1
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
2
|
Wang J, Zhao W, Tu H, Zu X, Li J, Lei K, Li J, Zhuang Y, Dong Y, Tulupov A, Zhang F, Bao J. Copper doped magnetic vortex nanoring based nanotherapeutics for bacterial infection tri-therapy: interplay of magnetic hyperthermia, chemodynamic therapy and photothermal therapy. NANOSCALE 2025; 17:3421-3435. [PMID: 39711063 DOI: 10.1039/d4nr03799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity. Exposure to an alternating magnetic field (AMF) and near-infrared (NIR) light allows the nanoring to elevate environmental temperatures through hysteresis losses and the non-radiative decay effects of the PDA coating. At a concentration of 150 μg mL-1, Cu-MVNp increases the temperature by 18.2 °C under an AMF, achieving a specific absorption rate (SAR) of 640.9 W g-1. On the other hand, under 808 nm NIR irradiation, the temperature rises by 42.6 °C, with a photothermal conversion efficiency of 46.45%. Furthermore, by incorporating copper ions (Cu), which can damage cell membranes themselves, Cu-MVNp was endowed with Fenton-like functions and can catalyze the formation of hydroxyl radicals (˙OH) from low concentrations (1 mM) of hydrogen peroxide (H2O2), thus enhancing the effectiveness of chemodynamic therapy (CDT). Cu-MVNp exhibits significant antibacterial efficacy, achieving notable kill rates against E. coli and S. aureus, with enhanced effects under NIR and nearly complete eradication with an AMF. In vivo tests using a mouse wound model confirm its potent bactericidal properties and good biocompatibility. The Cu-MVNp nanoring shows promise as an antibacterial treatment, potentially effective at inhibiting bacterial growth.
Collapse
Affiliation(s)
- Jing Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Wenqian Zhao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Hui Tu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Xiangyang Zu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Jing Li
- Office of Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Yanbo Dong
- Faculty of Teacher Education, Pingdingshan University, Pingdingshan, Henan, 467000, People's Republic of China
| | - Andrey Tulupov
- Laboratory of MRT Technologies, The Institute International Tomography Center of the Russian Academy of Sciences, Institutskaya Str. 3A, 630090, Novosibirsk, Russia
| | - Fengshou Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Jianfeng Bao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| |
Collapse
|
3
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
4
|
Alimohammadian M, Azizian S, Sohrabi B. Preparation of the graphene-based smart hydrophobic nanocomposite and its application in oil/water separation. Sci Rep 2023; 13:19816. [PMID: 37957214 PMCID: PMC10643443 DOI: 10.1038/s41598-023-46520-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Designing and synthesizing materials with smart hydrophobicity against an external magnetic field for efficient oil/water separation is of great importance due to the increasing problems caused by oil pollution. Here, the nanocomposites were fabricated based on graphene and different iron oxides exhibit smart hydrophobicity against an external magnetic field and they are in powder form eliminating the requirement for a substrate employing a facile and echo friendly method. The results prove that autoclaving of graphene leads to its ferromagnetic property; then it is attached to iron oxides by magnetic attraction and a nanocomposite is produced. The magnetic property of the resulting nanocomposite is higher than the magnetic property of its individual components. In addition, following nanocomposite formation, its hydrophobicity and surface area also change. FESEM images were taken from the nanocomposites to study their surface morphology, and EDS-MAP analysis to observe the elemental distribution uniformity of the nanocomposites. Also, to measure the surface area and pore size, BET analysis has been performed on pure materials and graphene-black iron oxide nanocomposite (graphene@black iron oxide). The results show that the specific surface area of black iron oxide increases after being composited with graphene dispersed at 5000 rpm. Indeed, graphene forms a composite by binding to iron oxide, and therefore, its specific surface area increases compared to iron oxide and graphene alone. These results show an increase in oil sorption and better separation of oil from water by the prepared nanocomposite. Also, to measure the magnetic properties of pure materials, graphene@black iron oxide, and ferromagnetic graphene at 3000 and 5000 rpm, the Vibrating Sample Magnetometer analysis has been performed. The results have proven that the nanocomposite powder prepared by a simple method obtained from cost-effective and available materials is hydrophobic and becomes more hydrophobic by applying an external magnetic field. Due to the ease with which oil can be readily removed from the nanocomposite by eliminating the external magnetic field, this nanocomposite is an excellent choice for the separation of oil from water.
Collapse
Affiliation(s)
- Mahsa Alimohammadian
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
5
|
Jin X, Ou Z, Zhang G, Shi R, Yang J, Liu W, Luo G, Deng J, Wang W. A CO-mediated photothermal therapy to kill drug-resistant bacteria and minimize thermal injury for infected diabetic wound healing. Biomater Sci 2023; 11:6236-6251. [PMID: 37531204 DOI: 10.1039/d3bm00774j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
With an increasing proportion of drug-resistant bacteria, photothermal therapy (PTT) is a promising alternative to antibiotic treatment for infected diabetic skin ulcers. However, the inevitable thermal damage to the tissues restricts its clinical practice. Carbon monoxide (CO), as a bioactive gas molecule, can selectively inhibit bacterial growth and promote tissue regeneration, which may be coordinated with PTT for drug-resistant bacteria killing and tissue protection. Herein, a CO-mediated PTT agent (CO@mPDA) was engineered by loading manganese carbonyl groups into mesoporous polydopamine (mPDA) nanoparticles via coordination interactions between the metal center and a catechol group. Compared to the traditional PTT, the CO-mediated PTT increases the inhibition ratio of the drug-resistant bacteria both in vitro and in diabetic wound beds by selectively inhibiting the co-chaperone of the heat shock protein 90 kDa (Hsp90), and lowers the heat resistance of the bacteria rather than the mammalian tissues. Meanwhile, the tissue-protective proteins, such as Hsp90 and vimentin (Vim), are upregulated via the WNT and PI3K-Akt pathways to reduce thermal injury, especially with a laser with a high-power density. The CO-mediated PTT unified the bacterial killing with tissue protection, which offers a promising concept to improve PTT efficiency and minimize the side-effects of PTT when treating infected skin wounds.
Collapse
Affiliation(s)
- Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Zelin Ou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Guowei Zhang
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Rong Shi
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jumin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Gaoxing Luo
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Wei Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Brzozowska W, Wojtczak I, Railean V, Bekissanova Z, Trykowski G, Buszewski B, Sprynskyy M. Pyrolized Diatomaceous Biomass Doped with Epitaxially Growing Hybrid Ag/TiO 2 Nanoparticles: Synthesis, Characterisation and Antibacterial Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4345. [PMID: 37374528 DOI: 10.3390/ma16124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
In the pursuit of innovative solutions for modern technologies, particularly in the design and production of new micro/nanostructured materials, microorganisms acting as "natural microtechnologists" can serve as a valuable source of inspiration. This research focuses on harnessing the capabilities of unicellular algae (diatoms) to synthesize hybrid composites composed of AgNPs/TiO2NPs/pyrolyzed diatomaceous biomass (AgNPs/TiO2NPs/DBP). The composites were consistently fabricated through metabolic (biosynthesis) doping of diatom cells with titanium, pyrolysis of the doped diatomaceous biomass, and chemical doping of the pyrolyzed biomass with silver. To characterize the synthesized composites, their elemental and mineral composition, structure, morphology, and photoluminescent properties were analysed using techniques such as X-ray diffraction, scanning and transmission electron microscopy, and fluorescence spectroscopy. The study revealed the epitaxial growth of Ag/TiO2 nanoparticles on the surface of pyrolyzed diatom cells. The antimicrobial potential of the synthesized composites was evaluated using the minimum inhibitory concentration (MIC) method against prevalent drug-resistant microorganisms, including Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, both from laboratory cultures and clinical isolates.
Collapse
Affiliation(s)
- Weronika Brzozowska
- Institute of Marine and Environmental Sciences, Doctoral School, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland
| | - Izabela Wojtczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Zhanar Bekissanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
- Center of Physical-Chemical Methods of Research and Analysis, 050012 Almaty, Kazakhstan
| | - Grzegorz Trykowski
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| |
Collapse
|
7
|
Zhang Z, Wen J, Zhang J, Guo D, Zhang Q. Vacancy-Modulated of CuS for Highly Antibacterial Efficiency via Photothermal/Photodynamic Synergetic Therapy. Adv Healthc Mater 2023; 12:e2201746. [PMID: 36303519 DOI: 10.1002/adhm.202201746] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Indexed: 02/03/2023]
Abstract
Cu-based nanomaterials have been developed to alleviate the problem of antibiotic resistance due to their superior properties and good biocompatibility. Defects in nanomaterials have a major role in improving photocatalytic performance. Herein, two CuS nanospheres with predominant VCuSCu and VCuSS vacancy (abbreviated as CuS and CuS-T150, respectively) characterized by positron annihilation spectra are synthesized. The combination of experimental and theoretical calculation results demonstrates that CuS-T150 exhibits excellent antibacterial, achieving bactericidal rates of 99.9% against to Escherichia coli (E. coli) under 808 nm laser irradiation. Compared with CuS, the superior antimicrobial activity of CuS-T150 is mainly attributed to its stronger ability to adsorb oxygen molecules, more easily bind with surface of E. coli, and higher photothermal conversion efficiency (PTCE). This work provides a deeper understanding of nanomaterials with vacancy modulated the antibacterial efficiency by synergistic effect of photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Zhihao Zhang
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.,Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Jinghong Wen
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jie Zhang
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - Quanxi Zhang
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.,Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
8
|
Xu Y, Wang K, Zhao S, Xiong Q, Liu G, Li Y, Fang Q, Gong X, Xuan S. Rough surface NiFe2O4@Au/Polydopamine with a magnetic field enhanced photothermal antibacterial effect. CHEMICAL ENGINEERING JOURNAL 2022; 437:135282. [DOI: 10.1016/j.cej.2022.135282] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
10
|
Fan S, Lin W, Huang Y, Xia J, Xu JF, Zhang J, Pi J. Advances and Potentials of Polydopamine Nanosystem in Photothermal-Based Antibacterial Infection Therapies. Front Pharmacol 2022; 13:829712. [PMID: 35321326 PMCID: PMC8937035 DOI: 10.3389/fphar.2022.829712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Bacterial infection remains one of the most dangerous threats to human health due to the increasing cases of bacterial resistance, which is caused by the extensive use of current antibiotics. Photothermal therapy (PTT) is similar to photodynamic therapy (PDT), but PTT can generate heat energy under the excitation of light of specific wavelength, resulting in overheating and damage to target cells or sites. Polydopamine (PDA) has been proved to show plenty of advantages, such as simple preparation, good photothermal conversion effects, high biocompatibility, and easy functionalization and adhesion. Taking these advantages, dopamine is widely used to synthesize the PDA nanosystem with excellent photothermal effects, good biocompatibility, and high drug loading ability, which therefore play more and more important roles for anticancer and antibacterial treatment. PDA nanosystem-mediated PTT has been reported to induce significant tumor inhibition, as well as bacterial killings due to PTT-induced hyperthermia. Moreover, combined with other cancer or bacterial inhibition strategies, PDA nanosystem-mediated PTT can achieve more effective tumor and bacterial inhibitions. In this review, we summarized the progress of preparation methods for the PDA nanosystem, followed by advances of their biological functions and mechanisms for PTT uses, especially in the field of antibacterial treatments. We also provided advances on how to combine PDA nanosystem-mediated PTT with other antibacterial methods for synergistic bacterial killings. Moreover, we further provide some prospects of PDA nanosystem-mediated PTT against intracellular bacteria, which might be helpful to facilitate their future research progress for antibacterial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jun-Fa Xu
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| | - Junai Zhang
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| | - Jiang Pi
- *Correspondence: Jun-Fa Xu, ; Junai Zhang, ; Jiang Pi,
| |
Collapse
|
11
|
Huang X, Liu J, Zhou P, Su G, Zhou T, Zhang X, Zhang C. Ultrarobust Photothermal Materials via Dynamic Crosslinking for Solar Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104048. [PMID: 34862705 DOI: 10.1002/smll.202104048] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient and mechanically durable photothermal materials are urgently needed for solar harvesting, but their development still remains challenging. Here, inspired by the hierarchically oriented architecture of natural spider silk, an ultrarobust liquid metals (LMs)/polymer composite is presented via dynamic crosslinking based on the unique mechanical deformable characteristic of LMs. Dynamically cross-linked core-shell structured LMs droplets can be squeezed along with the orientational crystallization of polymer chains during drawing, thus enabling LMs nanoparticles to be uniformly programmed in the rigid polyethylene nanofiber skeleton. The resultant composite exhibits an unprecedented combination of strong broad-band light absorption (96.9-99.3%), excellent photothermal conversion ability, remarkable mechanical property (tensile strength of 283.7 MPa, which can lift 200 000 times its own weight), and long-term structural reliability (bearing 100 000 bending cycles). A powerful and durable solar thermoelectric generator system for real-environmental solar-heat-electricity conversion is further demonstrated, providing a valuable guidance for the design and fabrication of high-performance solar-harvesting materials.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Peng Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Gehong Su
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Qiu Y, Yu S, Wang Y, Xiao L, Pei L, Pu Y, Zhang Y. Photothermal Therapy may be a Double-edge Sword by Inducing the Formation of Bacterial Antibiotic Tolerance. Biomater Sci 2022; 10:1995-2005. [PMID: 35266929 DOI: 10.1039/d1bm01740c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal nanoparticles are thought to be the most potential candidates against infectious disease, by disrupting cell membrane and inhibiting metabolism. However, subpopulation survived with this low-activity state may be endowed...
Collapse
Affiliation(s)
- Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Shimin Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Leyi Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linsen Pei
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| | - Yingying Pu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430079, China
| |
Collapse
|
13
|
Qu K, Xu J, Xue Y, Guo J, Gao Z, Song YY, Mei Y. Near Infrared Light-Driven Photothermal Effect on Homochiral Au/TiO 2 Nanotube Arrays for Enantioselective Desorption. Anal Chem 2021; 94:588-592. [PMID: 34931801 DOI: 10.1021/acs.analchem.1c04981] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chiral enantiomers have different effects on biological processes. Enantiomer separation is significant and necessary. Herein, a photothermal (PT) effect-derived enantioselective desorption strategy based on homochiral Au/TiO2 nanotubes (NTs) is developed. Using 3,4-dihydroxyphenylalanine (DOPA) as the model enantiomer, an obvious selective desorption of L/D-DOPA can be achieved by the NIR light-triggered local temperature enhancement. Molecular docking simulation further verifies that the distinct affinity precipitated by the different hydrogen bonds between homochiral sorbent and target enantiomers is the origin of enantioselective desorption. This desorption strategy provides a green and alternative approach for the selective separation of chiral molecules.
Collapse
Affiliation(s)
- Kuanzhi Qu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jing Xu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
14
|
Peng D, Liu G, He Y, Gao P, Gou S, Wu J, Yu J, Liu P, Cai K. Fabrication of a pH-responsive core-shell nanosystem with a low-temperature photothermal therapy effect for treating bacterial biofilm infection. Biomater Sci 2021; 9:7483-7491. [PMID: 34635886 DOI: 10.1039/d1bm01329g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, photothermal therapy (PTT) has been recognized as a viable alternative strategy against bacterial biofilm infection. However, the hyperthermia required for PTT to ablate a biofilm usually induces damage in normal tissues/organs nearby. Herein, we developed zeolite-based imidazole framework (ZIF-8)-coated mesoporous polydopamine (MPDA) core-shell nanoparticles and then loaded Pifithrin-μ (PES), a natural inhibitor of heat-shock protein (HSP) that plays an essential role in bacteria resisting heating-induced damage. The ZIF-8 shell of the MPDA@ZIF-8/PES nanoplatform enabled a rapid degradation in response to the acidic environment in bacterial biofilm infection, which triggered the controlled release of PES and Zn ions. As a result, HSP was remarkably suppressed for enhancing PTT efficacy upon mild near-infrared light irradiation. In addition, the release of Zn2+ also had an antibacterial/antibiofilm effect. Thus, the fabricated nanosystem was able to induce the effective elimination of the bacterial biofilm, realizing low-temperature PTT (∼45 °C) with excellent antibacterial efficacy. This work presented here not only provides a facile approach to fabricate the MPDA@ZIF-8/PES nanosystem with the responsiveness of the bacterial infection environment, but also proposes a promising low-temperature PTT strategy to treat bacterial biofilm-infection effectively.
Collapse
Affiliation(s)
- Dan Peng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Jinxiu Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, P. R. China
| |
Collapse
|
15
|
Rashid M, Rabbi MA, Ara T, Hossain MM, Islam MS, Elaissari A, Ahmad H, Rahman MM. Vancomycin conjugated iron oxide nanoparticles for magnetic targeting and efficient capture of Gram-positive and Gram-negative bacteria. RSC Adv 2021; 11:36319-36328. [PMID: 35492746 PMCID: PMC9043335 DOI: 10.1039/d1ra04390k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Drug conjugated iron oxide magnetite (Fe3O4) nanoparticles are of great interest in the field of biomedicine. In this study, vancomycin (Van) conjugated magnetite (Fe3O4) nanoparticles were envisioned to capture and inhibit the growth of bacteria. Hydrophobic Fe3O4 nanoparticles were synthesized by using co-precipitation of ferrous (Fe2+) and ferric (Fe3+) ions following a surface modification step with oleic acid as stabilizers. Thereafter, a ligand exchange technique was employed to displace oleic acid with hydrophilic dopamine (DOPA) molecules which have a catechol group for anchoring to the iron oxide surface to prepare water dispersible nanoparticles. The surface of the resulting Fe3O4/DOPA nanoparticles contains amino (-NH2) groups that are conjugated with vancomycin via a coupling reaction between the -NH2 group of dopamine and the -COOH group of vancomycin. The prepared vancomycin conjugated Fe3O4/DOPA nanoparticles were named Fe3O4/DOPA/Van and exhibited a magnetic response to an external magnetic field due to the presence of magnetite Fe3O4 in the core. The Fe3O4/DOPA/Van nanoparticles showed bactericidal activity against both Gram positive Bacillus subtilis (B. subtilis) and Streptococcus and Gram-negative bacteria Escherichia coli (E. coli). Maximum inhibition zones of 22 mm, 19 mm and 18 mm were found against B. subtilis, Streptococcus and E. coli respectively. Most importantly, the vancomycin conjugated nanoparticles were effectively bound to the cell wall of the bacteria, promoting bacterial separation and growth inhibition. Therefore, the prepared Fe3O4/DOPA/Van nanoparticles can be promising for effective bacterial separation and killing in the dispersion media.
Collapse
Affiliation(s)
- Mehnaz Rashid
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Ahasanur Rabbi
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Tabassum Ara
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Motahar Hossain
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Shahidul Islam
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Abdelhamid Elaissari
- Université Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280 Lyon F-69622 France
| | - Hasan Ahmad
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Mahbubor Rahman
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| |
Collapse
|
16
|
Luo L, Qin B, Jiang M, Xie L, Luo Z, Guo X, Zhang J, Li X, Zhu C, Du Y, Peng L, You J. Regulating immune memory and reversing tumor thermotolerance through a step-by-step starving-photothermal therapy. J Nanobiotechnology 2021; 19:297. [PMID: 34593005 PMCID: PMC8482573 DOI: 10.1186/s12951-021-01011-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background Photothermal therapy (PTT) is a highly effective treatment for solid tumors and can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+ T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+ Teff) into central memory CD8+ T cell (CD8+ TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, conferring additional protection against the host immune response mediated by PTT. Methods Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+ T cells by activating AMPK, increases the number of CD8+ TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME. Results We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+ TCMs were produced and more effective anti-tumor was presented in this study. Conclusion The Step-by-Step starving-photothermal therapy could not only reverse the tumor thermotolerance, but also enhance the ICD and produce more CD8+ TCM during the treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01011-2.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Lin Xie
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Ling Peng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China. .,Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Hangzhou, 310003, Zhejiang, China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Zhang W, Hu E, Wang Y, Miao S, Liu Y, Hu Y, Liu J, Xu B, Chen D, Shen Y. Emerging Antibacterial Strategies with Application of Targeting Drug Delivery System and Combined Treatment. Int J Nanomedicine 2021; 16:6141-6156. [PMID: 34511911 PMCID: PMC8423451 DOI: 10.2147/ijn.s311248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
At present, some bacteria have developed significant resistance to almost all available antibiotics. One of the reasons that cannot be ignored is long-term exposure of bacteria to the sub-minimum inhibitory concentration (MIC) of antibiotics. Therefore, it is necessary to develop a targeted antibiotic delivery system to improve drug delivery behavior, in order to delay the generation of bacterial drug resistance. In recent years, with the continuous development of nanotechnology, various types of nanocarriers that respond to the infection microenvironment, targeting specific bacterial targets, and targeting infected cells, and so on, are gradually being used in the delivery of antibacterial agents to increase the concentration of drugs at the site of infection and reduce the side effects of drugs in normal tissues. Here, this article describes in detail the latest research progress on nanocarriers for antimicrobial, and commonly used targeted antimicrobial strategies. The advantages of the combination of nanotechnology and targeting strategies in combating bacterial infections are highlighted in this review, and the upcoming opportunities and remaining challenges in this field are rationally prospected.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Enshi Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yajie Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Si Miao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yanyan Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yumin Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ji Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Daquan Chen
- School of Pharmacy, Yantai University, State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, 264005, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
18
|
Liao X, Liu Y, Jia Q, Zhou J. Multi-Channel Optical Device for Solar-Driven Bacterial Inactivation under Real-Time Temperature Feedback. Chemistry 2021; 27:11094-11101. [PMID: 34196050 DOI: 10.1002/chem.202101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/10/2022]
Abstract
Solar-driven photothermal antibacterial devices have attracted a lot of interest due to the fact that solar energy is one of the cleanest sources of energy in the world. However, conventional materials have a narrow absorbance band, resulting in deficient solar harvesting. In addition, lack of knowledge on temperature change in these devices during the photothermal process has also led to a waste of energy. Here, we presented an elegant multi-channel optical device with a multilayer structure to simultaneously address the above-mentioned issues in solar-driven antibacterial devices. In the photothermal channel, semiconductor IrO2 -nanoaggregates exhibited higher solar absorbance and photothermal conversion efficiency compared with nanoparticles. In the luminescence channel, thermal-sensitive Er-doped upconversion nanoparticles were utilized to reflect the microscale temperature in real-time. The bacteria were successfully inactivated during the photothermal effect under solar irradiation with temperature monitoring. This study could provide valuable insight for the development of smart photothermal devices for solar-driven photothermal bacterial inactivation in the future.
Collapse
Affiliation(s)
- Xianquan Liao
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China
| | - Yuxin Liu
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China.,Max-Planck Institute for Colloids and Interfaces, Potsdam, 14476, Germany
| | - Qi Jia
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Zhou
- Department of Chemistry &, Beijing Key Lab. Opt. Mat. and Photon. Device, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
19
|
Sun W, Yu H, Wang D, Li Y, Tian B, Zhu S, Wang PY, Xie S, Wang R. MnO 2 nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging. Biomater Sci 2021; 9:3662-3674. [PMID: 33617619 DOI: 10.1039/d1bm00033k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) has been regarded as a promising strategy for tumor therapy. However, heterogeneous tumor microenvironments severely limit the efficacy of photodynamic therapy. In this work, a multifunctional theranostic platform (MnO2-SiO2-APTES&Ce6 (MSA&C)) was fabricated based on MnO2 nanoflowers, which afforded MRI-guided synergistic therapy incorporating PDT and second near-infrared window (NIR-II) photothermal therapy (PTT). Herein, MnO2 nanoflowers are first proposed as a NIR-II photothermal agent. In the MSA&C system, MnO2 nanoflowers were employed for effective photosensitizer loading, relieving tumor hypoxia, and NIR-II PTT and tumor-specific imaging. The large amount of photosensitizer, reduced tumor hypoxia, and hyperthermia all contributed to the improvement of PDT. The quantity of reactive oxygen species (ROS) generated during PDT in turn down-regulated the expression of heat shock proteins (HSP 70), thereby improving photothermal performance. Positively charged (3-aminopropyl)triethoxysilane (APTES) was used to promote cellular uptake, further improving treatment efficiency. In this system, the MSA&C nanoflowers can not only alleviate tumor hypoxia, but they also obviously induce cell apoptosis under laser irradiation through a ROS- and hyperthermia-mediated mechanism, thereby leading to remarkable tumor growth inhibition. Furthermore, the Mn2+ ions generated during treatment can be explored for MR imaging, and this could be used to finally realize MRI-guided enhanced PDT/PTT.
Collapse
Affiliation(s)
- Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| | - Hui Yu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Deqiang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shuang Zhu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
20
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wu Y, Huang Y, Tu C, Wu F, Tong G, Su Y, Xu L, Zhang X, Xiong S, Zhu X. A mesoporous polydopamine nanoparticle enables highly efficient manganese encapsulation for enhanced MRI-guided photothermal therapy. NANOSCALE 2021; 13:6439-6446. [PMID: 33885524 DOI: 10.1039/d1nr00957e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theranostic agents based on magnetic resonance imaging (MRI) and photothermal therapy (PTT) play an important role in tumor therapy. However, the available theranostic agents are facing great challenges such as biocompatibility, MRI contrast effect and photothermal conversion efficiency (η). In this work, mesoporous polydopamine nanoparticles (MPDAPs/Mn) were prepared on MRI and PTT combined theranostic nanoplatforms, of which the high loading manganese ions and specific surface areas enable good MRI contrast and excellent photothermal conversion efficiency, respectively. The MPDAPs/Mn have uniform morphology, good stability and biocompatibility. Meanwhile, in vitro and in vivo studies have confirmed their superior T1-weighted MRI effect and photothermal conversion efficiency. Furthermore, MPDAPs/Mn have excellent antitumor efficacy in HeLa tumor-bearing mice. Therefore, this developed MPDAPs/Mn theranostic nanoplatform could be a promising candidate for MRI-guided photothermal cancer therapy.
Collapse
Affiliation(s)
- Yan Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu J, Cai L, Dai Y, Liu Y, Zuo F, Ni C, Shi M, Li J. Polydopamine-Based Nanoparticles for Photothermal Therapy/Chemotherapy and their Synergistic Therapy with Autophagy Inhibitor to Promote Antitumor Treatment. CHEM REC 2021; 21:781-796. [PMID: 33634962 DOI: 10.1002/tcr.202000170] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Polydopamine (PDA) has attracted much attention recently due to its strong adhesion capability to most substrates. After combining with organic (such as organic metal framework, micelles, hydrogel, polypeptide copolymer) or inorganic nanomaterials (such as gold, silicon, carbon), polydopamine-based nanoparticles (PDA NPs) exhibit the merging of characteristics. Until now, the preparation methods, polymerization mechanism, and photothermal therapy (PTT) or chemotherapy (CT) applications of PDA NPs have been reported detailly. Since the PTT or CT treatment process is often accompanied by exogenous stimuli, tumor cells usually induce pro-survival autophagy to protect the cells from further damage, which will weaken the therapeutic effect. Therefore, an in-depth understanding of PDA NPs modulated PTT, CT, and autophagy is required. However, this association is rarely reviewed. Herein, we briefly described the relationship between PTT/CT, autophagy, and tumor treatment. Then, the outstanding performances of PDA NPs in PTT/CT and their combination with autophagy inhibitors for tumor synergistic therapy have been summarized. This work is expected to shed light on the multi-strategy antitumor therapy applications of PDA NPs.
Collapse
Affiliation(s)
- Jiahui Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yawen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Fengmei Zuo
- Jiangsu Vocational College of Medicine, Yancheng, 224000, Jiangsu Province, China
| | - Chen Ni
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| |
Collapse
|
23
|
Huo J, Jia Q, Huang H, Zhang J, Li P, Dong X, Huang W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem Soc Rev 2021; 50:8762-8789. [PMID: 34159993 DOI: 10.1039/d1cs00074h] [Citation(s) in RCA: 375] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Due to the emerging bacterial resistance and the protection of tenacious biofilms, it is hard for the single antibacterial modality to achieve satisfactory therapeutic effects nowadays. In recent years, photothermal therapy (PTT)-derived multimodal synergistic treatments have received wide attention and exhibited cooperatively enhanced bactericidal activity. PTT features spatiotemporally controllable generation of hyperthermia that could eradicate bacteria without inducing resistance. The synergy of it with other treatments, such as chemotherapy, photo-dynamic/catalytic therapy (PDT/PCT), immunotherapy, and sonodynamic therapy (SDT), could lower the introduced laser density in PTT and avoid undesired overheating injury of normal tissues. Simultaneously, by heat-induced improvement of the bacterial membrane permeability, PTT is conducive for accelerated intracellular permeation of chemotherapeutic drugs as well as reactive oxygen species (ROS) generated by photosensitizers/sonosensitizers, and could promote infiltration of immune cells. Thereby, it could solve the currently existing sterilization deficiencies of other combined therapeutic modes, for example, bacterial resistance for chemotherapy, low drug permeability for PDT/PCT/SDT, adverse immunoreactions for immunotherapy, etc. Admittedly, PTT-derived synergistic treatments are becoming essential in fighting bacterial infection, especially those caused by antibiotic-resistant strains. This review firstly presents the classical and newly reported photothermal agents (PTAs) in brief. Profoundly, through the introduction of delicately designed nanocomposite platforms, we systematically discuss the versatile photothermal-derived multimodal synergistic therapy with the purpose of sterilization application. At the end, challenges to PTT-derived combinational therapy are presented and promising synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Han Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China and School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
24
|
Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS APPLIED BIO MATERIALS 2020; 4:3937-3961. [DOI: 10.1021/acsabm.0c01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qinyu Han
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Wei Lau
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Thang Cong Do
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhijun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637549, Singapore
| |
Collapse
|
25
|
MAGE-Targeted Gold Nanoparticles for Ultrasound Imaging-Guided Phototherapy in Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6863231. [PMID: 33015175 PMCID: PMC7519981 DOI: 10.1155/2020/6863231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022]
Abstract
Gold nanorods exhibit a wide variety of applications such as tumor molecular imaging and photothermal therapy (PTT) due to their tunable optical properties. Several studies have demonstrated that the combination of other therapeutic strategies may improve PTT efficiency. A method called optical droplet vaporization (ODV) was considered as another noninvasive imaging and therapy strategy. Via the ODV method, superheated perfluorocarbon droplets can be vaporized to a gas phase for enhancing ultrasound imaging; meanwhile, this violent process can cause damage to cells and tissue. In addition, active targeting through the functionalization with targeting ligands can effectively increase nanoprobe accumulation in the tumor area, improving the sensitivity and specificity of imaging and therapy. Our study prepared a nanoparticle loaded with gold nanorods and perfluorinated hexane and conjugated to a monoclonal antibody (MAGE-1 antibody) to melanoma-associated antigens (MAGE) targeting melanoma, investigated the synergistic effect of PTT/ODV therapy, and monitored the therapeutic effect using ultrasound. The prepared MAGE-Au-PFH-NPs achieved complete eradication of tumors. Meanwhile, the MAGE-Au-PFH-NPs also possess significant ultrasound imaging signal enhancement, which shows the potential for imaging-guided tumor therapy in the future.
Collapse
|
26
|
Barnoud T, Leung JC, Leu JIJ, Basu S, Poli ANR, Parris JLD, Indeglia A, Martynyuk T, Good M, Gnanapradeepan K, Sanseviero E, Moeller R, Tang HY, Cassel J, Kossenkov AV, Liu Q, Speicher DW, Gabrilovich DI, Salvino JM, George DL, Murphy ME. A Novel Inhibitor of HSP70 Induces Mitochondrial Toxicity and Immune Cell Recruitment in Tumors. Cancer Res 2020; 80:5270-5281. [PMID: 33023943 DOI: 10.1158/0008-5472.can-20-0397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The protein chaperone HSP70 is overexpressed in many cancers including colorectal cancer, where overexpression is associated with poor survival. We report here the creation of a uniquely acting HSP70 inhibitor (HSP70i) that targets multiple compartments in the cancer cell, including mitochondria. This inhibitor was mitochondria toxic and cytotoxic to colorectal cancer cells, but not to normal colon epithelial cells. Inhibition of HSP70 was efficacious as a single agent in primary and metastatic models of colorectal cancer and enabled identification of novel mitochondrial client proteins for HSP70. In a syngeneic colorectal cancer model, the inhibitor increased immune cell recruitment into tumors. Cells treated with the inhibitor secreted danger-associated molecular patterns (DAMP), including ATP and HMGB1, and functioned effectively as a tumor vaccine. Interestingly, the unique properties of this HSP70i in the disruption of mitochondrial function and the inhibition of proteostasis both contributed to DAMP release. This HSP70i constitutes a promising therapeutic opportunity in colorectal cancer and may exhibit antitumor activity against other tumor types. SIGNIFICANCE: These findings describe a novel HSP70i that disrupts mitochondrial proteostasis, demonstrating single-agent efficacy that induces immunogenic cell death in treated tumors.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessica C Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Narayana Reddy Poli
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L D Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tetyana Martynyuk
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilio Sanseviero
- Program in Immunology, Metastasis and Microenvironment, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rebecca Moeller
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hsin-Yao Tang
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joel Cassel
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V Kossenkov
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dmitry I Gabrilovich
- Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph M Salvino
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Donna L George
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
pH-responsive Ag 2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy. Acta Biomater 2020; 115:358-370. [PMID: 32798720 DOI: 10.1016/j.actbio.2020.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Heat-treated cancer cells have thermo-resistance due to the up-regulated levels of heat shock proteins (HSP) resulting in low therapeutic efficiency and ineffective ablation of tumors. In this work, we report pH-responsive Ag2S nanodots (Ag2S NDs) loaded with HSP70 inhibitor (QE-PEG-Ag2S) for enhanced photothermal cancer therapy. QE-PEG-Ag2S was easily prepared via self-assembly of hydrophobic Ag2S NDs, amphiphilic pH-responsive PEG5k-PAE10k polymer, and an HSP70 inhibitor quercetin (QE). QE-PEG-Ag2S has ideal water-solubility and biocompatibility, can rapidly enter cells, and preferentially accumulate in cell lysosomes. The slightly acidic environment of tumor cells and the acidity of lysosomes as well as the high temperature generated by photothermal therapy under irradiation of NIR light (808 nm) promote the release of the inhibitor molecules to reduce the heat resistance of cancer cells and improve the in vivo photothermal therapy efficiency. Moreover, QE-PEG-Ag2S has good photoacoustic imaging (PAI) ability; this QE-PEG-Ag2S concentration dependent signal can precisely follow the accumulation of the nanomaterials in tumors and dictate the correct time for light therapy. As a result, QE-PEG-Ag2S achieved complete tumor ablation effect with no recurrence when only irradiated with NIR light for 10 min. This approach offers a new approach for the theranostic applications of Ag2S NDs. STATEMENT OF SIGNIFICANCE: In this work, pH-responsive Ag2S nanodots loaded with the heat shock protein inhibitor for enhanced photothermal cancer therapy have been simply prepared via self-assembly process. This nanoagent possesses ideal water-solubility and biocompatibility, can rapidly enter cells, and preferentially accumulate in cell lysosomes. The acidic environment of tumor cells and the acidity of lysosomes, as well as the high temperature generated by photothermal therapy under irradiation of NIR light promote the release of the inhibitor molecules from the nanoagent to improve the in vivo photothermal therapy efficiency. Moreover, the photoacoustic imaging (PAI) of the nanoagent can precisely follow the accumulation of the nanomaterials in tumors and dictate the light therapy time to guarantee the complete tumor ablation effect with no recurrence.
Collapse
|
28
|
Liu HJ, Wang M, Hu X, Shi S, Xu P. Enhanced Photothermal Therapy through the In Situ Activation of a Temperature and Redox Dual-Sensitive Nanoreservoir of Triptolide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003398. [PMID: 32797711 PMCID: PMC7983299 DOI: 10.1002/smll.202003398] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Indexed: 05/30/2023]
Abstract
Photothermal therapy (PTT) has attracted tremendous attention due to its noninvasiveness and localized treatment advantages. However, heat shock proteins (HSPs) associated self-preservation mechanisms bestow cancer cells thermoresistance to protect them from the damage of PTT. To minimize the thermoresistance of cancer cells and improve the efficacy of PTT, an integrated on-demand nanoplatform composed of a photothermal conversion core (gold nanorod, GNR), a cargo of a HSPs inhibitor (triptolide, TPL), a mesoporous silica based nanoreservoir, and a photothermal and redox di-responsive polymer shell is developed. The nanoplatform can be enriched in the tumor site, and internalized into cancer cells, releasing the encapsulated TPL under the trigger of intracellular elevated glutathione and near-infrared laser irradiation. Ultimately, the liberated TPL could diminish thermoresistance of cancer cells by antagonizing the PTT induced heat shock response via multiple mechanisms to maximize the PTT effect for cancer treatment.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Xiangxiang Hu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| |
Collapse
|
29
|
Taufiq A, Ikasari FN, Hidayat N, Ulya HN, Saputro RE, Mufti N, Hidayat A, Sunaryono S, Chuenchom L. Dependence of PEO content in the preparation of Fe3O4/PEO/TMAH ferrofluids and their antibacterial activity. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Wang Z, Zou Y, Li Y, Cheng Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907042. [PMID: 32220006 DOI: 10.1002/smll.201907042] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
31
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
32
|
You C, Li Y, Dong Y, Ning L, Zhang Y, Yao L, Wang F. Low-Temperature Trigger Nitric Oxide Nanogenerators for Enhanced Mild Photothermal Therapy. ACS Biomater Sci Eng 2020; 6:1535-1542. [PMID: 33455391 DOI: 10.1021/acsbiomaterials.9b01771] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surmounting the restriction issues of nitric oxide (NO) delivery to realize their precious on-demand release is highly beneficial for the widespread deployment of gas therapy for application in biomedicine. Herein, by employing core-shell structure Au@SiO2 nanomaterials with high photothermal performance, a novel strategy was proposed by integrating photothermal conversion nanomaterials and heat-triggered NO donors (RSNO) into a nanoplatform, which achieved photothermal therapy (PTT)-enhanced NO gas therapy under near-infrared (NIR) radiation. Specifically, 2-phenylethynesulfonamide (PES), an inhibitor of heat shock protein 70 (HSP-70), was loaded into the NO nanogenerators to realize effective low-temperature (∼45 °C) PTT. The obtained results showed that the near-infrared radiation (NIR) mediated mild PTT and gas therapy by releasing NO showed a substantially improved synergistic effect based on in vitro and in vivo results in breast cancer (MCF-7) models. Our study points out a strategy to realize mild photothermal therapy by inhibiting the expression of HSP-70 and simultaneously providing an avenue to achieve controllable release of NO. More important, this research highlights the great potential of multifunctional therapeutic agents in the synergistic treatment of cancer.
Collapse
Affiliation(s)
- Chaoqun You
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, PR China
| | - Yaojia Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Yixin Dong
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, PR China
| | - Like Ning
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, PR China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, PR China
| | - Liyang Yao
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, PR China
| | - Fei Wang
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, PR China
| |
Collapse
|
33
|
Dang J, Ye H, Li Y, Liang Q, Li X, Yin L. Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism. Biomaterials 2019; 223:119463. [PMID: 31521887 DOI: 10.1016/j.biomaterials.2019.119463] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
The success of photothermal therapy (PTT) is often hampered by the thermo-resistance of tumor cells mediated by over-expressed heat shock proteins (HSPs). Herein, we developed a guanidine-rich, spherical helical polypeptide (DPP) with multivalency-assisted strong membrane penetrating capability, which mediated effective RNAi against tumor glycolysis metabolism to sensitize PTT. ICG was loaded into the internal cavity of DPP, and siRNA against pyruvate kinase M2 (siPKM2) was condensed by DPP to form positively charged nanocomplexes (NCs). The NCs were further coated with human serum albumin to enhance serum stability, prolong blood circulation, and improve tumor targeting. Due to its multivalent topology, DPP exhibited stronger membrane activity yet lower cytotoxicity than its linear analogue (LPP), thus enabling efficient PKM2 silencing in MCF-7 cells in vitro (~75%) and in vivo (~70%). The PKM2 silencing inhibited tumor glycolysis metabolism and further depleted the energy supply for HSPs production, thus overcoming the heat endurance of tumor cells to strengthen ICG-mediated photothermal ablation. Additionally, siPKM2-mediated energy depletion led to tumor cell starvation, which imparted synergistic anti-cancer effect with PTT. This study therefore provides a promising strategy for designing membrane-penetrating siRNA delivery materials, and it renders a unique RNAi-mediated anti-metabolic mechanism in sensitizing PTT and enabling starvation therapy.
Collapse
Affiliation(s)
- Juanjuan Dang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Huan Ye
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Yongjuan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Qiujun Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Xudong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
34
|
Ton KA, Syu YW, Xu JJ, Imae T. Preparation of Sm, Gd and Fe Oxide Nanoparticle-Polydopamine Multicomponent Nanocomposites. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Khoa Anh Ton
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keeling road, Taipei 10607, Taiwan
| | - Yu-Wei Syu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keeling road, Taipei 10607, Taiwan
| | - Jun-Jia Xu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keeling road, Taipei 10607, Taiwan
| | - Toyoko Imae
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keeling road, Taipei 10607, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
35
|
Xu JW, Yao K, Xu ZK. Nanomaterials with a photothermal effect for antibacterial activities: an overview. NANOSCALE 2019; 11:8680-8691. [PMID: 31012895 DOI: 10.1039/c9nr01833f] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nanomaterials and nanotechnologies have been expected to provide innovative platforms for addressing antibacterial challenges, with potential to even deal with bacterial infections involving drug-resistance. The current review summarizes recent progress over the last 3 years in the field of antibacterial nanomaterials with a photothermal conversion effect. We classify these photothermal nanomaterials into four functional categories: carbon-based nanoconjugates of graphene derivatives or carbon nanotubes, noble metal nanomaterials mainly from gold and silver, metallic compound nanocomposites such as copper sulfide and molybdenum sulfide, and polymeric as well as other nanostructures. Different categories can be assembled with each other to enhance the photothermal effects and the antibacterial activities. The review describes their fabrication processes, unique properties, antibacterial modes, and potential healthcare applications.
Collapse
Affiliation(s)
- Jing-Wei Xu
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | | |
Collapse
|
36
|
Huang X, Wu J, He M, Hou X, Wang Y, Cai X, Xin H, Gao F, Chen Y. Combined Cancer Chemo-Photodynamic and Photothermal Therapy Based on ICG/PDA/TPZ-Loaded Nanoparticles. Mol Pharm 2019; 16:2172-2183. [PMID: 30978027 DOI: 10.1021/acs.molpharmaceut.9b00119] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although photodynamic therapy (PDT) has been an attractive strategy for several cancer treatments in the clinical setting, PDT efficacy is attenuated by consumption of oxygen. To address this photodynamic issue, we adopted a phototherapy-chemotherapy combination strategy based on targeted delivery of the near-infrared photosensitizer indocyanine green (ICG), photothermal conversion agent polydopamine (PDA), and tirapazamine (TPZ), a hypoxia-activated prodrug. Under laser irradiation, ICG consumption of oxygen and aggravated hypoxia in tumor sites can activate TPZ to damage DNA. In parallel, ICG produces reactive oxygen species which work in synergy with PDA to enhance phototherapeutic efficiency. Herein, hybrid CaCO3/TPGS nanoparticles delivering ICG, PDA, and TPZ (ICG-PDA-TPZ NPs) were designed for effective and safe cancer therapy. ICG-PDA-TPZ NPs showed significantly improved cellular uptake and accumulation in tumors. Furthermore, we demonstrated that ICG-PDA-TPZ NPs showed intensive photodynamic and photothermal effects in vitro and in vivo, which synergized with TPZ in subcutaneous U87 malignant glioma growth and orthotopic B16F10 tumor inhibition, with negligible side effects. Thus, ICG-PDA-TPZ NPs could be an effective strategy for improvement of PDT.
Collapse
Affiliation(s)
- Xiaqin Huang
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Junru Wu
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Muye He
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinyu Hou
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaoran Cai
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy , Nanjing Medical University , Nanjing 211166 , China
| | - Feng Gao
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry , East China University of Science and Technology , Shanghai 200237 , China
- Department of Pharmaceutics, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Key Laboratory of New Drug Design , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
37
|
Bioinspired synthesis of organic–inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay. Biosens Bioelectron 2019; 133:94-99. [DOI: 10.1016/j.bios.2019.03.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 01/13/2023]
|
38
|
Qi C, Fu LH, Xu H, Wang TF, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9392-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Qiao Z, Yao Y, Song S, Yin M, Luo J. Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications. J Mater Chem B 2019; 7:830-840. [DOI: 10.1039/c8tb02917b] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Silver nanoparticles with pH induced surface charge transform activities were prepared which showed an enhanced antibacterial and antibiofilm efficiency while demonstrated reduced cytotoxicity to mammalian cells.
Collapse
Affiliation(s)
- Zhuangzhuang Qiao
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yan Yao
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Shaomin Song
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Meihui Yin
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering
- Southwest Minzu University
- Chengdu 610041
- China
| |
Collapse
|
40
|
Ma M, Yang Y, Feng R, Jia L, Chen G, Li W, Lyu P. Preparation and characterization of magnetic hollow Fe3
O4
/P(GMA-EGDMA)-SO3
H/Au-PPy recyclable catalyst for catalytic reduction of 4-nitrophenol. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mingliang Ma
- Research Institute of Functional Materials; Qingdao University of Technology; Qingdao China
| | - Yuying Yang
- Research Institute of Functional Materials; Qingdao University of Technology; Qingdao China
| | - Renjun Feng
- Research Institute of Functional Materials; Qingdao University of Technology; Qingdao China
| | - Li Jia
- Research Institute of Functional Materials; Qingdao University of Technology; Qingdao China
| | - Guopeng Chen
- Research Institute of Functional Materials; Qingdao University of Technology; Qingdao China
| | - Wenting Li
- Research Institute of Functional Materials; Qingdao University of Technology; Qingdao China
| | - Ping Lyu
- Research Institute of Functional Materials; Qingdao University of Technology; Qingdao China
| |
Collapse
|
41
|
Xu C, Feng Q, Yang H, Wang G, Huang L, Bai Q, Zhang C, Wang Y, Chen Y, Cheng Q, Chen M, Han Y, Yu Z, Lesniak MS, Cheng Y. A Light-Triggered Mesenchymal Stem Cell Delivery System for Photoacoustic Imaging and Chemo-Photothermal Therapy of Triple Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800382. [PMID: 30356957 PMCID: PMC6193170 DOI: 10.1002/advs.201800382] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/27/2018] [Indexed: 05/12/2023]
Abstract
Targeted therapy is highly challenging and urgently needed for patients diagnosed with triple negative breast cancer (TNBC). Here, a synergistic treatment platform with plasmonic-magnetic hybrid nanoparticle (lipids, doxorubicin (DOX), gold nanorods, iron oxide nanocluster (LDGI))-loaded mesenchymal stem cells (MSCs) for photoacoustic imaging, targeted photothermal therapy, and chemotherapy for TNBC is developed. LDGI can be efficiently taken up into the stem cells with good biocompatibility to maintain the cellular functions. In addition, CXCR4 on the MSCs is upregulated by iron oxide nanoparticles in the LDGI. Importantly, the drug release and photothermal therapy can be simultaneously achieved upon light irradiation. The released drug can enter the cell nucleus and promote cell apoptosis. Interestingly, light irradiation can control the secretion of cellular microvehicles carrying LDGI for targeted treatment. A remarkable in vitro anticancer effect is observed in MDA-MB-231 with near-infrared laser irradiation. In vivo studies show that the MSCs-LDGI has the enhanced migration and penetration abilities in the tumor area via both intratumoral and intravenous injection approaches compared with LDGI. Subsequently, MSCs-LDGI shows the best antitumor efficacy via chemo-photothermal therapy compared to other treatment groups in the TNBC model of nude mice. Thus, MSCs-LDGI multifunctional system represents greatly synergistic potential for cancer treatment.
Collapse
Affiliation(s)
- Chang Xu
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Qishuai Feng
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Haocheng Yang
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Guangxue Wang
- Research Center for Translational MedicineKey Laboratory of Arrhythmias of the Ministry of Education of ChinaEast HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Liqun Huang
- Department of UrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qianwen Bai
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Chuyi Zhang
- Research Center for Translational MedicineKey Laboratory of Arrhythmias of the Ministry of Education of ChinaEast HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Yilong Wang
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Yingna Chen
- Institute of AcousticsTongji UniversitySiping Road 1239Shanghai200092China
| | - Qian Cheng
- Institute of AcousticsTongji UniversitySiping Road 1239Shanghai200092China
| | - Mengwei Chen
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Yu Han
- Department of Neurological SurgeryThe Feinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Zuoren Yu
- Research Center for Translational MedicineKey Laboratory of Arrhythmias of the Ministry of Education of ChinaEast HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Maciej S. Lesniak
- Department of Neurological SurgeryThe Feinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Yu Cheng
- The Institute for Translational NanomedicineShanghai East HospitalThe Institute for Biomedical Engineering & Nano ScienceTongji University School of Medicine150 Jimo RoadShanghai200120China
| |
Collapse
|
42
|
Yang P, Xu H, Zhang Z, Yang L, Kuang H, Aguilar ZP. Surface modification affect the biodistribution and toxicity characteristics of iron oxide magnetic nanoparticles in rats. IET Nanobiotechnol 2018; 12:562-568. [PMID: 30095413 PMCID: PMC8676196 DOI: 10.1049/iet-nbt.2017.0152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/12/2017] [Accepted: 01/09/2018] [Indexed: 07/20/2023] Open
Abstract
Various surface modifications of iron oxide magnetic nanoparticles (IOMNs) can improve their stability and long-term retention time in vivo, expanding applications of biomedical fields. However, whether the long-term retention of IOMNs coated with different surface modifications has toxic effects remains poorly understood. Here, the toxicity of IOMNs modified with polyethylene glycol (PEG), bovine serum albumin (BSA), and carboxyl group (COOH), forming PEG-IOMNs, BSA-IOMNs, and COOH-IOMNs, respectively, were evaluated in the rats. The high accumulation of PEG-IOMNs and COOH-IOMNs both in the liver and lung, and the high accumulation BSA-IOMNs in blood after 24 day recovery were observed by elemental content analysis. Except individual neutrophils in the local portal area, PEG-IOMNs can also induce cytoplasmic vacuolisation in partial liver cells by histopathological examination. Furthermore, the results of RT-qPCR showed that PEG-IOMNs, BSA-IOMNs, and COOH-IOMNs can change the transcript levels of most genes related to iron homeostasis, mitochondria apoptosis, inflammatory response, but <2-fold alteration. COOH-IOMNs seemed to induce normal cell apoptosis more easily than BSA-IOMNs and PEG-IOMNs. In conclusion, BSA-IOMNs had longer-term retention time in blood. IOMNs coated with PEG and BSA can still induce side effects on the liver.
Collapse
Affiliation(s)
- Pengfei Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China.
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China
| | - Huijuan Kuang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, People's Republic of China
| | | |
Collapse
|
43
|
Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018; 165:1-13. [PMID: 29500978 DOI: 10.1016/j.biomaterials.2018.02.041] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
As a highly biocompatible NIR dye, indocyanine green (ICG) has been widely explored for cancer treatment due to its various energy level transition pathways upon NIR light excitation simultaneously, which leads to different theranostic effects (eg. Photoacoustic (PA) and fluorescence imaging (FL), photodynamic and photothermal therapy (PDT&PTT)). However, the theranostic efficiency of ICG is restricted intrinsically, owing to the competitive relationship of its co-existing imaging and therapeutic effect. Moreover, the extrinsic hypoxia nature of tumor further limits its therapeutic effect, especially for the oxygen-dependent PDT. Herein, perfluorooctyl bromide (PFOB), another biocompatible chemical, was integrated with ICG in a nanoliposome structure via a facile two-step emulsion method. Such an ICG&PFOB co-loaded nanoliposomes (LIP-PFOB-ICG) realized computed tomography (CT) contrast imaging in vivo, providing better anatomical information of tumor in comparison to ICG enabled PA and FL imaging. More importantly, LIP-PFOB-ICG inhibited MDA-MB-231 tumor growth completely via intravenous injection through enhanced PDT&PTT synergistic therapy due to the excellent oxygen carrying ability of PFOB, which effectively attenuated tumor hypoxia, improved the efficiency of collisional energy transfer between ICG and oxygen and reduced the expression of heat shock protein (HSP). As expected, the introduction of PFOB within nanoliposomes with ICG has augmented the theranostic effect of ICG comprehensively, which makes this simple biocompatible liposome-based nanoagent a potential candidate for clinical imaging guided phototherapy of cancer.
Collapse
|
44
|
Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E324. [PMID: 29473914 PMCID: PMC5849021 DOI: 10.3390/ma11020324] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Lazhen Shen
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Bei Li
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Yongsheng Qiao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China.
| |
Collapse
|
45
|
Zhang K, Song S, Yang L, Min Q, Wu X, Zhu JJ. Enhancing intracellular microRNA imaging: a new strategy combining double-channel exciting single colour fluorescence with the target cycling amplification reaction. Chem Commun (Camb) 2018; 54:13131-13134. [DOI: 10.1039/c8cc07112h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enhancing microRNA imaging in living cells using double-channel exciting single colour fluorescence coupled with the target cycling amplification reaction.
Collapse
Affiliation(s)
- Keying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shuting Song
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Lin Yang
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Xingcai Wu
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
46
|
Suo H, Zhao X, Zhang Z, Guo C. 808 nm Light-Triggered Thermometer-Heater Upconverting Platform Based on Nd 3+-Sensitized Yolk-Shell GdOF@SiO 2. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43438-43448. [PMID: 29172416 DOI: 10.1021/acsami.7b12753] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The realization of real-time and accurate temperature reading at subcutaneous level during the photothermal therapy (PTT) could maximally avoid the collateral damages induced by overheating effects, which remains a formidable challenge for biomedical applications. Herein, 808 nm light-driven yolk-shell GdOF:Nd3+/Yb3+/Er3+@SiO2 microcapsules were developed with thermal-sensing and heating bifunctions. Under 808 nm excitation, sensitive thermometry was implemented by monitoring thermoresponsive emission from 2H11/2/4S3/2 levels of Er3+; meanwhile, the addition of Nd3+ with rich metastable intermediate levels and the yolk-shell configuration with large specific surface area triggered efficient light-to-heat conversion via enhanced nonradiative channels. The potentiality of dual-functional samples for controlled subcutaneous photothermal treatment was validated through ex vivo experiments, and the antibacterial activity against Escherichia coli was also elaborately evaluated. Results open a general avenue for designing and developing upconverting platforms with sensitive thermal-sensing and efficient heating bifunctions, which makes a significant step toward the achievement of real-time controlled PTT.
Collapse
Affiliation(s)
- Hao Suo
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| | - Xiaoqi Zhao
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| | - Zhiyu Zhang
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| | - Chongfeng Guo
- National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University , Xi'an 710069, China
| |
Collapse
|
47
|
Li L, Fu L, Ai X, Zhang J, Zhou J. Design and Fabrication of Temperature-Sensitive Nanogels with Controlled Drug Release Properties for Enhanced Photothermal Sterilization. Chemistry 2017; 23:18180-18186. [PMID: 28809441 DOI: 10.1002/chem.201702796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Indexed: 12/22/2022]
Abstract
For better removal of excessive free radicals and harmful bacteria from the human body, the development of synergistic antioxidant and antibacterial agents is urgently required. Herein, we designed novel temperature-sensitive, curcumin (Cur)-loaded nanogels for the application of scavenging reactive oxygen species and killing pathogenic bacteria. Photothermal sterilization, different from traditional antibiotics, is a promising and effective treatment for pathogenic bacterial infection. The nanogels were fabricated by using poly(N-isopropylacrylamide) (a temperature-sensitive hydrogel) to encapsulate poly(3,4-ethylenedioxythiophene) nanoparticles (photothermal agents) and Cur through a reformative precipitation polymerization. When triggered by near-IR light, the Cur-loaded nanogels exhibited high (56.8 %), and excellent temperature-sensitive effects. Moreover, the light-induced temperature increase can also weaken the interaction between the networks of PNIPAAm and Cur, to show excellent antioxidant and antibacterial performance (90 % cell death) of the nanogels.
Collapse
Affiliation(s)
- Luoyuan Li
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Limin Fu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Xicheng Ai
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Jianping Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
48
|
Jiao L, Xu Z, Du W, Li H, Yin M. Fast Preparation of Polydopamine Nanoparticles Catalyzed by Fe 2+/H 2O 2 for Visible Sensitive Smartphone-Enabled Cytosensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28339-28345. [PMID: 28783432 DOI: 10.1021/acsami.7b10564] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is highly desired to develop facile methods for fast preparation of polydopamine nanoparticles (PDANS) for intensive promising applications. Considering the system of Fe2+/H2O2 can generate reactive oxygen species efficiently, which can accelerate the self-oxidative polymerization of dopamine, a new time-saving method has been proposed to prepare PDANS catalyzed by Fe2+/H2O2. Thereafter, a novel kind of colorimetric nanoprobe for sensitive detection of human breast cancer cells (MDA-MB-231 cell) based on the obtained PDANS-loaded pH indicator molecules (thymolphthalein) has been developed successfully. The loading capacity of PDANS toward thymolphthalein molecules can reach as high as 165.40 mg/g, which will be a great help to enhancing the sensitivity. Following the color change principle of pH indicators, once simply triggered by basic water, the developed cytosensor offers a visible sensitive smartphone-enabled cytosensing of human breast cancer cells. It has been proved that the rational designed cytosensor is favorable to sensitive detection of cancer cells. By the virtue of its easy use, the proposed smartphone-enabled strategy can provide a novel testing approach for point-of-care bioassay beyond cytosensing in remote areas.
Collapse
Affiliation(s)
- Lei Jiao
- College of Optoelectronics Technology, Chengdu University of Information Technology , Chengdu 610225, China
| | - Zijian Xu
- College of Life Science, Shandong Normal University , Jinan 250014, China
| | - Wenwen Du
- College of Optoelectronics Technology, Chengdu University of Information Technology , Chengdu 610225, China
| | - He Li
- College of Optoelectronics Technology, Chengdu University of Information Technology , Chengdu 610225, China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Miao Yin
- College of Life Science, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
49
|
Cheng Y, Zhang S, Kang N, Huang J, Lv X, Wen K, Ye S, Chen Z, Zhou X, Ren L. Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19296-19306. [PMID: 28508635 DOI: 10.1021/acsami.7b03087] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This study reports a multifunctional nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI)-guided photothermal therapy (PTT) due to its surface coating with a polydopamine (PDA) shell. Importantly, by means of introducing the surface coating of PDA, large quantities of water can be trapped around the NPs allowing more efficient water exchange, leading to greatly improved MR contrast signals compared with those from NPs without the PDA coating. Further, a distinct photothermal effect can be obtained arising from the strong absorption of PDA in the near-infrared (NIR) region. By synthesizing multifunctional MnCO3@PDA NPs, for example, we found that the longitudinal relaxivity (r1) of MnCO3 NPs can improve from 5.7 to 8.3 mM-1 s-1. Subsequently, in vitro MRI and PTT results verified that MnCO3@PDA could serve as an excellent MRI/PTT theranostic agent. Furthermore, the MnCO3@PDA NPs were applied as an MRI/PTT theranostic agent for in vivo MRI-guided photothermal ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The MR imaging result shows a significantly bright MR image in the tumor site. The MnCO3@PDA-mediated PTT result shows high therapeutic efficiency as a result of high photothermal conversion efficiency. The present strategy of amplified MRI-guided PTT based on PDA coating of NPs will be widely applicable to other multifunctional NPs.
Collapse
Affiliation(s)
- Youxing Cheng
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Shupeng Zhang
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Ning Kang
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Jianpan Huang
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Xiaolin Lv
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Kai Wen
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Shefang Ye
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Zhiwei Chen
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Xi Zhou
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| | - Lei Ren
- Department of Biomaterials, College of Materials, ‡Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, §State Key Laboratory of Physical Chemistry of Solid Surface, School of Chemistry and Chemical Engineering, and ∥Department of Electronic Science, College of Physical Science and Technology, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University , Xiamen 361005, Fujian, P. R. China
| |
Collapse
|