1
|
Zhang W, Wang X, Guo Z. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges. MATERIALS HORIZONS 2025; 12:3267-3285. [PMID: 39992357 DOI: 10.1039/d4mh01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (e.g., heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.
Collapse
Affiliation(s)
- Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaobo Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
2
|
Huo J, Gou X, Zhang J, Zhu J, Chen F. A Review of Droplet/Bubble Transportation on Bionic Superwetting Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412363. [PMID: 40159829 DOI: 10.1002/smll.202412363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Indexed: 04/02/2025]
Abstract
The controllable droplets/bubble transportation has a wide range of applications in the fields of biomedical, chemistry, energy, and material applications, and has aroused great attention for its significant scientific and technology importance. The main challenges derived from the liquid/solid or gas/solid contact strength and actuating energy input. Artificial superwetting surfaces inspired by nature creatures have triggered technology revolution in many fields relevant to droplet operation, and the applied actuating force improve the controllability to preferential direction. In this review, we highlights recent advancements in droplets/bubble transportation on the superwetting surfaces driven by passive or active stimulation methods inspired by bionic function interfaces. The three main superwetting surfaces including superhydrophobic surface, slippery liquid-infused porous surface, hybrid surface, various stimuli methods including gravity/buoyance, chemical/morphology gradient, heat, magnetism, electricity, light, adhesion force, and prosperous applications including micro-reaction, biochemical analysis, fog collection/antifog, energy transfer, bubble/liquid micro-robot, self-cleaning, light/circle switch have been systematically summarized. Finally, the challenges and future perspectives of research innovations and practical applications are discussed.
Collapse
Affiliation(s)
- Jinglan Huo
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710071, P. R. China
| | - Xiaodan Gou
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangfeng Zhu
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710071, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Liu H, Jia Y, Hua S, Weng J, Wang L, Yang C. Lorentz force-assisted growth of romanesco-like Ni-Fe nano-cone arrays for enhanced oxygen evolution reaction at high current densities. NANOSCALE 2025; 17:8466-8475. [PMID: 40091798 DOI: 10.1039/d4nr05174b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The unavoidable catalyst structure disintegration in industrial water electrolysis can lead to increased overpotential thus lowering energy efficiency. Most current studies focus on enhancing the oxygen evolution reaction (OER) rate and catalytic activity by electrodepositing catalysts with various morphologies, while few address the issue of catalyst bubble release, especially under high current densities where mass transport becomes critical. This study presents a novel approach to fabricate hierarchical Romanesco-like nickel-iron nano-cone arrays (R-NiFe NCAs) via Lorentz-force-assisted electrodeposition under an external magnetic field. This process introduces a high density of line defects to enhance the stability of the cone structure while enriching the surface with step edges and directing the crystal phase evolution towards more stable (111) and (220) facets. The hierarchical nano-cone array exhibits excellent wettability and efficient bubble release properties. Experimental results demonstrate that the R-NiFe NCAs achieve an overpotential of only 199 mV at 10 mA cm-2 and 375 mV at 100 mA cm-2 for OER. When integrated into an anion exchange membrane water electrolyzer (AEMWE), the system remains stable for over 600 hours at a current density of 1 A cm-2. Comparative studies of different nano-cone morphologies further confirm the positive role of the Romanesco-like nano-cone with richer surface structure in improving mass transfer, wettability and bubble release.
Collapse
Affiliation(s)
- Hongjie Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Yunyi Jia
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Shunhang Hua
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Jingjing Weng
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Lumeng Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
4
|
Mei X, Peng Y, Yong J, Chen Z, Chen C, Wang M, Zhang K, Fan S, Zhu S, Wang C, Yao Y, Wu D. 3D Self-Driven Underwater Aerofluidic Systems Woven with Femtosecond Laser-Structured Superhydrophobic Wires. NANO LETTERS 2025; 25:4790-4799. [PMID: 40094894 DOI: 10.1021/acs.nanolett.4c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
To overcome the inherent limitations of 2D aerofluidic systems, we propose a novel strategy that combines traditional Chinese weaving technology with superhydrophobic metal wires to construct 3D underwater aerofluidic systems. In water, air is trapped between the femtosecond laser-structured superhydrophobic stainless steel wires and the surrounding water, creating a microscale channel for gas transport within the designed aerofluidic system. The Laplace pressure difference of bubbles across different circular regions woven with superhydrophobic wires can drive spontaneous gas transport along microscale connecting lines in 3D space. Interestingly, various underwater aerofluidic systems can be interconnected simply by touching, enabling the integration of different functional units into a multifunctional aerofluidic system. Beyond basic on-demand gas transport, the integrated systems facilitate gas splitting, gas merging, gas diodes, and multiline/multigas operations such as microreactions between different gases.
Collapse
Affiliation(s)
- Xinling Mei
- Intelligent Manufacturing Laboratory, School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230009, China
| | - Yubin Peng
- Intelligent Manufacturing Laboratory, School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230009, China
| | - Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Zhenrui Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Cunyuan Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Mingyang Wang
- Intelligent Manufacturing Laboratory, School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230009, China
| | - Keyi Zhang
- Intelligent Manufacturing Laboratory, School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230009, China
| | - Shengying Fan
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250104, China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Yansheng Yao
- Intelligent Manufacturing Laboratory, School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230009, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| |
Collapse
|
5
|
Li X, Wang C, Chen Z, Chen C, Zhu S, Wu D, Yong J. Synergistic binding ability of electrostatic tweezers and femtosecond laser-structured slippery surfaces enabling unusual droplet manipulation applications. LAB ON A CHIP 2025; 25:644-656. [PMID: 39882834 DOI: 10.1039/d4lc01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
We propose a novel contactless droplet manipulation strategy that combines electrostatic tweezers (ESTs) with lubricated slippery surfaces. Electrostatic induction causes the droplet to experience an electrostatic force, allowing it to move with the horizontal shift of the EST. Because both the EST and the slippery operating platform prepared by a femtosecond laser exhibit a strong binding effect on droplets, the EST droplet manipulation features significant flexibility, high precision, and can work under various operating conditions. The EST can manipulate droplets with a wide volume range (500 nL-1 mL), droplets hanging on tilted or even inverted surfaces, multiple droplets in parallel, corrosive droplets, low-surface-tension organic droplets (e.g., ethanol), and even droplets in a sealed space from the outside. The EST operation method is suitable for various slippery substrates prepared by femtosecond laser processing and can also be used to manipulate small solid spheres other than liquids. Additionally, a self-powered EST system is also designed without the need for high-voltage static electricity, allowing even fingers to serve as EST sources for droplet manipulation. The flexible and precise manipulation performance allows this technology to be applied in a variety of applications. For example, a new digital microfluidic (DMF) technology based on an EST array has been successfully validated and is expected to replace traditional electrowetting-on-dielectric technology in the future.
Collapse
Affiliation(s)
- Xinlei Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Zhenrui Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Cunyuan Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| |
Collapse
|
6
|
Li H, Zhang C, Xu H, Yang Q, Luo Z, Li C, Kai L, Meng Y, Zhang J, Liang J, Chen F. Microstructured Liquid Metal-Based Embedded-Type Sensor Array for Curved Pressure Mapping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413233. [PMID: 39587827 PMCID: PMC11744523 DOI: 10.1002/advs.202413233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human hands can envelop the surface of an object and recognize its shape through touch. However, existing stretchable haptic sensors exhibit limited flexibility and stability to detect pressure during deformation, while also solely achieving recognition of planar objects. Inspired by the structure of skin tissue, an embedded construction-enabled liquid metal-based e-skin composed of a liquid metal microstructured electrode (LM-ME) array is fabricated for curved pressure mapping. The embedded LM-ME-based sensor elements are fabricated by using femtosecond laser-induced micro/nanostructures and water/hydrogel assisted patterning method, which enables high sensitivity (7.42 kPa-1 in the range of 0-0.1 kPa) and high stability through an interlinked support isolation structure for the sensor units. The sensor array with a high interfacial toughness of 1328 J m-2 can maintain pressure sensation under bending and stretching conditions. Additionally, the embedded construction and laser-induced bumps effectively reduce crosstalk from 58 to 7.8% compared to conventional flexible sensors with shared surfaces. The stretchable and mechanically stable sensor arrays possess shape-adaptability that enables pressure mapping on non-flat surfaces, which has great potential for object recognition in robotic skins and human-computer interaction.
Collapse
Affiliation(s)
- Haoyu Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Chengjun Zhang
- School of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hongyu Xu
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Qing Yang
- School of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Zexiang Luo
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Cheng Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lin Kai
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yizhao Meng
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jie Liang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
7
|
Jiang Y, An J, Zhai S, Gao X, Song J. Research progress on biomass-based materials for oil/water separation: Designing strategy and efficiency mechanism. Int J Biol Macromol 2024; 283:137646. [PMID: 39557241 DOI: 10.1016/j.ijbiomac.2024.137646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The treatment of water contaminated with oil or organic solvents has always been a thorny challenge, considering the complexity of water pollution, the susceptibility to secondary pollution and the consequent depletion of resources. Biomass is a versatile, green and self-circulating natural material that shows important potential in designing high-performance oil/water separation materials. This review highlights the recent research progress on biomass-based materials (BBMs) in the field of oil-water separation. Firstly, related properties for displaying definitions, sources and specificities on biomass materials are introduced, and the basic wetting theory of interfacial wettability is discussed. Secondly, representative nature-inspired designing strategies for oil-water separation materials are summarized. Finally, the current development prospects, future challenges and trends on BBM for oil-water separation are discussed as well. Hopefully, this review will provide some essential guidelines for the researchers to design novel oil/water separation materials with green, self-degradable, low-toxicity and readily available raw materials.
Collapse
Affiliation(s)
- Yuhui Jiang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China.
| | - Juan An
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Shangru Zhai
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, China
| |
Collapse
|
8
|
Wang J, Guo Z, Fu F. Locomotion behavior of air bubbles on solid surfaces. Adv Colloid Interface Sci 2024; 332:103266. [PMID: 39153417 DOI: 10.1016/j.cis.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Feiyan Fu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
9
|
Liu S, Xiang Y, Liu Z, Li L, Dang R, Zhang H, Wei F, Chen Y, Yang X, Mao M, Zhang YS, Song J, Zhang X. A Nature-Derived, Hetero-Structured, Pro-Healing Bioadhesive Patch for High-Performance Sealing of Wet Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309774. [PMID: 38490747 DOI: 10.1002/adma.202309774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/24/2024] [Indexed: 03/17/2024]
Abstract
Tissue adhesives are promising alternatives to sutures and staples to achieve wound closure and hemostasis. However, they often do not work well on tissues that are soaked in blood or other biological fluids, and organs that are typically exposed to a variety of harsh environments such as different pH values, nonhomogeneous distortions, continuous expansions and contractions, or high pressures. In this study, a nature-derived multilayered hetero-bioadhesive patch (skin secretion of Andrias davidianus (SSAD)-Patch) based on hydrophilic/hydrophobic pro-healing bioadhesives derived from the SSAD is developed, which is designed to form pressure-triggered strong adhesion with wet tissues. The SSAD-Patch is successfully applied for the sealing and healing of tissue defects within 10 s in diverse extreme injury scenarios in vivo including rat stomach perforation, small intestine perforation, fetal membrane defect, porcine carotid artery incision, and lung lobe laceration. The findings reveal a promising new type of self-adhesive regenerative SSAD-Patch, which is potentially adaptable to broad applications (under different pH values and air or liquid pressures) in sutureless wound sealing and healing.
Collapse
Affiliation(s)
- Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yangfan Xiang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Zekun Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Lan Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Huicong Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Feng Wei
- The People's Hospital of Kaizhou District, Chongqing, 405499, P. R. China
| | - Yuqin Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiang Yang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Mengjie Mao
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
10
|
Wang W, Deng W, Gu W, Yu X, Zhang Y. Transparent anti-fingerprint glass surfaces: comprehensive insights into theory, design, and prospects. NANOSCALE 2024; 16:2695-2712. [PMID: 38112659 DOI: 10.1039/d3nr04462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
With the advancement of information technology, touch-operated devices such as smartphones, tablets, and computers have become ubiquitous, reshaping our interaction with technology. Transparent surfaces, pivotal in the display industry, architecture, and household appliances, are prone to contamination from fingerprints, grease, and dust. Such contaminants compromise the cleanliness, aesthetic appeal, hygiene of the glass, and the overall user visual experience. As a result, fingerprint prevention has gained prominence in related research domains. This article delves into the primary characteristics of fingerprints and elucidates the fundamental mechanisms and components behind their formation. We then explore the essential properties, classifications, and theoretical foundations of anti-fingerprint surfaces. The paper concludes with a comprehensive review of recent advancements and challenges in transparent superlyophobic fingerprint-resistant surfaces, projecting future trajectories for transparent fingerprint-resistant glass surfaces.
Collapse
Affiliation(s)
- Wei Wang
- NJIT-YSU Joint Research Institute, Nanjing Institute of Technology (NJIT), Nanjing, 211167, China
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Weilin Deng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Wancheng Gu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
- The 723 Institute of CSSC, Yangzhou, 225101, P.R. China
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
11
|
Wang W, Chang J, Chen L, Weng D, Yu Y, Hou Y, Yu G, Wang J, Wang X. A laser-processed micro/nanostructures surface and its photothermal de-icing and self-cleaning performance. J Colloid Interface Sci 2024; 655:307-318. [PMID: 37944378 DOI: 10.1016/j.jcis.2023.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Micro/nanostructures have garnered significant attention and widespread applications in areas such as photocatalysis, coated fabrics, microchips, and sensors. However, high-resolution and multifunctional micro/nanostructures fabrication remains a great challenge. In this work, a novel self-assembly-femtosecond laser processing for the regular micro squares and nano bumps surface on steel substrates is proposed, and a great potential in the field of anti-icing/de-icing and self-cleaning is demonstrated. The surface tension gradient-driven liquid-air self-assembly provides a silica microsphere monolayer, while the post-femtosecond laser process can give precise micro/nano decoration. We systematically explore the impact of laser repetition frequency, scanning speed, and laser incident power on the size and shape of micro/nano decorations that have been studied. The different performances of self-cleaning effects, ice adhesion, and the photothermal de-icing capability due to the change in surface wettability have been demonstrated. This research shows a new pathway for the creation of smart micro/nanostructures surface which possess stable super hydrophilic and highly adhesive superhydrophobic properties, as well as high abrasion resistance. The discovery achieves a suitable blend of multiple functions on the surface of a single material, which can be applied to various surface engineering fields.
Collapse
Affiliation(s)
- Weiling Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jinlin Chang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ding Weng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yadong Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yacong Hou
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoxu Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiadao Wang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueguang Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Gao X, Zhang F, Zhang Z, Wang Z, Song Y, Cheng G, Ding J. Ultrahigh Efficient Collection of Underwater Bubbles by High Adsorption and Transport, Coalescence, and Collection Integrating a Conical Arrayed Surface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54119-54128. [PMID: 37942537 DOI: 10.1021/acsami.3c12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The capture and utilization of underwater fuel bubbles such as methane can alleviate the greenhouse effect, solve the global energy crisis, and possibly improve the endurance of underwater equipment. However, previous research routinely failed to achieve the integrated process of continuous adsorption, transportation, and collection of bubbles limited by the trade-off between the bubble adhesion and transport efficiency dependent on interfacial pinning, tremendously hindering the direct capture and utilization of underwater fuel bubbles. To break through this bottleneck, a magnetic-guided conical arrayed surface (CAS) associated with a laser etching technique is fabricated conveniently to realize superhydrophobicity. The bubbles on laser-etched CAS have higher adhesiveness and low-pinning transport compared with those on the nonlaser-etched surface. Intriguingly, the gas film adsorbed within the CAS seems to be a gas channel, which accelerates the bubble coalescence and fast spreading to eventually realize the integration of transport, coalescence, and collection. The dynamic behaviors of bubble adsorption, transportation, and coalescence on CAS are probed to reveal the mechanism of the gas film-generating process within conical arrays. Furthermore, a novel underwater bubble-collecting device with multiangled CAS is proposed to achieve multidirectional capture, highly efficient transportation, and collection of rising bubbles. The results advance our understanding of dynamic behaviors of bubbles at solid-liquid interfaces and facilitate design and manufacturing of an apparatus for bubble collection.
Collapse
Affiliation(s)
- Xiang Gao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Fujian Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zhongqiang Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering, and Mechanics, Dalian University of Technology, Dalian 116024, P.R. China
| | - Ziyang Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yunyun Song
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| |
Collapse
|
13
|
Bai X, Gou X, Zhang J, Liang J, Yang L, Wang S, Hou X, Chen F. A Review of Smart Superwetting Surfaces Based on Shape-Memory Micro/Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206463. [PMID: 36609999 DOI: 10.1002/smll.202206463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Bioinspired smart superwetting surfaces with special wettability have aroused great attention from fundamental research to technological applications including self-cleaning, oil-water separation, anti-icing/corrosion/fogging, drag reduction, cell engineering, liquid manipulation, and so on. However, most of the reported smart superwetting surfaces switch their wettability by reversibly changing surface chemistry rather than surface microstructure. Compared with surface chemistry, the regulation of surface microstructure is more difficult and can bring novel functions to the surfaces. As a kind of stimulus-responsive material, shape-memory polymer (SMP) has become an excellent candidate for preparing smart superwetting surfaces owing to its unique shape transformation property. This review systematically summarizes the recent progress of smart superwetting SMP surfaces including fabrication methods, smart superwetting phenomena, and related application fields. The smart superwettabilities, such as superhydrophobicity/superomniphobicity with tunable adhesion, reversible switching between superhydrophobicity and superhydrophilicity, switchable isotropic/anisotropic wetting, slippery surface with tunable wettability, and underwater superaerophobicity/superoleophobicity with tunable adhesion, can be obtained on SMP micro/nanostructures by regulating the surface morphology. Finally, the challenges and future prospects of smart superwetting SMP surfaces are discussed.
Collapse
Affiliation(s)
- Xue Bai
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Xiaodan Gou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Liang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijing Yang
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Shaopeng Wang
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
14
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
15
|
Du Y, Li P, Wen Y, Guan Z. Passive Automatic Switch Relying on Laplace Pressure for Efficient Underwater Low-Gas-Flux Bubble Energy Harvesting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3481-3493. [PMID: 36880226 DOI: 10.1021/acs.langmuir.2c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The buoyancy potential energy contained in bubbles released by subsea geological and biological activities represents a possible in situ energy source for underwater sensing and detection equipment. However, the low gas flux of the bubble seepages that exist widely on the seabed introduces severe challenges. Herein, a passive automatic switch relying on Laplace pressure is proposed for efficient energy harvesting from low-gas-flux bubbles. This switch has no moving mechanical parts; it uses the Laplace-pressure difference across a curved gas-liquid interface in a biconical channel as an invisible "microvalve". If there is mechanical equilibrium between the Laplace-pressure difference and the liquid-pressure difference, the microvalve will remain closed and prevent the release of bubbles as they continue to accumulate. After the accumulated gas reaches a threshold value, the microvalve will open automatically, and the gas will be released rapidly, relying on the positive feedback of interface mechanics. Using this device, the gas buoyancy potential energy entering the energy harvesting system per unit time can be increased by a factor of more than 30. Compared with a traditional bubble energy harvesting system without a switch, this system achieves a 19.55-fold increase in output power and a 5.16-fold enhancement in electrical energy production. The potential energy of ultralow flow rate bubbles (as low as 3.97 mL/min) is effectively collected. This work provides a new design philosophy for passive automatic-switching control of gas-liquid two-phase fluids, presenting an effective approach for harvesting of buoyancy potential energy from low-gas-flux bubble seepages. This opens a promising avenue for in situ energy supply for subsea scientific observation networks.
Collapse
Affiliation(s)
- Yu Du
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yumei Wen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhibin Guan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Electrodeposition of nanoporous Ni0.85Se arrays anchored on rGO promotes high-efficiency oxygen evolution reaction. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
17
|
Lin F, Wo K, Fan X, Wang W, Zou J. Directional Transport of Underwater Bubbles on Solid Substrates: Principles and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10325-10340. [PMID: 36802468 DOI: 10.1021/acsami.2c21466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The manipulation of underwater bubbles on substrates has received extensive research interest from both the scientific community and industry, including the chemical industry, machinery, biology, medicine, and other fields. Recent advances in "smart" substrates have enabled the bubbles to be transported on demand. Herein, the progress in the directional transport of underwater bubbles on various types of substrates is summarized, including planes, wires, and cones. The transport mechanism can be classified as buoyancy-driven, Laplace-pressure-difference-driven, and external-force-driven according to the driven force of the bubble. Moreover, the wide applications of directional bubble transport are reported, ranging from gas collection, microbubble reaction, bubble detection and classification, bubble switch, and bubble microrobots. Lastly, the advantages and challenges of various directional bubble transportation methods are discussed, and the current challenges and future prospects in this field are also discussed. This Review outlines the fundamental mechanisms of underwater bubble transportation on solid substrates and helps to understand the methods of optimizing bubble transportation performances.
Collapse
Affiliation(s)
- Fangye Lin
- Ningbo Research Institute, Zhejiang University, Ningbo 315048, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- MedicalSystem Biotechnology Co., Ltd., Ningbo 315104, China
| | - Keyu Wo
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xujun Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- Zhejiang University City College, Hangzhou 310015, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Yang Y, Guo Z, Liu W. Special Superwetting Materials from Bioinspired to Intelligent Surface for On-Demand Oil/Water Separation: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204624. [PMID: 36192169 DOI: 10.1002/smll.202204624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Indexed: 05/27/2023]
Abstract
Since superwetting surfaces have emerged, on-demand oil/water separation materials serve as a new direction for meeting practical needs. This new separation mode uses a single porous material to allow oil-removing and water-removing to be achieved alternately. In this review, the fundamentals of wettability are systematically summarized in oil/water separation. Most importantly, the two states, bioinspired surface and intelligent surface, are summarized for on-demand oil/water separation. Specifically, bioinspired surfaces include micro/nanostructures, bioinspired chemistry, Janus-featured surfaces, and dual-superlyophobic surfaces that these superwetting materials can possess asymmetric wettability in one structure system or opposite underliquid wettability by prewetting. Furthermore, an intelligent surface can be adopted by various triggers such as pH, thermal and photo stimuli, etc., to control wettability for switchable oil/water separation reversibly, expressing a thought beyond nature to realize innovative oil/water separation by external stimuli. Remarkably, this review also discusses the advantages of all the materials mentioned above, expanding the separation scope from the on-demand oil/water mixtures to the multiphase immiscible liquid-liquid mixtures. Finally, the prospects of on-demand oil/water separation materials are also concluded.
Collapse
Affiliation(s)
- Yong Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
19
|
Rawlinson JM, Cox HJ, Hopkins G, Cahill P, Badyal JPS. Nature-Inspired Trapped Air Cushion Surfaces for Environmentally Sustainable Antibiofouling. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
21
|
Bergmann JB, Moatsou D, Steiner U, Wilts BD. Bio-inspired materials to control and minimise insect attachment. BIOINSPIRATION & BIOMIMETICS 2022; 17:051001. [PMID: 36099911 DOI: 10.1088/1748-3190/ac91b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
22
|
Tenjimbayashi M, Manabe K. A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:473-497. [PMID: 36105915 PMCID: PMC9467603 DOI: 10.1080/14686996.2022.2116293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The transport of liquid droplets plays an essential role in various applications. Modulating the wettability of the material surface is crucial in transporting droplets without external energy, adhesion loss, or intense controllability requirements. Although several studies have investigated droplet manipulation, its design principles have not been categorized considering the mechanical perspective. This review categorizes liquid droplet transport strategies based on wettability modulation into those involving (i) application of driving force to a droplet on non-sticking surfaces, (ii) formation of gradient surface chemistry/structure, and (iii) formation of anisotropic surface chemistry/structure. Accordingly, reported biological and artificial examples, cutting-edge applications, and future perspectives are summarized.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Kengo Manabe
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
He Z, Yang X, Mu L, Wang N, Lan X. A versatile "3M" methodology to obtain superhydrophobic PDMS-based materials for antifouling applications. Front Bioeng Biotechnol 2022; 10:998852. [PMID: 36105602 PMCID: PMC9464926 DOI: 10.3389/fbioe.2022.998852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fouling, including inorganic, organic, bio-, and composite fouling seriously affects our daily life. To reduce these effects, antifouling strategies including fouling resistance, release, and degrading, have been proposed. Superhydrophobicity, the most widely used characteristic for antifouling that relies on surface wettability, can provide surfaces with antifouling abilities owing to its fouling resistance and/or release effects. PDMS shows valuable and wide applications in many fields, and due to the inherent hydrophobicity, superhydrophobicity can be achieved simply by roughening the surface of pure PDMS or its composites. In this review, we propose a versatile "3M" methodology (materials, methods, and morphologies) to guide the fabrication of superhydrophobic PDMS-based materials for antifouling applications. Regarding materials, pure PDMS, PDMS with nanoparticles, and PDMS with other materials were introduced. The available methods are discussed based on the different materials. Materials based on PDMS with nanoparticles (zero-, one-, two-, and three-dimensional nanoparticles) are discussed systematically as typical examples with different morphologies. Carefully selected materials, methods, and morphologies were reviewed in this paper, which is expected to be a helpful reference for future research on superhydrophobic PDMS-based materials for antifouling applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
24
|
Zhang C, Li Z, Li H, Yang Q, Wang H, Shan C, Zhang J, Hou X, Chen F. Femtosecond Laser-Induced Supermetalphobicity for Design and Fabrication of Flexible Tactile Electronic Skin Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38328-38338. [PMID: 35951360 DOI: 10.1021/acsami.2c08835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pursuing flexible tactile electronic skin sensors with superior comprehensive performances is highly desired in practical applications. However, current flexible tactile electronic skin sensors suffer insufficient flexibility and sensitivity, as well as high-cost and low-efficiency in fabrication, and are susceptible to contamination in sensing performances. Here, a highly sensitive all-flexible tactile sensor (AFTS) is presented with capacitive sensing that combines a double-side micropyramids dielectric layer and a liquid metal (LM) electrode. The design and fabrication of LM-based AFTS are based on supermetalphobicity induced by femtosecond laser. The supermetalphobic micropyramids lead to a high sensitivity up to 2.78 kPa-1, an ultralow limit of detection of ∼3 Pa, a fast response time of 80 ms, and an excellent durability of cyclic load over 10 000 times. The used femtosecond laser enables programmable, high-efficiency, low-cost, and large-scale fabrication of supermetalphobic double-side micropyramids, which is difficult to implement using conventional techniques. Furthermore, the outer substrates are treated by a femtosecond laser, endowing the AFTS with excellent antifouling performance and stable sensing signals in the highly humid environment. Successful monitoring of human physiological and motion signals demonstrates the potential of our developed AFTS for wearable biomonitoring applications.
Collapse
Affiliation(s)
- Chengjun Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhikang Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Haoyu Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qing Yang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hao Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chao Shan
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jingzhou Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
25
|
Liu S, Chen P, Yang T, Wu P, Liu C, He J, Jiang W. Intensification of Gas–Liquid Mass-Transfer Efficiency by Introducing a Superaerophilic Surface in the Ozonation Process. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuyuan Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Pingting Chen
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Tinghan Yang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
26
|
Design of Metal-Based Slippery Liquid-Infused Porous Surfaces (SLIPSs) with Effective Liquid Repellency Achieved with a Femtosecond Laser. MICROMACHINES 2022; 13:mi13081160. [PMID: 35893158 PMCID: PMC9332264 DOI: 10.3390/mi13081160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) have become an effective method to provide materials with sliding performance and, thus, achieve liquid repellency, through the process of infusing lubricants into the microstructure of the surface. However, the construction of microstructures on high-strength metals is still a significant challenge. Herein, we used a femtosecond laser with a temporally shaped Bessel beam to process NiTi alloy, and created uniform porous structures with a microhole diameter of around 4 µm, in order to store and lock lubricant. In addition, as the lubricant is an important factor that can influence the sliding properties, five different lubricants were selected to prepare the SLIPSs, and were further compared in terms of their sliding behavior. The temperature cycle test and the hydraulic pressure test were implemented to characterize the durability of the samples, and different liquids were used to investigate the possible failure under complex fluid conditions. In general, the prepared SLIPSs exhibited superior liquid repellency. We believe that, in combination with a femtosecond laser, slippery liquid-infused porous surfaces are promising for applications in a wide range of areas.
Collapse
|
27
|
Rong X, Chen X, Li P, Zhao C, Peng S, Ma H, Qu H. Mechanically durable anti-bacteria non-fluorinated superhydrophobic sponge for highly efficient and fast microplastic and oil removal. CHEMOSPHERE 2022; 299:134493. [PMID: 35385765 DOI: 10.1016/j.chemosphere.2022.134493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) pollution evolves into a global environmental problem to be solved urgently. Although many studies are exploring ways to remove MPs from water environment, most of them are lack of selectivity and low efficiency. Herein, considering the fascinating absorption selectivity of superwetting materials, a robust magnetic-responsive superhydrophobic and superoleophilic sponge was firstly used to quickly eliminate MPs from water with very high efficiency. The functional sponge was fabricated by a non-fluorinated coating technique that consisted of polydimethylsiloxane (PDMS) grafted Fe3O4 particle, PDMS grafted halloysite nanotubes, and PDMS binder. The coated sponge achieved excellent mechanically durable and chemically stable superhydrophobicity that resisted a series of severe treatments. It was unquestionable to show very fast oil absorption. What's more, it especially showed very high adsorption capacity (24.3-48.2 mg/g) and could quickly adsorb almost 100% MPs (polypropylene, polyvinyl chloride, and polyethylene) from aqueous suspensions. Moreover, the removal rates remained almost 100% for these MPs after 50 cycles. Besides, the coated sponge had excellent salt tolerance and antibacterial activity to Escherichia coli (E. coli) (99.91%) and Staphylococcus aureus (S. aureus) (90.46%). The adsorption mechanism of the coating was discussed from the perspectives of molecular structure, electronic effect, steric hindrance, and size-scale effect. The absorption driving force mainly derived from the intra-particle diffusion under capillary attraction, whilst slight electrostatic interaction, hydrogen bond interaction, and σ-p (or p-p) conjugation between PDMS and MPs. This functional sponge was destined to be a new strategy in the removal of MPs and other solid pollutants, especially in the high-salinity and rich-microorganism water environment.
Collapse
Affiliation(s)
- Xin Rong
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Xiaoxin Chen
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Pan Li
- College of Chemistry and Environmental Science, China.
| | - Chenyang Zhao
- College of Chemistry and Environmental Science, China.
| | - Shan Peng
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Haiyun Ma
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Hongqiang Qu
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
28
|
Zhu Q, Yang Y, Gao H, Xu LP, Wang S. Bioinspired superwettable electrodes towards electrochemical biosensing. Chem Sci 2022; 13:5069-5084. [PMID: 35655548 PMCID: PMC9093108 DOI: 10.1039/d2sc00614f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Superwettable materials have attracted much attention due to their fascinating properties and great promise in several fields. Recently, superwettable materials have injected new vitality into electrochemical biosensors. Superwettable electrodes exhibit unique advantages, including large electrochemical active areas, electrochemical dynamics acceleration, and optimized management of mass transfer. In this review, the electrochemical reaction process at electrode/electrolyte interfaces and some fundamental understanding of superwettable materials are discussed. Then progress in different electrodes has been summarized, including superhydrophilic, superhydrophobic, superaerophilic, superaerophobic, and superwettable micropatterned electrodes, electrodes with switchable wettabilities, and electrodes with Janus wettabilities. Moreover, we also discussed the development of superwettable materials for wearable electrochemical sensors. Finally, our perspective for future research is presented.
Collapse
Affiliation(s)
- Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
29
|
Xiao C, Feng J, Xu H, Xu R, Zhou T. Scalable Strategy to Directly Prepare 2D and 3D Liquid Metal Circuits Based on Laser-Induced Selective Metallization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20000-20013. [PMID: 35467834 DOI: 10.1021/acsami.2c01201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective wetting of a gallium-based liquid metal on copper circuits is one of the ways to prepare liquid metal circuits. However, the complex fabrication processes of an adhesion layer between copper circuits (or patterns) and substrates were still inevitable, limiting scalable applications. Our work developed a facile way to directly prepare 2D and 3D liquid metal circuits by combining laser-induced selective metallization and selective wetting for the first time. The copper template was obtained on elastomers using laser-induced selective metallization, and high-resolution liquid metal circuits were fabricated by brushing Galinstan on the copper template in the alkali solution. The distribution of Cu element not only was on the top surface but also extended to the interior of the elastomer substrate. This revealed that the Cu layer prepared by laser-induced selective metallization is born to firmly embed into the substrate, which endowed the circuits with strong adhesion, reaching the highest 5B level. Moreover, the prepared liquid metal circuits (or patterns) had a typical layered structure. The liquid metal circuits exhibit good flexibility, stretchability, self-healing ability, and acid-alkaline resistance. Compared with the traditional methods of patterning liquid metals, fabricating liquid metal circuits based on laser-induced selective metallization has irreplaceable advantages, such as strong adhesion between circuits and substrate, fabricating 3D circuits, good acid-alkaline resistance, cost-effectiveness, maskless use, time savings, arbitrary design of patterns, and convenient operation, which endow this method with great application prospect.
Collapse
Affiliation(s)
- Chengchao Xiao
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Haoran Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Rui Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
30
|
He J, Wang K, Zhang X, Wu P, Liu C, Jiang W. Efficient Antiscaling Technology Based on Superhydrophobicity Coupled Ultrasonic Technology. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Keke Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingyang Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
31
|
Yong J, Yang Q, Hou X, Chen F. Emerging Separation Applications of Surface Superwettability. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:688. [PMID: 35215017 PMCID: PMC8878479 DOI: 10.3390/nano12040688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Human beings are facing severe global environmental problems and sustainable development problems. Effective separation technology plays an essential role in solving these challenges. In the past decades, superwettability (e.g., superhydrophobicity and underwater superoleophobicity) has succeeded in achieving oil/water separation. The mixture of oil and water is just the tip of the iceberg of the mixtures that need to be separated, so the wettability-based separation strategy should be extended to treat other kinds of liquid/liquid or liquid/gas mixtures. This review aims at generalizing the approach of the well-developed oil/water separation to separate various multiphase mixtures based on the surface superwettability. Superhydrophobic and even superoleophobic surface microstructures have liquid-repellent properties, making different liquids keep away from them. Inspired by the process of oil/water separation, liquid polymers can be separated from water by using underwater superpolymphobic materials. Meanwhile, the underwater superaerophobic and superaerophilic porous materials are successfully used to collect or remove gas bubbles in a liquid, thus achieving liquid/gas separation. We believe that the diversified wettability-based separation methods can be potentially applied in industrial manufacture, energy use, environmental protection, agricultural production, and so on.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Qing Yang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| |
Collapse
|
32
|
Lei J, Liu X, Chen X, Luo H, Feng W, Zhang J, Liu F, Pei S, Zhang Y. Ultra-bubble-repellent sodium perfluorosulfonic acid membrane with a mussel-inspired intermediate layer for high-efficiency chlor-alkali electrolysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Wang R, Liu P, Yu X, Sun X, Lai H, Cheng Z. Electrically Induced Underwater Superaerophilicity/Superaerophobicity Switching on Polypyrrole-Coated Mesh Films for Selective Bubble Permeation. Chempluschem 2022; 87:e202100491. [PMID: 35023641 DOI: 10.1002/cplu.202100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Recently, materials with controllable superwettability have attracted much attention. However, almost all studies focused on controlling wetting of water and oil; research on underwater gas bubble wetting control is still rare. Herein, we report a mesh film prepared by coating polypyrrole (PPy) film on Ti mesh. Briefly, the film mesh is underwater superaerophilic when PPy is doped with perfluorooctanesulfonate ions (PFOS- ), and becomes underwater superaerophobic as the PFOS- are removed. The transition of the wettability can be triggered by electrical stimuli, which is attributed to the cooperative effect between the rough structure and chemical components variation. The controllable wettability allows adjustable bubble permeation. It can be envisioned that the film will provide potential applications in the future, such as underwater bubble capture/release and microfluidic devices.
Collapse
Affiliation(s)
- Ruijie Wang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Pengchang Liu
- 41 Institute of the Sixth Research Institute, China Aerospace Science and Industry Corporation Institution, Hohhot, Inner Mongolia, 010000, P. R. China
| | - Xiaoyan Yu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xinchao Sun
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hua Lai
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
34
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
35
|
Xia Y, Gao X, Li R. Influence of Surface Wettability on Bubble Formation and Motion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14483-14490. [PMID: 34851638 DOI: 10.1021/acs.langmuir.1c02444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bubble dynamics plays an important role in boiling heat transfer, and surface wettability affects bubble behaviors. In the present work, the effects of surface superhydrophilicity (SHI) and superhydrophobicity (SHO) on bubble dynamics are experimentally studied by observing the formation and motion behaviors of air bubbles and vapor bubbles on varied surfaces. For air bubbles to better mimic vapor bubbles, the air bubbles are introduced in a water pool by injecting airflow from a through hole of the surface. Air bubble tests are first conducted on homogeneous SHO and SHI surfaces, respectively. It is observed that surface wettability significantly affects the bubble size and departure frequency. To discover the dynamic behaviors of a bubble under both SHI and SHO, a biphilic surface with SHI and SHO areas is fabricated, and air bubbles are injected right on the biphilic border between the two areas. It is observed the wettability contrast significantly displaces the air bubbles, which spread only onto the SHO area. The biphilic surface is fabricated for the pool boiling test. Vapor bubbles are observed at different stages of the nucleate boiling, showing surface effects similar to the observations of air bubbles. Not only does this study present the influence of surface wettability on air and vapor bubble behaviors but also it provides useful implications for understanding and optimizing the biphilic surface design for enhancing boiling heat transfer.
Collapse
Affiliation(s)
- Yakang Xia
- School of Engineering, The University of British Columbia, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| | - Xuan Gao
- Research Institute of Aero-Engine, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ri Li
- School of Engineering, The University of British Columbia, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
36
|
He H, Ji L, Wei Y, Lv C, Wang T, Wang S, Chen Z. Superaerophobic copper-based nanowires array for efficient nitrogen reduction. J Colloid Interface Sci 2021; 608:1489-1496. [PMID: 34742068 DOI: 10.1016/j.jcis.2021.10.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023]
Abstract
Electrocatalytic N2 reduction reaction (NRR) provides a promising route for NH3 production under ambient conditions to replace traditional Haber-Bosch process. For this purpose, efficient NRR electrocatalysts with high NH3 yield rate and high Faradaic efficiency (FE) are required. Cu-based materials have been recognized catalytic active for some multi-electron-involved reduction reactions and usually exhibit inferior catalytic activities for hydrogen evolution reaction. We report here the preparation and characterization of a series of Cu-based nanowires array (NA) catalysts in situ grown on Cu foam (CF) substrate, including Cu(OH)2 NA/CF, Cu3N NA/CF, Cu3P NA/CF, CuO NA/CF and Cu NA/CF, which are directly used as self-supported catalytic electrodes for NRR. The electrochemical results show that CuO NA/CF achieves a highest NH3 yield rate of 1.84 × 10-9 mol s-1 cm-2, whereas Cu NA/CF possesses a highest FE of 18.2% for NH3 production at -0.1 V versus reversible hydrogen electrode in 0.1 M Na2SO4. Such catalytic performances are superior to most of recently reported metal-based NRR electrocatalysts. The contact angle measurements and the simulated calculations are carried out to reveal the important role of the superaerophobic NA surface structure for efficient NRR electrocatalysis.
Collapse
Affiliation(s)
- Huiyu He
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lvlv Ji
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yujie Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chang Lv
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
37
|
Mu H, Lin G, Zhang Y, Xiao Y, Liu J. Rational engineering of superaerophobic CoMoSx electrocatalysts for overall water splitting. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Li J, Wang W, Zhu R, Huang Y. Superhydrophobic Artificial Compound Eye with High Transparency. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35026-35037. [PMID: 34255480 DOI: 10.1021/acsami.1c05558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural compound eyes have inspired the development of self-cleaning, waterproof, and antifog optical devices. However, the traditional methods generally sacrifice the transparency of optical units to introduce hydrophobicity, which significantly limits the practical applications of state-of-the-art hydrophobic technologies. This work aims to fabricate a microimaging system by combining photolithography, inkjet printing, and chemical growth. Herein, an artificial compound eye (ACE) is endowed with stable superhydrophobicity and high transparency without affecting its optical performance. The obtained ACE system possesses good static and dynamic dewetting properties along with excellent optical performance. Its static contact angle exceeds 160°, whereas the sliding angle and contact angle hysteresis values are ∼5.5° and ∼3.8°, respectively. Furthermore, the contact time is found to be 11.97 s for the Weber number of 12. The droplet undergoes a reversible process during compressing and stretching, and the ACE exhibits no adhesion under a pressure load of 4 mN. This proves that the introduction of nonwetting nanohairs on the sidewalls of the microcone arrays significantly improves the dynamic dewetting of the system. More importantly, the properly designed position of nanohairs ensures that the optical performance of ACE is maintained at a level of ∼95% compared to that of the bare glass. The superhydrophobic ACE exhibits low adhesion and great transparency. This rationally designed ACE may provide useful guidelines for fabrication of superhydrophobic optical devices with high transparency and enable potential applications in military, medical, and some outdoor activity fields.
Collapse
Affiliation(s)
- Jiang Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Wenjun Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ruixiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuxiang Huang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
39
|
Li X, Jiang Y, Zhang Z, Jiang Z, Lian J, Ren L. Facile and environmentally-friendly fabrication of underwater superaerophobic and superaerophilic metallic surfaces through laser ablation and heat treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Yong J, Zhuang J, Bai X, Huo J, Yang Q, Hou X, Chen F. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser. NANOSCALE 2021; 13:10414-10424. [PMID: 34018504 DOI: 10.1039/d1nr01225h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To solve the problems caused by tiny bubbles in liquids and the difficulties involved in collecting useful gas underwater, this paper proposes a method to separate bubbles from water by integrating underwater superaerophobic and superaerophilic porous membranes, including bubble removal and collection methods. Inspired by fish scales and lotus leaves, underwater superaerophobic microstructures and underwater superaerophilic microstructures are prepared on a stainless steel (SS) mesh by femtosecond laser processing, respectively. The as-prepared underwater superaerophobic mesh has an anti-bubble ability, while the underwater superaerophilic mesh has a bubble-absorption ability in water. Based on the different dynamic behavior of bubbles on these two kinds of superwetting meshes, efficient water/bubble separation is achieved by using laser-induced superwetting meshes. Tiny bubbles can be completely removed from the water flow in a pipe or easily collected. Such water/gas separation methods based on underwater superaerophobic and superaerophilic porous membranes provide an effective way to prevent the damage caused by bubbles and to collect the available gas in liquids, which has great potential applications in energy utilization, environmental protection, medical and health care, microfluidic chips, chemical manufacturing, agricultural breeding, and so on.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Jian Zhuang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Xue Bai
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Jinglan Huo
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Qing Yang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
41
|
Mehanna YA, Sadler E, Upton RL, Kempchinsky AG, Lu Y, Crick CR. The challenges, achievements and applications of submersible superhydrophobic materials. Chem Soc Rev 2021; 50:6569-6612. [PMID: 33889879 DOI: 10.1039/d0cs01056a] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Superhydrophobic materials have been widely reported throughout the scientific literature. Their properties originate from a highly rough morphology and inherently water repellent surface chemistry. Despite promising an array of functionalities, these materials have seen limited commercial development. This could be attributed to many factors, like material compatibility, low physical resilience, scaling-up complications, etc. In applications where persistent water contact is required, another limitation arises as a major concern, which is the stability of the air layer trapped at the surface when submerged or impacted by water. This review is aimed at examining the diverse array of research focused on monitoring/improving air layer stability, and highlighting the most successful approaches. The reported complexity of monitoring and enhancing air layer stability, in conjunction with the variety of approaches adopted, results in an assortment of suggested routes to achieving success. The review is addressing the challenge of finding a balance between maximising water repulsion and incorporating structures that protect air pockets from removal, along with challenges related to the variant approaches to testing air-layer stability across the research field, and the gap between the achieved progress and the required performance in real-life applications.
Collapse
Affiliation(s)
- Yasmin A Mehanna
- Materials Innovation Factory, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | | | | | | | | | | |
Collapse
|
42
|
Zhu Z, Li J, Peng H, Liu D. Nature-Inspired Structures Applied in Heat Transfer Enhancement and Drag Reduction. MICROMACHINES 2021; 12:mi12060656. [PMID: 34204899 PMCID: PMC8227078 DOI: 10.3390/mi12060656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022]
Abstract
Heat exchangers are general equipment for energy exchange in the industrial field. Enhancing the heat transfer of a heat exchanger with low pump energy consumption is beneficial to the maximum utilization of energy. The optimization design for enhanced heat transfer structure is an effective method to improve the heat transfer coefficient. Present research shows that the biomimetic structures applied in different equipment could enhance heat transfer and reduce flow resistance significantly. Firstly, six biomimetic structures including the fractal-tree-like structure, conical column structure, hybrid wetting structure, scale structure, concave-convex structure and superhydrophobic micro-nano structure were summarized in this paper. The biomimetic structure characteristics and heat transfer enhancement and drag reduction mechanisms were analyzed. Secondly, four processing methods including photolithography, nanoimprinting, femtosecond laser processing and 3D printing were introduced as the reference of biomimetic structure machining. Finally, according to the systemic summary of the research review, the prospect of biomimetic heat transfer structure optimization was proposed.
Collapse
Affiliation(s)
- Zhangyu Zhu
- School of Mechanical and Electrical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China;
| | - Juan Li
- School of Mechanical and Electrical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China;
- Correspondence:
| | - Hao Peng
- School of Mechanical and Power Engineering, Nanjing Tech University, 30 South Pu Zhu Road, Nanjing 211816, China;
| | - Dongren Liu
- Mechanical Engineering College, Yangzhou University, 88 South University Ave., Yangzhou 225009, China;
| |
Collapse
|
43
|
Liu W, Chen X, Jiao Y. Liquid-Infused Microgrooved Slippery Surface Ablated by One-Step Laser Irradiation for Underwater Bubble Directional Manipulation and Anisotropic Spreading. MICROMACHINES 2021; 12:mi12050555. [PMID: 34068111 PMCID: PMC8152748 DOI: 10.3390/mi12050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
A pitcher plant is a kind of liquid-infused porous surface that imparts an excellent directional manipulation ability to in-air droplets or underwater bubbles, so it has attracted researchers' attention in both academic and industrial issues. In this work, a kind of liquid-infused anisotropic microgrooved slippery surface (LIAMSS) was fabricated through one-step femtosecond laser irradiation and lubricant coating technology. On the inclined LIAMSS, the underwater bubbles show great directional motion and anisotropic spreading ability under the effect of buoyancy. It should be noted that the interaction between the air and the lubricant layer plays a dominant role in determining the attachment and the movement of the underwater bubble, which could be ascribed to the competition between the adhesion resistance induced by contact angle hysteresis and the drive force induced by buoyancy. Additionally, the bubble shows obvious anisotropy on the LIAMSS with the increase in volume because of the restriction of the slippery area, and the bubble contact angle perpendicular to the grooved region is about 88○ when the bubble volume is 5 μL. We believe that the present findings would accelerate the application of this kind of bubble slippery surface in underwater gas collection and tail gas treatment.
Collapse
Affiliation(s)
- Wei Liu
- College of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China;
| | - Xuehui Chen
- College of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China;
- Correspondence: (X.C.); (Y.J.)
| | - Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
- Correspondence: (X.C.); (Y.J.)
| |
Collapse
|
44
|
Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0447-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Yong J, Yang Q, Huo J, Hou X, Chen F. Superwettability‐based separation: From oil/water separation to polymer/water separation and bubble/water separation. NANO SELECT 2021. [DOI: 10.1002/nano.202000246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an PR China
| | - Qing Yang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an PR China
| | - Jinglan Huo
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an PR China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an PR China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an PR China
| |
Collapse
|
46
|
Lei J, Chen X, Liu X, Feng W, Zhang J, Li H, Zhang Y. Under-brine superaerophobic perfluorinated ion exchange membrane with re-entrant superficial microstructures for high energy efficiency of NaCl aqueous solution electrolysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Three-dimensional structure design of tubular polyvinyl chloride hybrid nanofiber membranes for water-in-oil emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118905] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Filtration and removal of liquid polymers from water (polymer/water separation) by use of the underwater superpolymphobic mesh produced with a femtosecond laser. J Colloid Interface Sci 2021; 582:1203-1212. [DOI: 10.1016/j.jcis.2020.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/20/2023]
|
49
|
Lee HJ, Choi WS. 2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5714. [PMID: 33333822 PMCID: PMC7765286 DOI: 10.3390/ma13245714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
Air and water pollution pose an enormous threat to human health and ecosystems. In particular, particulate matter (PM) and oily wastewater can cause serious environmental and health concerns. Thus, controlling PM and oily wastewater has been a great challenge. Various techniques have been reported to effectively remove PM particles and purify oily wastewater. In this article, we provide a review of the recent advancements in air filtration and oil/water separation using two- and three-dimensional (2D and 3D) bulk materials. Our review covers the advantages, characteristics, limitations, and challenges of air filters and oil/water separators using 2D and 3D bulk materials. In each section, we present representative works in detail and describe the concepts, backgrounds, employed materials, fabrication methods, and characteristics of 2D and 3D bulk material-based air filters and oil/water separators. Finally, the challenges, technical problems, and future research directions are briefly discussed for each section.
Collapse
Affiliation(s)
- Ha-Jin Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul 120-140, Korea;
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Korea
| |
Collapse
|
50
|
Liu X, Yang F, Guo J, Fu J, Guo Z. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chem Commun (Camb) 2020; 56:14757-14788. [PMID: 33125006 DOI: 10.1039/d0cc05801g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to manipulate droplets can be utilized to develop various smart sensors or actuators, endowing them with fascinating applications for drug delivery, detection of target analytes, environmental monitoring, intelligent control, and so on. However, the stimuli-responsive superhydrophobic/superhydrophilic materials for normal water droplets cannot satisfy the requirements from some certain circumstances, i.e., liquid lenses and biosensors (detection of various additives in water/blood droplets). Stimuli-responsive wetting/dewetting behaviors of exceptional droplets are open issues and are attracting much attention from across the world. In this perspective article, the unconventional droplets are divided into three categories: ionic or surfactant additives in water droplets, oil droplets, and bubble droplets. We first introduce several classical wettability models of droplets and some methods to achieve wettability transition. The unusual droplet motion is also introduced in detail. There are four main types of locomotion modes, which are vertical rebound motion, lateral motion, self-propulsion motion, and anisotropic wettability controlled sliding behavior. The driving mechanism for the droplet motion is briefly introduced as well. Some approaches to achieve this manipulation goal, such as light irradiation, electronic, magnetic, acid-base, thermal, and mechanical ways will be taken into consideration. Finally, the current researches on unconventional droplets extending to polymer droplets and liquid metal droplets on the surface of special wettability materials are summarized and the prospect of unconventional droplet research directions in the field of on-demand transport application will be proposed.
Collapse
Affiliation(s)
- Xianchen Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jie Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jing Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and School of Chemistry and Environment Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|