1
|
Atkins Z, Li P, Li J, Zarei A, Khazdooz L, Khosropour A, Zadehnazari A, Abbaspourrad A. Shear-reversible and super-thickening starch Janus particles. Carbohydr Polym 2025; 360:123599. [PMID: 40399012 DOI: 10.1016/j.carbpol.2025.123599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/23/2025]
Abstract
Starch Janus particles, with oppositely-charged hemispheres, were fabricated to increase thickening capacity and shear resilience. A 3D masking approach was used to chemically modify a face of amaranth starch granules (1-μm): Starch granules were embedded at the surface of oil droplets (~320 μm) via emulsification and the exposed surface was cationically treated with 2,3-epoxypropyltrimethylammonium chloride (ETMAC) at high pH. The oil template was removed by successively rinsing with water, ethanol, and hexane. The resulting starch had one hemisphere that was positively charged due to the presence of a quaternary ammonium group, confirmed by XPS, CLSM, and SEM, while the other hemisphere remained negatively charged. After modification, the surface of the starch granule was positively charged. The Janus balance, which describes the amount of each surface trait, was 60 % positive charge. The charge asymmetry of Janus particles causes self-assembly via electrostatic interactions that manifests as particle aggregation. Granular suspensions of Janus particles surpass native starch by more than a 30-fold viscosity increase, 220 Pa·s > 6.70 Pa·s. When disrupted by shear, the initial viscosity of Janus particles recovered over time. Given their unique properties, Janus particles have exciting potential to be used as shear-reversible super-thickeners in foods.
Collapse
Affiliation(s)
- Zoe Atkins
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Peilong Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Jieying Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Amin Zarei
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Leila Khazdooz
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Ibrahim OO, Liu C, Zhou S, Jin B, He Z, Zhao W, Wang Q, Zhang S. Recent Advances in Nanomaterial-Based Self-Healing Electrodes Towards Sensing and Energy Storage Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:2248. [PMID: 40218759 PMCID: PMC11991356 DOI: 10.3390/s25072248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Nanomaterial-based self-healing electrodes have demonstrated significant potential in sensing and energy storage applications due to their ability to withstand electrical breakdowns at high electric fields. However, such electrodes often face mechanical challenges, such as cracking under stress, compromising stability and reliability. This review critically examines nanomaterial-based self-healing mechanisms, focusing on properties and applications in health monitoring, motion sensing, environmental monitoring, and energy storage. By comprehensively reviewing research conducted on dimension-based nanomaterials (OD, 1D, 2D, and 3D) for self-healing electrode applications, this paper aims to provide essential insights into design strategies and performance enhancements afforded by nanoscale dimensions. This review paper highlights the tremendous potential of harnessing dimensional nanomaterials to develop autonomously restoring electrodes for next-generation sensing and energy devices.
Collapse
Affiliation(s)
- Oresegun Olakunle Ibrahim
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shulan Zhou
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Bo Jin
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Wenjie Zhao
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (O.O.I.); (C.L.); (S.Z.); (Z.H.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; (B.J.); (W.Z.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
3
|
Wang Y, Feng X, Chen X. Autonomous Bioelectronic Devices Based on Silk Fibroin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500073. [PMID: 40123251 DOI: 10.1002/adma.202500073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
The development of autonomous bioelectronic devices capable of dynamically adapting to changing biological environments represents a significant advancement in healthcare and wearable technologies. Such systems draw inspiration from the precision, adaptability, and self-regulation of biological processes, requiring materials with intrinsic versatility and seamless bio-integration to ensure biocompatibility and functionality over time. Silk fibroin (SF) derived from Bombyx mori cocoons, has emerged as an ideal biomaterial with a unique combination of biocompatibility, mechanical flexibility, and tunable biodegradability. Adding autonomous features into SF, including self-healing, shape-morphing, and controllable degradation, enables dynamic interactions with living tissues while minimizing immune responses and mechanical mismatches. Additionally, structural tunability and environmental sustainability of SF further reinforce its potential as a platform for adaptive implants, epidermal electronics, and intelligent textiles. This review explores recent progress in understanding the structure-property relationships of SF, its modification strategies, and its great potential for integration into advanced autonomous bioelectronic systems while addressing challenges related to scalability, reproducibility, and multifunctionality. Future opportunities, such as AI-assisted material design, scalable fabrication techniques, and the incorporation of wireless and personalized technologies, are also discussed, positioning SF as a key material in bridging the gap between biological systems and artificial technologies.
Collapse
Affiliation(s)
- Yanling Wang
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xue Feng
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Kocaman Kabil F, Oral AY. Harnessing Thermoelectric Power in Self-Healing Wearables: A Review. ACS OMEGA 2025; 10:6337-6350. [PMID: 40028077 PMCID: PMC11865998 DOI: 10.1021/acsomega.4c10781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Wearable thermoelectric generators are sustainable devices that generate electricity from body heat to provide a continuous power supply for electronic devices. In healthcare, they are particularly valuable for powering wireless devices that transmit vital health signals, where maintaining an uninterrupted power source is a significant challenge. However, these generators are prone to failure over time or due to mechanical damage caused by mechanical stress or environmental factors, which can lead to the loss of critical healthcare data. To address these issues, the integration of self-healing capabilities alongside flexibility and longevity is essential for their reliable operation. To our knowledge, this review is one of the first to look in depth at self-healing materials specifically designed for wearable thermoelectric generators. It explores the latest innovations and applications in this field highlighting how these materials can improve the reliability and lifetime of such systems.
Collapse
Affiliation(s)
| | - Ahmet Yavuz Oral
- Department
of Material Science and Engineering, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
5
|
Zhai J, Liu SY, Li Q, Liu C, Yu XQ, Li GX, Chen S. Facile Access to Highly Efficient 3D Printing Using Robust Self-Healing CDs/Polymer Hybrids. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9808-9817. [PMID: 39876685 DOI: 10.1021/acsami.4c19634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
3D printing efficiency, as a key indicator of additive manufacturing technology, directly affects its competitiveness in rapid prototyping, small batch production, and even large-scale industrial applications. Compared with traditional manufacturing methods, the high efficiency of 3D printing is often considered a bottleneck, hindering its application across various fields. Herein, a versatile and efficient strategy is proposed, namely, the dimensional reduction printing (DRP) process, to break the obstacle of high efficiency of 3D printing. Specifically, the self-healing CDs/PMMA nanocomposites were constructed via introducing carbon dots (CDs) synthesized by microfluidics into poly(methyl methacrylate) (PMMA) materials. Under the assistance of abundant hydrogen bonding and the entanglement of polymer chains, the fabricated CDs/PMMA nanocomposites exhibited outstanding self-healing properties, which can be utilized as ideal printing inks to achieve a highly efficient 3D printing process through assembling the printed simple 1D and 2D components into complex 3D models. We firmly believe that the DRP strategy opens up an idea for the design of a 3D printing process and points out the direction for the meaningful application of 3D printing technologies.
Collapse
Affiliation(s)
- Jiang Zhai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Su-Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Xiao-Qing Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Guo-Xing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Rumyantsev M, Kalagaev IY, Rumyantsev S. Catalytic Effect of Potassium Xanthates and Related Compounds on Disulfide Bond Enrichment of Polyalkylene Sulfides Synthesized in the Course of Episulfide Polymerization. J Phys Chem B 2024; 128:11277-11292. [PMID: 39491547 DOI: 10.1021/acs.jpcb.4c05474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The original method for the preparation of high-molecular-weight polyalkylene sulfides was reported. Assuming anomalous peculiarities of the reaction (high polymerization rates, high degrees of polymerization, and huge discrepancy between the expected Mn values and the experimentally obtained values), the priority task was set to study the mechanism underlying the observed new type of polymerization. Thus, it was demonstrated that xanthate and related molecules could act as pure catalysts, facilitating both the chain-growth polymerization (ring-opening of episulfides) realized via an anionic route and the direct attack of the sulfur atom of one episulfide molecule on the methylene carbon atom of the second (neighbor) episulfide molecule, accompanied by the subsequent formation of a stable thiiranium-based zwitterionic adduct. The role of xanthate and related compounds as catalysts and stabilizing particles was further supplemented by modeling the attack of thiolate on the sulfur atom of a thiiranium-based adduct. The xanthate molecule acting as a catalyst was found to be involved in all stages of the process discussed by sharing the potassium atom with the sulfur atoms of active components of the system (the initial episulfide molecule, thiolate, and the zwitterionic intermediate). The subsequent analysis revealed the exceptional transparency of the materials obtained, which was found to exceed 99%. The pronounced self-healing ability was also found to be a distinctive feature of the synthesized high-molecular-weight polyalkylene sulfides enriched with disulfide bonds.
Collapse
Affiliation(s)
- Mikhail Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| | - Ivan Yu Kalagaev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| | - Sergey Rumyantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 minin St., Nizhny Novgorod 603950, Russia
| |
Collapse
|
7
|
Li H, Chng CB, Zheng H, Wu MS, Bartolo PJDS, Qi HJ, Tan YJ, Zhou K. Self-Healable and 4D Printable Hydrogel for Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305702. [PMID: 38263891 PMCID: PMC10987146 DOI: 10.1002/advs.202305702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Indexed: 01/25/2024]
Abstract
Materials with high stretchability and conductivity are used to fabricate stretchable electronics. Self-healing capability and four-dimensional (4D) printability are becoming increasingly important for these materials to facilitate their recovery from damage and endow them with stimuli-response properties. However, it remains challenging to design a single material that combines these four strengths. Here, a dually crosslinked hydrogel is developed by combining a covalently crosslinked acrylic acid (AAC) network and Fe3+ ions through dynamic and reversible ionically crosslinked coordination. The remarkable electrical sensitivity (a gauge factor of 3.93 under a strain of 1500%), superior stretchability (a fracture strain up to 1700%), self-healing ability (a healing efficiency of 88% and 97% for the mechanical and electrical properties, respectively), and 4D printability of the hydrogel are demonstrated by constructing a strain sensor, a two-dimensional touch panel, and shape-morphing structures with water-responsive behavior. The hydrogel demonstrates vast potential for applications in stretchable electronics.
Collapse
Affiliation(s)
- Huijun Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Chin Boon Chng
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Mao See Wu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - H. Jerry Qi
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yu Jun Tan
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
- Centre for Additive ManufacturingNational University of SingaporeSingapore117602Singapore
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
8
|
Kim S, Jeon H, Koo JM, Oh DX, Park J. Practical Applications of Self-Healing Polymers Beyond Mechanical and Electrical Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302463. [PMID: 38361378 DOI: 10.1002/advs.202302463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Self-healing polymeric materials, which can repair physical damage, offer promising prospects for protective applications across various industries. Although prolonged durability and resource conservation are key advantages, focusing solely on mechanical recovery may limit the market potential of these materials. The unique physical properties of self-healing polymers, such as interfacial reduction, seamless connection lines, temperature/pressure responses, and phase transitions, enable a multitude of innovative applications. In this perspective, the diverse applications of self-healing polymers beyond their traditional mechanical strength are emphasized and their potential in various sectors such as food packaging, damage-reporting, radiation shielding, acoustic conservation, biomedical monitoring, and tissue regeneration is explored. With regards to the commercialization challenges, including scalability, robustness, and performance degradation under extreme conditions, strategies to overcome these limitations and promote successful industrialization are discussed. Furthermore, the potential impacts of self-healing materials on future research directions, encompassing environmental sustainability, advanced computational techniques, integration with emerging technologies, and tailoring materials for specific applications are examined. This perspective aims to inspire interdisciplinary approaches and foster the adoption of self-healing materials in various real-life settings, ultimately contributing to the development of next-generation materials.
Collapse
Affiliation(s)
- Semin Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
9
|
Chandrasekar J, Venkatesan M, Sun TW, Hsu YC, Huang YH, Chen WW, Chen MH, Tsai ML, Chen JY, Lin JH, Zhou Y, Kuo CC. Recent progress in self-healable energy harvesting and storage devices - a future direction for reliable and safe electronics. MATERIALS HORIZONS 2024; 11:1395-1413. [PMID: 38282534 DOI: 10.1039/d3mh01519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Electronic devices with multiple features bring in comfort to the way we live. However, repeated use causes physical as well as chemical degradation reducing their lifetime. The self-healing ability is the most crucial property of natural systems for survival in unexpected situations and variable environments. However, this self-repair property is not possessed by the conventional electronic devices designed today. To expand their lifetime and make them reliable by restoring their mechanical, functional, and electrical properties, self-healing materials are a great go-to option to create robust devices. In this review the intriguing self-healing polymers and fascinating mechanism of self-healable energy harvesting devices such as triboelectric nanogenerators (TENG) and storage devices like supercapacitors and batteries from the aspect of electrodes and electrolytes in the past five years are reviewed. The current challenges, strategies, and perspectives for a smart and sustainable future are also discussed.
Collapse
Affiliation(s)
- Jayashree Chandrasekar
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Manikandan Venkatesan
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Ting-Wang Sun
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Yung-Chi Hsu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hang Huang
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Hsin Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Meng-Lin Tsai
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jung-Yao Chen
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan
| | - Ja-Hon Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Yang X, Gan T, Zhong D, Du S, Wang S, Stadler FJ, Zhang Y, Zhou X. Rapid self-assembly of self-healable and transferable liquid metal epidermis. J Colloid Interface Sci 2024; 658:148-155. [PMID: 38100971 DOI: 10.1016/j.jcis.2023.12.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/11/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Healable electronic skins, an essential component for future soft robotics, implantable bioelectronics, and smart wearable systems, necessitate self-healable and pliable materials that exhibit functionality at intricate interfaces. Although a plethora of self-healable materials have been developed, the fabrication of highly conformal biocompatible functional materials on complex biological surfaces remains a formidable challenge. Inspired by regenerative properties of skin, we present the self-assembled transfer-printable liquid metal epidermis (SALME), which possesses autonomous self-healing capabilities at the oil-water interface. SALME comprises a layer of surfactant-grafted liquid metal nanodroplets that spontaneously assemble at the oil-water interface within a few seconds. This unique self-assembly property facilitates rapid restoration (<10 s) of SALME following mechanical damage. In addition to its self-healing ability, SALME exhibits excellent shear resistance and can be seamlessly transferred to arbitrary hydrophilic/hydrophobic curved surfaces. The transferred SALME effectively preserves submicron-scale surface textures on biological substrates, thus displaying tremendous potential for future epidermal bioelectronics.
Collapse
Affiliation(s)
- Xiaolong Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Dingling Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Shutong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Shichang Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, PR China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, PR China
| | - Yaokang Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China.
| |
Collapse
|
11
|
Şimşek B, Ruhkopf J, Plachetka U, Rademacher N, Belete M, Lemme MC. Silver Nanoparticle-Assisted Electrochemically Exfoliated Graphene Inks Coated on PVA-Based Self-Healing Polymer Composites for Soft Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7838-7849. [PMID: 38295437 DOI: 10.1021/acsami.3c17851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Smart sensors with self-healing capabilities have recently aroused increasing interest in applications in soft electronics. However, challenges remain in balancing the sensors' self-healing and compatibility between their sensing and substrate layers. This study evaluated several self-healing polymer substrates and graphene ink-based strain-sensing coatings. The optimum electrochemically exfoliated graphene (e-graphene)/silver nanoparticle-coated tannic acid (TA)/superabsorbent polymer/graphene oxide (GO) blended poly(vinyl alcohol) polymer composites exhibited improvements of 47.1 and 39.2%, respectively, for the healing efficiency in a substrate crack area and in the graphene-based sensing layer due to conductive layer adhesion. While TA was found to improve healing efficiency on the coating surface by forming hydrogen bonds between the sensing and polymer layers, GO healed the polymer surface due to its ability to form bonds in the polymer matrix. The superabsorbent polymer was found to absorb excess water in e-graphene dispersion due to its host-guest interaction, while also reducing the coating thickness.
Collapse
Affiliation(s)
- Barış Şimşek
- Department of Chemical Engineering, Çankırı Karatekin University, 18100 Çankırı, Turkey
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Jasper Ruhkopf
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| | - Ulrich Plachetka
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| | - Nico Rademacher
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Melkamu Belete
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Max C Lemme
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Strasse 2, 52074 Aachen, Germany
- Graphene & 2D-Materials Center, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
- AMO GmbH, Gesellschaft für Angewandte Mikro- und Optoelektronik mbH, Otto-Blumenthal-Straße 25, 52074 Aachen, Germany
| |
Collapse
|
12
|
Riul A, de Barros A, Gaál G, Braunger ML, Martinez Jimenez MJ, Avila-Avendano C, Rodrigues V, de Andrade MJ, Quevedo-Lopez M, Alvarez F, Baughman RH. Self-Healing E-tongue. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55073-55081. [PMID: 37967325 DOI: 10.1021/acsami.3c11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Self-healing materials inspire the next generation of multifunctional wearables and Internet of Things appliances. They expand the realm of thin film fabrication, enabling seamless conformational coverage irrespective of the shape complexity and surface geometry for electronic skins, smart textiles, soft robotics, and energy storage devices. Within this context, the layer-by-layer (LbL) technique is versatile for homogeneously dispersing materials onto various matrices. Moreover, it provides molecular level thickness control and coverage on practically any surface, with poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA) being the most used materials primarily employed in self-healing LbL structures operating at room temperature. However, achieving thin film composites displaying controlled conductivity and healing ability is still challenging under ambient conditions. Here, PEI and PAA are mixed with conductive fillers (gold nanorods, poly(3,4-ethylene dioxythiophene): polystyrenesulfonate (PEDOT:PSS), reduced graphene oxides, and multiwalled carbon nanotubes) in distinct LbL film architectures. Electrical (AC and DC), optical (Raman spectroscopy), and mechanical (nanoindentation) measurements are used for characterizing composite structures and properties. A delicate balance among electrical, mechanical, and structural characteristics must be accomplished for a controlled design of conductive self-healing composites. As a proof-of-concept, four LbL composites were chosen as sensing units in the first reported self-healing e-tongue. The sensor can easily distinguish basic tastes at low molar concentrations and differentiate trace levels of glucose in artificial sweat. The formed nanostructures enable smart coverages that have unique features for solving current technological challenges.
Collapse
Affiliation(s)
- Antonio Riul
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anerise de Barros
- Universidade Estadual de Campinas, Instituto de Química, Campinas, SP 13083-970, Brazil
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Gabriel Gaál
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Maria L Braunger
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Mawin J Martinez Jimenez
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Carlos Avila-Avendano
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Varlei Rodrigues
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Mônica Jung de Andrade
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Manuel Quevedo-Lopez
- Materials Science and Engineering Department, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Fernando Alvarez
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859, Brazil
| | - Ray H Baughman
- Alan MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
13
|
Park H, Kang T, Kim H, Kim JC, Bao Z, Kang J. Toughening self-healing elastomer crosslinked by metal-ligand coordination through mixed counter anion dynamics. Nat Commun 2023; 14:5026. [PMID: 37596250 PMCID: PMC10439188 DOI: 10.1038/s41467-023-40791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Mechanically tough and self-healable polymeric materials have found widespread applications in a sustainable future. However, coherent strategies for mechanically tough self-healing polymers are still lacking due to a trade-off relationship between mechanical robustness and viscoelasticity. Here, we disclose a toughening strategy for self-healing elastomers crosslinked by metal-ligand coordination. Emphasis was placed on the effects of counter anions on the dynamic mechanical behaviors of polymer networks. As the coordinating ability of the counter anion increases, the binding of the anion leads to slower dynamics, thus limiting the stretchability and increasing the stiffness. Additionally, multimodal anions that can have diverse coordination modes provide unexpected dynamicity. By simply mixing multimodal and non-coordinating anions, we found a significant synergistic effect on mechanical toughness ( > 3 fold) and self-healing efficiency, which provides new insights into the design of coordination-based tough self-healing polymers.
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Taewon Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunjun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong-Chul Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
14
|
Liu T, Liu L, Gou GY, Fang Z, Sun J, Chen J, Cheng J, Han M, Ma T, Liu C, Xue N. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21721-21745. [PMID: 37098855 DOI: 10.1021/acsami.3c02690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flexible wearable devices have been widely used in biomedical applications, the Internet of Things, and other fields, attracting the attention of many researchers. The physiological and biochemical information on the human body reflects various health states, providing essential data for human health examination and personalized medical treatment. Meanwhile, physiological and biochemical information reveals the moving state and position of the human body, and it is the data basis for realizing human-computer interactions. Flexible wearable physiological and biochemical sensors provide real-time, human-friendly monitoring because of their light weight, wearability, and high flexibility. This paper reviews the latest advancements, strategies, and technologies of flexibly wearable physiological and biochemical sensors (pressure, strain, humidity, saliva, sweat, and tears). Next, we systematically summarize the integration principles of flexible physiological and biochemical sensors with the current research progress. Finally, important directions and challenges of physiological, biochemical, and multimodal sensors are proposed to realize their potential applications for human movement, health monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lidan Liu
- Zhucheng Jiayue Central Hospital, Shandong 262200, China
| | - Guang-Yang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Jianhai Sun
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jianqun Cheng
- School of Integrated Circuit, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - Tianjun Ma
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Li B, Cao PF, Saito T, Sokolov AP. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem Rev 2023; 123:701-735. [PMID: 36577085 DOI: 10.1021/acs.chemrev.2c00575] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.
Collapse
Affiliation(s)
- Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
16
|
Zhou Y, Li L, Han Z, Li Q, He J, Wang Q. Self-Healing Polymers for Electronics and Energy Devices. Chem Rev 2023; 123:558-612. [PMID: 36260027 DOI: 10.1021/acs.chemrev.2c00231] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polymers are extensively exploited as active materials in a variety of electronics and energy devices because of their tailorable electrical properties, mechanical flexibility, facile processability, and they are lightweight. The polymer devices integrated with self-healing ability offer enhanced reliability, durability, and sustainability. In this Review, we provide an update on the major advancements in the applications of self-healing polymers in the devices, including energy devices, electronic components, optoelectronics, and dielectrics. The differences in fundamental mechanisms and healing strategies between mechanical fracture and electrical breakdown of polymers are underlined. The key concepts of self-healing polymer devices for repairing mechanical integrity and restoring their functions and device performance in response to mechanical and electrical damage are outlined. The advantages and limitations of the current approaches to self-healing polymer devices are systematically summarized. Challenges and future research opportunities are highlighted.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Li Li
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhubing Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Qi Li
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinliang He
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Wu Y, Wang N, Liu H, Cui R, Gu J, Sun R, Zhu Y, Gou L, Fan X, Li D, Wang D. Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J Colloid Interface Sci 2023; 629:916-925. [DOI: 10.1016/j.jcis.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022]
|
18
|
Wu D, Liu L, Ma Q, Dong Q, Han Y, Liu L, Zhao S, Zhang R, Wang M. Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability. J Colloid Interface Sci 2023; 630:909-920. [DOI: 10.1016/j.jcis.2022.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
19
|
Anwar Ali HP, Zhao Z, Tan YJ, Yao W, Li Q, Tee BCK. Dynamic Modeling of Intrinsic Self-Healing Polymers Using Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52486-52498. [PMID: 36346733 DOI: 10.1021/acsami.2c14543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The properties of self-healing polymers are traditionally identified through destructive testing. This means that the mechanics are explored in hindsight with either theoretical derivations and/or simulations. Here, a self-healing property evolution using energy functional dynamical (SPEED) model is proposed to predict and understand the mechanics of self-healing of polymers using images of cuts dynamically healing over time. Using machine learning, an energy functional minimization (EFM) model extracted an effective underlying dynamical system from a time series of two-dimensional cut images on a self-healing polymer of constant thickness. This model can be used to capture the physics behind the self-healing dynamics in terms of potential and interface energies. When combined with a static property prediction model, the SPEED model can predict the macroscopic evolution of material properties after training only on a small set of experimental measurements. Such temporal evolutions are usually inaccessible from pure experiments or computational modeling due to the need for destructive testing. As an example, we validate this approach on toughness measurements of an intrinsic self-healing conductive polymer by capturing over 100 000 image frames of cuts to build the machine learning (ML) model. The results show that the SPEED model can be applied to predict the temporal evolution of macroscopic properties using few measurements as training data.
Collapse
Affiliation(s)
- Hashina Parveen Anwar Ali
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore117575, Singapore
- Biomedical Engineering & Materials Group, School of Engineering, Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore569830, Singapore
| | - Zichen Zhao
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore119076, Singapore
| | - Yu Jun Tan
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore117575, Singapore
| | - Wei Yao
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore117575, Singapore
| | - Qianxiao Li
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore119076, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 4 Science Drive 2, Singapore117544, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore117575, Singapore
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore117583, Singapore
- Institute for Health Innovation & Technology (iHealthTech), National University of Singapore, 14 Medical Drive, Singapore117599, Singapore
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore117456, Singapore
| |
Collapse
|
20
|
Xu R, Cañón Bermúdez GS, Pylypovskyi OV, Volkov OM, Oliveros Mata ES, Zabila Y, Illing R, Makushko P, Milkin P, Ionov L, Fassbender J, Makarov D. Self-healable printed magnetic field sensors using alternating magnetic fields. Nat Commun 2022; 13:6587. [PMID: 36329023 PMCID: PMC9631606 DOI: 10.1038/s41467-022-34235-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
We employ alternating magnetic fields (AMF) to drive magnetic fillers actively and guide the formation and self-healing of percolation networks. Relying on AMF, we fabricate printable magnetoresistive sensors revealing an enhancement in sensitivity and figure of merit of more than one and two orders of magnitude relative to previous reports. These sensors display low noise, high resolution, and are readily processable using various printing techniques that can be applied to different substrates. The AMF-mediated self-healing has six characteristics: 100% performance recovery; repeatable healing over multiple cycles; room-temperature operation; healing in seconds; no need for manual reassembly; humidity insensitivity. It is found that the above advantages arise from the AMF-induced attraction of magnetic microparticles and the determinative oscillation that work synergistically to improve the quantity and quality of filler contacts. By virtue of these advantages, the AMF-mediated sensors are used in safety application, medical therapy, and human-machine interfaces for augmented reality.
Collapse
Affiliation(s)
- Rui Xu
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Gilbert Santiago Cañón Bermúdez
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Oleksandr V. Pylypovskyi
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany ,grid.510453.6Kyiv Academic University, Kyiv, 03142 Ukraine
| | - Oleksii M. Volkov
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Eduardo Sergio Oliveros Mata
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Yevhen Zabila
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Rico Illing
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Pavlo Makushko
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Pavel Milkin
- grid.7384.80000 0004 0467 6972Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str 36a, 95447 Bayreuth, Germany
| | - Leonid Ionov
- grid.7384.80000 0004 0467 6972Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str 36a, 95447 Bayreuth, Germany
| | - Jürgen Fassbender
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Denys Makarov
- grid.40602.300000 0001 2158 0612Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
21
|
Gong Y, Yao M, Nie J, He Y. Healing Strategy Based on Space Adjustment for Cross-Linked Polymer Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12229-12234. [PMID: 36178935 DOI: 10.1021/acs.langmuir.2c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Healable materials are notable for their ability to recover from mechanical damage. Most methods for preparing cross-linked healable materials require the introduction of healing agents or supramolecular interactions in solvent environments. Hence, a strategy without the addition of functional component remains a key challenge. Herein, a healing strategy based on space adjustment is proposed with cross-linked poly(octadecyl acrylate) as a model, and this strategy demonstrates that the predesigned holes in cross-linked networks can supply the possibility for polymer coils to move and decrease the space density of the networks during the annealing process. As a result, the motilities of coils are enhanced, which allows them to easily penetrate and entangle in fracture sites. In contrast with the untreated cross-linked poly(octadecyl acrylate), which cannot heal, the space-adjusted poly(octadecyl acrylate) readily heals, and the highest healing efficiency is 96%. The ways in which the extent of space adjustment and the content of the cross-linking agent affect the healing efficiency are discussed, and the mechanism of the space adjustment strategy is studied through rheology research. This strategy concentrates on adjusting the spatial density of the network without the need for any functional design, which may be applied in various polymer systems.
Collapse
Affiliation(s)
- Yawen Gong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Miao Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213164, PR China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213164, PR China
| |
Collapse
|
22
|
Yurkevich O, Modin E, Šarić I, Petravić M, Knez M. Entropy-Driven Self-Healing of Metal Oxides Assisted by Polymer-Inorganic Hybrid Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202989. [PMID: 35641441 DOI: 10.1002/adma.202202989] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Enabling self-healing of materials is crucially important for saving resources and energy in numerous emerging applications. While strategies for the self-healing of polymers are advanced, mechanisms for semiconducting inorganic materials are scarce due to the lack of suitable healing agents. Here a concept for the self-healing of metal oxides is developed. This concept consists of metal oxide nanoparticle growth inside the bulk of halogenated polymers and their subsequent entropy-driven migration to externally induced defect sites, leading to recovery of the defect. Herein, it is demonstrated that the pool of self-healing materials is expanded to include semiconductors, thereby increasing the reliability and sustainability of functional materials through the use of metal oxides. It is revealed that electrical properties of tin-doped indium oxide can be partially restored upon healing. Such properties are of immediate interest for the further development of transparent flexible electrodes.
Collapse
Affiliation(s)
- Oksana Yurkevich
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián, 20018, Spain
| | - Evgeny Modin
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián, 20018, Spain
| | - Iva Šarić
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, Rijeka, 51000, Croatia
| | - Mladen Petravić
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, Rijeka, 51000, Croatia
| | - Mato Knez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 3, Bilbao, E-48009, Spain
| |
Collapse
|
23
|
Yue H, Wang Z, Zhen Y. Recent Advances of Self-Healing Electronic Materials Applied in Organic Field-Effect Transistors. ACS OMEGA 2022; 7:18197-18205. [PMID: 35694519 PMCID: PMC9178609 DOI: 10.1021/acsomega.2c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/10/2022] [Indexed: 05/03/2023]
Abstract
Self-healing materials play an essential role in the field of organic electronics with numerous stunning applications such as novel integrated and wearable devices. With the development of stretchable, printable, and implantable electronics, organic field-effect transistors (OFETs) with a self-healable capability are becoming increasingly important both academically and industrially. However, the related research work is still in the initial stage due to the challenges in developing robust self-healing electronic materials with both electronic and mechanical properties. In this mini-review, we have summarized the recent research progress in self-healing materials used in OFETs from conductor, semiconductor, and insulator materials. Moreover, the relationship between the material design and device performance for self-healing properties is also further discussed. Finally, the primary challenges and outlook in this field are introduced. We believe that the review will shed light on the development of self-healing electronic materials for application in OFETs.
Collapse
Affiliation(s)
- Haoguo Yue
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zongrui Wang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Email for Z.W.:
| | - Yonggang Zhen
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Email for Y.Z.:
| |
Collapse
|
24
|
Chen J, Wang L, Xu X, Liu G, Liu H, Qiao Y, Chen J, Cao S, Cha Q, Wang T. Self-Healing Materials-Based Electronic Skin: Mechanism, Development and Applications. Gels 2022; 8:356. [PMID: 35735699 PMCID: PMC9222937 DOI: 10.3390/gels8060356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Electronic skin (e-skin) has brought us great convenience and revolutionized our way of life. However, due to physical or chemical aging and damage, they will inevitably be degraded gradually with practical operation. The emergence of self-healing materials enables e-skins to achieve repairment of cracks and restoration of mechanical function by themselves, meeting the requirements of the era for building durable and self-healing electronic devices. This work reviews the current development of self-healing e-skins with various application scenarios, including motion sensor, human-machine interaction and soft robots. The new application fields and present challenges are discussed; meanwhile, thinkable strategies and prospects of future potential applications are conferenced.
Collapse
Affiliation(s)
- Jingjie Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
| | - Lei Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xiangou Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Guming Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Haoyan Liu
- Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Yuxuan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Honors College, Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Jialin Chen
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Siwei Cao
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Quanbin Cha
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
25
|
Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F. Recent Progress on Self-Healable Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108932. [PMID: 35043469 DOI: 10.1002/adma.202108932] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Materials able to regenerate after damage have been the object of investigation since the ancient times. For instance, self-healing concretes, able to resist earthquakes, aging, weather, and seawater have been known since the times of ancient Rome and are still the object of research. During the last decade, there has been an increasing interest in self-healing electronic materials, for applications in electronic skin (E-skin) for health monitoring, wearable and stretchable sensors, actuators, transistors, energy harvesting, and storage devices. Self-healing materials based on conducting polymers are particularly attractive due to their tunable high conductivity, good stability, intrinsic flexibility, excellent processability and biocompatibility. Here recent developments are reviewed in the field of self-healing electronic materials based on conducting polymers, such as poly 3,4-ethylenedioxythiophene (PEDOT), polypyrrole (PPy), and polyaniline (PANI). The different types of healing, the strategies adopted to optimize electrical and mechanical properties, and the various possible healing mechanisms are introduced. Finally, the main challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Biporjoy Sarkar
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Noémy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
26
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
27
|
Milkin P, Danzer M, Ionov L. Self-Healing and Electrical Properties of Viscoelastic Polymer-Carbon Blends. Macromol Rapid Commun 2022; 43:e2200307. [PMID: 35511792 DOI: 10.1002/marc.202200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Self-healing polymer-carbon composites are seen as promising materials for future electronic devices, which must be able to restore not only their structural integrity but also electrical performance after cracking and wear. Despite multiple reports about self-healing conductive elements, there is a lack of a broad fundamental understanding of correlation between viscoelasticity of such composites, their electrical properties, and self-healing of their mechanical as well as electrical properties. Here we report thorough investigation of electromechanical properties of blends of carbon black as conductive filler and viscoelastic polymers (polydimethylsiloxanes and polyborosiloxane) with different relaxation times as matrices. We show that behavior of composites depends strongly on the viscoelastic properties of polymers. Low molecular polymer composite possesses high conductivity due to strong filler network formation, quick electrical and mechanical properties restoration, but for this we sacrifice the ability to flow and ductility at large deformation (material is brittle). In contrary, high relaxation time polymer composite behaves elastically on small time and flows at large time scale due to weak filler network and can heal. However, the electrical properties are worse than that of carbon and viscous polymer and degrade with time. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pavel Milkin
- Faculty of Engineering Sciences, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Michael Danzer
- Chair of Electrical Energy Systems, University of Bayreuth, Universistätsstr. 30, 95447, Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
28
|
Intrinsic healable mechanochromic materials via incorporation of spiropyran mechanophore into polymer main chain. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105146. [PMID: 35212474 PMCID: PMC9069371 DOI: 10.1002/advs.202105146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Indexed: 05/30/2023]
Abstract
Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer EngineeringFaculty of EngineeringHakim Sabzevari UniversitySabzevar9617976487Iran
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsShanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine Institute of Functional MaterialsDonghua UniversityResearch Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society)Shanghai201620P. R. China
| |
Collapse
|
30
|
El Choufi N, Mustapha S, Tehrani B A, Grady BP. An Overview of Self-Healable Polymers and Recent Advances in the Field. Macromol Rapid Commun 2022; 43:e2200164. [PMID: 35478422 DOI: 10.1002/marc.202200164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Indexed: 12/23/2022]
Abstract
The search for materials with better performance, longer service life, lower environmental impact, and lower overall cost is at the forefront of polymer science and material engineering. This has led to the development of self-healing polymers with a range of healing mechanisms including capsular-based, vascular, and intrinsic self-healing polymers. The development of self-healable systems has been inspired by the healing of biological systems such as skin wound healing and broken bone reconstruction. The goal of using self-healing polymers in various applications is to extend the service life of polymers without the need for replacement or human intervention especially in restricted access areas such as underwater/underground piping where inspection, intervention, and maintenance are very difficult. Through an industrial and scholarly lens, this paper provides (a) an overview of self-healing polymers, (b) classification of different self-healing polymers and polymer-based composites, (c) mechanical, thermal, and electrical analysis characterization, (d) applications in coating, composites, and electronics, (e) modeling and simulation, and (f) recent development in the past 20 years . This review highlights the importance of healable polymers for an economically and environmentally sustainable future, the most recent advances in the field, and current limitations in fabrication, manufacturing, and performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nadim El Choufi
- Chemical Engineering Department, American University of Beirut, Lebanon
| | - Samir Mustapha
- Mechanical Engineering Department, American University of Beirut, Lebanon
| | - Ali Tehrani B
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Brian P Grady
- School of Chemical, Biological and, Materials Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
31
|
Chaudhary K, Kandasubramanian B. Self-Healing Nanofibers for Engineering Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kritika Chaudhary
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| |
Collapse
|
32
|
Wang Y, Zhou Z, Li S, Zheng H, Lu J, Wang S, Zhang J, Wang K, Lin K. Near-Infrared-Light-Assisted Self-Healing Graphene-Thermopolyurethane Composite Films. Polymers (Basel) 2022; 14:polym14061183. [PMID: 35335522 PMCID: PMC8948706 DOI: 10.3390/polym14061183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022] Open
Abstract
Graphene-thermopolyurethane (G-TPU) composite films were fabricated and the effects of the TPU initial concentration, characteristics of TPU, and graphene loading on the electrical, mechanical, thermal, infrared thermal response and near-infrared-light-assisted self-healing properties of the composite films were investigated in detail. The experimental results demonstrate that the comprehensive performances of the composite film are related to the initial concentration of the TPU solution and the characteristics of the TPU and the graphene loading. The composite film prepared from TPU solution with low initial concentration can have conductivity under the condition of low graphene content. However, the composite film prepared with appropriate initial concentration of TPU solution and high graphene loading is conducive to obtain high conductivity. After 60 s of near-infrared illumination, the temperature of the composite film first increases and then decreases with the increase in graphene loading until it reaches saturation. The near-infrared light thermal response of the composite film with high graphene loading is related to the initial concentration of TPU solution, while the near-IR thermal response of the composite film with low graphene loading is independent of the initial concentration of TPU. The surface micro-cracks of the composite film almost disappeared after 10 min of near-infrared illumination. The resistance of the conductive composite film increases after healed. The composite film prepared with low melting point TPU is more favorable to obtain high near-IR thermal self-healing efficiency.
Collapse
|
33
|
Nie B, Liu S, Qu Q, Zhang Y, Zhao M, Liu J. Bio-inspired flexible electronics for smart E-skin. Acta Biomater 2022; 139:280-295. [PMID: 34157454 DOI: 10.1016/j.actbio.2021.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023]
Abstract
"Learning from nature" provides endless inspiration for scientists to invent new materials and devices. Here, we review state-of-the-art technologies in flexible electronics, with a focus on bio-inspired smart skins. This review focuses on the development of E-skin for sensing a variety of parameters such as mechanical loads, temperature, light, and biochemical cues, with a trend of increased integration of multiple functions. It highlights the most recent advances in flexible electronics inspired by animals such as chameleons, squids, and octopi whose bodies have remarkable camouflage, mimicry, or self-healing attributes. Implantable devices, being overlapped with smart E-skin in a broad sense, are included in this review. This review outlines the remaining challenges in flexible electronics and the prospects for future development for biomedical applications. STATEMENT OF SIGNIFICANCE: This article reviews the state-of-the-art technologies of bio-inspired smart electronic skin (E-skin) developed in a "learning-mimicking-creating" (LMC) cycle. We emphasize the most recent innovations in the development of E-skin for sensing physical changes and biochemical cues, and for integrating multiple sensing modalities. We discuss the achievements in implantable materials, wireless communication, and device design pertaining to implantable flexible electronics. This review will provide prospective insights integrating material, electronics, and mechanical engineering viewpoints to foster new ideas for next-generation smart E-skin.
Collapse
Affiliation(s)
- Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qing Qu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yiqiu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengying Zhao
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
34
|
Mashkoor F, Lee SJ, Yi H, Noh SM, Jeong C. Self-Healing Materials for Electronics Applications. Int J Mol Sci 2022; 23:622. [PMID: 35054803 PMCID: PMC8775691 DOI: 10.3390/ijms23020622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.
Collapse
Affiliation(s)
- Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sun Jin Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics, 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
35
|
Yan W, Ding Y, Zhang R, Luo X, Sheng P, Xue P, He J. Dual-functional polymer blends with rapid thermo-responsive shape memory and repeatable self-healing properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Zhuang Y, Xie RJ. Mechanoluminescence Rebrightening the Prospects of Stress Sensing: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005925. [PMID: 33786872 DOI: 10.1002/adma.202005925] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The emergence of new applications, such as in artificial intelligence, the internet of things, and biotechnology, has driven the evolution of stress sensing technology. For these emerging applications, stretchability, remoteness, stress distribution, a multimodal nature, and biocompatibility are important performance characteristics of stress sensors. Mechanoluminescence (ML)-based stress sensing has attracted widespread attention because of its characteristics of remoteness and having a distributed response to mechanical stimuli as well as its great potential for stretchability, biocompatibility, and self-powering. In the past few decades, great progress has been made in the discovery of ML materials, analysis of mechanisms, design of devices, and exploration of applications. One can find that with this progress, the focus of ML research has shifted from the phenomenon in the earliest stage to materials and recently toward devices. At the present stage, while showing great prospects for advanced stress sensing applications, ML-based sensing still faces major challenges in material optimization, device design, and system integration.
Collapse
Affiliation(s)
- Yixi Zhuang
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen, 361005, China
| | - Rong-Jun Xie
- College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
37
|
An H, Kim Y, Li M, Kim TW. Highly Self-Healable Write-Once-Read-Many-Times Devices Based on Polyvinylalcohol-Imidazole Modified Graphene Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102772. [PMID: 34622562 DOI: 10.1002/smll.202102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Repetitious mechanical stress or external mechanical impact can damage wearable electronic devices, leading to serious degradations in their electrical performances, which limits their applications. Because self-healing would be an excellent solution to the above-mentioned issue, this paper presents a self-healable memory device based on a novel nanocomposite layer consisting of a polyvinyl alcohol matrix and imidazole-modified graphene quantum dots. The device exhibits reliable electrical performance over 600 cycles, and the electrical properties of the device are maintained without any failure under this bending stress. Further, it is confirmed that the damaged device can recover its original electric characteristics after the self-healing process. It is believed that such outstanding results will lead the way to the realization of future wearable electronic systems.
Collapse
Affiliation(s)
- Haoqun An
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngjin Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Mingjun Li
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Whan Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
38
|
Singh S, Tripathi RK, Gupta MK, Dzhardimalieva GI, Uflyand IE, Yadav B. 2-D self-healable polyaniline-polypyrrole nanoflakes based triboelectric nanogenerator for self-powered solar light photo detector with DFT study. J Colloid Interface Sci 2021; 600:572-585. [PMID: 34034119 DOI: 10.1016/j.jcis.2021.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/03/2023]
Abstract
This work demonstrates an easy and cost-effective synthesis of PANI-PPY conducting nanoflakes (NFs) with a self-healing capability. Scanning electron microscopic (SEM) analysis shows the minimum width of NFs as 30 nm, while HRTEM analysis confirms the shape, size, and semi-crystalline nature of the polymer. These PANI-PPY NFs were used to fabricate a contact separation mode triboelectric nanogenerator (TENG) based self-powered photosensor which gave the maximum output voltage (149 V), maximum output current (16 µA), current density 0.56 µAcm-2, and power density 83.56 µWcm-2. Detailed literature survey shows the comparative study of PANI-PPY NF's with other photo-sensing materials. This literature review highlights the tremendous ability of PANI-PPY to self-restore and ultra-fast self-powering nature. This work also demonstrates a very easy and cost-effective method to develop polymeric nanomaterials via temperature-assisted polymerization, which need only a stirrer with a hot plate. Theoretical analysis (DFT calculations using Gaussian 09 and Gauss view 05) shows a consistent increase in stability when the number of molecules in the polymer chains analyzed was increased. The developed self-healing triboelectric nanogenerators exhibited stable performance before and after healing.
Collapse
Affiliation(s)
- Shakti Singh
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Ravi Kant Tripathi
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Manoj Kumar Gupta
- CSIR-Avanced Materials and Processes Research Institute, Bhopal 462026, India
| | - Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Academician Semenov Avenue 1, Chernogolovka, Moscow Region 142432, Russian Federation
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University, B. Sadovaya Str. 105/42, Rostov-on-Don 344006, Russian Federation
| | - BalChandra Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| |
Collapse
|
39
|
Gai Y, Li H, Li Z. Self-Healing Functional Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101383. [PMID: 34288411 DOI: 10.1002/smll.202101383] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Indexed: 05/20/2023]
Abstract
Electronic devices with various functions bring great convenience and revolutionize the way we live. They are inevitable to degrade over time because of physical or chemical fatigue and damage during practical operation. To make these devices have the ability to autonomously heal from cracks and restore their mechanical and electrical properties, self-healing materials emerged as the time requires for constructing robust and self-healing electronic devices. Here the development of self-healing electronic devices with different functions, for example, energy harvesting, energy storage, sensing, and transmission, is reviewed. The new application scenarios and existing challenges are explored, and possible strategies and perspectives for future practical applications are discussed.
Collapse
Affiliation(s)
- Yansong Gai
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Hu Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhou Li
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Park J, Kim S, Lee SS, Kim J, Park J, Lee JH, Jung JH. Stretchable calix[4]
arene‐based
gels by induction of water. J Appl Polym Sci 2021. [DOI: 10.1002/app.51235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaehyeon Park
- Department of Chemistry and Researc Institute of Natural Sciences Gyeongsang National University, 501 jinjudaero Jinju Republic of Korea
| | - Sukyoung Kim
- Department of Chemistry and Researc Institute of Natural Sciences Gyeongsang National University, 501 jinjudaero Jinju Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Researc Institute of Natural Sciences Gyeongsang National University, 501 jinjudaero Jinju Republic of Korea
| | - Jong‐Hyun Kim
- Department of Materials Engineering and Convergence Technology Gyeongsang National University, 501 jinjudaero Jinju Republic of Korea
| | - Joung‐Man Park
- Department of Materials Engineering and Convergence Technology Gyeongsang National University, 501 jinjudaero Jinju Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1‐4‐1 Kagamiyama Hiroshima Japan
| | - Jong Hwa Jung
- Department of Chemistry and Researc Institute of Natural Sciences Gyeongsang National University, 501 jinjudaero Jinju Republic of Korea
| |
Collapse
|
41
|
Jo CH, Voronina N, Sun YK, Myung ST. Gifts from Nature: Bio-Inspired Materials for Rechargeable Secondary Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006019. [PMID: 34337779 DOI: 10.1002/adma.202006019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/29/2021] [Indexed: 06/13/2023]
Abstract
Materials in nature have evolved to the most efficient forms and have adapted to various environmental conditions over tens of thousands of years. Because of their versatile functionalities and environmental friendliness, numerous attempts have been made to use bio-inspired materials for industrial applications, establishing the importance of biomimetics. Biomimetics have become pivotal to the search for technological breakthroughs in the area of rechargeable secondary batteries. Here, the characteristics of bio-inspired materials that are useful for secondary batteries as well as their benefits for application as the main components of batteries (e.g., electrodes, separators, and binders) are discussed. The use of bio-inspired materials for the synthesis of nanomaterials with complex structures, low-cost electrode materials prepared from biomass, and biomolecular organic electrodes for lithium-ion batteries are also introduced. In addition, nature-derived separators and binders are discussed, including their effects on enhancing battery performance and safety. Recent developments toward next-generation secondary batteries including sodium-ion batteries, zinc-ion batteries, and flexible batteries are also mentioned to understand the feasibility of using bio-inspired materials in these new battery systems. Finally, current research trends are covered and future directions are proposed to provide important insights into scientific and practical issues in the development of biomimetics technologies for secondary batteries.
Collapse
Affiliation(s)
- Chang-Heum Jo
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| | - Natalia Voronina
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Seung-Taek Myung
- Hybrid Materials Research Center, Department of Nano Technology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, 05006, South Korea
| |
Collapse
|
42
|
Ming X, Du J, Zhang C, Zhou M, Cheng G, Zhu H, Zhang Q, Zhu S. All-Solid-State Self-Healing Ionic Conductors Enabled by Ion-Dipole Interactions within Fluorinated Poly(Ionic Liquid) Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41140-41148. [PMID: 34403588 DOI: 10.1021/acsami.1c12880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-healing ionic conductors in all solid state without evaporation or leakage offers great potential for the next-generation soft ionotronics. However, it remains challenging to endow ionic conductors with all solid state while keeping their essential features. In this study, an intrinsically conducting polymer is developed as all-solid-state self-healing ionic conductors based on ion-dipole interactions within a fluorinated poly(ionic liquid) copolymer. This unique material possesses good self-healing ability at room temperature (96% of healing efficiency in 24 h), large strain (1800%), optical transparency (96%), and ionic conductivity (1.62 × 10-6 S/cm). The self-healing polymer itself is intrinsically conductive without any additives or fillers, thus it is almost free of evaporation or leaking issues of traditional conducting gels. An alternating-current electroluminescent device with self-healing performance is demonstrated. It is anticipated that this strategy would provide new opportunities for the development of novel self-healing ionotronics.
Collapse
Affiliation(s)
- Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiaying Du
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Changgeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Miaomiao Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Guijuan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
43
|
Nellepalli P, Patel T, Oh JK. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol Rapid Commun 2021; 42:e2100391. [PMID: 34418209 DOI: 10.1002/marc.202100391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PU) has not only been widely used in the daily lives, but also extensively explored as an important class of the essential polymers for various applications. In recent years, significant efforts have been made on the development of self-healable PU materials that possess high performance, extended lifetime, great reliability, and recyclability. A promising approach is the incorporation of covalent dynamic bonds into the design of PU covalently crosslinked polymers and thermoplastic elastomers that can dissociate and reform indefinitely in response to external stimuli or autonomously. This review summarizes various strategies to synthesize self-healable, reprocessable, and recyclable PU materials integrated with dynamic (reversible) Diels-Alder cycloadduct, disulfide, diselenide, imine, boronic ester, and hindered urea bond. Furthermore, various approaches utilizing the combination of dynamic covalent chemistries with nanofiller surface chemistries are described for the fabrication of dynamic heterogeneous PU composites.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
44
|
Zhang K, Wang Z, Zhang J, Liu Y, Yan C, Hu T, Gao C, Wu Y. A highly stretchable and room temperature autonomous self-healing supramolecular organosilicon elastomer with hyperbranched structure. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Xiao M. Advances and rational design of chitosan-based autonomic self-healing hydrogels for biomedical applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02688-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Fardioui M, Mekhzoum MEM, Qaiss AEK, Bouhfid R. Photoluminescent biocomposite films of chitosan based on styrylbenzothiazolium-g-cellulose nanocrystal for anti-counterfeiting applications. Int J Biol Macromol 2021; 184:981-989. [PMID: 34197851 DOI: 10.1016/j.ijbiomac.2021.06.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/11/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
In the present investigation, novel photoluminescent and transparent biocomposite films based on chitosan reinforced with styrylbenzothiazolium-g-cellulose nanocrystal for anti-counterfeiting applications were successfully prepared by casting solvent. Three novel styrylbenzothiazolium derivatives were synthesized by Knoevenagel condensation and characterized by FTIR, 1H, 13C NMR and photoluminescence analysis. These photochromic compounds have been used to functionalize cellulose nanocrystal and the resulting fluorescent photonic materials were characterized by FTIR, 13C-CP/MAS NMR as well as photoluminescent analysis to confirm the successful grafting. It can be concluded that the addition of 5 wt% of fluorescent modified CNC to chitosan matrix increase the photoluminescent properties as well as improved the mechanical properties of the Cs/CNC-dye biocomposite films. These photoluminescent biocomposite film hold promising applicative value in anti-counterfeiting material in large-scale.
Collapse
Affiliation(s)
- Meriem Fardioui
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Mohamed El Mehdi Mekhzoum
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Composites et Nanocomposites Center, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco.
| |
Collapse
|
47
|
Zhang G, Patel T, Nellepalli P, Bhagat S, Hase H, Jazani AM, Salzmann I, Ye Z, Oh JK. Macromolecularly Engineered Thermoreversible Heterogeneous Self-Healable Networks Encapsulating Reactive Multidentate Block Copolymer-Stabilized Carbon Nanotubes. Macromol Rapid Commun 2021; 42:e2000514. [PMID: 33988899 DOI: 10.1002/marc.202000514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/26/2020] [Indexed: 12/23/2022]
Abstract
The development of heterogeneous covalent adaptable networks (CANs) embedded with carbon nanotubes (CNTs) that undergo reversible dissociation/recombination through thermoreversibility has been significantly explored. However, the carbon nanotube (CNT)-incorporation methods based on physical mixing and chemical modification could result in either phase separation due to structural incompatibility or degrading conjugation due to a disruption of π-network, thus lowering their intrinsic charge transport properties. To address this issue, the versatility of a macromolecular engineering approach through thermoreversibility by physical modification of CNT surfaces with reactive multidentate block copolymers (rMDBCs) is demonstrated. The formed CNTs stabilized with rMDBCs (termed rMDBC/CNT colloids) bearing reactive furfuryl groups is functioned as a multicrosslinker that reacts with a polymaleimide to fabricate robust heterogeneous polyurethane (PU) networks crosslinked through dynamic Diels-Alder (DA)/retro-DA chemistry. Promisingly, the fabricated PU network gels in which CNTs through rMDBC covalently embedded are flexible and robust to be bendable as well as exhibit self-healing elasticity and enhanced conductivity.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Shubham Bhagat
- Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Hannes Hase
- Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Ingo Salzmann
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada.,Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
48
|
Tan YJ, Susanto GJ, Anwar Ali HP, Tee BCK. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002800. [PMID: 33346389 DOI: 10.1002/adma.202002800] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Robots are increasingly assisting humans in performing various tasks. Like special agents with elite skills, they can venture to distant locations and adverse environments, such as the deep sea and outer space. Micro/nanobots can also act as intrabody agents for healthcare applications. Self-healing materials that can autonomously perform repair functions are useful to address the unpredictability of the environment and the increasing drive toward the autonomous operation. Having self-healable robotic materials can potentially reduce costs, electronic wastes, and improve a robot endowed with such materials longevity. This review aims to serve as a roadmap driven by past advances and inspire future cross-disciplinary research in robotic materials and electronics. By first charting the history of self-healing materials, new avenues are provided to classify the various self-healing materials proposed over several decades. The materials and strategies for self-healing in robotics and stretchable electronics are also reviewed and discussed. It is believed that this article encourages further innovation in this exciting and emerging branch in robotics interfacing with material science and electronics.
Collapse
Affiliation(s)
- Yu Jun Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Glenys Jocelin Susanto
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hashina Parveen Anwar Ali
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
- Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- N.1 Institute of Health, National University of Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore, 138634, Singapore
| |
Collapse
|
49
|
A NIR laser induced self-healing PDMS/Gold nanoparticles conductive elastomer for wearable sensor. J Colloid Interface Sci 2021; 599:360-369. [PMID: 33962197 DOI: 10.1016/j.jcis.2021.04.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
Self-healing conductive elastomers have been widely used in smart electronic devices, such as wearable sensors. However, nano fillers hinder the flow of polymer segments, which make the development of conductive elastomer with rapid repair and high ductility a challenge. In this work, thioctic acid (TA) was grafted onto amino-modified polysiloxane (PDMS-NH2) by dehydration condensation of amino group and carboxyl group. By introducing gold nanoparticles, a dynamic network based on S-Au interaction was constructed. The dynamic gold cross-linking could effectively dissipate the energy exerted by external force and improve the extensibility of conductive elastomer. In addition, S-Au interaction had a good optothermal effect, so that the elastomer rapidly healed under NIR irradiation, and the repair efficiency reached 92%. We further evaluated the performance of the conductive elastomer as a strain sensor. The sample could accurately monitor the bending of human joints and small muscle state changes. This kind of self-healable conductive elastomer based on dynamic S-Au interaction has great potential in the fields of interpersonal interaction and health monitoring.
Collapse
|
50
|
Nik Md Noordin Kahar NNF, Osman AF, Alosime E, Arsat N, Mohammad Azman NA, Syamsir A, Itam Z, Abdul Hamid ZA. The Versatility of Polymeric Materials as Self-Healing Agents for Various Types of Applications: A Review. Polymers (Basel) 2021; 13:1194. [PMID: 33917177 PMCID: PMC8067859 DOI: 10.3390/polym13081194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/24/2022] Open
Abstract
The versatility of polymeric materials as healing agents to prevent any structure failure and their ability to restore their initial mechanical properties has attracted interest from many researchers. Various applications of the self-healing polymeric materials are explored in this paper. The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites. This paper also presents the different types of self-healing polymeric materials applied in various applications, which include electronics, coating, aerospace, medicals, and construction fields. It is expected that this review gives a significantly broader idea of self-healing polymeric materials and their healing mechanisms in various types of applications.
Collapse
Affiliation(s)
- Nik Nur Farisha Nik Md Noordin Kahar
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.N.F.N.M.N.K.); (N.A.)
| | - Azlin Fazlina Osman
- Faculty of Chemical Engineering Technology, University Malaysia Perlis (UniMAP), Arau 02600, Malaysia;
- Biomedical and Nanotechnology Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Eid Alosime
- King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Najihah Arsat
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.N.F.N.M.N.K.); (N.A.)
| | | | - Agusril Syamsir
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Selangor 43000, Malaysia;
| | - Zarina Itam
- Department of Civil Engineering, Universiti Tenaga Nasional, Selangor 43000, Malaysia;
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.N.F.N.M.N.K.); (N.A.)
| |
Collapse
|