additionally, principles for their design and the application of computational approaches to vaccine design are summarized.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Golkar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Hajighahramani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Abstract
Sarah Webb explores nanoscience strategies for activating T cells in the fight against cancer.
Collapse
|
31
|
Andorko JI, Jewell CM. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med 2017; 2:139-155. [PMID: 28932817 PMCID: PMC5579731 DOI: 10.1002/btm2.10063] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties-size, shape, chemical functionality-impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system-B and T cell lymphocytes-to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- James I. Andorko
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD 20742
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD 20742
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD 21201
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD 21201
- United States Department of Veterans AffairsBaltimoreMD 21201
| |
Collapse
|
32
|
Tostanoski LH, Jewell CM. Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev 2017; 114:60-78. [PMID: 28392305 PMCID: PMC6262758 DOI: 10.1016/j.addr.2017.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
The immune system is an awe-inspiring control structure that maintains a delicate and constantly changing balance between pro-immune functions that fight infection and cancer, regulatory or suppressive functions involved in immune tolerance, and homeostatic resting states. These activities are determined by integrating signals in space and time; thus, improving control over the densities, combinations, and durations with which immune signals are delivered is a central goal to better combat infectious disease, cancer, and autoimmunity. Self-assembly presents a unique opportunity to synthesize materials with well-defined compositions and controlled physical arrangement of molecular building blocks. This review highlights strategies exploiting these capabilities to improve the understanding of how precisely-displayed cues interact with immune cells and tissues. We present work centered on fundamental properties that regulate the nature and magnitude of immune response, highlight pre-clinical and clinical applications of self-assembled technologies in vaccines, cancer, and autoimmunity, and describe some of the key manufacturing and regulatory hurdles facing these areas.
Collapse
Key Words
- Autoimmunity and tolerance
- Biomaterial
- Cancer
- Immunomodulation
- Manufacturing, regulatory approval and FDA
- Nanoparticle, microparticle, micelle, liposome, polyplex, lipoplex, polyelectrolyte multilayer
- Nanotechnology
- Non-covalent, hydrophobic, hydrogen bonding, and electrostatic interaction
- Self-assembly
- Sensor, diagnostic, and theranostic
- Vaccine and immunotherapy
Collapse
Affiliation(s)
- Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA; United States Department of Veterans Affairs, 10 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
33
|
Kelly SH, Shores LS, Votaw NL, Collier JH. Biomaterial strategies for generating therapeutic immune responses. Adv Drug Deliv Rev 2017; 114:3-18. [PMID: 28455189 PMCID: PMC5606982 DOI: 10.1016/j.addr.2017.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023]
Abstract
Biomaterials employed to raise therapeutic immune responses have become a complex and active field. Historically, vaccines have been developed primarily to fight infectious diseases, but recent years have seen the development of immunologically active biomaterials towards an expanding list of non-infectious diseases and conditions including inflammation, autoimmunity, wounds, cancer, and others. This review structures its discussion of these approaches around a progression from single-target strategies to those that engage increasingly complex and multifactorial immune responses. First, the targeting of specific individual cytokines is discussed, both in terms of delivering the cytokines or blocking agents, and in terms of active immunotherapies that raise neutralizing immune responses against such single cytokine targets. Next, non-biological complex drugs such as randomized polyamino acid copolymers are discussed in terms of their ability to raise multiple different therapeutic immune responses, particularly in the context of autoimmunity. Last, biologically derived matrices and materials are discussed in terms of their ability to raise complex immune responses in the context of tissue repair. Collectively, these examples reflect the tremendous diversity of existing approaches and the breadth of opportunities that remain for generating therapeutic immune responses using biomaterials.
Collapse
Affiliation(s)
- Sean H Kelly
- Duke University, Department of Biomedical Engineering, United States
| | - Lucas S Shores
- Duke University, Department of Biomedical Engineering, United States
| | - Nicole L Votaw
- Duke University, Department of Biomedical Engineering, United States
| | - Joel H Collier
- Duke University, Department of Biomedical Engineering, United States.
| |
Collapse
|
34
|
Patent highlights August-September 2016. Pharm Pat Anal 2017; 6:17-24. [PMID: 28155581 DOI: 10.4155/ppa-2016-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
35
|
Zhang P, Bookstaver ML, Jewell CM. Engineering Cell Surfaces with Polyelectrolyte Materials for Translational Applications. Polymers (Basel) 2017; 9:E40. [PMID: 30970718 PMCID: PMC6431965 DOI: 10.3390/polym9020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
Engineering cell surfaces with natural or synthetic materials is a unique and powerful strategy for biomedical applications. Cells exhibit more sophisticated migration, control, and functional capabilities compared to nanoparticles, scaffolds, viruses, and other engineered materials or agents commonly used in the biomedical field. Over the past decade, modification of cell surfaces with natural or synthetic materials has been studied to exploit this complexity for both fundamental and translational goals. In this review we present the existing biomedical technologies for engineering cell surfaces with one important class of materials, polyelectrolytes. We begin by introducing the challenges facing the cell surface engineering field. We then discuss the features of polyelectrolytes and how these properties can be harnessed to solve challenges in cell therapy, tissue engineering, cell-based drug delivery, sensing and tracking, and immune modulation. Throughout the review, we highlight opportunities to drive the field forward by bridging new knowledge of polyelectrolytes with existing translational challenges.
Collapse
Affiliation(s)
- Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MA 20742, USA.
| | - Michelle L Bookstaver
- Fischell Department of Bioengineering, University of Maryland, College Park, MA 20742, USA.
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MA 20742, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MA 21201, USA.
- United States Department of Veterans Affairs, Baltimore, MA 21201, USA.
| |
Collapse
|
36
|
Andorko JI, Pineault KG, Jewell CM. Impact of molecular weight on the intrinsic immunogenic activity of poly(beta amino esters). J Biomed Mater Res A 2017; 105:1219-1229. [PMID: 27977902 DOI: 10.1002/jbm.a.35970] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023]
Abstract
Polymeric carriers are ubiquitously studied in vaccine and drug delivery to control the encapsulation, kinetics, and targeting of cargo. Recent research reveals many polymers can cause immunostimulatory and inflammatory responses, even in the absence of other immune signals. However, the extent to which this intrinsic immunogenicity evolves during degradation is understudied. Here we synthesized a small library of poly(beta amino esters) (PBAEs) that exhibit different starting molecular weights (MWs), but with similar and rapid degradation rates. Primary dendritic cells (DCs) treated with free PBAEs, either intact or degraded to form low MW fragments, were not activated. In contrast particles formed from PBAEs at different extents of degradation caused differential expression of classical DC activation markers (for example, CD40, CD80, CD86, MHCII), as well as antigen presentation. During degradation, activation levels changed with changing physicochemical properties (for example, MW, concentration, size, charge). Of note, irrespective of starting MW, immunogenicity peaked when the MW of degrading PBAEs decreased to a range of ∼1500-3000 Da. These findings could help inform design of future carriers that exploit the dynamic interactions with the immune system as materials degrade, leading to carriers that deliver cargo but also help direct the immune responses to vaccine or immunotherapy cargo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1219-1229, 2017.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kevin G Pineault
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland.,Biomedical Laboratory Research and Development, United States Department of Veterans Affairs, Baltimore, Maryland
| |
Collapse
|
37
|
Zhang P, Andorko JI, Jewell CM. Impact of dose, route, and composition on the immunogenicity of immune polyelectrolyte multilayers delivered on gold templates. Biotechnol Bioeng 2016; 114:423-431. [PMID: 27567213 PMCID: PMC6033025 DOI: 10.1002/bit.26083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Abstract
Biomaterial vaccines offer new capabilities that can be exploited for both infectious disease and cancer. We recently developed a novel vaccine platform based on self‐assembly of immune signals into immune polyelectrolyte multilayers (iPEMs). These iPEM vaccines are electrostatically assembled from peptide antigens and nucleic acid‐based toll‐like receptor agonists (TLRas) that serve as molecular adjuvants. Gold nanoparticles (AuNPs) coated with iPEMs stimulate effector cytokine secretion in vitro and expand antigen‐specific T cells in mice. Here we investigated how the dose, injection route, and choice of molecular adjuvant impacts the ability of iPEMs to generate T cell immunity and anti‐tumor response in mice. Three injection routes—intradermal, subcutaneous, and intramuscular—and three iPEM dosing levels were employed. Intradermal injection induced the most potent antigen‐specific T cell responses and, for all routes, the level of response was dose‐dependent. We further discovered that these vaccines generate durable memory, indicated by potent, antigen‐specific CD8+ T cell recall responses in mice challenged with vaccine 49 days after a prime‐boost immunization regimen. In a common exogenous antigen melanoma model, iPEM vaccines slowed or stopped tumor growth more effectively than equivalent ad‐mixed formulations. Further, iPEMs containing CpG—a TLR9a—were more potent compared with iPEMs containing polyIC, a TLR3a. These findings demonstrate the ability of iPEMs to enhance response to several different classes of vaccine cargos, supporting iPEMs as a simple vaccine platform that mimics attractive features of other nanoparticles using immune signals that can be self‐assembled or coated on substrates. Biotechnol. Bioeng. 2017;114: 423–431. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peipei Zhang
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Engineering Building, 8228 Paint Branch Drive, College Park, Maryland 20742
| | - James I Andorko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 2212 Jeong H. Kim Engineering Building, 8228 Paint Branch Drive, College Park, Maryland 20742.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland.,United States Department of Veterans Affairs, Baltimore, Maryland
| |
Collapse
|
38
|
Hess KL, Andorko JI, Tostanoski LH, Jewell CM. Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials 2016; 118:51-62. [PMID: 27940382 DOI: 10.1016/j.biomaterials.2016.11.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Autoimmune diseases occur when the immune system incorrectly recognizes self-molecules as foreign; in the case of multiple sclerosis (MS), myelin is attacked. Intriguingly, new studies reveal toll-like receptors (TLRs), pathways usually involved in generating immune responses against pathogens, play a significant role in driving autoimmune disease in both humans and animal models. We reasoned polyplexes formed from myelin self-antigen and regulatory TLR antagonists might limit TLR signaling during differentiation of myelin-specific T cells, inducing tolerance by biasing T cells away from inflammatory phenotypes. Complexes were formed by modifying myelin peptide with cationic amino acids to create peptides able to condense the anionic nucleic-acid based TLR antagonist. These immunological polyplexes eliminate synthetic polymers commonly used to condense polyplexes and do not rely on gene expression; however, the complexes mimic key features of traditional polyplexes such as tunable loading and co-delivery. Using these materials and classic polyplex analysis techniques, we demonstrate condensation of both immune signals, protection from enzymatic degradation, and tunable physicochemical properties. We show polyplexes reduce TLR signaling, and in primary dendritic cell and T cell co-culture, reduce myelin-driven inflammation. During mouse models of MS, these tolerogenic polyplexes improve the progression, severity, and incidence of disease.
Collapse
Affiliation(s)
- Krystina L Hess
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - James I Andorko
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Baltimore, MD 21201, USA; United States Department of Veterans Affairs, 10 North Greene Street, Baltimore, Maryland 21201, USA.
| |
Collapse
|
39
|
Zeng Q, Gammon JM, Tostanoski LH, Chiu YC, Jewell CM. In Vivo Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers. ACS Biomater Sci Eng 2016; 3:195-205. [PMID: 28286864 PMCID: PMC5338335 DOI: 10.1021/acsbiomaterials.6b00414] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023]
Abstract
![]()
Microneedles
(MNs) are micron-scale polymeric or metallic structures
that offer distinct advantages for vaccines by efficiently targeting
skin-resident immune cells, eliminating injection-associated pain,
and improving patient compliance. These advantages, along with recent
studies showing therapeutic benefits achieved using traditional intradermal
injections in human cancer patients, suggest MN delivery might enhance
cancer vaccines and immunotherapies. We recently developed a new class
of polyelectrolyte multilayers based on the self-assembly of model
peptide antigens and molecular toll-like receptor agonists (TLRa)
into ultrathin, conformal coatings. Here, we reasoned that these immune
polyelectrolyte multilayers (iPEMs) might be a useful platform for
assembling cancer vaccine components on MN arrays for intradermal
delivery from these substrates. Using conserved human melanoma antigens
and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be
assembled on MNs in an automated fashion. These films, prepared with
up to 128 layers, are approximately 200 nm thick but provide cancer
vaccine cargo loading >225 μg/cm2. In cell culture,
iPEM cargo released from MNs is internalized by primary dendritic
cells, promotes activation of these cells, and expands T cells during
coculture. In mice, application of iPEM-coated MNs results in the
codelivery of tumor antigen and CpG through the skin, expanding tumor-specific
T cells during initial MN applications and resulting in larger memory
recall responses during a subsequent booster MN application. This
study support MNs coated with PEMs built from tumor vaccine components
as a well-defined, modular system for generating tumor-specific immune
responses, enabling new approaches that can be explored in combination
with checkpoint blockade or other combination cancer therapies.
Collapse
Affiliation(s)
- Qin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Yu-Chieh Chiu
- Fischell Department of Bioengineering, University of Maryland, College Park , 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8228 Paint Branch Drive, 2212 Jeong H. Kim Building, College Park, Maryland 20742, United States; Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, Maryland 21201, United States; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, Maryland 21201, United States
| |
Collapse
|