1
|
Gao N, Zhang Y, Chen R, Zhao Y, Li XP, Li H, Shao J, Gao J, He X, Shi B, Chen X, Zhang S, Xu H. Fully-biodegradable and self-powered intelligent filter assembled by fibrous cellulose and MOF-functionalized poly(lactic acid) core-shell nanofibers for active PM capturing and passive respiratory sensing. Int J Biol Macromol 2025; 311:144118. [PMID: 40360120 DOI: 10.1016/j.ijbiomac.2025.144118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/17/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
With the increasing demand for ecofriendly air filtration materials, poly(lactic acid) (PLA) nanofibrous membranes (NFMs) show significant potential for efficient air purification while evading plastic pollution. However, there is still an urgent need to solve the issues of intrinsically low electroactivity and poor electret performance for PLA. Here, we prepared MOF-functionalized core-shell beaded PLA (MCSB-PLA) gradient nanofibers at fibrous cellulose, featuring a PLA/MOF-5 composite shell layer by coaxial electrospinning. Under the action of high-voltage electric field, MOF-5 nanocrystals were ready to interact with PLA chains, prompting the generation of highly refined and electroactive nanofibers. The MCSB-PLA NFMs were characterized by ultrafine fibers (diameter decrease of 23.5 %) and MOF-triggered bead-on-string microstructures. Meanwhile, both the surface potential and dielectric constant were largely elevated for MCSB-PLA NFMs (up to 5.2 kV and 1.86, respectively), accompanied by excellent tribo-output performance (236.8 % and 161.9 % increase in output voltage and current, respectively). Given the increased electroactivity, MCSB-PLA NFMs showed high-efficiency PM0.3 filtration (93.4 %, 106 Pa, at 32 L/min), representing an increase of 12.26 % compared to pure PLA counterpart (only 83.2 %). Even under high-humidity conditions, 91.3 % removal of PM0.3 was realized by MCSB-PLA (at 90 %RH and 32 L/min). Furthermore, the self-powered mechanisms were integrated with MCSB-PLA/cellulose, permitting real-time monitoring of physiological signals. The proposed degradable and highly electroactive MCSB-PLA NFMs is highly promising for air purification and passive healthcare.
Collapse
Affiliation(s)
- Na Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ruizi Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China.
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Bobo Shi
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaoyu Chen
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China.
| |
Collapse
|
2
|
Feng T, Fu L, Mu Z, Wei W, Li W, Liang X, Ma L, Wu Y, Wang X, Wu T, Gao M, Xu G, Zhang X. Bicomponent Electrospinning of PVDF-Based Nanofiber Membranes for Air Filtration and Oil-Water Separation. Polymers (Basel) 2025; 17:703. [PMID: 40076195 PMCID: PMC11902515 DOI: 10.3390/polym17050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil-water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an average diameter of approximately 150 nm was prepared via a double-nozzle electrospinning technology, demonstrating high-efficiency PM filtration and oil-water separation. The finer fiber diameter not only enhances PM filtration efficiency but also reduces air resistance. The high-voltage electric field and mechanical stretching during electrospinning promote high crystallization of β-phase PVDF. Additionally, the electrostatic charges generated on the surface of β-phase PVDF facilitate the adsorption of PM from the atmosphere. The introduction of polydopamine (PDA) in PVDF produces abundant adsorption sites, enabling outstanding filtration performance. PVDF-PVDF/PDA NFMs can achieve remarkable PM0.3 filtration efficiency (99.967%) while maintaining a low pressure drop (144 Pa). PVDF-PVDF/PDA NFMs are hydrophobic, and its water contact angle (WCA) is 125.9°. It also shows excellent resistance to both acidic and alkaline environments, along with notable flame retardancy, as it can self-extinguish within 3 s. This nanofiber membrane holds significant promise for applications in personal protection, indoor air filtration, oily wastewater treatment, and environmental protection.
Collapse
Affiliation(s)
- Tianxue Feng
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lin Fu
- Sino Science and Technology Co., Ltd., Dongying 257000, China
| | - Zhimei Mu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhui Wei
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenwen Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiu Liang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Liang Ma
- Guochen Industrial Group Co., Ltd., Jinan 250300, China
| | - Yitian Wu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaoyu Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tao Wu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Meng Gao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Guanchen Xu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xingshuang Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
3
|
Kim H, Oh J, Lee H, Jeong S, Ko SH. Next-generation air filtration nanotechnology for improved indoor air quality. Chem Commun (Camb) 2025; 61:1322-1341. [PMID: 39690952 DOI: 10.1039/d4cc05437g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Indoor air quality (IAQ) significantly affects human health, with pollutants such as organic, inorganic substances, and biological contaminants contributing to various respiratory, neurological, and immunological diseases. In this review, we highlighted the need for advanced air filtration technologies to mitigate these pollutants, which are emitted from household products, building materials, combustion processes, and bioaerosols. While traditional HVAC systems and mechanical filtration methods have been effective, they are often energy-intensive and limited in their ability to capture specific pollutants. To address these limitations, nanotechnology-based air filtration technologies, particularly those utilizing electrospinning processes, offer promising alternatives. This review classifies pollutants and details the working principles of next-generation filters, focusing on passive, self-powered, and externally powered mechanisms. These advanced filters achieve high filtration efficiency with minimal pressure drop, enhanced pollutant capture, and in some cases, health monitoring capabilities. This review emphasizes the significance of ongoing research into eco-friendly and sustainable filtration systems to enhance IAQ and minimize health risks linked to long-term exposure to indoor air pollutants.
Collapse
Affiliation(s)
- Hongchan Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Junhyuk Oh
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hakbeom Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Seongmin Jeong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Xu X, Liu S, Liu X, Yu J, Ding B. Engineering self-assembled 2D nano-network membranes through hierarchical phase separation for efficient air filtration. J Colloid Interface Sci 2024; 657:463-471. [PMID: 38070332 DOI: 10.1016/j.jcis.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Air pollution has garnered significant worldwide attention; however, the existing air filtration materials still suffer from issues related to monotonous structure and the inherent trade-off between PM rejection and air permeability. Herein, a spider web-inspired composite membrane with continuous monolayer structured 2D nano-networks tightly welded on nanofibers in the electrospun membrane scaffold is designed via a hierarchical phase separation strategy. The resultant biomimetic hierarchical-structured membranes possess the integrated features of hierarchical multiscale structures of 2D ultrafine networks composed of nanowires with a diameter of 31 nm self-assembled by nanoparticles, exceptional characteristics involving small average aperture, extremely low network thickness, high porosity and promising pore channel connectivity, combined with rich surface polar functional groups (3.02D dipole moment). Consequently, the composite membrane exhibits a high PM0.3 capture efficiency of 99.6 % and low pressure drop of 58.8 Pa, less than 0.06 % of atmosphere pressure, with outstanding long-term PM2.5 recycling filtration performance. The hierarchical phase separation-driven 2D nano-networks construction strategy, by virtue of their feasibility and tunability, holds great promise for widespread application across diverse membrane-related domains for air filtration.
Collapse
Affiliation(s)
- Xin Xu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Shude Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.
| |
Collapse
|
5
|
Toptaş A, Çalışır MD, Kılıç A. Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent. ACS OMEGA 2023; 8:38557-38565. [PMID: 37867706 PMCID: PMC10586252 DOI: 10.1021/acsomega.3c05509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Particles with diameters smaller than 2.5 μm (PM2.5) can penetrate the respiratory system and have negative impacts on human health. Filter media with a porous surface and nanofiber/nanonet structure demonstrate superior filtration performance compared to traditional nano- and microfiber-based filters. In this study, nanostructured filters were produced using the electroblowing method from solutions containing different ratios of poly(vinylidene fluoride) (PVDF) and polyethylene glycol (PEG) polymers for the first time. By increasing the water-soluble PEG ratio in PVDF/PEG blend nanofibers and employing a water bath treatment to the produced mat afterward, a more porous fibrous structure was obtained with a lower average fiber diameter. Notably, the removal of PEG from the PVDF/PEG (3-7) sample, which had the highest PEG content, exhibited clustered nanofiber-/nanonet-like structures with average diameters of 170 and 50 nm at the points where the fibers intersect. Although this process resulted in a slight decrease in the filtration efficiency (-1.3%), the significant reduction observed in pressure drop led to a 3.2% increase in the quality factor (QF). Additionally, by exploiting the polarizability of PVDF under an electric field, the filtration efficiency of the nanostructured PVDF filters enhanced with a ratio of 3.6% after corona discharge treatment leading to a 60% improvement in the QF. As a result, the PVDF/PEG (3-7) sample presented an impressive filtration efficiency of 99.57%, a pressure drop (ΔP) of 158 Pa, and a QF of 0.0345 Pa-1.
Collapse
Affiliation(s)
- Ali Toptaş
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Safranbolu
Vocational School, Karabuk University, 78600 Karabuk, Turkey
| | - Mehmet Durmuş Çalışır
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Faculty
of Engineering and Architecture, Recep Tayyip
Erdogan University, 53100 Rize, Turkey
| | - Ali Kılıç
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Areka
Advanced Technologies LLC, 34467 Istanbul, Turkey
| |
Collapse
|
6
|
Yang Y, Yang Y, Huang J, Li S, Meng Z, Cai W, Lai Y. Electrospun Nanocomposite Fibrous Membranes for Sustainable Face Mask Based on Triboelectric Nanogenerator with High Air Filtration Efficiency. ADVANCED FIBER MATERIALS 2023; 5:1-14. [PMID: 37361106 PMCID: PMC10184097 DOI: 10.1007/s42765-023-00299-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Abstract Air pollution caused by the rapid development of industry has always been a great issue to the environment and human being's health. However, the efficient and persistent filtration to PM0.3 remains a great challenge. Herein, a self-powered filter with micro-nano composite structure composed of polybutanediol succinate (PBS) nanofiber membrane and polyacrylonitrile (PAN) nanofiber/polystyrene (PS) microfiber hybrid mats was prepared by electrospinning. The balance between pressure drop and filtration efficiency was achieved through the combination of PAN and PS. In addition, an arched TENG structure was created using the PAN nanofiber/PS microfiber composite mat and PBS fiber membrane. Driven by respiration, the two fiber membranes with large difference in electronegativity achieved contact friction charging cycles. The open-circuit voltage of the triboelectric nanogenerator (TENG) can reach to about 8 V, and thus the high filtration efficiency for particles was achieved by the electrostatic capturing. After contact charging, the filtration efficiency of the fiber membrane for PM0.3 can reach more than 98% in harsh environments with a PM2.5 mass concentration of 23,000 µg/m3, and the pressure drop is about 50 Pa, which doesn't affect people's normal breathing. Meanwhile, the TENG can realize self-powered supply by continuously contacting and separating the fiber membrane driven by respiration, which can ensure the long-term stability of filtration efficiency. The filter mask can maintain a high filtration efficiency (99.4%) of PM0.3 for 48 consecutive hours in daily environments. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00299-z.
Collapse
Affiliation(s)
- Yue Yang
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
| | - Yuchen Yang
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| | - Shuhui Li
- Department of Chemistry, University College London, London, WC1H 0AJ UK
- Wenzhou Institute, University of Chinese Academy of Science, Zhejiang 325000 Wenzhou, People’s Republic of China
| | - Zheyi Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620 Shanghai, People’s Republic of China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, People’s Republic of China
- Qingyuan Innovation Laboratory, 362801 Quanzhou, People’s Republic of China
| |
Collapse
|
7
|
Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal. Polymers (Basel) 2023; 15:polym15061459. [PMID: 36987239 PMCID: PMC10052305 DOI: 10.3390/polym15061459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Particulate matter (PM) with a diameter of 0.3 µm is inhalable and brings great threats to human health. Traditional meltblown nonwovens used for air filtration need to be treated by high voltage corona charging, which has the problem of electrostatic dissipation and thus reduces the filtration efficiency. In this work, a kind of composite air-filter with high efficiency and low resistance was fabricated by alternating lamination of ultrathin electronspun nano-layer and melt-blown layer without corona charging treatment. The effects of fiber diameter, pore size, porosity, layer number, and weight on filtration performance were investigated. Meanwhile, the surface hydrophobicity, loading capacity, and storage stability of the composite filter were studied. The results indicate that the filters (18.5 gsm) laminated by 10 layers fiber-webs present excellent filtration efficiency (97.94%), low pressure drop (53.2 Pa), high quality factor (QF 0.073 Pa−1), and high dust holding capacity (9.72 g/m2) for NaCl aerosol particles. Increasing the layers and reducing individual layer weight can significantly improve filtration efficiency and reduce pressure drop of the filter. The filtration efficiency decayed slightly from 97.94% to 96.48% after 80 days storage. The alternate arrangement of ultra-thin nano and melt-blown layers constructed a layer-by-layer interception and collaborative filtering effect in the composite filter, realizing the high filtration efficiency and low resistance without high voltage corona charging. These results provided new insights for the application of nonwoven fabrics in air filtration.
Collapse
|
8
|
Gao Y, Tian E, Mo J. Electrostatic Polydopamine-Interface-Mediated (e-PIM) filters with tuned surface topography and electrical properties for efficient particle capture and ozone removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129821. [PMID: 36067559 DOI: 10.1016/j.jhazmat.2022.129821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Ambient particulate matter (PM) poses severe environmental health risks to the public globally, and efficient filtration technologies are urgently needed for air ventilation. In this contribution, to overcome the efficiency-resistance trade-off for fibrous filtration, we introduced an electrostatic polydopamine-interface-mediated (e-PIM) filter utilizing a combined effect of particle pre-charging and filter polarizing. After delineating the PM-fiber interactions in electrostatic filtration, we designed a composite fiber structure and fabricated the filters by a two-step dip-coating. The surface topography and electrical potential of the polyester (PET) coarse substrates were regulated by successively coating polydopamine (PDA) layers and manganese oxide clusters. By this means, an 8-mm-thick Mn-P @ P-100 filter possessed improved efficiency of 96.05%, 97.60%, and 99.14% for 0.3-0.5 µm, 0.5-1 µm, and 1-3 µm particles, the ultralow air resistance of 10.4 Pa at a filtration velocity of 0.5 m/s, and steady ozone removal property. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. We expect e-PIM filters and the filtration prototype will be potential candidates as effective and low-cost air cleaning devices for a sustainable and healthy environment.
Collapse
Affiliation(s)
- Yilun Gao
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China; State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China; Key Laboratory of Eco Planning & Green Building, Ministry of Education (Tsinghua University), Beijing 100084, China.
| |
Collapse
|
9
|
Liu Z, Qin L, Liu S, Zhang J, Wu J, Liang X. Superhydrophobic and highly moisture-resistant PVA@EC composite membrane for air purification. RSC Adv 2022; 12:34921-34930. [PMID: 36540249 PMCID: PMC9727828 DOI: 10.1039/d2ra05798k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 04/12/2024] Open
Abstract
Electrospun fiber membranes have great potential in the field of air filtration because of their high porosity and small pore size. Conventional air filtration membranes are hydrophilic, leading to weak moisture-barrier properties, which hinders their application in high-humidity environments. In this study, eugenol was added to polyvinyl alcohol and ethyl cellulose (EC) for electrospinning and electrospraying, respectively, of superhydrophobic bilayer composite fiber membranes to efficiently filter particulate matter (PM) in air. Owing to its surface microstructure, electrosprayed EC increased the water contact angle of the PVA membrane from 142.8 to 151.1°. More importantly, the composite air-filter membrane showed a low filtration pressure drop (168.1 Pa) and exhibited high filtration efficiencies of 99.74 and 99.77% for PM1.0 and PM2.5, respectively, and their respective quality factors were 0.0351 and 0.0358 Pa-1. At the same time, the filtration performance of the air filtration membrane remained above 99% at high air humidity. This work reports composite membranes that can effectively capture PM of various sizes and thus may provide a reference for the manufacturing of green air filters for high-humidity environments.
Collapse
Affiliation(s)
- Zhiqian Liu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Linli Qin
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Sijia Liu
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Jing Zhang
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| | - Junhua Wu
- Guangxi Academy of Sciences Nanning 530000 P. R. China
| | - Xinquan Liang
- School of Light Industry and Food Engineering, Guangxi University Nanning 530000 Guangxi P. R. China
| |
Collapse
|
10
|
El-Moghazy AY, Amaly N, Sun G, Nitin N. Development and clinical evaluation of commercial glucose meter coupled with nanofiber based immuno-platform for self-diagnosis of SARS-CoV-2 in saliva. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kang Y, Chen J, Feng S, Zhou H, Zhou F, Low ZX, Zhong Z, Xing W. Efficient removal of high-temperature particulate matters via a heat resistant and flame retardant thermally-oxidized PAN/PVP/SnO2 nanofiber membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Zhang X, Liu J, Liu X, Liu C, Chen Q. HEPA filters for airliner cabins: State of the art and future development. INDOOR AIR 2022; 32:e13103. [PMID: 36168223 DOI: 10.1111/ina.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The airliner cabin environment is very important to the health of passengers and crew members, and the use of high-efficiency particulate air (HEPA) filters for recirculated air in the environmental control systems (ECS) is essential for the removal of airborne particles such as SARS CoV-2 aerosols. A HEPA filter should be high efficiency, low-pressure drop, high dust-holding capacity (DHC), lightweight, and strong for use in aircraft. We conducted an experimental study on 23 HEPA filters with glass fiber media that are used in different commercial airliner models. The tested filters had a median filtration efficiency of >99.97% for particles with a diameter of 0.3-0.5 μm, a pressure drop of 134-412 Pa at rated airflow rate, and a DHC of 32.2-37.0 g/m2 . The use of nanofiber media instead of glass fiber media can reduce the pressure drop by 66.4%-94.3% and significantly increase the quality factor by analysis of literature data. The disadvantages of poor fire resistance and small DHC can be overcome by the use of flame-retardant polymers and fiber structural design. As a new lightweight and environmentally friendly filter material, nanofiber media could be used as air filters in ECS in the future.
Collapse
Affiliation(s)
- Xin Zhang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xuan Liu
- China Railway Design Corporation, Tianjin, China
| | - Chaojun Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Zhejiang Goldensea Environment Technology Co. Ltd., Zhejiang, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
13
|
Ince Yardimci A, Durmus A, Kayhan M, Tarhan O. Antibacterial Activity of AgNO 3 Incorporated Polyacrylonitrile/Polyvinylidene Fluoride (PAN/PVDF) Electrospun Nanofibrous Membranes and Their Air Permeability Properties. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2101970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Aslı Durmus
- Department of Molecular Biology and Genetics, Usak University, Usak, Turkey
| | - Mehmet Kayhan
- Scientific Analysis, Technological Application and Research Center, Usak University, Usak, Turkey
| | - Ozgur Tarhan
- Department of Food Engineering, Usak University, Usak, Turkey
| |
Collapse
|
14
|
Tang N, Chen Y, Li Y, Yu B. 2D Polymer Nanonets: Controllable Constructions and Functional Applications. Macromol Rapid Commun 2022; 43:e2200250. [PMID: 35524950 DOI: 10.1002/marc.202200250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Indexed: 11/12/2022]
Abstract
Two-dimensional (2D) polymer nanonets have demonstrated great potential in various application fields due to their integrated advantages of ultrafine diameter, small pore size, high porosity, excellent interconnectivity, and large specific surface area. Here, a comprehensive overview of the controlled constructions of the polymer nanonets derived from electrospinning/netting, direct electronetting, self-assembly of cellulose nanofibers, and nonsolvent-induced phase separation is provided. Then, the widely researched multifunctional applications of polymer nanonets in filtration, sensor, tissue engineering, and electricity are also given. Finally, the challenges and possible directions for further developing the polymer nanonets are also intensively highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Tang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yu Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyao Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bin Yu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
15
|
Bui TT, Shin MK, Jee SY, Long DX, Hong J, Kim MG. Ferroelectric PVDF nanofiber membrane for high-efficiency PM0.3 air filtration with low air flow resistance. Colloids Surf A Physicochem Eng Asp 2022; 640:128418. [PMID: 35125661 PMCID: PMC8800002 DOI: 10.1016/j.colsurfa.2022.128418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
The significant public health concerns related to particulate matter (PM) air pollutants and the airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have led to considerable interest in high-performance air filtration membranes. Highly ferroelectric polyvinylidene fluoride (PVDF) nanofiber (NF) filter membranes are successfully fabricated via electrospinning for high-performance low-cost air filtration. Spectroscopic and ferro-/piezoelectric analyses of PVDF NF show that a thinner PVDF NF typically forms a ferroelectric β phase with a confinement effect. A 70-nm PVDF NF membrane exhibits the highest fraction of β phase (87%) and the largest polarization behavior from piezoresponse force microscopy. An ultrathin 70-nm PVDF NF membrane exhibits a high PM0.3 filtration efficiency of 97.40% with a low pressure drop of 51 Pa at an air flow of 5.3 cm/s owing to the synergetic combination of the slip effect and ferroelectric dipole interaction. Additionally, the 70-nm PVDF NF membrane shows excellent thermal and chemical stabilities with negligible filtration performance degradation (air filtration efficiency of 95.99% and 87.90% and pressure drop of 55 and 65 Pa, respectively) after 24 h of heating at 120 °C and 1 h immersion in isopropanol.
Collapse
Affiliation(s)
- Tan Tan Bui
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Kyoung Shin
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | | | - Dang Xuan Long
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jongin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Smart Cities, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Myung-Gil Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Mo J, Gu Y, Tian E. Efficiently remove submicron particles by a novel foldable electrostatically assisted air coarse filter. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Dual-Structure PVDF/SDS Nanofibrous Membranes for Highly Efficient Personal Protection in Mines. MEMBRANES 2022; 12:membranes12050482. [PMID: 35629808 PMCID: PMC9144173 DOI: 10.3390/membranes12050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022]
Abstract
Pneumoconiosis in miners is considered a global problem. Improving the performance of individual protective materials can effectively reduce the incidence of pneumoconiosis. In this study, the blend membrane of sodium dodecyl sulfate and polyvinylidene fluoride with a dual structure was prepared using electrospinning techniques, and the morphological structure, fiber diameter, and filtration performance of the nanofiber membranes were optimized by adjusting the PVDF concentration and SDS content. The results show that the incorporation of SDS enabled the nanofiber membranes to show tree-like and beaded fibers. Compared with the original PVDF membrane, the small content of tree-like fibers and beaded fibers can improve the filtration efficiency and reduce the resistance of the fiber membrane. The prepared nanofiber membrane has excellent comprehensive filtration performance, and the quality factor is 0.042 pa−1 when the concentration of PVDF is 10 wt% and the addition of SDS is 0.1 wt%. Furthermore, after high-temperature treatment, the membrane could still maintain good filtration performance. The PVDF/SDS blend nanofiber membrane has outstanding filtration efficiency and good thermal stability and can fully meet the personal protection of miners in underground high-temperature operation environments.
Collapse
|
18
|
Advances in particulate matter filtration: Materials, performance, and application. GREEN ENERGY & ENVIRONMENT 2022. [PMCID: PMC10119549 DOI: 10.1016/j.gee.2022.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Air-borne pollutants in particulate matter (PM) form, produced either physically during industrial processes or certain biological routes, have posed a great threat to human health. Particularly during the current COVID-19 pandemic, effective filtration of the virus is an urgent matter worldwide. In this review, we first introduce some fundamentals about PM, including its source and classification, filtration mechanisms, and evaluation parameters. Advanced filtration materials and their functions are then summarized, among which polymers and MOFs are discussed in detail together with their antibacterial performance. The discussion on the application is divided into end-of-pipe treatment and source control. Finally, we conclude this review with our prospective view on future research in this area.
Collapse
|
19
|
High-Performance photoinduced antimicrobial membrane toward efficient PM2.5-0.3 capture and Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Geng Q, Pu Y, Li Y, Yang X, Wu H, Dong S, Yuan D, Ning X. Multi-Component Nanofiber Composite Membrane Enabled High PM 0.3 Removal Efficiency and Oil/Water Separation Performance in Complex Environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126835. [PMID: 34391969 DOI: 10.1016/j.jhazmat.2021.126835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Currently, industrial waste gas and oily wastewater are usually at high temperature and contain corrosive components (e.g., acid, alkali, oxidant, or high salt, etc.), presenting great challenges on filtration/separation materials. Here, a multi-purpose Poly(m-phenylene isophthalamide)/polyacrylonitrile/silica (PMIA/PAN/SiO2) nanofiber composite membrane with a high yield was prepared simply via electrospinning to satisfy the demands of air filtration and oil/water separation in complex environments. Under the synergy of PMIA, PAN and SiO2, the composite membrane possesses high PM0.3 removal capacity of 99.69%, robust purification ability against real smoke PM2.5, effective oil/water separation performance of > 99.6%, superior high temperature stability (about 250 °C) and excellent chemical resistance, showing the potential application in filtration/separation process under complex conditions. Moreover, the influence mechanism of SiO2 NPs on mechanical properties and filtration performance was systematically investigated through experiments and simulations, paving the way for future intensive research. This study provides an option for the facile and effective preparation of high-performance filtration/separation membranes applied in the field of dust filtration and oily wastewater separation, even in harsh environments.
Collapse
Affiliation(s)
- Qian Geng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Yi Pu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Yajian Li
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Xue Yang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Huizhi Wu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| |
Collapse
|
21
|
Zheng S, Li W, Ren Y, Liu Z, Zou X, Hu Y, Guo J, Sun Z, Yan F. Moisture-Wicking, Breathable, and Intrinsically Antibacterial Electronic Skin Based on Dual-Gradient Poly(ionic liquid) Nanofiber Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106570. [PMID: 34751468 DOI: 10.1002/adma.202106570] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/01/2021] [Indexed: 05/15/2023]
Abstract
Electronic skin can detect minute electrical potential changes in the human skin and represent the body's state, which is critical for medical diagnostics and human-computer interface development. On the other hand, sweat has a significant effect on the signal stability, comfort, and safety of electronic skin in a real-world application. In this study, by modifying the cation and anion of a poly(ionic liquid) (PIL) and employing a spinning process, a PIL-based multilayer nanofiber membrane (PIL membrane) electronic skin with a dual gradient is created. The PIL electronic skin is moisture-wicking and breathable due to the hydrophilicity and pore size-gradients. The intrinsically antimicrobial activities of PILs allow the safe collection of bioelectrical signals from the human body, such as electrocardiography (ECG) and electromyography (EMG). In addition, a robotic hand may be operated in real-time, and a preliminary human-computer interface can be accomplished by simple processing of the collected EMG signal. This study establishes a novel practical approach for monitoring and using bioelectrical signals in real-world circumstances via the multifunctional electronic skin.
Collapse
Affiliation(s)
- Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongyuan Ren
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yin Hu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
22
|
Lakshmanan A, Sarngan PP, Sarkar D. Inorganic-organic nanofiber networks with antibacteria properties for enhanced particulate filtration: The critical role of amorphous titania. CHEMOSPHERE 2022; 286:131671. [PMID: 34352548 DOI: 10.1016/j.chemosphere.2021.131671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 05/29/2023]
Abstract
The demand for air filter media at indoor and outdoor is increasing tremendously due to air pollution and especially for problems related to airborne particulate matter (PM). To realize that, here a class nanofiber air filter media with strong antibacterial activity, hydrophobic nature, high filtration efficiency with low pressure drop is prepared. Novel organic-inorganic nanocomposite nanofibers used in this work benefited for the multifunctional performance. Amorphous titanium dioxide (mTiO2) is utilized for air filtration application which exhibits excellent enhancement of PM2.5 filtration properties and antibacterial activity. The unique Poly (vinylpyrrolidone) (PVP)-mTiO2 nanofiber air filter media acquired hydrophobic nature with a large increase in water contact angle of 127° from 36°. The resulting free-standing nanofiber filters exhibit high PM2.5 filtration efficiency of >99.9% and low pressure drop of 39 Pa. Antibacterial activity of nanofibrous membrane has been rationally engineered by titanium oxide as the barrier to bacterial ingression. A long term of 160 h filtration test has proved PVP-mTiO2 nanofibers air filter media holds outstanding 99% filtration efficiency for PM2.5. This work takes forward a significant lead in design and production of high performance and very low pressure drop air filter media with a wide range of functional properties.
Collapse
Affiliation(s)
- Agasthiyaraj Lakshmanan
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Pooja P Sarngan
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Debabrata Sarkar
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
23
|
Kang HK, Oh HJ, Kim JY, Kim HY, Choi YO. Effect of Process Control Parameters on the Filtration Performance of PAN-CTAB Nanofiber/Nanonet Web Combined with Meltblown Nonwoven. Polymers (Basel) 2021; 13:3591. [PMID: 34685350 PMCID: PMC8537697 DOI: 10.3390/polym13203591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Nanofibers have potential applications as filters for particles with diameters <10 μm owing to their large specific surface area, macropores, and controllable geometry or diameter. The filtration efficiency can be increased by creating nanonets (<50 nm) whose diameter is smaller than that of nanofibers. This study investigates the effect of process conditions on the generation of nanonet structures from a polyacrylonitrile (PAN) solution containing cation surfactants; in addition, the filtration performance is analyzed. The applied electrospinning voltage and the electrostatic treatment of meltblown polypropylene (used as a substrate) are the most influential process parameters of nanonet formation. Electrospun polyacrylonitrile-cetylmethylammonium bromide (PAN-CTAB) showed a nanofiber/nanonet structure and improved thermal and mechanical properties compared with those of the electrospun PAN. The pore size distribution and filter efficiency of the PAN nanofiber web and PAN-CTAB nanofiber/nanonet web with meltblown were measured. The resulting PAN-CTAB nanofiber/nanonet air filter showed a high filtration efficiency of 99% and a low pressure drop of 7.7 mmH2O at an air flow rate of 80 L/min. The process control methods for the nanonet structures studied herein provide a new approach for developing functional materials for air-filtration applications.
Collapse
Affiliation(s)
- Hyo Kyoung Kang
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Korea; (H.K.K.); (H.J.O.); (J.Y.K.)
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Hyun Ju Oh
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Korea; (H.K.K.); (H.J.O.); (J.Y.K.)
| | - Jung Yeon Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Korea; (H.K.K.); (H.J.O.); (J.Y.K.)
| | - Hak Yong Kim
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Yeong Og Choi
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Korea; (H.K.K.); (H.J.O.); (J.Y.K.)
| |
Collapse
|
24
|
Kang DH, Kim NK, Kang HW. Electrostatic Charge Retention in PVDF Nanofiber-Nylon Mesh Multilayer Structure for Effective Fine Particulate Matter Filtration for Face Masks. Polymers (Basel) 2021; 13:3235. [PMID: 34641051 PMCID: PMC8513023 DOI: 10.3390/polym13193235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, almost 70% of the world's population occupies urban areas. Owing to the high population density in these regions, they are exposed to various types of air pollutants. Fine particle air pollutants (<2.5 μm) can easily invade the human respiratory system, causing health issues. For fine particulate matter filtration, the use of a face mask filter is efficient; however, its use is accompanied by a high-pressure drop, making breathing difficult. Electrostatic interactions in the filter of the face mask constitute the dominant filtration mechanism for capturing fine particulate matter; these masks are, however, significantly weakened by the high humidity in exhaled breath. In this study, we demonstrate that a filter with an electrostatically rechargeable structure operates with normal breathing air power. In our novel face mask, a filter membrane is assembled by layer-by-layer stacking of the electrospun PVDF nanofiber mat formed on a nylon mesh. Tribo/piezoelectric characteristics via multilayer structure enhance filtration performance, even under air-powered filter bending taken as a normal breathing condition. The air gap between nanofiber and mesh layers increases air diffusion time and preserves the electrostatic charges within the multi-layered nanofiber filter membrane under humid air penetration, which is advantageous for face mask applications.
Collapse
Affiliation(s)
| | | | - Hyun Wook Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (D.H.K.); (N.K.K.)
| |
Collapse
|
25
|
Fu X, Liu J, Ding C, Lin S, Zhong WH. Building bimodal structures by a wettability difference-driven strategy for high-performance protein air-filters. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125742. [PMID: 34088201 DOI: 10.1016/j.jhazmat.2021.125742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Building bimodal structures for air-filters is promising to reduce the airflow resistance without sacrificing the filtration efficiency. To do so, multi-jet electrospinning is among the most broadly used methods, yet the interplay between single fibers in electrospinning, which is significant to their morphologies, is overlooked. In this study, we report a wettability difference-driven strategy to fabricate a bimodal protein fabric with superior filtration performance. We surprisingly find that only by co-spinning of two proteins, zein and gelatin, with different wettability between them, a drastic change of fiber diameters is spontaneously achieved. The generated protein-blend fabric possesses bimodally distributed diameters of 270 nm for gelatin fibers and of 1.12 µm for zein fibers; both pure protein fabrics via single-jet electrospinning have diameters unimodally distributed in the range of 500-700 nm. The bimodal protein-blend fabric delivers exceptional removal efficiencies of 99.67% for PM2.5 and 98.80% for PM0.3, yielding an ultra-low airflow resistance of 38 Pa. The PM2.5 removal efficiency retains to be 96.04% after filtering 1000 L polluted air, indicating a good long-term performance. This study brings about a new insight into fabrication of bimodal structures using multi-jet electrospinning method and promotes the development of natural products for broad applications.
Collapse
Affiliation(s)
- Xuewei Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Juejing Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Chenfeng Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengnan Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
26
|
Xie F, Wang Y, Zhuo L, Ning D, Yan N, Li J, Chen S, Lu Z. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125260. [PMID: 33556859 DOI: 10.1016/j.jhazmat.2021.125260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Air pollutions are extremely serious threats to human health and the functional hybrid filter is able to remove complicated pollutants with great potential. However, the stable structure design of hybrid filter to provide efficient filtration and adsorption performance for high temperature applications still remains a challenge. In this study, electrospun polyimide (PI) based hybrid filter was fabricated via multiple hydrogen bonding self-assembly for high-temperature air purification. In particular, Octa(amino-propylsilsesquioxane) (POSS-NH2) was utilized as "bridge" for the surface activation of PI fiber, and then amino-functionalized Zeolitic Imidazolate Framework-8 (NH2-ZIF-8) nanocrystals were anchored on the fiber surface through hydrogen bonding. On account of the synergistic effect of the interception effect of fibers and the electrostatic interaction of NH2-ZIF-8 nanocrystals, the as-obtained PI-POSS@ZIF hybrid filter possessed excellent filtration performance with a high PM0.3 removal efficiency of 99.28% and a low pressure drop of 49.21 Pa at high temperature of 280 °C. Moreover, due to the massive micropore structure, rich open metal sites and functional groups of NH2-ZIF-8, the hybrid filter exhibited prominent VOCs adsorption performance with adsorption capability of 89.95 mg/g for formaldehyde.
Collapse
Affiliation(s)
- Fan Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yafang Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Longhai Zhuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiaoyang Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Shanshan Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
27
|
Sanyal A, Sinha-Ray S. Ultrafine PVDF Nanofibers for Filtration of Air-Borne Particulate Matters: A Comprehensive Review. Polymers (Basel) 2021; 13:1864. [PMID: 34205188 PMCID: PMC8199986 DOI: 10.3390/polym13111864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing global pandemic has bestowed high priority uponthe separation of air-borne particulate matters (PMs), aerosols, etc. using nonwoven fibrous materials, especially for face masks as a means of personal protection. Although spunbond or meltblown nonwoven materials are amongst the forerunners for polymer microfiber-based face mask or air filter development in mass scale, relatively new process of nonwoven manufacturing such as electrospinning is gaining a lot of momentum amongst the filter membrane manufacturers for its scalability of nanofiber-based filter membrane fabrication. There are several nanofiber-based face masks developing industries, which claim a very high efficiency in filtration of particulate matters (PM0.1-10) as well as other aerosols for their products. Polyvinylidene fluoride (PVDF), which is commonly known for its use of tactile sensors and energy harvesters, due to its piezoelectric property, is slowly gaining popularity among researchers and developers as an air filter material. Electrospun PVDF nanofibers can be as fine as 50 nm in mass scale, which allows the membrane to have large surface area compared to its volume, enhancing nanofiber-PM interaction. At the same time, the breathability index can be improved through these PVDF nanofiber membranes due to their architectural uniqueness that promotes slip flow around the fibers. The conductive nature of PVDF makes it advantageous as a promising electret filter allowing better capturing of ultrafine particles. This review aims to provide a comprehensive overview of such PVDF nanofiber-based filter membranes and their roles in air filtration, especially its application in filtrate of air-borne PMs.
Collapse
Affiliation(s)
- Ayishe Sanyal
- School of Engineering, Indian Institute of Technology Mandi, Mandi 175005, HP, India;
| | - Sumit Sinha-Ray
- School of Engineering, Indian Institute of Technology Mandi, Mandi 175005, HP, India;
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607-7022, USA
| |
Collapse
|
28
|
Lu T, Cui J, Qu Q, Wang Y, Zhang J, Xiong R, Ma W, Huang C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23293-23313. [PMID: 33974391 DOI: 10.1021/acsami.1c06520] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air filtration materials (AFMs) have gradually become a research hotspot on account of the increasing attention paid to the global air quality problem. However, most AFMs cannot balance the contradiction between high filtration efficiency and low pressure drop. Electrospinning nanofibers have a large surface area to volume ratio, an adjustable porous structure, and a simple preparation process that make them an appropriate candidate for filtration materials. Therefore, electrospun nanofibers have attracted increased attention in air filtration applications. In this paper, first, the preparation methods of high-performance electrospun air filtration membranes (EAFMs) and the typical surface structures and filtration principles of electrospun fibers for air filtration are reviewed. Second, the research progress of EAFMs with multistructures, including nanoprotrusion, wrinkled, porous, branched, hollow, core-shell, ribbon, beaded, nets structure, and the application of these nanofibers in air filtration are summarized. Finally, challenges with the fabrication of EAFMs, limitations of their use, and trends for future developments are presented.
Collapse
Affiliation(s)
- Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Jiaxin Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yulin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Jian Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
29
|
Yoo DK, Woo HC, Jhung SH. Ionic Salts@Metal-Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23092-23102. [PMID: 33970607 DOI: 10.1021/acsami.1c02290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The elimination of particulate matters (PMs) from the air is very important for our sustainability. In this study, highly porous metal-organic frameworks (MOFs) like MIL-101 and UiO-67 were first modified, coated onto cotton, and applied in PM removal via filtration. Ionic salts (ISs) like CaCl2 and LiCl, after loading onto the MOFs, remarkably increased the PM removal efficiency. For example, CaCl2(20)@MIL-101/cotton shows 5.7 times the quality factor (QF, which is the most important parameter in filtration) of that of bare cotton and has the most competitive performances in PM removal (with the highest QF of 0.085 Pa-1) compared to any filter modified with porous materials or commercial filters. The noticeable performances of ISs@MOFs can be explained by the contribution of charge separation (that is effective for electrostatic interactions with PMs) of ISs and the high porosity of MOFs. Moreover, how MOFs with small pores of a few nanometers or less can remove large PMs with sizes in the micron range could be explained. Finally, loading ISs onto highly porous materials can be a promising strategy to improve the performances of filters to remove PMs from the air.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
30
|
Preparation and modification of an embossed nanofibrous materials for robust filtration performance of PM0.2 removal. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Xie F, Wang Y, Zhuo L, Jia F, Ning D, Lu Z. Electrospun Wrinkled Porous Polyimide Nanofiber-Based Filter via Thermally Induced Phase Separation for Efficient High-Temperature PMs Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56499-56508. [PMID: 33275401 DOI: 10.1021/acsami.0c18143] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefiting from its superior thermal stability, polyimide (PI) fiber-based composites have attracted wide attention in the field of high-temperature filtration and separation. However, the trade-off between filtration efficiency and pressure drop of traditional PI filters with single morphology and structure still remains challenging. Herein, the electrospun PI high-temperature-resistant air filter was fabricated via thermal-induced phase separation (TIPS), employing polyacrylonitrile (PAN) as a template. The PI nanofibers exhibited special wrinkled porous structure, and the filter possessed a high specific surface area of 304.77 m2/g. The removal of PAN changed the chemical composition of the fiber and induced PI molecules to form complex folds on the surface of the fiber, thus forming the wrinkled porous structure. Additionally, the wrinkled porous PI nanofiber filter displayed a high PM0.3 removal efficiency of 99.99% with a low pressure drop of 43.35 Pa at room temperature, and the filtration efficiency was still over 97% after being used for long time. Moreover, the efficiency of the filter could even reach 95.55% at a high temperature of 280 °C. The excellent filtration performance was attributed to the special wrinkled porous surface, which could limit the Brownian motion of PMs and reinforce the mechanical interception effect to capture the particulate matters (PMs) on the surface of the filter. Therefore, this work provided a novel strategy for the fabrication of filters with special morphology to cope with increasingly serious air pollution in the industrial field.
Collapse
Affiliation(s)
- Fan Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yafang Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Longhai Zhuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fengfeng Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
32
|
Lee HJ, Choi WS. 2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5714. [PMID: 33333822 PMCID: PMC7765286 DOI: 10.3390/ma13245714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023]
Abstract
Air and water pollution pose an enormous threat to human health and ecosystems. In particular, particulate matter (PM) and oily wastewater can cause serious environmental and health concerns. Thus, controlling PM and oily wastewater has been a great challenge. Various techniques have been reported to effectively remove PM particles and purify oily wastewater. In this article, we provide a review of the recent advancements in air filtration and oil/water separation using two- and three-dimensional (2D and 3D) bulk materials. Our review covers the advantages, characteristics, limitations, and challenges of air filters and oil/water separators using 2D and 3D bulk materials. In each section, we present representative works in detail and describe the concepts, backgrounds, employed materials, fabrication methods, and characteristics of 2D and 3D bulk material-based air filters and oil/water separators. Finally, the challenges, technical problems, and future research directions are briefly discussed for each section.
Collapse
Affiliation(s)
- Ha-Jin Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyun-ro, Seoudaemun-gu, Seoul 120-140, Korea;
| | - Won San Choi
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 305-719, Korea
| |
Collapse
|
33
|
|
34
|
Karim N, Afroj S, Lloyd K, Oaten LC, Andreeva DV, Carr C, Farmery AD, Kim ID, Novoselov KS. Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS NANO 2020; 14:12313-12340. [PMID: 32866368 PMCID: PMC7518242 DOI: 10.1021/acsnano.0c05537] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Personal protective equipment (PPE) is critical to protect healthcare workers (HCWs) from highly infectious diseases such as COVID-19. However, hospitals have been at risk of running out of the safe and effective PPE including personal protective clothing needed to treat patients with COVID-19, due to unprecedented global demand. In addition, there are only limited manufacturing facilities of such clothing available worldwide, due to a lack of available knowledge about relevant technologies, ineffective supply chains, and stringent regulatory requirements. Therefore, there remains a clear unmet need for coordinating the actions and efforts from scientists, engineers, manufacturers, suppliers, and regulatory bodies to develop and produce safe and effective protective clothing using the technologies that are locally available around the world. In this review, we discuss currently used PPE, their quality, and the associated regulatory standards. We survey the current state-of-the-art antimicrobial functional finishes on fabrics to protect the wearer against viruses and bacteria and provide an overview of protective medical fabric manufacturing techniques, their supply chains, and the environmental impacts of current single-use synthetic fiber-based protective clothing. Finally, we discuss future research directions, which include increasing efficiency, safety, and availability of personal protective clothing worldwide without conferring environmental problems.
Collapse
Affiliation(s)
- Nazmul Karim
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Shaila Afroj
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Kate Lloyd
- Textiles
Intelligence, Village Way, Wilmslow, Cheshire SK9 2GH, United
Kingdom
| | - Laura Clarke Oaten
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Daria V. Andreeva
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew D. Farmery
- Nuffield
Department of Clinical Neurosciences, The
University of Oxford, Oxford OX1 3PN, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kostya S. Novoselov
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117575
- Chongqing
2D Materials Institute, Liangjiang New
Area, Chongqing, 400714, China
| |
Collapse
|
35
|
Li Y, Yin X, Si Y, Yu J, Ding B. All-polymer hybrid electret fibers for high-efficiency and low-resistance filter media. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2020; 398:125626. [PMID: 32501390 PMCID: PMC7255179 DOI: 10.1016/j.cej.2020.125626] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 05/02/2023]
Abstract
A one-step and controllable strategy to prepare all-polymer hybrid electret fibers is reported based on the coupling of polystyrene and polyvinylidene fluoride in electric response. The complementary dielectric properties between PS and PVDF generate dual-system electret charges within PS/PVDF fibers, thereby improving the electret effect. The bi-component all-polymer electret fibers show enhanced electret property and structural continuity, contributing to a N95 protective respirator with high filtration efficiency (99.752%), low air resistance (72 Pa) and long service life. The fabrication of all-polymer electret fibers solves the challenge of nanoparticle toxicity for existing polymer/nanoparticle electret fibers.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
36
|
Liu J, Ding C, Dunne FO, Guo Y, Fu X, Zhong WH. A Bimodal Protein Fabric Enabled via In Situ Diffusion for High-Performance Air Filtration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12042-12050. [PMID: 32936622 DOI: 10.1021/acs.est.0c02828] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Design and fabrication of bimodal structures are essential for successful development of advanced air filters with ultralow airflow resistance. To realize this goal, simplified processing procedures are necessary for meeting the practical needs. Here, a bimodal protein fabric with high-performance air filtration, and effectively lowered airflow resistance is reported. The various functional groups of proteins provide versatile interactions with pollutants. By utilizing a novel and cost-effective "cross-axial" configuration with an optimized condition (75° of contacting angle between solution nozzle and cospinning solvent nozzle), the diffusion in Taylor cone is in situ controlled, which results in the successful production of bimodal protein fabric. The bimodal protein fabric (16.7 g/m2 areal density) is demonstrated to show excellent filtration performance for removing particulate matter (PM) pollutants and only causes 17.1 Pa air pressure drop. The study of multilayered protein fabric air filters shows a further improvement in filtration performance of removing 97% of PM0.3 and 99% of PM2.5 with a low airflow resistance (34.9 Pa). More importantly, the four-layered bimodal protein fabric shows an exceptional long-term performance and maintains a high removal efficiency in the humid environment. This study presents an effective and viable strategy for fabricating bimodal fibrous materials for advanced air filtration.
Collapse
Affiliation(s)
- Juejing Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chenfeng Ding
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Francis O Dunne
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yiran Guo
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Xuewei Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Wei-Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
37
|
|
38
|
Yin L, Hu M, Li D, Chen J, Yuan K, Liu Y, Zhong Z, Xing W. Multifunctional ZIF-67@SiO2 Membrane for High Efficiency Removal of Particulate Matter and Toxic Gases. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Linghui Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Min Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Dongyan Li
- College of Chemical Engineering and Material, Nanjing Polytechnic Institute, Nanjing 210048, China
| | - Jiahao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Kai Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Yishui Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
39
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|
40
|
Yoo DK, Woo HC, Jhung SH. Removal of Particulate Matters with Isostructural Zr-Based Metal-Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34423-34431. [PMID: 32608961 DOI: 10.1021/acsami.0c08881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effective removal of particulate matters (PMs) from air is very important for our safe environment, health, and sustainability. In this study, isostructural (with the same topology of fcu) Zr-metal-organic frameworks (Zr-MOFs) such as UiO-66, UiO-67, and DUT-52 (with different porosity) were coated onto cotton and utilized in PM removal from air to understand the contribution of MOFs in improving the performances of air filters. Moreover, UiO-66s with different porosities were also prepared under different conditions from the same reaction mixture. Experiments to remove PMs such as PM2.5 and PM10 showed a critical role of porosity of coated MOFs in the PM removal. Or, the removal efficiency or quality factor increased linearly with the increasing surface area of all the studied MOFs, irrespective of the applied linkers (for synthesizing different MOFs) and synthesis conditions (for different porosities of UiO-66s). Therefore, this work confirms, for the first time, that the porosity of MOF is one of the most important parameters to improve the performance of air filter (to remove PMs) that is modified with coated MOFs. Moreover, we could suggest why porous materials with small pores were effective in capturing PMs (larger in size than pores of porous materials) from air.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
41
|
Tian E, Xia F, Wu J, Zhang Y, Li J, Wang H, Mo J. Electrostatic Air Filtration by Multifunctional Dielectric Heterocaking Filters with Ultralow Pressure Drop. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29383-29392. [PMID: 32498504 DOI: 10.1021/acsami.0c07447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In air filtration, for creating healthy indoor air, there is an intrinsic conflict between high filtration efficiency and low wind pressure drop. In this study, we overcame this conflict by developing new dielectric heterocaking (HC) filters, in which high relative dielectric constant (εr) materials were heterogeneously loaded on traditional polymer fibers. The dielectric HC filters in an electrostatic polarizing field generate a great amount of charges on their surface, leading to a strong attraction to precharged aerosol particles, and result in high filtration efficiency. Observing via a charged coupled device camera, the migration speed of aerosol smoke particles toward the polarized HC fiber exceeded those toward the unpolarized HC fiber by a factor of 6. We loaded high-εr HCs including manganese dioxide (MnO2), activated carbon, zinc oxide (ZnO), copper oxide (CuO), and barium titanate (BaTiO3) on polyurethane foams using a fast and large-scale roll-to-roll gel squeezing method. Based on the experimental results, when HCs had a εr larger than 5.1, an increased εr did not benefit electrostatic filtration efficiency for aerosol particles much, but resulted in a larger net ozone production. We suggested a MnO2-HC filter for efficient and multifunctional filtration of indoor particles, ambient ozone, and formaldehyde with only 3.8 Pa pressure drop at 1.1 m/s filtration velocity. This efficient and cost-effective dielectric HC filter opens a new avenue for the design of multifunctional filters, which will facilitate its large-scale production and commercial application in the ventilation system for healthy buildings.
Collapse
Affiliation(s)
- Enze Tian
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fanxuan Xia
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jiandong Wu
- College of Engineering, Peking University, Beijing 100871, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hao Wang
- College of Engineering, Peking University, Beijing 100871, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| |
Collapse
|
42
|
Woo HC, Yoo DK, Jhung SH. Highly Improved Performance of Cotton Air Filters in Particulate Matter Removal by the Incorporation of Metal-Organic Frameworks with Functional Groups Capable of Large Charge Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28885-28893. [PMID: 32520525 DOI: 10.1021/acsami.0c07123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, air contamination, especially with particulate matters (PMs), is severe in several countries. To increase the efficiency of air filters in PM removal, metal-organic frameworks (MOFs, here, Zr-MOFs, especially with functional groups (FGs) such as -NO2) were coated, after synthesis, onto cotton using covalent bonding for the first time. The removal efficiencies (REs) and quality factors (QFs) of cottons with or without MOFs were in the order: cotton < Zr-MOF/cotton < Zr-MOF-NH2/cotton < Zr-MOF-NH-SO3H/cotton < Zr-MOF-NH3+Cl-/cotton < Zr-MOF-NO2/cotton. This monotonic increase in the PM removal efficiency or QF could be explained with the order of charge separation or developed charges (total, in absolute value: ∼0 to 2.0) on FGs of MOFs. Importantly, Zr-MOF-NO2 coating on cotton showed a very high increase in the performance of cotton in PM removal. QF and RE of Zr-MOF-NO2/cotton were 4.6 times and 6.2 times of the bare cotton, respectively, for PM2.5 removal, even with a very small increase in pressure drop (3 Pa or less) with MOF coating. Based on the research, it can be suggested that coating MOFs on substrates is a promising way to improve the performances of air filters for PM removal, especially when MOFs have FGs that can have large charge separation such as -NO2. This work may pave a way to utilize a functionalized MOF in the effective removal of PMs from air.
Collapse
Affiliation(s)
- Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
43
|
Li Y, Cao L, Yin X, Si Y, Yu J, Ding B. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM 0.3. J Colloid Interface Sci 2020; 578:565-573. [PMID: 32544628 PMCID: PMC7834036 DOI: 10.1016/j.jcis.2020.05.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/21/2020] [Accepted: 05/31/2020] [Indexed: 01/07/2023]
Abstract
Frequent outbreaks of emerging infectious diseases (EIDs) make personal protective filter media in high demand. Electrospun nanofibrous materials are proved to be very effective in resisting virus-containing fine particles owing to their small fiber diameters; however, hindered by the intrinsic close-packing character of fine fibers, electrospun filters suffer from a relatively high air resistance, thereby poor breathing comfort. Here, we report a biomimetic and one-step strategy to create ultrafine and curly wool-like nanofibers, named nano-wool, which exhibit fluffy assembly architecture and powerful electret effect. By achieving the online self-crimp and in-situ charging of nanofibers, the curly electret nano-wool shows a small diameter of ~0.6 μm (two orders of magnitude lower than natural wool: ~20 μm) and an ultrahigh porosity of 98.7% simultaneously, together with an ultrahigh surface potential of 13260 V (one order of magnitude higher than previous filters). The structural advantages and powerful electret effect enable nano-wool to show excellent filtration efficacy (>99.995% for PM0.3) and low air resistance (55 Pa). Additionally, nano-wool can be easily scaled up, not only holding great industrial prospect in personal protective respirators, but also paving the way for developing next-generation wool in a cost-efficient and multifunctional form.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Leitao Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
44
|
Lee S, Han KS, Kim M, Kim MC, Anh CV, Nah J. Polybenzimidazole-Benzophenone Composite Nanofiber Window Air Filter with Superb UV Resistance and High Chemical and Thermal Durability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23914-23922. [PMID: 32369331 DOI: 10.1021/acsami.0c03868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a growing interest in window air filters to protect indoor air quality from ultrafine particulate matter (PM) in outdoor air. The filters for this purpose must achieve high filtering efficiency without compromising the original functions of the window, such as high air permeability and visibility. Several filters meeting these requirements have been developed and demonstrate a high PM2.5 filtering efficiency. However, these filters are installed outside the window or on the window screen guard, thereby requiring high levels of ultraviolet (UV), chemical, and thermal resistance. These requirements have been overlooked so far. In this study, we examine the fabrication and performance of a polybenzimidazole-benzophenone (PBI-BP) composite nanofiber air filter that demonstrates superb UV resistance and chemical and thermal durability. Because of the UV absorbance of the BP in the nanofibers, the filter membrane is robust even under prolonged UV exposure, which is essential for filters for this purpose. The filter membrane is not damaged even after treatment in strong acids or annealing at high temperature up to 400 °C. Thus, the PBI-BP composite filter is suitable for practical application in window air filters and can be adapted to develop filters used under other harsh environments.
Collapse
Affiliation(s)
- Sol Lee
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Kyung Seok Han
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Minje Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Min Cheol Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Cao Viet Anh
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Junghyo Nah
- Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
45
|
Zhu WH, Poudyal A, Martin PM, Tatarchuk BJ. Characterization of Dirt Holding Capacity of Microfiber-Based Filter Media Using Thermal Impedance Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15737-15747. [PMID: 32142611 DOI: 10.1021/acsami.0c01379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the development of new classes of high-speed vessels like LCAC, which are expected to ingest high amounts of salt particulates, it is of vital importance to develop a new class of filtration media which can meet this requirement. A microfibrous filter media embedded with nanofibers was thus developed using a nanofiber flocked suspension with a microfibrous support created using traditional wet-lay papermaking methods. While the pressure drop is normally used as the conventional parameter to predict service-life of the filter media, it does not give a proper indication of filter service life. Therefore, a novel thermal impedance technique was applied in this work to characterize the filtration media using thermal parameters via a heat pulse excitation signal. The transient response for the phase lag of temperature was observed because heat transfer occurs during the air flow across the filtration media. The related thermal parameters were obtained through a thermal equivalent circuit model and a nonlinear least-squares fitting algorithm. The thermal impedance method can be used as a filter media diagnostic tool to obtain useful parameters which can be utilized to regenerate filter media and assist to define the operational lifetime of the filter. This can help protect the power systems and reduce the maintenance, operation, and replacement costs. The improved air quality that can be obtained using this advanced filtration technology will enable enhanced protection of engine turbines and other onboard air-breathing systems.
Collapse
Affiliation(s)
- Wenhua H Zhu
- Center for Microfibrous Materials, Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849-5127, United States
| | - Amulya Poudyal
- Center for Microfibrous Materials, Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849-5127, United States
| | - Phillip M Martin
- Center for Microfibrous Materials, Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849-5127, United States
| | - Bruce J Tatarchuk
- Center for Microfibrous Materials, Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849-5127, United States
| |
Collapse
|
46
|
Engineering construction of robust superhydrophobic two-tier composite membrane with interlocked structure for membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117813] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
El-Moghazy AY, Huo J, Amaly N, Vasylieva N, Hammock BD, Sun G. An Innovative Nanobody-Based Electrochemical Immunosensor Using Decorated Nylon Nanofibers for Point-of-Care Monitoring of Human Exposure to Pyrethroid Insecticides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6159-6168. [PMID: 31927905 PMCID: PMC7799635 DOI: 10.1021/acsami.9b16193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel ultrasensitive nanobody-based electrochemical immunoassay was prepared for assessing human exposure to pyrethroid insecticides. 3-Phenoxybenzoic acid (3-PBA) is a common human urinary metabolite for numerous pyrethroids, which broadly served as a biomarker for following the human exposure to this pesticide group. The 3-PBA detection was via a direct competition for binding to alkaline phosphatase-embedded nanobodies between free 3-PBA and a 3-PBA-bovine serum albumin conjugate covalently immobilized onto citric acid-decorated nylon nanofibers, which were incorporated on a screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) was utilized to support the advantage of the employment of nanofibrous membranes and the success of the immunosensor assembly. The coupling between the nanofiber and nanobody technologies provided an ultrasensitive and selective immunosensor for 3-PBA detection in the range of 0.8 to 1000 pg mL-1 with a detection limit of 0.64 pg mL-1. Moreover, when the test for 3-PBA was applied to real samples, the established immunosensor proved to be a viable alternative to the conventional methods for 3-PBA detection in human urine even without sample cleanup. It showed excellent properties and stability over time.
Collapse
Affiliation(s)
- Ahmed Y. El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Jingqian Huo
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
48
|
Liu Z, Shang S, Chiu KL, Jiang S, Dai F. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110308. [PMID: 31761229 PMCID: PMC7125840 DOI: 10.1016/j.msec.2019.110308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
In this study, a biodegradable silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide (SF/PLGA/GO) microfiber mat was successfully fabricated via electrospinning for use in protective fabrics. The morphology of the microfiber mat was characterized by Scanning Electron Microscope (SEM). The thermal and mechanical properties, water contact angle, surface area and pore size of the microfiber mats were characterized. Due to the introduction of graphene which can interact with silk fibroin, the SF/PLGA/GO microfiber mat, compared with the silk fibroin/poly (lactic-co-glycolic acid) (SF/PLGA) microfiber mat, has higher strength, greater Young's modulus and better thermal stability which can meet the requirements of protective fabric. The microfiber mat is biodegradable because its main component is silk fibroin and PLGA. In particular, the microfiber mat has a small pore size range of 4 ∼ 10 nm in diameter, a larger surface area of 2.63 m2 g-1 and pore volume of 7.09 × 10-3 cm3 g-1. The small pore size of the mat can effectively block the particulate pollutants and pathogenic particles in the air. The larger surface area and pore volume of the mat are effective for breathability. Therefore, the fabricated SF/PLGA/GO microfiber mat has great application potentials for protective fabrics.
Collapse
Affiliation(s)
- Zulan Liu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing, 400715, China; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China
| | - Songmin Shang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong.
| | - Ka-Lok Chiu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Shouxiang Jiang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, 400715, China
| |
Collapse
|
49
|
Liu H, Cao C, Huang J, Chen Z, Chen G, Lai Y. Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances. NANOSCALE 2020; 12:437-453. [PMID: 31840701 DOI: 10.1039/c9nr08851b] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The PM (particulate matter)-induced haze problem has caused serious environmental and health concerns. It is still a huge challenge to control PM pollution because of the complex structure, diverse sources and intricate evolution mechanism of the particles. In recent years, there has been increasing efforts to develop advanced strategies for PM treatment. Herein, we wish to provide a systematic summary of recent progress in air filtration. The review covers the definition of PM, the characterization of PM, the mechanism of PM capture, advanced purification materials, and special multifunctional performances. As for characterizing PM particles, removal efficiency, pressure drop, flow rate, quality factor and optical transparency are the basic parameters. For the advanced filters with excellent filtration performance, some special properties such as thermal stability, antibacterial property, flame retardancy, recyclability and special wettability are in great need under certain extreme conditions. Finally, some future prospects for filtration materials, like material choice and structural design, are also discussed.
Collapse
Affiliation(s)
- Hui Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | | | | | | | | | | |
Collapse
|
50
|
Aggregate removal of particulate matter by selective protein-rich fraction of Moringa oleifera extract. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|