1
|
Hwang C, Choi JG, Pang C, Kim MS, Park S. Skin-Conformal Ag Flake-Decorated PEDOT:PSS Sensor Arrays for Spatially Resolved Body Temperature Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412675. [PMID: 40424019 DOI: 10.1002/smll.202412675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 05/06/2025] [Indexed: 05/28/2025]
Abstract
Rapid and spatial temperature measurement on the skin is essential for detecting localized physiological anomalies, such as inflammation or circulatory issues, while providing insights into thermoregulation. Skin-conformal temperature sensors, with ultra-flexible designs, enable precise and comfortable measurements, supporting real-time monitoring, early diagnosis, and effective intervention. However, achieving rapid and spatial skin-conformal temperature sensor arrays that simultaneously maintain high sensitivity under extreme mechanical stresses remains a significant challenge. This work introduces a skin-conformal temperature sensor array based on a composite of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and Ag flakes, fabricated on a 2-µm-thick parylene-C substrate. A simple mixing process achieves uniform dispersion of Ag flakes, enhancing electrical conductivity to 2.04 kS cm-1. The sensor demonstrates a temperature coefficient of resistance of -2.02%/°C (30-50 °C), a resolution of 0.5 °C, and a rapid response time under 0.41 s per 5 °C change. It endures over 1000 cycles of 200% strain and performs reliably under 3 µm bending radii. Demonstrating high-resolution sensitivity and spatial temperature mapping through letter pattern recognition, the sensor shows promise for applications in body temperature monitoring, thermal imaging, and early diagnosis of temperature-related health conditions.
Collapse
Affiliation(s)
- Chuljin Hwang
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jun-Gyu Choi
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Min-Seok Kim
- Mechanical Metrology Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
2
|
Vaseem M, Rauf S, Fatani F, Bilal RM, Marengo M, De Wolf S, Elmirghani J, Alharthi N, Shamim A. Fully printed doped vanadium dioxide (M) nanoparticles-based temperature sensor with enhanced sensitivity for reliable environmental monitoring using packaging strategy. Sci Rep 2025; 15:12309. [PMID: 40210929 PMCID: PMC11986152 DOI: 10.1038/s41598-025-95417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/19/2025] [Indexed: 04/12/2025] Open
Abstract
Global warming events worldwide have made temperature a crucial aspect of environmental monitoring. However, large-scale deployment of environmental temperature sensors to achieve high-resolution and real-time temperature mapping requires low cost and easily integrable sensors. Printing technologies offer low-cost manufacturing, however, the major challenge for printed electronics (PE) is the preparation of suitable functional inks with performance comparable to traditional electronics. Previously reported printed environmental temperature sensors have suffered from poor sensitivity without long-term outdoor studies which question their feasibility in real-world applications. In this work, we report synthesis of tungsten (W)-doped vanadium dioxide (VO2) nanoparticles (NPs) and their preparation as inks to fabricate highly sensitive, high-resolution low-cost printed temperature sensors. The fully printed W-doped VO2 temperature sensor demonstrates highest temperature coefficient of resistance (TCR) of 4.2% C-1 with a resolution of 0.1 0C in the range of 10-60 0C. The long-term stability of the proposed sensor has been achieved using different packaging strategies, which demonstrate more than 100 days of reliable sensing in an outdoor environment with high humidity levels. Finally, a complete wireless readout system integrated with cloud data storage and a display server has also been developed for the as-printed temperature sensor to enable real-time environmental temperature monitoring.
Collapse
Affiliation(s)
- Mohammad Vaseem
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Sakandar Rauf
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Firas Fatani
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rana Muhammad Bilal
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Marco Marengo
- Physical Sciences and Engineering Division, KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Stefaan De Wolf
- Physical Sciences and Engineering Division, KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Noha Alharthi
- NEOM Company, Tabuk Province,, NEOM, 49643, Kingdom of Saudi Arabia
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Nong H, Tan J, Sun Y, Zhang R, Gu Y, Wei Q, Wang J, Zhang Y, Wu Q, Zou X, Liu B. Cu Intercalation-Stabilized 1T' MoS 2 with Electrical Insulating Behavior. J Am Chem Soc 2025; 147:9242-9249. [PMID: 39899806 DOI: 10.1021/jacs.4c14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The intercalated two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted much attention for their designable structures and novel properties. Among this family, host materials with low symmetry such as 1T' phase TMDCs are particularly interesting because of their potentials in inducing unconventional phenomena. However, such systems typically have low quality and poor stability, hindering further study of the structure-property relationship and applications. In this work, we intercalated Cu into 1T' MoS2 with high crystallinity and high thermal stability up to ∼300 °C. We identified the distribution and arrangement of Cu intercalators for the first time, and the results show that Cu intercalators occupy partially the tetrahedral interstices aligned with Mo sites. The obtained Cu-1T' MoS2 exhibits an insulating hopping transport behavior with a large temperature coefficient of resistance reaching -4∼-2%·K-1. This work broadens the artificial intercalated structure library and promotes the structure design and property modulation of layered materials.
Collapse
Affiliation(s)
- Huiyu Nong
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Yujie Sun
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Rongjie Zhang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Yue Gu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
- Department of Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Wei
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Jingwei Wang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Yunhao Zhang
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityRINGGOLD, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Liu Z, Yuan R, Wang S, Liao W, Yan L, Hu R, Chen J, Yu L. Skin-Inspired Self-Aligned Silicon Nanowire Thermoreceptors for Rapid and Continuous Temperature Monitoring. NANO LETTERS 2025; 25:4196-4203. [PMID: 40062983 DOI: 10.1021/acs.nanolett.4c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Real-time and precise evaluation of human body temperature offers crucial insights for health monitoring and disease diagnosis, while integration of high-performance and miniaturized sensors remains a challenge. Inspired by the thermal sensory pathway of skin, here we developed a new route for scalable fabrication of rapid-response and miniaturized thermoreceptor sensors using self-aligned in-plane silicon nanowire (SiNW) arrays as sensitive channels. These SiNW arrays, with a diameter of 100 ± 14 nm, were integrated into temperature sensors with a density of 445 devices/cm2 without using any high-precision lithography. The sensors exhibited an excellent temperature coefficient of resistance of -1.8%/°C, enabling the precise spatial identification of heat sources. They achieved real-time monitoring of temperature changes during breathing and blowing activities, with a rapid response time of ∼0.2 s and recovery time of ∼1 s. This study provides a robust foundation for the integration of advanced miniaturized temperature sensors for biological monitoring applications.
Collapse
Affiliation(s)
- Zongguang Liu
- Microelectronics Industry Research Institute, College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Rongrong Yuan
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuyi Wang
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Liao
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Lei Yan
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruijin Hu
- Microelectronics Industry Research Institute, College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jianmei Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Linwei Yu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Cui S, Han D, Chen G, Liu S, Xu Y, Yu Y, Peng L. Toward Stretchable Flexible Integrated Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11397-11414. [PMID: 39644227 DOI: 10.1021/acsami.4c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Skin-like flexible sensors hold great potential as the next generation of intelligent electronic devices owing to their broad applications in environmental monitoring, human-machine interfaces, the Internet of Things, and artificial intelligence. Flexible electronics inspired by human skin play a vital role in continuous and real-time health monitoring. This review summarizes recent progress in skin-mountable electronics developed by designing flexible electrodes and substrates into different structures, including serpentine, microcrack, wrinkle, and kirigami. Furthermore, this review briefly discusses advances in wearable integrated sensor systems that mimic the flexibility of human skin, as well as multisensing functions. In the future, innovations in stretchable integrated sensor systems will be crucial to develop next-generation intelligent skin-based sensors for practical applications such as medical diagnosis, treatment, and environment monitoring.
Collapse
Affiliation(s)
- Songya Cui
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Dongxue Han
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Guang Chen
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Shuting Liu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Yuhong Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufeng Yu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
6
|
Almeida MAS, Pires AL, Ramirez JL, Malik SB, de la Flor S, Llobet E, Pereira AT, Pereira AM. Touch Empowerment: Self-Sustaining e-Tattoo Thermoelectric System for Temperature Mapping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403775. [PMID: 39724383 PMCID: PMC11831475 DOI: 10.1002/advs.202403775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/06/2024] [Indexed: 12/28/2024]
Abstract
In recent advancements within sensing technology, driven by the Internet of Things (IoT), significant impacts are observed on health sector applications, notably through wearable electronics like electronic tattoos (e-tattoos). These e-tattoos, designed for direct contact with the skin, facilitate precise monitoring of vital physiological parameters, including body heat, a critical indicator for conditions such as inflammation and infection. Monitoring these indicators can be crucial for early detection of chronic conditions, steering toward proactive healthcare management. This study delves into a thermoelectric sensor e-tattoo designed for detailed skin temperature mapping. Utilizing a novel design, this sensor detects temperature variations across thermoelectric stripes, leveraging screen-printed films of p-type Bi0.35Sb1.65Te3, n-type Bi2Te2.8Se0.2, and poly(vinyl alcohol) (PVA) for enhanced thermoelectric and flexible properties. The application of a prototype printed thermoelectric device on temporary tattoo paper, a pioneering development in wearable health technology is demonstrated. This device, validated through numerical simulations, exhibits significant potential as a non-invasive tool for temperature monitoring, highlighting its value in health diagnostics and management.
Collapse
Affiliation(s)
- M. A. S. Almeida
- IFIMUP Physics for Advanced Materials, Nanotechnology and Photonics, Department of Physics and Astronomy, Faculty of SciencesUniversity of PortoRua do Campo AlegrePorto4169‐007Portugal
| | - A. L. Pires
- IFIMUP Physics for Advanced Materials, Nanotechnology and Photonics, Department of Physics and Astronomy, Faculty of SciencesUniversity of PortoRua do Campo AlegrePorto4169‐007Portugal
| | - J. L. Ramirez
- MINOS Universitat Rovira i VirgiliAvda. Països Catalans, 26Tarragona43007Spain
| | - S. B. Malik
- MINOS Universitat Rovira i VirgiliAvda. Països Catalans, 26Tarragona43007Spain
| | - S. de la Flor
- Department of Mechanical EngineeringUniversitat Rovira i VirgiliAvda. Països Catalans, 26Tarragona43007Spain
| | - E. Llobet
- MINOS Universitat Rovira i VirgiliAvda. Països Catalans, 26Tarragona43007Spain
| | - A. T. Pereira
- i3S Institute for Research and Innovation in HealthRua Alfredo Allen 208Porto4200‐135Portugal
| | - A. M. Pereira
- IFIMUP Physics for Advanced Materials, Nanotechnology and Photonics, Department of Physics and Astronomy, Faculty of SciencesUniversity of PortoRua do Campo AlegrePorto4169‐007Portugal
| |
Collapse
|
7
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
8
|
Dang C, Shao Y, Ding S, Qi H, Zhai W. Polyfunctional and Multisensory Bio-Ionoelastomers Enabled by Covalent Adaptive Networks With Hierarchically Dynamic Bonding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406967. [PMID: 39248650 DOI: 10.1002/adma.202406967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Developing versatile ionoelastomers, the alternatives to hydrogels and ionogels, will boost the advancement of high-performance ionotronic devices. However, meeting the requirements of bio-derivation, high toughness, high stretchability, autonomous self-healing ability, high ionic conductivity, reprocessing, and favorable recyclability in a single ionoelastomer remains a challenging endeavor. Herein, a dynamic covalent and supramolecular design, lipoic acid (LA)-based dynamic covalent ionoelastomer (DCIE), is proposed via melt building covalent adaptive networks with hierarchically dynamic bonding (CAN-HDB), wherein lithium bonds aid in the dissociation of ions and the integration of dynamic disulfide metathesis, lithium bonds, and binary hydrogen bonds enhances the mechanical performances, self-healing capability, reprocessing, and recyclability. Therefore, the trade-off among mechanical versatility, ionic conductivity, self-healing capability, reprocessing, and recyclability is successfully handled. The obtained DCIE demonstrates remarkable stretchability (1011.7%), high toughness (3877 kJ m-3), high ionic conductivity (3.94 × 10-4 S m-1), outstanding self-healing capability, reprocessing for 3D printing, and desirable recyclability. Significantly, the selective ion transport endows the DCIE with multisensory feature capable of generating continuous electrical signals for high-quality sensations towards temperature, humidity, and strain. Coupled with the straightforward methodology, abundant availability of LA and HPC, as well as multifunction, the DCIEs present new concept of advanced ionic conductors for developing soft ionotronics.
Collapse
Affiliation(s)
- Chao Dang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yizhe Shao
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuwei Ding
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
9
|
Wang Y, Meng Y, Ning J, Wang P, Ye Y, Luo J, Yin A, Ren Z, Liu H, Qi X, He S, Yu S, Wei J. Ultra-Thin Highly Sensitive Electronic Skin for Temperature Monitoring. Polymers (Basel) 2024; 16:2987. [PMID: 39518197 PMCID: PMC11548264 DOI: 10.3390/polym16212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Electronic skin capable of reliable monitoring of human skin temperature is crucial for the advancement of non-invasive clinical biomonitoring, disease diagnosis, and health surveillance. Ultra-thin temperature sensors, with excellent mechanical flexibility and robustness, can conformably adhere to uneven skin surfaces, making them ideal candidates. However, achieving high sensitivity often demands sacrificing flexibility, rendering the development of temperature sensors combining both qualities a challenging task. In this study, we utilized a low-cost drop-casting technique to print ultra-thin and lightweight (thickness: approximately 3 µm, weight: 0.61 mg) temperature sensors based on a combination of vanadium dioxide and PEDOT:PSS at room temperature and atmospheric conditions. These sensors exhibit high sensitivity (temperature coefficient of resistance: -5.11%/°C), rapid response and recovery times (0.36 s), and high-temperature accuracy (0.031 °C). Furthermore, they showcased remarkable durability in extreme bending conditions (bending radius = 400 µm), along with stable electrical performance over approximately 2400 bending cycles. This work offers a low-cost, simple, and scalable method for manufacturing ultra-thin and lightweight electronic skins for temperature monitoring, which seamlessly integrate exceptional temperature-measuring capabilities with optimal flexibility.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Yuan Meng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Jin Ning
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Peike Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Yang Ye
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Jingjing Luo
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Ao Yin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Zhongqi Ren
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Haipeng Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Xue Qi
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Sisi He
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Jun Wei
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
10
|
Zhu Z, Su Y, Chen J, Zhang J, Liang L, Nie Z, Tang W, Liang Y, Li H. PEDOT:PSS-Based Wearable Flexible Temperature Sensor and Integrated Sensing Matrix for Human Body Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359155 DOI: 10.1021/acsami.4c11251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible temperature sensors have been widely used in electronic skins and health monitoring. Body temperature as one of the key physiological signals is crucial for detecting human body's abnormalities, which necessitates high sensitivity, quick responsiveness, and stable monitoring. In this paper, we reported a resistive temperature sensor designed as an ultrathin laminated structure with a serpentine pattern and a bioinspired adhesive layer, which was fabricated with a composite of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/single-wall carbon nanotubes/reduced graphene oxide (PEDOT:PSS/SWCNTs/rGO) and polydimethylsiloxane (PDMS). The temperature sensor exhibited a high temperature sensitivity of 0.63% °C-1, coupled with outstanding linearity of 0.98 within 25-45 °C. Furthermore, it showed fast response and recovery speeds of 4.8 and 5.8 s, respectively, between 25 and 36 °C. It also demonstrated exceptional stability when subjected to stress and bending disturbances with the maximum bending interference deviation of 0.03%. Additionally, it displayed good cyclic stability over a broad temperature range from 25 to 85 °C, and the standard deviation at 25 °C is 0.14%. A series of experiments including blowing detection, respiratory monitoring with or without a mask, and during rest or sleep were conducted to show the potential of the flexible temperature sensors in human body monitoring. Furthermore, a 4 × 4 flexible temperature sensor matrix was integrated to detect and map objects such as wrenches and blood vessels through human hand skin. The results were consistent with those of infrared measurements. The flexible temperature sensor is capable of real-time temperature monitoring and has the potential in tracking human respiration, assessing sleep quality, and mapping the temperature of various objects.
Collapse
Affiliation(s)
- Zhengfang Zhu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yi Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jinyong Zhang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Lixin Liang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Zedong Nie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wei Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yongsheng Liang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| |
Collapse
|
11
|
Thomas N, S B, Mathew Koshy A, Basavaraj MG, Swaminathan P. Investigating the optical and electrical performance of rod coated silver nanowire-based transparent conducting films. NANOTECHNOLOGY 2024; 35:465602. [PMID: 39163876 DOI: 10.1088/1361-6528/ad7142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Silver nanowires (Ag NWs) are highly promising building blocks for developing transparent conducting films (TCFs) due to their high electrical conductivity and good optical transparency. The large-scale production of Ag NW-based high-quality TCFs using low-cost processing methods can replace the traditional oxide based TCFs. Therefore, developing a reliable technique for large-scale fabrication of Ag NW-based TCFs is vital. This work involves the synthesis of Ag NWs, the fabrication of large-area Ag NW-based TCFs using a simple rod coating process, its optimization, and the performance analysis of the fabricated TCFs, including their demonstration as transparent heaters. The polyol synthesis method produces Ag NWs of lengths ranging from 25-110µm and diameters from 80-180 nm. The effect of Ag NW length, the number of coating passes, and the volume of the NW dispersion used per coating pass on the electrical and optical properties of the TCFs are studied by quantifying sheet resistance(Rs)and transmittance (T) of the film. The performance of the fabricated film is evaluated by estimating the figure of merit (FoM) in both percolative and bulk regimes. The TCF made with NWs of length 25.7µm and diameter 85.1 nm had the largest value of bulk FoM (101.3), percolative FoM (43.9), and, conductivity exponent (0.6). This elucidated the superior performance of the fabricated TCFs over those fabricated by other techniques. The critical thickness of the film (tmin), at the crossover between the percolation and bulk, scales with the shortest dimension of the NW, namely its diameter. The percolative FoM showed an increase, with a decrease in both sheet resistance and diameter of the NWs, with lowern. The fabricated TCF is tested as a transparent heater and the demonstration proves that rod coated Ag NW-based TCFs can be used for transparent electrode applications.
Collapse
Affiliation(s)
- Neethu Thomas
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
| | - Bharathkumar S
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
| | - Aarju Mathew Koshy
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloidal Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Parasuraman Swaminathan
- Electronic Materials and Thin Films Lab Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 India
- Surface Engineering Group-Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
12
|
Song C, Yu Z, Feng W, Sun K, Wen C, Zhang S, Yu S, Li X. A Flexible Temperature Sensor Integrated at Needle Tip for In Situ Acupoint Temperature Monitoring. MICROMACHINES 2024; 15:924. [PMID: 39064434 PMCID: PMC11278890 DOI: 10.3390/mi15070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Temperature can reflect vital activities, and researchers have attempted to guide Chinese medicine diagnosis and treatment by observing acupoint temperature changes. Integrating a temperature sensor at the needle tip enables in situ acupoint temperature measurement. However, the sensor needles for acupoint temperature monitoring designed in previous studies were fabricated by manually soldering thermistor beads and metal wires, making mass production difficult. In this work, using MEMS manufacturing technology, a flexible temperature sensor that can be integrated at the needle tip is proposed and can be mass-produced on silicon wafers. The sensor uses a Pt thermistor as the temperature-sensing element and has a slender flexible structure with dimensions of 125 μm width by 3.2 cm length. As the sensor is inserted into a hollow needle, the Pt thermistor is glued to the needle tip. In the temperature range of 30 °C to 50 °C, the fabricated temperature sensor has a sensitivity of 5.00 Ω∙°C-1, a nonlinearity of ±0.39%FS, and a repeatability error of ±2.62%FS. Additionally, the sensor has been applied to in vivo acupoint temperature monitoring experiments in rats and demonstrated good performance, suggesting its promise for future research on acupoint temperature.
Collapse
Affiliation(s)
- Ci Song
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (C.S.); (W.F.); (K.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (C.W.)
| | - Weiwen Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (C.S.); (W.F.); (K.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (C.S.); (W.F.); (K.S.)
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Z.Y.); (C.W.)
| | - Shengyan Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.Z.)
| | - Shuguang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.Z.)
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (C.S.); (W.F.); (K.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Wu S, Zhao T, Zhu Y, Paulino GH. Modular multi-degree-of-freedom soft origami robots with reprogrammable electrothermal actuation. Proc Natl Acad Sci U S A 2024; 121:e2322625121. [PMID: 38709915 PMCID: PMC11098090 DOI: 10.1073/pnas.2322625121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Tuo Zhao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC27695
| | - Glaucio H. Paulino
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ08544
- Princeton Materials Institute, Princeton University, Princeton, NJ08544
| |
Collapse
|
14
|
Qiu Y, Ashok A, Nguyen CC, Yamauchi Y, Do TN, Phan HP. Integrated Sensors for Soft Medical Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308805. [PMID: 38185733 DOI: 10.1002/smll.202308805] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Indexed: 01/09/2024]
Abstract
Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.
Collapse
Affiliation(s)
- Yulin Qiu
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
- Department of Materials Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
15
|
Lu Y, Zhang H, Zhao Y, Liu H, Nie Z, Xu F, Zhu J, Huang W. Robust Fiber-Shaped Flexible Temperature Sensors for Safety Monitoring with Ultrahigh Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310613. [PMID: 38291859 DOI: 10.1002/adma.202310613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Flexible temperature sensors capable of detecting and transmitting temperature data from the human body, environment, and electronic devices hold significant potential for applications in electronic skins, human-machine interactions, and disaster prevention systems. Nonetheless, fabricating flexible temperature sensors with exceptional sensing performance remains a formidable task, primarily due to the intricate process of constructing an intrinsically flexible sensing element with high sensitivity. In this study, a facile in situ two-step synthetic method is introduced for fabricating flexible fiber-shaped NiO/carbon nanotube fiber (CNTF) composites. The resulting NiO/CNTF flexible temperature sensors demonstrate outstanding deformability and temperature sensing characteristics, encompassing a broad working range (-15 to 60 °C) and high sensitivity (maximum TCR of -20.2% °C-1 and B value of 3332 K). Importantly, the mechanical and thermal behaviors of the sensor in various application conditions are thoroughly examined using finite element analysis simulations. Moreover, the temperature sensors can effectively capture diverse thermal signals in wearable applications. Notably, a temperature monitoring and warning system is developed to prevent fire accidents resulting from abnormal thermal runaway in electronic devices.
Collapse
Affiliation(s)
- Yufei Lu
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongjian Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yang Zhao
- School of Materials Science and Engineering, Hubei University, 368 Youyi Avenue, Wuhan, 430062, China
| | - Haodong Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Feng Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China
| | - Wei Huang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
16
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Shukla D, Wang H, Awartani O, Dickey MD, Zhu Y. Surface Embedded Metal Nanowire-Liquid Metal-Elastomer Hybrid Composites for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14183-14197. [PMID: 38457372 DOI: 10.1021/acsami.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Both liquid metal (LM) and metallic filler-based conductive composites are promising stretchable conductors. LM alloys exhibit intrinsically high deformability but present challenges for patterning on polymeric substrates due to high surface tension. On the other hand, conductive composites comprising metallic fillers undergo considerable decrease in electrical conductivity under mechanical deformation. To address the challenges, we present silver nanowire (AgNW)-LM-elastomer hybrid composite films, where AgNWs and LM are embedded below the surface of an elastomeric matrix, using two fabrication approaches, sequential and mixed. We investigate and understand the process-structure-property relationship of the AgNW-LM-elastomer hybrid composites fabricated using two approaches. Different weight ratios of AgNWs and LM particles provide tunable electrical conductivity. The hybrid composites show more stable electromechanical performance than the composites with AgNWs alone. In particular, 1:2.4 (AgNW:LMP w/w) sequential hybrid composite shows electromechanical stability similar to that of the LM-elastomer composite, with a resistance increase of 2.04% at 90% strain. The sequential approach is found to form AgIn2 intermetallic compounds which along with Ga-In bonds, imparts large deformability to the sequential hybrid composite as well as mechanical robustness against scratching, cutting, peeling, and wiping. To demonstrate the application of the hybrid composite for stretchable electronics, a laser patterned stretchable heater on textile and a stretchable circuit including a light-emitting diode are fabricated.
Collapse
Affiliation(s)
- Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
18
|
Wang S, Tian H, Wang Y, Zuo H, Tao C, Liu J, Li P, Yang Y, Kou X, Wang J, Kang W. Ruptured liquid metal microcapsules enabling hybridized silver nanowire networks towards high-performance deformable transparent conductors. NANOSCALE 2024. [PMID: 38477150 DOI: 10.1039/d3nr06508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Extensive studies have been carried out on silver nanowires (AgNWs) in view of their impressive conductivity and highly flexible one-dimensional structure. They are seen as a promising choice for producing deformable transparent conductors. Nonetheless, the widespread adoption of AgNW-based transparent conductors is hindered by critical challenges represented by the significant contact resistance at the nanowire junctions and inadequate interfacial adhesion between the nanowires and the substrate. This study presents a novel solution to tackle the aforementioned challenges by capitalizing on liquid metal microcapsules (LMMs). Upon exposure to acid vapor, the encapsulated LMMs rupture, releasing the fluid LM which then forms a metallic overlay and hybridizes with the underlying Ag network. As a result, a transparent conductive film with greatly enhanced electrical and mechanical properties was obtained. The transparent conductor displays negligible resistance variation even after undergoing chemical stability, adhesion, and bending tests, and ultrasonic treatment. This indicates its outstanding adhesion strength to the substrate and mechanical flexibility. The exceptional electrical properties and robust mechanical stability of the transparent conductor position it as an ideal choice for direct integration into flexible touch panels and wearable strain sensors, as evidenced in this study. By resolving the critical challenges in this field, the proposed strategy establishes a compelling roadmap to navigate the development of high-performance AgNW-based transparent conductors, setting a solid foundation for further advancement in the field of deformable electronics.
Collapse
Affiliation(s)
- Shipeng Wang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Huaisen Tian
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yawen Wang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Haojie Zuo
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Chengliang Tao
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiawei Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Pengyuan Li
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yan Yang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xu Kou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiangxin Wang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenbin Kang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
19
|
Zhang Z, Li Q, Xu L, Tian W, Li Z. High-Performance Flexible Temperature Sensors Based on Laser-Irradiated Ag-MWCNTs/PEDOT:PSS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6078-6087. [PMID: 38285619 DOI: 10.1021/acsami.3c15734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Recently, flexible temperature sensors have attracted significant interest due to their wide-ranging applications in areas such as biomedical monitoring, environmental monitoring, electronic skin, and intelligent robots. However, a combination of high sensitivity and high resolution remains a critical challenge. These properties depend on the synthesis techniques of the sensitive materials. In this work, we use a laser irradiation method to prepare a silver nanoparticle-modified carbon nanotube (Ag-MWCNT) which is further mixed with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). The developed temperature sensor exhibited a high sensitivity of -0.45% °C-1 and linearity with an R2 value of 0.998 in the temperature range of 25-80 °C. Additionally, the sensor demonstrated remarkable repeatability, making it suitable for real-time temperature monitoring of the human body and environment. This temperature sensor is successfully demonstrated in practical applications such as monitoring the temperature of various parts of the human body and sensing the spatial temperature. These demonstrations highlight their significant potential in electronic skin and other related fields.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingchun Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lizhi Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhuai Tian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhipeng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
20
|
Chai J, Wang X, Li X, Wu G, Zhao Y, Nan X, Xue C, Gao L, Zheng G. A Dual-Mode Pressure and Temperature Sensor. MICROMACHINES 2024; 15:179. [PMID: 38398909 PMCID: PMC10893131 DOI: 10.3390/mi15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
The emerging field of flexible tactile sensing systems, equipped with multi-physical tactile sensing capabilities, holds vast potential across diverse domains such as medical monitoring, robotics, and human-computer interaction. In response to the prevailing challenges associated with the limited integration and sensitivity of flexible tactile sensors, this paper introduces a versatile tactile sensing system capable of concurrently monitoring temperature and pressure. The temperature sensor employs carbon nanotube/graphene conductive paste as its sensitive material, while the pressure sensor integrates an ionic gel containing boron nitride as its sensitive layer. Through the application of cost-effective screen printing technology, we have successfully manufactured a flexible dual-mode sensor with exceptional performance, featuring high sensitivity (804.27 kPa-1), a broad response range (50 kPa), rapid response time (17 ms), and relaxation time (34 ms), alongside exceptional durability over 5000 cycles. Furthermore, the resistance temperature coefficient of the sensor within the temperature range of 12.5 °C to 93.7 °C is -0.17% °C-1. The designed flexible dual-mode tactile sensing system enables the real-time detection of pressure and temperature information, presenting an innovative approach to electronic skin with multi-physical tactile sensing capabilities.
Collapse
Affiliation(s)
- Jin Chai
- Xiamen Zehuo Digital Technology Co., Ltd., Xiamen 361102, China;
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xuan Li
- The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050051, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (Y.Z.)
| |
Collapse
|
21
|
Dabert M, Papanastasiou DT, Vidal L, Hajjar-Garreau S, Bellet D, Lougnot D, Balan L. Enhancing the Properties of Photo-Generated Metallized Nanocomposite Coatings through Thermal Annealing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:193. [PMID: 38251157 PMCID: PMC10818463 DOI: 10.3390/nano14020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
In this work, the effect of thermal annealing on silver nanoparticles@polymer (AgNPs@polymer) nanocomposite coatings was investigated. These photo-generated metallized coatings have a spatial distribution of metal nanoparticles, with a depth-wise decrease in their concentration. During annealing, both structural and morphological variations, as well as a spatial reorganization of AgNPs, were observed, both at the surface and in the core of the AgNPs@polymer coating. Owing to their increased mobility, the polymer chains reorganize spontaneously, and, at the same time, a hopping diffusion process, caused by the minimization of the surface energy, promotes the migration and coalescence of the silver nanoparticles towards the surface. The layer of discrete nanoparticles gradually transforms from a weakly percolative assembly to a denser and more networked structure. Consequently, the surface of the coatings becomes significantly more electrically conductive, hydrophobic, and reflective. The general trend is that the thinner the nanohybrid coating, the more pronounced the effect of thermal annealing on its spatial reorganization and properties. These results open up interesting prospects in the field of metallized coating technology and pave the way for integration into a wide variety of devices, e.g., efficient and inexpensive reflectors for energy-saving applications, electrically conductive microdevices, and printed electronic microcircuits.
Collapse
Affiliation(s)
- Marine Dabert
- Univ. d’Orléans, Conditions Extrêmes Matériaux Haute Température et Irradiation CNRS UPR 3079, F-45000 Orléans, France
| | | | - Loïc Vidal
- Univ. de Haute Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR 7361, F-68100 Mulhouse, France; (L.V.); (S.H.-G.)
| | - Samar Hajjar-Garreau
- Univ. de Haute Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR 7361, F-68100 Mulhouse, France; (L.V.); (S.H.-G.)
| | - Daniel Bellet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (D.T.P.); (D.B.)
| | - Daniel Lougnot
- Univ. de Haute Alsace, Centre de Recherches sur les Economies, les Sociétés, les Arts et les Techniques CRESAT EA 3436, F-68100 Mulhouse, France
| | - Lavinia Balan
- Univ. d’Orléans, Conditions Extrêmes Matériaux Haute Température et Irradiation CNRS UPR 3079, F-45000 Orléans, France
| |
Collapse
|
22
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
23
|
Gu J, Shen Y, Tian S, Xue Z, Meng X. Recent Advances in Nanowire-Based Wearable Physical Sensors. BIOSENSORS 2023; 13:1025. [PMID: 38131785 PMCID: PMC10742341 DOI: 10.3390/bios13121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Wearable electronics is a technology that closely integrates electronic devices with the human body or clothing, which can realize human-computer interaction, health monitoring, smart medical, and other functions. Wearable physical sensors are an important part of wearable electronics. They can sense various physical signals from the human body or the surrounding environment and convert them into electrical signals for processing and analysis. Nanowires (NW) have unique properties such as a high surface-to-volume ratio, high flexibility, high carrier mobility, a tunable bandgap, a large piezoresistive coefficient, and a strong light-matter interaction. They are one of the ideal candidates for the fabrication of wearable physical sensors with high sensitivity, fast response, and low power consumption. In this review, we summarize recent advances in various types of NW-based wearable physical sensors, specifically including mechanical, photoelectric, temperature, and multifunctional sensors. The discussion revolves around the structural design, sensing mechanisms, manufacture, and practical applications of these sensors, highlighting the positive role that NWs play in the sensing process. Finally, we present the conclusions with perspectives on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
| | | | | | - Zhaoguo Xue
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Xianhong Meng
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
24
|
Fernández Sánchez-Romate XX, Del Bosque García A, Sánchez M, Ureña A. Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22377-22394. [PMID: 37120855 PMCID: PMC10176477 DOI: 10.1021/acsami.2c22162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C-1) in comparison to most of the consulted studies (below 0.01 °C-1), proving, thus, excellent capabilities never seen before for this type of application.
Collapse
Affiliation(s)
- Xoan Xosé Fernández Sánchez-Romate
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Antonio Del Bosque García
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Sánchez
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Alejandro Ureña
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
25
|
Lee G, Hossain O, Jamalzadegan S, Liu Y, Wang H, Saville AC, Shymanovich T, Paul R, Rotenberg D, Whitfield AE, Ristaino JB, Zhu Y, Wei Q. Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. SCIENCE ADVANCES 2023; 9:eade2232. [PMID: 37043563 PMCID: PMC10096584 DOI: 10.1126/sciadv.ade2232] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Wearable plant sensors hold tremendous potential for smart agriculture. We report a lower leaf surface-attached multimodal wearable sensor for continuous monitoring of plant physiology by tracking both biochemical and biophysical signals of the plant and its microenvironment. Sensors for detecting volatile organic compounds (VOCs), temperature, and humidity are integrated into a single platform. The abaxial leaf attachment position is selected on the basis of the stomata density to improve the sensor signal strength. This versatile platform enables various stress monitoring applications, ranging from tracking plant water loss to early detection of plant pathogens. A machine learning model was also developed to analyze multichannel sensor data for quantitative detection of tomato spotted wilt virus as early as 4 days after inoculation. The model also evaluates different sensor combinations for early disease detection and predicts that minimally three sensors are required including the VOC sensors.
Collapse
Affiliation(s)
- Giwon Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Oindrila Hossain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sina Jamalzadegan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda C. Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Tatsiana Shymanovich
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna E. Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27695, USA
| | - Jean B. Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
26
|
Zhu Y, Haghniaz R, Hartel MC, Guan S, Bahari J, Li Z, Baidya A, Cao K, Gao X, Li J, Wu Z, Cheng X, Li B, Emaminejad S, Weiss PS, Khademhosseini A. A Breathable, Passive-Cooling, Non-Inflammatory, and Biodegradable Aerogel Electronic Skin for Wearable Physical-Electrophysiological-Chemical Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209300. [PMID: 36576895 PMCID: PMC10006339 DOI: 10.1002/adma.202209300] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Real-time monitoring of human health can be significantly improved by designing novel electronic skin (E-skin) platforms that mimic the characteristics and sensitivity of human skin. A high-quality E-skin platform that can simultaneously monitor multiple physiological and metabolic biomarkers without introducing skin discomfort or irritation is an unmet medical need. Conventional E-skins are either monofunctional or made from elastomeric films that do not include key synergistic features of natural skin, such as multi-sensing, breathability, and thermal management capabilities in a single patch. Herein, a biocompatible and biodegradable E-skin patch based on flexible gelatin methacryloyl aerogel (FGA) for non-invasive and continuous monitoring of multiple biomarkers of interest is engineered and demonstrated. Taking advantage of cryogenic temperature treatment and slow polymerization, FGA is fabricated with a highly interconnected porous structure that displays good flexibility, passive-cooling capabilities, and ultra-lightweight properties that make it comfortable to wear for long periods of time. It also provides numerous permeable capillary channels for thermal-moisture transfer, ensuring its excellent breathability. Therefore, the engineered FGA-based E-skin can simultaneously monitor body temperature, hydration, and biopotentials via electrophysiological sensors and detect glucose, lactate, and alcohol levels via electrochemical sensors. This work offers a previously unexplored materials strategy for next-generation E-skin platforms with superior practicality.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zijie Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ke Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xuanbing Cheng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Manufacturing Systems Engineering and Management, California State University Northridge, Northridge, CA, 91330, USA
| | - Sam Emaminejad
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
27
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
28
|
Chen Y, Bai Y, Wang X, Zhang H, Zheng H, Gu N. Plasmonic/magnetic nanoarchitectures: From controllable design to biosensing and bioelectronic interfaces. Biosens Bioelectron 2023; 219:114744. [PMID: 36327555 DOI: 10.1016/j.bios.2022.114744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 02/08/2023]
Abstract
Controllable design of the nanocrystal-assembled plasmonic/magnetic nanoarchitectures (P/MNAs) inspires abundant methodologies to enhance light-matter interactions and control magnetic-induced effects by means of fine-tuning the morphology and ordered packing of noble metallic or magnetic building blocks. The burgeoning development of multifunctional nanoarchitectures has opened up broad range of interdisciplinary applications including biosensing, in vitro diagnostic devices, point-of-care (POC) platforms, and soft bioelectronics. By taking advantage of their customizability and efficient conjugation with capping biomolecules, various nanoarchitectures have been integrated into high-performance biosensors with remarkable sensitivity and versatility, enabling key features that combined multiplexed detection, ease-of-use and miniaturization. In this review, we provide an overview of the representative developments of nanoarchitectures that being built by plasmonic and magnetic nanoparticles over recent decades. The design principles and key mechanisms for signal amplification and quantitative sensitivity have been explored. We highlight the structure-function programmability and prospects of addressing the main limitations for conventional biosensing strategies in terms of accurate selectivity, sensitivity, throughput, and optoelectronic integration. State-of-the-art strategies to achieve affordable and field-deployable POC devices for early multiplexed detection of infectious diseases such as COVID-19 has been covered in this review. Finally, we discuss the urgent yet challenging issues in nanoarchitectures design and related biosensing application, such as large-scale fabrication and integration with portable devices, and provide perspectives and suggestions on developing smart biosensors that connecting the materials science and biomedical engineering for personal health monitoring.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China.
| | - Yu Bai
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Xi Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Heng Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Haoran Zheng
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China.
| |
Collapse
|
29
|
Jiang C, Ding X, Xie W, Wu D. Ultrastretchable Composite Organohydrogels with Dual Cross-Links Enabling Multimodal Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55143-55154. [PMID: 36453939 DOI: 10.1021/acsami.2c18667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Building multiple cross-links or networks is a favorable way of diversifying applications of the hydrogels, which is also available for the organohydrogels prepared via the solvent replacement way. However, the situations become more complicated for organohydrogels due to the presence of replaced solvents. Therefore, the correlations between the multiple cross-links and final performance need to be better understood for the organohydrogels, which is vital for tailoring their inherent properties to expand final application scenarios. Polyacrylamide (PAM)/poly(vinyl alcohol) (PVA)/MXene composite organohydrogels with dual cross-links, namely, the covalently cross-linked PAM chains as the primary network and the physically cross-linked PVA/PAM chains with MXene particles as the secondary cross-links, were developed here for the study. The occurrence of the secondary cross-links plays multiple roles as sacrificial units endowing the system with ultrastretchability with an excellent strain-resistance effect and as temperature-sensitive units endowing the system with thermosensation ability with an outstanding temperature coefficient of resistance. Thus, the optimized sample can be used as a strain sensor with excellent environmental tolerance for detecting human motion as a pressure sensor to probe compression with weak deformation and as a thermal sensor to capture environmental temperature changes. This work provides valuable information on developing organohydrogels with superior performance for multimodal sensors.
Collapse
Affiliation(s)
- Chenguang Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Xuexue Ding
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Wenyuan Xie
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
- Institute for Innovative Materials & Energy, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
- Provincial Key Laboratories of Environmental Materials & Engineering, Yangzhou 225002, Jiangsu, P. R. China
| |
Collapse
|
30
|
Yoo H, Kim E, Chung JW, Cho H, Jeong S, Kim H, Jang D, Kim H, Yoon J, Lee GH, Kang H, Kim JY, Yun Y, Yoon S, Hong Y. Silent Speech Recognition with Strain Sensors and Deep Learning Analysis of Directional Facial Muscle Movement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54157-54169. [PMID: 36413961 DOI: 10.1021/acsami.2c14918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silent communication based on biosignals from facial muscle requires accurate detection of its directional movement and thus optimally positioning minimum numbers of sensors for higher accuracy of speech recognition with a minimal person-to-person variation. So far, previous approaches based on electromyogram or pressure sensors are ineffective in detecting the directional movement of facial muscles. Therefore, in this study, high-performance strain sensors are used for separately detecting x- and y-axis strain. Directional strain distribution data of facial muscle is obtained by applying three-dimensional digital image correlation. Deep learning analysis is utilized for identifying optimal positions of directional strain sensors. The recognition system with four directional strain sensors conformably attached to the face shows silent vowel recognition with 85.24% accuracy and even 76.95% for completely nonobserved subjects. These results show that detection of the directional strain distribution at the optimal facial points will be the key enabling technology for highly accurate silent speech recognition.
Collapse
Affiliation(s)
- Hyunjun Yoo
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Eunji Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Jong Won Chung
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Hyeon Cho
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Sujin Jeong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Heeseung Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul08826, Korea
| | - Dongju Jang
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Hayun Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| | - Gae Hwang Lee
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Hyunbum Kang
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Joo-Young Kim
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Youngjun Yun
- Organic Material Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon16678, Korea
| | - Sungroh Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul08826, Korea
| |
Collapse
|
31
|
Booth RE, Khanna C, Schrickx HM, Siddika S, Al Shafe A, O'Connor BT. Electrothermally Actuated Semitransparent Shape Memory Polymer Composite with Application as a Wearable Touch Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53129-53138. [PMID: 36383747 DOI: 10.1021/acsami.2c10290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A semitransparent shape memory polymer (SMP):silver nanowire (AgNW) composite is demonstrated to be capable of low-temperature actuation, thus making it attractive for wearable electronics applications that require intimate contact with the human body. We demonstrate that the SMP:AgNW composite has tunable electrical and optical transparency through variation of the AgNW loading and that the AgNW loading did not significantly change the mechanical behavior of the SMP. The SMP composite is also capable of electrical actuation through Joule heating, where applying a 4 V bias across the AgNWs resulted in full shape recovery. The SMP was found to have high strain sensitivity at both small (<1%) and large (over 10%) applied strain. The SMP could sense strains as low as 0.6% with a gauge factor of 8.2. The SMP composite was then utilized as a touch sensor, able to sense and differentiate tapping and pressing. Finally, the composite was applied as a wearable ring that was thermally actuated to conformably fit onto a finger as a touch sensor. The ring sensor was able to sense finger tapping, pressing, and bending with high signal-to-noise ratios. These results demonstrate that SMP:AgNW composites are a promising design approach for application in wearable electronics.
Collapse
Affiliation(s)
- Ronald E Booth
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Chetna Khanna
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Harry M Schrickx
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Salma Siddika
- Department of Materials Science and Engineering and ORaCEL, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abdullah Al Shafe
- Department of Materials Science and Engineering and ORaCEL, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
32
|
Ding S, Zhang S, Yin T, Zhang H, Wang C, Wang Y, Li Q, Zhou N, Su F, Jiang Z, Tan D, Yang R. Room-temperature nanojoining of silver nanowires by graphene oxide for highly conductive flexible transparent electrodes. NANOTECHNOLOGY 2022; 34:045201. [PMID: 36265462 DOI: 10.1088/1361-6528/ac9c09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Flexible transparent electrodes for touch panels, solar cells, and wearable electronics are in great demand in recent years, and the silver nanowire (AgNW) flexible transparent electrode (FTE) is among the top candidates due to its excellent light transmittance and flexibility and the highest conductivity of silver among all metals. However, the conductivity of an AgNWs network has long been limited by the large contact resistance. Here we show a room-temperature solution process to tackle the challenge by nanojoining AgNWs with two-dimensional graphene oxide (GO). The conductivity of the AgNWs network is improved 18 times due to the enhanced junctions between AgNWs by the coated GOs, and the AgNW-GO FTE exhibits a low sheet resistance of 23 Ohm sq-1and 88% light transmittance. It is stable under high temperature and current and their flexibility is intact after 1000 cycles of bending. Measurements of a bifunctional electrochromic device shows the high performance of the AgNW-GO FTE as a FTE.
Collapse
Affiliation(s)
- Su Ding
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Shucheng Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Tong Yin
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - He Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Chenxi Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yong Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Qikun Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Nan Zhou
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering Nanyang Technological University, 639798, Singapore
| | - Dan Tan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| |
Collapse
|
33
|
Ji G, Chen Z, Li H, Awuye DE, Guan M, Zhu Y. Electrospinning-Based Biosensors for Health Monitoring. BIOSENSORS 2022; 12:876. [PMID: 36291013 PMCID: PMC9599869 DOI: 10.3390/bios12100876] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 05/27/2023]
Abstract
In recent years, many different biosensors are being used to monitor physical health. Electrospun nanofiber materials have the advantages of high specific surface area, large porosity and simple operation. These properties play a vital role in biosensors. However, the mechanical properties of electrospun nanofibers are poor relative to other techniques of nanofiber production. At the same time, the organic solvents used in electrospinning are generally toxic and expensive. Meanwhile, the excellent performance of electrospun nanofibers brings about higher levels of sensitivity and detection range of biosensors. This paper summarizes the principle and application of electrospinning technology in biosensors and its comparison with other technologies.
Collapse
Affiliation(s)
- Guojing Ji
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Hui Li
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
- Wuhu Innovation New Materials Co., Ltd., Wuhu 241080, China
| | - Desire Emefa Awuye
- Department of Minerals and Materials Engineering, University of Mines and Technology, Tarkwa 03123, Ghana
| | - Mengdi Guan
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yingbao Zhu
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
34
|
Di Q, Li L, Miao X, Lan L, Yu X, Liu B, Yi Y, Naumov P, Zhang H. Fluorescence-based thermal sensing with elastic organic crystals. Nat Commun 2022; 13:5280. [PMID: 36075917 PMCID: PMC9458730 DOI: 10.1038/s41467-022-32894-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Operation of temperature sensors over extended temperature ranges, and particularly in extreme conditions, poses challenges with both the mechanical integrity of the sensing material and the operational range of the sensor. With an emissive bendable organic crystalline material, here we propose that organic crystals can be used as mechanically robust and compliant fluorescence-based thermal sensors with wide range of temperature coverage and complete retention of mechanical elasticity. The exemplary material described remains elastically bendable and shows highly linear correlation with the emission wavelength and intensity between 77 K to 277 K, while it also transduces its own fluorescence in active waveguiding mode. This universal new approach expands the materials available for optical thermal sensing to a vast number of organic crystals as a new class of engineering materials and opens opportunities for the design of lightweight, organic fluorescence-based thermal sensors that can operate under extreme temperature conditions such as are the ones that will be encountered in future space exploration missions. A mechanically compliant and robust sensing material is essential for accurate and reliable thermal sensing. Here, the authors report the use of elastic organic crystals as fluorescence-based thermal sensors that cover a wide range of temperatures with complete retention of the sensor’s elasticity.
Collapse
Affiliation(s)
- Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.,Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box 38044, Abu Dhabi, UAE
| | - Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Bin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE. .,Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE. .,Department of Chemistry, Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
35
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
36
|
Yang Y, Cui T, Li D, Ji S, Chen Z, Shao W, Liu H, Ren TL. Breathable Electronic Skins for Daily Physiological Signal Monitoring. NANO-MICRO LETTERS 2022; 14:161. [PMID: 35943631 PMCID: PMC9362661 DOI: 10.1007/s40820-022-00911-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
With the aging of society and the increase in people's concern for personal health, long-term physiological signal monitoring in daily life is in demand. In recent years, electronic skin (e-skin) for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations. Among them, the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life. In this review, the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed. By dividing them into breathable e-skin electrodes, breathable e-skin sensors, and breathable e-skin systems, we sort out their design ideas, manufacturing processes, performances, and applications and show their advantages in long-term physiological signal monitoring in daily life. In addition, the development directions and challenges of the breathable e-skin are discussed and prospected.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tianrui Cui
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ding Li
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Shourui Ji
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhikang Chen
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wancheng Shao
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Houfang Liu
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
37
|
Chae WH, Patil JJ, Grossman JC. Conformal Encapsulation of Silver Nanowire Transparent Electrodes by Nanosized Reduced Graphene Oxide Leading to Improved All-Round Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34997-35009. [PMID: 35861058 DOI: 10.1021/acsami.2c08377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed silver nanowire (AgNW) networks are promising as next-generation transparent conductive electrodes due to their excellent optoelectronic properties, mechanical flexibility, as well as low material and processing costs. However, AgNWs are prone to thermally induced fragmentation and chemical degradation, necessitating a conformal protective coating typically achieved by low-throughput methods such as sputtering or atomic layer deposition. Herein, we report a facile all-solution-based approach to synthesize a conformally coated AgNW network by nanosized reduced graphene oxide R(nGO). In this method, probe ultrasonication is used to obtain nanosized GO, which is coated on AgNWs by a layer-by-layer approach and then chemically treated to form R(nGO)/AgNW. We show that our transparent electrode has excellent transmittance (85-92%) and sheet resistance (17.5 Ω/sq), combined with outstanding thermal and electrothermal stability, thanks to the conformal nature of the R(nGO) film, and demonstrate its use as a transparent heater with a high maximum temperature. This, in conjunction with improved long-term chemical and mechanical bending stability of R(nGO)/AgNW, indicates that our newly developed process represents an effective and low-cost strategy to improve the overall operational resilience of metal nanowire-based transparent conductive electrodes.
Collapse
Affiliation(s)
- Woo Hyun Chae
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jatin J Patil
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Wangxu H, Lyu L, Bi H, Wu X. Flexible Pressure Sensor Array with Multi-Channel Wireless Readout Chip. SENSORS 2022; 22:s22103934. [PMID: 35632343 PMCID: PMC9147697 DOI: 10.3390/s22103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
Flexible sensor arrays are widely used for wearable physiological signal recording applications. A high density sensor array requires the signal readout to be compatible with multiple channels. This paper presents a highly-integrated remote health monitoring system integrating a flexible pressure sensor array with a multi-channel wireless readout chip. The custom-designed chip features 64 voltage readout channels, a power management unit, and a wireless transceiver. The whole chip fabricated in a 65 nm complementary metal-oxide-semiconductor (CMOS) process occupies 3.7 × 3.7 mm2, and the core blocks consume 2.3 mW from a 1 V supply in the wireless recording mode. The proposed multi-channel system is validated by measuring the ballistocardiogram (BCG) and pulse wave, which paves the way for future portable remote human physiological signals monitoring devices.
Collapse
Affiliation(s)
| | | | | | - Xing Wu
- Correspondence: (L.L.); (X.W.)
| |
Collapse
|
39
|
Bai X, Fu H, Liu Y, Sun J, Yan K, Gao X, Xu H, Yang Z, Wu D, Huang Y. A facile approach to fabricate flexible capacitance sensor based on
Spatial Confining Forced Network Assembly
method for detecting and analyzing large deformation of damping rubber. J Appl Polym Sci 2022. [DOI: 10.1002/app.52220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiaofeng Bai
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Hongbo Fu
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Ying Liu
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Kexin Yan
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Xiaolong Gao
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Hong Xu
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Zhenzhou Yang
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Daming Wu
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yao Huang
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
40
|
Patil JJ, Reese ML, Lee E, Grossman JC. Oxynitride-Encapsulated Silver Nanowire Transparent Electrode with Enhanced Thermal, Electrical, and Chemical Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4423-4433. [PMID: 35029366 DOI: 10.1021/acsami.1c20521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver nanowire (AgNW) networks have been explored as a promising technology for transparent electrodes due to their solution-processability, low-cost implementation, and excellent trade-off between sheet resistance and transparency. However, their large-scale implementation in applications such as solar cells, transparent heaters, and display applications has been hindered by their poor thermal, electrical, and chemical stability. In this work, we present reactive sputtering as a method for fast deposition of metal oxynitrides as an encapsulant layer on AgNWs. Because O2 cannot be used as a reactive gas in the presence of oxidation-sensitive materials such as Ag, N2 is used under moderate sputtering base pressures to leverage residual H2O on the sample and chamber to deposit Al, Ti, and Zr oxynitrides (AlOxNy, TiOxNy, and ZrOxNy) on Ag nanowires on glass and polymer substrates. All encapsulants improve AgNW networks' electrical, thermal, and chemical stability. In particular, AlOxNy-encapsulated networks present exceptional chemical stability (negligible increase in resistance over 7 days at 80% relative humidity and 80 °C) and transparency (96% for 20 nm films on AgNWs), while TiOxNy demonstrates exceptional thermal and electrical stability (stability up to over temperatures 100 °C more than that of bare AgNW networks, with a maximum areal power density of 1.72 W/cm2, and no resistance divergence at up to 20 V), and ZrOxNy presents intermediate properties in all metrics. In summary, a novel method of oxynitride deposition, leveraging moderate base pressure reactive sputtering, is demonstrated for AgNW encapsulant deposition, which is compatible with roll-to-roll processes that are operated at commercial scales, and this technique can be extended to arbitrary, vacuum-compatible substrates and device architectures.
Collapse
Affiliation(s)
- Jatin J Patil
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Maya L Reese
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Yoo D, Kim S, Cho W, Park J, Kim J. Hydroprinting Technology to Transfer Ultrathin, Transparent, and Double-Sided Conductive Nanomembranes for Multiscale 3D Conformal Electronics. SMALL METHODS 2022; 6:e2100869. [PMID: 35041271 DOI: 10.1002/smtd.202100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Transparent multiscale 3D conformal electronics using hydroprinting with polyvinyl alcohol (PVA) as a sacrificial layer to transfer networks of silver nanowires (AgNWs) without a carrier layer is developed. However, AgNWs are known to disperse on water surfaces during the transfer process. Therefore, a functional film is developed by simultaneously welding and embedding AgNWs in the PVA through a simple one-step thermal pressing, demonstrating that ultrathin, transparent, and double-sided conductive/patterned nanomembranes with welded AgNWs can float on water without dispersion. The nanomembrane with an excellent figure of merit of 1200, a low sheet resistance of 16.2 Ω sq-1 , and a high transmittance of 98.17% achieves conformal contact with excellent step surface coverage of complex macro- and microstructures because of its nanoscale thickness (54.39 nm) and numerous deformable micro- and nanopores. Furthermore, the double-sided conductive nanomembranes facilitate wiring and layer-by-layer assembly, regardless of the transfer direction of the surface. As a proof-of-concept demonstration, a nanomembrane-based aneurysm sensor is developed. Its high transparency enables coil embolization, and the sensor can measure the pushing force of the coil within an aneurysm in an endovascular simulator. Moreover, this newly developed hydroprinting technology provides a new method for the fabrication of transparent multiscale 3D conformal electronics.
Collapse
Affiliation(s)
- Dongwoo Yoo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seonghyeon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woosung Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaechan Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
42
|
Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60736-60762. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the advance in flexible and stretchable electronics, one-dimensional nanomaterials such as metal nanowires have drawn much attention in the past 10 years or so. Metal nanowires, especially silver nanowires, have been recognized as promising candidate materials for flexible and stretchable electronics. Owing to their high electrical conductivity and high aspect ratio, metal nanowires can form electrical percolation networks, maintaining high electrical conductivity under deformation (e.g., bending and stretching). Apart from coating metal nanowires for making large-area transparent conductive films, many applications require patterned metal nanowires as electrodes and interconnects. Precise patterning of metal nanowire networks is crucial to achieve high device performances. Therefore, a high-resolution, designable, and scalable patterning of metal nanowire networks is important but remains a critical challenge for fabricating high-performance electronic devices. This review summarizes recent advances in patterning of metal nanowire networks, using subtractive methods, additive methods of nanowire dispersions, and printing methods. Representative device applications of the patterned metal nanowire networks are presented. Finally, challenges and important directions in the area of the patterning of metal nanowire networks for device applications are discussed.
Collapse
Affiliation(s)
- Qijin Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
43
|
Wu S, Cui Z, Baker GL, Mahendran S, Xie Z, Zhu Y. A Biaxially Stretchable and Self-Sensing Textile Heater Using Silver Nanowire Composite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59085-59091. [PMID: 34860492 DOI: 10.1021/acsami.1c17651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable heaters have garnered significant attention from academia and industry for their great potential in thermotherapy. Silver nanowire (AgNW) is a promising conductive material for flexible and stretchable electrodes. Here, a resistive, biaxially stretchable heater based on AgNW composite is reported for the first time, where a AgNW percolation network is encased in a thin polyimide (PI) film and integrated with a highly stretchable textile. AgNW/PI is patterned with a 2D Kirigami structure, which enables constant resistance under a large tensile strain (up to uniaxial 100% strain and 50% biaxial strain). The heater can achieve a high temperature of ∼140 °C with a low current of 0.125 A, fast heating and cooling rates of ∼16.5 and ∼14.1 °C s-1, respectively, and stable performance over 400 heating cycles. A feedback control system is developed to provide constant heating temperature under a temperature change of the surrounding environment. Demonstrated applications in applying thermotherapy at the curvilinear surface of the knee using the stretchable heater illustrate its promising potential for wearable applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zheng Cui
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - G Langston Baker
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Siddarth Mahendran
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ziyang Xie
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
44
|
Kim HJ, Jin Y, Achavananthadith S, Lin R, Ho JS. A wireless optoelectronic skin patch for light delivery and thermal monitoring. iScience 2021; 24:103284. [PMID: 34765913 PMCID: PMC8571508 DOI: 10.1016/j.isci.2021.103284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022] Open
Abstract
Wearable optoelectronic devices can interface with the skin for applications in continuous health monitoring and light-based therapy. Measurement of the thermal effect of light on skin is often critical to track physiological parameters and control light delivery. However, accurate measurement of light-induced thermal effects is challenging because conventional sensors cannot be placed on the skin without obstructing light delivery. Here, we report a wearable optoelectronic patch integrated with a transparent nanowire sensor that provides light delivery and thermal monitoring at the same location. We achieve fabrication of a transparent silver nanowire network with >92% optical transmission that provides thermoresistive sensing of skin temperature. By integrating the sensor in a wireless optoelectronic patch, we demonstrate closed-loop regulation of light delivery as well as thermal characterization of blood flow. This light delivery and thermal monitoring approach may open opportunities for wearable devices in light-based diagnostics and therapies.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yunxia Jin
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Sippanat Achavananthadith
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Rongzhou Lin
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - John S. Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
45
|
Liu R, He L, Cao M, Sun Z, Zhu R, Li Y. Flexible Temperature Sensors. Front Chem 2021; 9:539678. [PMID: 34631655 PMCID: PMC8492987 DOI: 10.3389/fchem.2021.539678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Temperature reflects the balance between production and dissipate of heat. Flexible temperature sensors are primary sensors used for temperature monitoring. To obtain real-time and accurate information of temperature, different flexible temperature sensors are developed according to the principle of flexible resistance temperature detector (FRTC), flexible thermocouple, flexible thermistor and flexible thermochromic, showing great potential in energy conversion and storage. In order to obtain high integration and multifunction, various flexible temperature sensors are studied and optimized, including active-matrix flexible temperature sensor, self-powered flexible temperature sensor, self-healing flexible temperature sensor and self-cleaning flexible temperature sensor. This review focuses on the structure, material, fabrication and performance of flexible temperature sensors. Also, some typical applications of flexible temperature sensors are discussed and summarized.
Collapse
Affiliation(s)
- Ruping Liu
- Beijing Institute of Graphic Communication, Beijing, China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Meijuan Cao
- Beijing Institute of Graphic Communication, Beijing, China
| | - Zhicheng Sun
- Beijing Institute of Graphic Communication, Beijing, China
| | - Ruiqi Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Ye Li
- Beijing Institute of Graphic Communication, Beijing, China
| |
Collapse
|
46
|
Huang L, Zeng Y, Liu X, Tang D. Pressure-Based Immunoassays with Versatile Electronic Sensors for Carcinoembryonic Antigen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46440-46450. [PMID: 34547887 DOI: 10.1021/acsami.1c16514] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pressure-based immunoassays have been studied for point-of-care testing for which increasing the sensitivity is still a challenge. In this study, we described an enhanced pressure-based immunoassay with a versatile electronic sensor for the sensitive biological analysis. The versatile electronic sensor had multifunctional sensing capabilities with temperature and pressure recording. Magnetic bead-modified capture antibody and platinum nanoparticle-labeled detection antibody were used as the biorecognition element of the target carcinoembryonic antigen (CEA) (as a model analyte) and would form a sandwich-type immune complex with CEA. After simple magnetic separation, this complex was transferred into the detection chamber, which contained both hydrogen peroxide (H2O2) and 3,3',5,5'-tetramethylbenzidine (TMB). With the catalytic ability of PtNPs, the "H2O2-TMB-PtNPs" system was catalyzed to generate a large amount of oxygen (O2) and photothermal agent of oxidizer TMB (ox-TMB). Meanwhile, in a sealed chamber, further irradiation with an 808 nm near-infrared laser led to a triple-step signal amplification strategy of pressure increase, temperature increase, and gas thermal expansion to receive a strong electrical signal through the electronic sensor in real time. Thus, the amplified electrical signal from the electronic sensor could reveal the target concentration. In addition, we also verified that the synergistic system with two physical quantities had a lower limit of detection and a wider detection range compared to the detection system with a single physical quantity. In general, this immunoassay not only helped in exploring an effective signal amplification pathway but also offered an opportunity for the development of versatile electronic sensors in point-of-care settings.
Collapse
Affiliation(s)
- Lingting Huang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- Chongqing Vocational Institute of Engineering, Chongqing 402260, P. R. China
| |
Collapse
|
47
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
48
|
Wang Y, Ai X, Lu S, Xing T, Qi N, Chen G. Fabrication of a type of silk/PEDOT conductive fibers for wearable sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Ma C, Liu YF, Bi YG, Zhang XL, Yin D, Feng J, Sun HB. Recent progress in post treatment of silver nanowire electrodes for optoelectronic device applications. NANOSCALE 2021; 13:12423-12437. [PMID: 34259675 DOI: 10.1039/d1nr02917g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the economical and practical solution synthesis and coating strategies, silver nanowires (AgNWs) have been considered as one of the most suitable alternative materials to replace commercial indium tin oxide (ITO) transparent electrodes. The primitive AgNW electrode cannot meet the requirements for preparing high performance optoelectronic devices due to its high contact resistance, large surface roughness and poor stability. Thus, various post-treatments for AgNW film optimization are needed before its actual applications, such as welding treatment to decrease contact resistance and passivation to increase film stability. This review investigates recent progress on the preparation and optimization of AgNWs. Moreover, some unique fabrication strategies to produce highly oriented AgNW films with unique anisotropic properties have also been carried out with detailed analysis. The representative devices based on the AgNW electrode have been summarized and discussed at the end of this review.
Collapse
Affiliation(s)
- Chi Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Multilayered Composites with Modulus Gradient for Enhanced Pressure-Temperature Sensing Performance. SENSORS 2021; 21:s21144752. [PMID: 34300493 PMCID: PMC8309777 DOI: 10.3390/s21144752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Highly sensitive and flexible composite sensors with pressure and temperature sensing abilities are of great importance in human motion monitoring, robotic skins, and automobile seats when checking the boarding status. Several studies have been conducted to improve the temperature-pressure sensitivity; however, they require a complex fabrication process for micro-nanostructures, which are material-dependent. Therefore, there is a need to develop the structural designs to improve the sensing abilities. Herein, we demonstrate a flexible composite with an enhanced pressure and temperature sensing performance. Its structural design consists of a multilayered composite construction with an elastic modulus gradient. Controlled stress concentration and distribution induced by a micropatterned structure between the layers improves its pressure and temperature sensing performance. The proposed composite sensor can monitor a wide range of pressure and temperature stimuli and also has potential applications as an automotive seat sensor for simultaneous human temperature detection and occupant weight sensing.
Collapse
|