1
|
Ahmadipour M, Damacet P, Xiang C, Mirica KA, Montazami R. Smart Textile: Electrohydrodynamic Jet Printing of Ionic Liquid-Functionalized Cu 3(HHTP) 2 Metal-Organic Frameworks for Gas-Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12425-12439. [PMID: 39961630 PMCID: PMC11873966 DOI: 10.1021/acsami.4c20696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
This study presents the development and characterization of a smart textile gas sensor based on the integration of ionic liquid (IL)-functionalized Cu3(HHTP)2 metal-organic frameworks (MOFs), using electrohydrodynamic jet (e-jet) printing. The sensor was designed for the detection of nitric oxide (NO) gas, a critical target in various environmental and safety applications. Cu3(HHTP)2 MOFs were synthesized and subsequently functionalized with 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIM+ Otf-) ionic liquid to enhance their chemiresistive performance toward NO gas. The functionalized MOF was then e-jet printed onto electrospun polylactic acid (PLA) substrates to fabricate smart textile sensors. The IL-functionalized Cu3(HHTP)2 sensors demonstrated a 582× increase in conductivity compared to previously reported MOF-based sensors. Additionally, IL functionalization enhanced sensor sensitivity, with a response increasing from less than 5% in pristine MOF@PLA sensors to approximately 570% at 100 ppm of NO gas. Performance was systematically evaluated across NO concentrations ranging from 5 to 300 ppm, achieving a theoretical limit of detection of 3.7 ppm. The sensors exhibited partial reversibility and retained functionality over extended periods and under humid conditions. Comprehensive analyses using SEM, EDX, FTIR, and XRD were performed to assess the crystallinity of MOF deposits and elucidate the sensing mechanism. These findings highlight the potential of e-jet printing of IL-functionalized MOFs for the development of advanced, flexible gas sensors with applications in both civilian and military settings and implications for personal protective wearable technologies.
Collapse
Affiliation(s)
- Maedeh Ahmadipour
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Patrick Damacet
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Chunhui Xiang
- Department
of Apparel, Events, and Hospitality Management, Iowa State University, Ames, Iowa 50011, United States
| | - Katherine A. Mirica
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Reza Montazami
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department
of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Benseghir Y, Tsang MY, Schöfbeck F, Hetey D, Kitao T, Uemura T, Shiozawa H, Reithofer MR, Chin JM. Electric-field assisted spatioselective deposition of MIL-101(Cr) PEDOT to enhance electrical conductivity and humidity sensing performance. J Colloid Interface Sci 2025; 678:979-986. [PMID: 39226838 DOI: 10.1016/j.jcis.2024.08.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Precise deposition of metal-organic framework (MOF) materials is important for fabricating high-performing MOF-based devices. Electric-field assisted drop-casting of poly(3,4-ethylenedioxythiophene)-functionalized (PEDOT) MIL-101(Cr) nanoparticles onto interdigitated electrodes allowed their precise spatioselective deposition as percolating nanoparticle chains in the interelectrode gaps. The resulting aligned materials were investigated for resistive and capacitive humidity sensing and compared with unaligned samples prepared via regular drop-casting. The spatioselective deposition of MOFs resulted in up to over 500 times improved conductivity and approximately 6 times increased responsivity during resistive humidity sensing. The aligned samples also showed good capacitive humidity sensing performance, with up to 310 times capacitance gain at 10 versus 90 % relative humidity. In contrast, the resistive behavior of the unaligned samples rendered them unsuitable for capacitive sensing. This work demonstrates that applying an alternating potential during drop-casting is a simple yet effective method to control MOF deposition for greater efficiency, conductivity, and enhanced humidity sensing performance.
Collapse
Affiliation(s)
- Youven Benseghir
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Min Ying Tsang
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Flora Schöfbeck
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Daniel Hetey
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidetsugu Shiozawa
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jia Min Chin
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Kong L, Yu C, Chen Y, Zhu Z, Jiang L. Rational MOF Membrane Design for Gas Detection in Complex Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407021. [PMID: 39444085 DOI: 10.1002/smll.202407021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Metal-organic frameworks (MOFs) hold significant promise in the realm of gas sensing. However, current understanding of their sensing mechanisms remains limited. Furthermore, the large-scale fabrication of MOFs is hampered by their inadequate mechanical properties. These two challenges contribute to the sluggish development of MOF-based gas-sensing materials. In this review, the selection of metal ions and organic ligands for designing MOFs is first presented, deepening the understanding of the interactions between different metal ions/organic ligands and target gases. Subsequently, the typical interfacial synthesis strategies (gas-solid, gas-liquid, solid-liquid interfaces) are provided, highlighting the potential for constructing MOF membranes on superhydrophobic and/or superhydrophilic substrates. Then, a multi-scale structure design strategies is proposed, including multi-dimensional membrane design and heterogeneous membrane design, to improve sensing performance through enhanced interfacial mass transfer and specific gas sieving. This strategy is anticipated to augment the task-specific capabilities of MOF-based materials in complex environments. Finally, several key future research directions are outlined with the aim not only to further investigate the underlying sensing principles of MOF membranes but also to achieve efficient detection of target gases amidst interfering gases and elevated moisture levels.
Collapse
Affiliation(s)
- Lei Kong
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Chengyue Yu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongpeng Zhu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
4
|
Sakthivelpathi V, Li T, Qian Z, Lee C, Taylor Z, Chung JH. Advancements and Applications of Micro and Nanostructured Capacitive Sensors: A Review. SENSORS AND ACTUATORS. A, PHYSICAL 2024; 377:115701. [PMID: 39129941 PMCID: PMC11308742 DOI: 10.1016/j.sna.2024.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Capacitors are essential components in modern electrical systems, functioning primarily to store electrical charges and regulate current flow. Capacitive sensors, developed in the 20th century, have become crucial in various applications, including touchscreens and smart devices, due to their ability to detect both metallic and non-metallic objects with high sensitivity and low energy consumption. The advancement of microelectromechanical systems (MEMS) and nanotechnology has significantly enhanced the capabilities of capacitive sensors, leading to unprecedented sensitivity, dynamic range, and cost-effectiveness. These sensors are integral to modern devices, enabling precise measurements of proximity, pressure, strain, and other parameters. This review provides a comprehensive overview of the development, fabrication, and integration of micro and nanostructured capacitive sensors. In terms of an electric field, the working and detection principles are discussed with analytical equations and our numerical results. The focus extends to novel fabrication methods using advanced materials to enhance sensitivities for various parameters, such as proximity, force, pressure, strain, temperature, humidity, and liquid sensing. Their applications are demonstrated in wearable devices, human-machine interfaces, biomedical sensing, health monitoring, robotics control, industrial monitoring, and molecular detection. By consolidating existing research, this review offers insights into the advancements and future directions of capacitive sensor technology.
Collapse
Affiliation(s)
| | - Tianyi Li
- Mechanical Engineering, University of Washington, Seattle, WA, USA 98195
| | - Zhongjie Qian
- Mechanical Engineering, University of Washington, Seattle, WA, USA 98195
| | - Changwoo Lee
- Mechanical Engineering, University of Washington, Seattle, WA, USA 98195
| | - Zachary Taylor
- Mechanical Engineering, University of Washington, Seattle, WA, USA 98195
| | - Jae-Hyun Chung
- Mechanical Engineering, University of Washington, Seattle, WA, USA 98195
| |
Collapse
|
5
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
6
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Zhai Z, Liu Y, Li C, Wang D, Wu H. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. SENSORS (BASEL, SWITZERLAND) 2024; 24:4806. [PMID: 39123852 PMCID: PMC11314697 DOI: 10.3390/s24154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 08/12/2024]
Abstract
Artificial olfaction, also known as an electronic nose, is a gas identification device that replicates the human olfactory organ. This system integrates sensor arrays to detect gases, data acquisition for signal processing, and data analysis for precise identification, enabling it to assess gases both qualitatively and quantitatively in complex settings. This article provides a brief overview of the research progress in electronic nose technology, which is divided into three main elements, focusing on gas-sensitive materials, electronic nose applications, and data analysis methods. Furthermore, the review explores both traditional MOS materials and the newer porous materials like MOFs for gas sensors, summarizing the applications of electronic noses across diverse fields including disease diagnosis, environmental monitoring, food safety, and agricultural production. Additionally, it covers electronic nose pattern recognition and signal drift suppression algorithms. Ultimately, the summary identifies challenges faced by current systems and offers innovative solutions for future advancements. Overall, this endeavor forges a solid foundation and establishes a conceptual framework for ongoing research in the field.
Collapse
Affiliation(s)
- Zhenyu Zhai
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Yaqian Liu
- Inner Mongolia Institute of Metrology Testing and Research, Hohhot 010020, China
| | - Congju Li
- College of Textiles, Donghua University, Shanghai 201620, China;
| | - Defa Wang
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Hai Wu
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| |
Collapse
|
8
|
Sayed A, Cametti M. Bispidine Based Hg(II) 1D Coordination Polymers of Helical Topology: Stability, Selective Adsorption and 1D to 2D Dimensionality Change Via SC-to-SC Transformation. Chemistry 2024; 30:e202401464. [PMID: 38738456 DOI: 10.1002/chem.202401464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/14/2024]
Abstract
Bispidine based Hg(II) coordination polymers of helical topology CP-MeOH and CP-EtOH are almost isostructural (they mainly differ for the solvent included in their lattice and by a small % in unit cell parameters) but they differ for everything else: i) their intrinsic stability, ii) their ability to adsorb solvents upon prior evacuation, iii) their accessible structural transformations. In particular, one of the two starting materials, once evacuated, is capable to adsorb methanol from atmospheres containing binary and ternary mixtures of volatile organic compounds (MeOH, CHCl3 and EtOH) under ambient conditions (25 °C, 1 atm) and with a marked selectivity. The other one is not, but undergoes a 1D to 2D dimensionality change which can be monitored in situ by SC-XRD through a SC-to-SC process.
Collapse
Affiliation(s)
- Alessandro Sayed
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italy
| | - Massimo Cametti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
9
|
Farhadi Jahromi B, Schmid R. Dielectric response of metal-organic frameworks as a function of confined guest species investigated by molecular dynamics simulations. J Chem Phys 2024; 160:184119. [PMID: 38738610 DOI: 10.1063/5.0203820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
When using metal-organic frameworks (MOFs) as electric field-dependent sensor devices, understanding their dielectric response is crucial as the orientation of polar groups is largely affected by confinement. To shed light on this at the molecular level, the response to a static field was computationally investigated for two structurally related MOFs, depending on their loading with guest molecules. The pillared-layer MOFs differ in their pillar moiety, with one bearing a rotatable permanent dipole moment and the other being non-polar. Two guest molecules with and without polarity, namely, methanol and methane, were considered. A comprehensive picture of the response of the guest molecules could be achieved with respect to both the amount and polarity of the confined species. For both MOFs, the dielectric response is very sensitive to the introduction of methanol, showing an anisotropic and non-linear increase in the system's relative permittivity expressed by a strongly increasing polarization response to external electric fields scaling with the number of confined methanol molecules. As expected, the effect of methane in the non-dipolar MOF is negligible, whereas subtle differences can be observed for the dipolar response of the MOF with rotatable dipolar linker groups. Taking advantage of these anisotropic and guest-molecule-specific confinement effects may open pathways for future sensing applications. Finally, methanol-induced global framework dynamics were observed in both MOFs.
Collapse
Affiliation(s)
- Babak Farhadi Jahromi
- Computational Materials Chemistry Group, Lehrstuhl für Anorganische Chemie 2, Ruhr-Universität Bochum, Bochum, Germany
| | - Rochus Schmid
- Computational Materials Chemistry Group, Lehrstuhl für Anorganische Chemie 2, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
10
|
Qu L, Zhao W, Liu J, Wang J, Li J, Pan H. A sandwich electrochemiluminescence immunoassay based on 1T-MoS 2@dual MOFs for detecting CA153. Talanta 2024; 269:125412. [PMID: 37984234 DOI: 10.1016/j.talanta.2023.125412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
A "signal-on" electrochemiluminescence (ECL) immunosensor has been proposed for detecting carbohydrate antigen 153 (CA153) based on the dual MOFs sandwich strategy. The conductive and porous substrate consisting of 1T-MoS2 and two-dimensional conductive metal-organic framework (MOF, Ni-HAB) was anchored onto the glassy carbon electrode (GCE) to label the capture antibody (Ab1), and the luminescence-functionalized MOF (Ru(bpy)32+@UiO-66-NH2) was utilized to immobilize the detection second antibody (Ab2) to construct a "signal-on" responsive sandwich-type electrochemiluminescence immunoassay. Meanwhile, tripropylamine (TPA) acts as the co-reactant and provides a luminescence system for Ru(bpy)32+@UiO-66-NH2. The luminescence-functionalized MOFs showed excellent ECL activity owing to the tunable structure of MOFs. The remarkable enhancement in ECL intensity was obtained by the immunoreaction of antigen and antibody. Under the optimized conditions, the biosensor exhibited a detection limit of 0.0001 U mL-1 (S/N = 3) with a wide range from 0.001 to 50 U mL-1. The proposed ECL immunosensor was applicable for detecting human serum samples with a recovery of 99.83 ∼ 101 % (RSD < 5 %). This work demonstrates that the advantage of multifunctional MOFs could be applied to construct highly selective ECL immunosensor, and it may facilitate the diagnosis of breast cancer in clinics.
Collapse
Affiliation(s)
- Lingli Qu
- Shanghai Urban Construction Vocational College, Shanghai, 201999, China
| | - Wanyu Zhao
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - JiaYing Liu
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China
| | - Junyi Wang
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China
| | - Jiang Li
- School of Materials Science and Engineering, Chang' an University, Xi'an, 710062, Shaanxi, China.
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
11
|
Hou L, Xu X, Zhong Z, Tian F, Wang L, Xu Y. Bimetallic MOF-Based Sensor for Highly Sensitive Detection of Ammonia Gases. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38415401 DOI: 10.1021/acsami.3c16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The demand for the detection of ultralow concentrations of ammonia gas is growing. A bimetallic metal-organic framework (MOF) comprising Prussian blue analogs (PBAs) was used to achieve highly sensitive and stable detection of ammonia gas at room temperature in this study. First, PB was enriched by using ammonia for improved gas sensing properties. Second, a sensitive membrane with more vacancies was formed by partially replacing Fe3+ with Cu2+ through a cation-exchange strategy. Finally, a capacitive sensor was developed for ultralow-concentration ammonia detection using a Cu-Fe PBA sensitive membrane and interdigitated electrodes (IDEs). To investigate the adsorption efficiency of the designed composite sensitive film for ammonia, PBAs nanoparticles were deposited on a quartz microcrystal balance (QCM) via cyclic voltammetry and a hydrothermal method. Approximately 10 ppm of ammonia was adsorbed under 1 atm by the Cu-Fe PBA film prepared using a reaction time of 36 h, and the adsorption efficiency was measured to be 2.2 mmol g-1 using the QCM frequency response. The Cu-Fe PBAs were also tested using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller theory. The introduction of Cu2+ ions significantly increased the specific surface area of Cu-Fe PBAs MOF, and the number of adsorption sites for ammonia also increased; however, its skeleton structure remained similar to that of PB. Then, the capacitive sensor based on Cu-Fe PBA sensitive membrane and IDE was fabricated and the gas sensing detection device was established for ammonia detection. Overall, the developed capacitive sensor exhibits a linear response of 75-1000 ppb and a detection limit of 3.8 ppb for ultralow ammonia concentrations, which makes it superior to traditional detection methods and thus allows excellent application prospects.
Collapse
Affiliation(s)
- Liwei Hou
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Chemistry and Chemical Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Xinyue Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Zhoujun Zhong
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Fengchun Tian
- College of Microelectronic and Communication Engineering, Chongqing University, Chongqing 400044, China
| | - Li Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Yi Xu
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing 400044, China
- School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| |
Collapse
|
12
|
Kim SJ, Lee J, Bae JS, Lee JW. The Impact of ZIF-8 Particle Size Control on Low-Humidity Sensor Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:284. [PMID: 38334555 PMCID: PMC10857053 DOI: 10.3390/nano14030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
An accurate humidity measurement is essential in various industries, including product stability, pharmaceutical and food preservation, environmental control, and precise humidity management in experiments and industrial processes. Crafting effective humidity sensors through precise material selection is crucial for detecting minute humidity levels across various fields, ultimately enhancing productivity and maintaining product quality. Metal-organic frameworks (MOFs), particularly zeolitic imidazolate frameworks (ZIFs), exhibit remarkable properties and offer a wide range of applications in catalysis, sensing, and gas storage due to their structural stability, which resembles zeolites. The previous research on MOF-based humidity sensors have primarily used electrical resistance-based methods. Recently, however, interest has shifted to capacitive-based sensors using MOFs due to the need for humidity sensors at low humidity and the resulting high sensitivity. Nevertheless, further studies are required to optimize particle structure and size. This study analyzes ZIF-8, a stable MOF synthesized in varying particle sizes, to evaluate its performance as a humidity sensor. The structural, chemical, and sensing properties of synthesized ZIF-8 particles ranging from 50 to 200 nanometers were examined through electron microscopy, spectroscopic, and electrochemical analyses. The fabricated copper electrodes combined with these particles demonstrated stable and linear humidity sensing capabilities within the range of 3% to 30% relative humidity (RH).
Collapse
Affiliation(s)
- Sang Jun Kim
- Institute of Materials Technology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jaemin Lee
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea;
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
13
|
Abstract
The demand for monitoring chemical and physical information surrounding, air quality, and disease diagnosis has propelled the development of devices for gas sensing that are capable of translating external stimuli into detectable signals. Metal-organic frameworks (MOFs), possessing particular physiochemical properties with designability in topology, specific surface area, pore size and/or geometry, potential functionalization, and host-guest interactions, reveal excellent development promises for manufacturing a variety of MOF-coated sensing devices for multitudinous applications including gas sensing. The past years have witnessed tremendous progress on the preparation of MOF-coated gas sensors with superior sensing performance, especially high sensitivity and selectivity. Although limited reviews have summarized different transduction mechanisms and applications of MOF-coated sensors, reviews summarizing the latest progress of MOF-coated devices under different working principles would be a good complement. Herein, we summarize the latest advances of several classes of MOF-based devices for gas sensing, i.e., chemiresistive sensors, capacitors, field-effect transistors (FETs) or Kelvin probes (KPs), electrochemical, and quartz crystal microbalance (QCM)-based sensors. The surface chemistry and structural characteristics were carefully associated with the sensing behaviors of relevant MOF-coated sensors. Finally, challenges and future prospects for long-term development and potentially practical application of MOF-coated sensing devices are pointed out.
Collapse
Affiliation(s)
- Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
14
|
Niu B, Zhai Z, Wang J, Li C. Preparation of ZIF-8/PAN composite nanofiber membrane and its application in acetone gas monitoring. NANOTECHNOLOGY 2023; 34:245710. [PMID: 36927654 DOI: 10.1088/1361-6528/acc4ca] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Znic-based metal-organic framework materials (ZIF-8) show great potential and excellent performance in the fields of sensing and catalysis. However, powdered metal-organic framework makes it easy to lose in the process of application. Herein, we use a simple blending electrostatic spinning method to combine ZIF-8 particles with polyacrylonitrile (PAN) nanofibers. ZIF-8/PAN composite nanofiber membrane. The ZIF-8/PAN nanofiber membrane is characterized by scanning electron microscope (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and N2adsorption-desorption. The results show that the ZIF-8/PAN nanofiber membrane has the characteristic peaks of XRD and FTIR, which are consistent with those of simulated ZIF-8. The specific surface area of ZIF-8/PAN nanofiber membrane increases from 13.5371 to 711.4171 m2g-1due to the introduction of ZIF-8 particles. The sensor using the nanofiber membrane as the gas sensing layer shows good response and linear correlation to different concentrations of acetone gas. The minimum detection limit of the sensor for acetone is 51.9 ppm. The blank control shows that the response of the sensor to acetone is mainly due to the introduction of ZIF-8 particles. In addition, the sensor also shows a good cyclic response to acetone.
Collapse
Affiliation(s)
- Ben Niu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| | - Zhenyu Zhai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| | - Jiaona Wang
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing Key Laboratory of Clothing Materials R and D and Assessment, Beijing 100029, People's Republic of China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, People's Republic of China
| |
Collapse
|
15
|
Xuan W, Zheng L, Cao L, Miao S, Hu D, Zhu L, Zhao Y, Qiang Y, Gu X, Huang S. Machine Learning-Assisted Sensor Based on CsPbBr 3@ZnO Nanocrystals for Identifying Methanol in Mixed Environments. ACS Sens 2023; 8:1252-1260. [PMID: 36897934 DOI: 10.1021/acssensors.2c02656] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Methanol is a respiratory biomarker for pulmonary diseases, including COVID-19, and is a common chemical that may harm people if they are accidentally exposed to it. It is significant to effectively identify methanol in complex environments, yet few sensors can do so. In this work, the strategy of coating perovskites with metal oxides is proposed to synthesize core-shell CsPbBr3@ZnO nanocrystals. The CsPbBr3@ZnO sensor displays a response/recovery time of 3.27/3.11 s to 10 ppm methanol at room temperature, with a detection limit of 1 ppm. Using machine learning algorithms, the sensor can effectively identify methanol from an unknown gas mixture with 94% accuracy. Meanwhile, density functional theory is used to reveal the formation process of the core-shell structure and the target gas identification mechanism. The strong adsorption between CsPbBr3 and the ligand zinc acetylacetonate lays the foundation for the formation of the core-shell structure. The crystal structure, density of states, and band structure were influenced by different gases, which results in different response/recovery behaviors and makes it possible to identify methanol from mixed environments. Furthermore, due to the formation of type II band alignment, the gas response performance of the sensor is further improved under UV light irradiation.
Collapse
Affiliation(s)
- Wufan Xuan
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Lina Zheng
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Lei Cao
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Shujie Miao
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Dunan Hu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Lei Zhu
- Advanced Analysis & Computation Center, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yulong Zhao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yinghuai Qiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xiuquan Gu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Sheng Huang
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
16
|
Shao L, Zhang J, Fu Y, Chen J. Metal-Organic Framework Flowers as a Naked-Eye Colorimetric Indicator of Trace Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13526-13534. [PMID: 36877610 DOI: 10.1021/acsami.2c22172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Convenient and sensitive trace water indication is of great significance in various industrial processes. Here, a flower-like metal-organic framework Cu-FMM is assembled from ultrathin nanosheets that change its coordination structure reversibly with the capture and loss of water molecules, enabling sensitive trace water naked-eye colorimetric indication ability. A recognizable black/yellow color change can be observed when the dried Cu-FMM is exposed to the atmosphere or solvent with trace water as low as RH 3% and a water content of 0.25‰ (v/v) and further enables potential trace water imaging applications. The excellent accessibility of the multi-scale pore structure of Cu-FMM contributes to a fast response time of 3.8 s with good reversibility (>100 cycles), outperforming traditional coordination polymer humidity sensors. The present study provides new inspirations for the design of sensitive and applicable naked-eye water indicator materials that are applicable to in situ and continuous monitoring in industrial processes.
Collapse
Affiliation(s)
- Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Junyi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| |
Collapse
|
17
|
Ma X, Bhattacharya S, Taffa DH, Nisar T, Wark M, Wagner V, Kortz U. Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion [Mo 12O 32(OH) 2(4-N 3C 2H 2-C 6H 4AsO 3) 4] 2- and Formation of a Copper(II)-Mediated Metal-Organic Framework. Inorg Chem 2023; 62:1813-1819. [PMID: 35588300 DOI: 10.1021/acs.inorgchem.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discrete inverted-Keggin ion [Mo12O32(OH)2(4-N3C2H2-C6H4AsO3)4]2- (1) has been prepared in an aqueous acidic (pH 0.8) medium by the reaction of MoO3 with the (4-triazolylphenyl)arsonic acid 4-N3C2H2-C6H4AsO3H2 under hydrothermal conditions and was isolated as a sodium salt in 21% yield. The exact same reaction in the presence of Cu2+ ions resulted in the neutral metal-organic framework (MOF) Cu2[Mo12O34(4-N3C2H2-C6H4AsO3)4] (Cu-1) in 68% yield. The inverted-Keggin ion 1 comprises a metal-oxo core, which is capped by four organoarsonate groups, and in Cu-1, individual polyanions are linked in the solid state by coordination of the Cu2+ ions with the triazolyl groups. The discrete ion 1 was characterized by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic absorption (AA) spectroscopy, as well as thermogravimetric analysis (TGA), and the POM-MOF Cu-1 was characterized by single-crystal and powder XRD, FT-IR, TGA, and gas sorption. Cu-1 has channels with a diameter of around ∼0.9 nm and exhibits a water-vapor adsorption capacity of 89.7 cm3 g-1 (p/p0 = 0.95).
Collapse
Affiliation(s)
- Xiang Ma
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Saurav Bhattacharya
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Dereje H Taffa
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Talha Nisar
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Michael Wark
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Veit Wagner
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
18
|
Xu LT, Xie KX, Cao SH, Weng YH, Chen M, Li Z, Li YQ. Simultaneous monitoring of the fluorescence and refractive index by surface plasmon coupled emission: A proof-of-concept study. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Alsadun N, Surya S, Patle K, Palaparthy VS, Shekhah O, Salama KN, Eddaoudi M. Institution of Metal-Organic Frameworks as a Highly Sensitive and Selective Layer In-Field Integrated Soil-Moisture Capacitive Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6202-6208. [PMID: 36669154 DOI: 10.1021/acsami.2c20141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing global industrialization along with the notable world population growth is projected to challenge the global environment as well as pose greater pressure on water and food needs. Foreseeably, an improved irrigation management system is essential and the quest for refined chemical sensors for soil-moisture monitoring is of tremendous importance. Nevertheless, the persisting challenge is to design and construct stable materials with the requisite sensitivity, selectivity, and high performance. Here, we report the introduction of porous metal-organic frameworks (MOFs), as the receptor layer, in capacitive sensors to efficiently sense moisture in two types of soil. Namely, our study unveiled that Cr-soc-MOF-1 offers the best sensitivity (≈24,000 pF) among the other tested MOFs for any given range of soil-moisture content, outperforming several well-known oxide materials. The corresponding increase in the sensitivities for tested MOFs at 500 Hz are ≈450, ≈200, and ≈30% for Cr-soc-MOF-1, Al-ABTC-soc-MOF, and Zr-fum-fcu-MOF, respectively. Markedly, Cr-soc-MOF-1, with its well-known water capacity, manifests an excellent sensitivity of ≈450% in clayey soil, and the analogous response time was 500 s. The noted unique sensing properties of Cr-soc-MOF-1 unveils the great potential of MOFs for soil-moisture sensing application.
Collapse
Affiliation(s)
- Norah Alsadun
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, College of Science, King Faisal University (KFU), Al-Ahsa 31982-400, Saudi Arabia
| | - Sandeep Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kamlesh Patle
- System Design Lab, Department of Information and Communication Technology, DAIICT, Gandhinagar 382007, Gujarat, India
| | - Vinay S Palaparthy
- System Design Lab, Department of Information and Communication Technology, DAIICT, Gandhinagar 382007, Gujarat, India
| | - Osama Shekhah
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Song Q, Shi S, Liu B. Metal-Organic Framework-Based Colloidal Particle Synthesis, Assembly, and Application. Chempluschem 2023; 88:e202200396. [PMID: 36740571 DOI: 10.1002/cplu.202200396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) assembled from metal nodes and organic ligands have received significant attention over the past two decades for their fascinating porous properties and broad applications. Colloidal MOFs (CMOFs) not only inherit the intrinsic properties of MOFs, but can also serve as building blocks for self-assembly to make functional materials. Compared to bulk MOFs, the colloidal size of CMOFs facilitates further manipulation of CMOF particles in a single or collective state in a liquid medium. The resulting crystalline order obtained by self-assembly in position and orientation can effectively improve performance. In this review, we summarize the latest developments of CMOFs in synthesis strategies, self-assembly methods, and related applications. Finally, we discuss future challenges and opportunities of CMOFs in synthesis and assembly, by which we hope that CMOFs can be further developed into new areas for a wider range of applications.
Collapse
Affiliation(s)
- Qing Song
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shang Shi
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
21
|
Li Z, Liu J, Feng L, Pan Y, Tang J, Li H, Cheng G, Li Z, Shi J, Xu Y, Liu W. Monolithic MOF-Based Metal-Insulator-Metal Resonator for Filtering and Sensing. NANO LETTERS 2023; 23:637-644. [PMID: 36622966 DOI: 10.1021/acs.nanolett.2c04428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-insulator-metal (MIM) configurations based on Fabry-Pérot resonators have advanced the development of color filtering through interactions between light and matter. However, dynamic color changes without breaking the structure of the MIM resonator upon environmental stimuli are still challenging. Here, we report monolithic metal-organic framework (MOF)-based MIM resonators with tunable bandwidth that can boost both dynamic optical filtering and active chemical sensing by laser-processing microwell arrays on the top metal layer. Programmable tuning of the reflection color of the MOF-based MIM resonator is achieved by controlling the MOF layer thicknesses, which is demonstrated by simulation of light-matter interactions on subwavelength scales. Laser-processed microwell arrays are used to boost sensing performance by extending the pathway for diffusion of external chemicals into nanopores of the MOFs. Both experiments and molecular dynamics simulations demonstrate that tailoring the period and height of the microwell array on the MIM resonator can advance the high detection sensitivity of chemicals.
Collapse
Affiliation(s)
- Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Feng
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yan Pan
- Electronic Information College, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jiao Tang
- Electronic Information School, Wuhan University, Wuhan 430072, P. R. China
| | - Hang Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Guanghua Cheng
- Electronic Information College, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, P. R. China
| | - Junqin Shi
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yadong Xu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
22
|
Recent progress of metal-organic frameworks as sensors in (bio)analytical fields: towards real-world applications. Anal Bioanal Chem 2023; 415:2005-2023. [PMID: 36598537 PMCID: PMC9811896 DOI: 10.1007/s00216-022-04493-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
The deployment of metal-organic frameworks (MOFs) in a plethora of analytical and bioanalytical applications is a growing research area. Their unique properties such as high but tunable porosity, well-defined channels or pores, and ease of post-synthetic modification to incorporate additional functional units make them ideal candidates for sensing applications. This is possible because the interaction of analytes with a MOF often results in a change in its structure, eventually leading to a modification of the intrinsic physicochemical properties of the MOF which is then transduced into a measurable signal. The high porosity allows for the adsorption of analytes very efficiently, while the tunable pore sizes/nature and/or installation of specific recognition groups allow modulating the affinity towards different classes of compounds, which in turn lead to good sensor sensitivity and selectivity, respectively. Some figures are given to illustrate the potential of MOF-based sensors in the most relevant application fields, and future challenges and opportunities to their possible translation from academia (i.e., laboratory testing of MOF sensing properties) to industry (i.e., real-world analytical sensor devices) are critically discussed.
Collapse
|
23
|
Shen Y, Tissot A, Serre C. Recent progress on MOF-based optical sensors for VOC sensing. Chem Sci 2022; 13:13978-14007. [PMID: 36540831 PMCID: PMC9728564 DOI: 10.1039/d2sc04314a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 08/16/2023] Open
Abstract
The raising apprehension of volatile organic compound (VOC) exposures urges the exploration of advanced monitoring platforms. Metal-organic frameworks (MOFs) provide many attractive features including tailorable porosity, high surface areas, good chemical/thermal stability, and various host-guest interactions, making them appealing candidates for VOC capture and sensing. To comprehensively exploit the potential of MOFs as sensing materials, great efforts have been dedicated to the shaping and patterning of MOFs for next-level device integration. Among different types of sensors (chemiresistive sensors, gravimetric sensors, optical sensors, etc.), MOFs coupled with optical sensors feature distinctive strength. This review summarized the latest advancements in MOF-based optical sensors with a particular focus on VOC sensing. The subject is discussed by different mechanisms: colorimetry, luminescence, and sensors based on optical index modulations. Critical analysis for each system highlighting practical aspects was also deliberated.
Collapse
Affiliation(s)
- Yuwei Shen
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|
24
|
García A, Rodríguez B, Rosales M, Quintero YM, G. Saiz P, Reizabal A, Wuttke S, Celaya-Azcoaga L, Valverde A, Fernández de Luis R. A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4263. [PMID: 36500886 PMCID: PMC9738636 DOI: 10.3390/nano12234263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy metal ion. Among the varied technologies applied today to address chromium water pollution, photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photocatalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI) to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been structured in three sections: (i) a detailed discussion of the specific experimental techniques employed to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify future trends.
Collapse
Affiliation(s)
- Andreina García
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
- Mining Engineering Department, Faculty of Physical and Mathematical Sciences (FCFM), Universidad de Chile, Av. Tupper 2069, Santiago 8370451, Chile
| | - Bárbara Rodríguez
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8320000, Chile;
| | - Maibelin Rosales
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Yurieth M. Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Paula G. Saiz
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Ander Reizabal
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Celaya-Azcoaga
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Valverde
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Roberto Fernández de Luis
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| |
Collapse
|
25
|
Wu K, Fei T, Zhang T. Humidity Sensors Based on Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4208. [PMID: 36500831 PMCID: PMC9740828 DOI: 10.3390/nano12234208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Humidity sensors are important in industrial fields and human activities. Metal-organic frameworks (MOFs) and their derivatives are a class of promising humidity-sensing materials with the characteristics of a large specific surface area, high porosity, modifiable frameworks, and high stability. The drawbacks of MOFs, such as poor film formation, low electrical conductivity, and limited hydrophilicity, have been gradually overcome with the development of material science. Currently, it is moving towards a critical development stage of MOF-based humidity sensors from usability to ease of use, of which great challenges remain unsolved. In order to better understand the related challenges and point out the direction for the future development of MOF-based humidity sensors, we reviewed the development of such sensors based on related published work, focusing on six primary types (impedance, capacitive, resistive, fluorescent, quartz crystal microbalance (QCM), and others) and analyzed the sensing mechanism, material design, and sensing performance involved, and presented our thoughts on the possible future research directions.
Collapse
Affiliation(s)
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
26
|
Lahcen A, Surya SG, Beduk T, Vijjapu MT, Lamaoui A, Durmus C, Timur S, Shekhah O, Mani V, Amine A, Eddaoudi M, Salama KN. Metal-Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49399-49424. [PMID: 36315467 PMCID: PMC9650679 DOI: 10.1021/acsami.2c12842] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The use of porous materials as the core for synthesizing molecularly imprinted polymers (MIPs) adds significant value to the resulting sensing system. This review covers in detail the current progress and achievements regarding the synergistic combination of MIPs and porous materials, namely metal/covalent-organic frameworks (MOFs/COFs), including the application of such frameworks in the development of upgraded sensor platforms. The different processes involved in the synthesis of MOF/COF-MIPs are outlined, along with their intrinsic properties. Special attention is paid to debriefing the impact of the morphological changes that occur through the synergistic combination compared to those that occur due to the individual entities. Thereafter, the strategies used for building the sensors, as well as the transduction modes, are overviewed and discussed. This is followed by a full description of research advances for various types of MOF/COF-MIP-based (bio)sensors and their applications in the fields of environmental monitoring, food safety, and pharmaceutical analysis. Finally, the challenges/drawbacks, as well as the prospects of this research field, are discussed in detail.
Collapse
Affiliation(s)
- Abdellatif
Ait Lahcen
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Sandeep G. Surya
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Abderrahman Lamaoui
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Ceren Durmus
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Suna Timur
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Osama Shekhah
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Aziz Amine
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
27
|
Park JY, Kwak Y, Lim HR, Park SW, Lim MS, Cho HB, Myung NV, Choa YH. Tuning the sensing responses towards room-temperature hypersensitive methanol gas sensor using exfoliated graphene-enhanced ZnO quantum dot nanostructures. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129412. [PMID: 35780731 DOI: 10.1016/j.jhazmat.2022.129412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A suitable and non-invasive methanol sensor workable in ambient temperature conditions with a high response has gained wide interest to prevent detrimental consequences for industrial workers from its low-level intoxication. In this work, we present a tunable and highly responsive ppb-level methanol gas sensor device working at room temperature via a bottom-up synthetic approach using exfoliated graphene sheet (EGs) and ZnO quantum dots (QDs) on an aluminum anodic oxide (AAO) template. It is verified that EGs-supported AAO with a vertical electrode configuration enabled high and fast-responsive methanol sensing. Moreover, the hydroxyl and carboxyl groups of the high surface area EGs and ZnO QDs with a 3.37 eV bandgap efficiently absorbing UV light led to 56 times high response due to the enhanced polarization on the sensor surface compared to non-UV-radiated EGs/AAO at 800 ppb of methanol. The optimal resonance frequency of methanol is determined to be 100 kHz, which could detect methanol with high response of 2.65% at 100 ppm. The limit of detection (LOD) concentration is obtained at 2 ppb level. This study demonstrates the potential of UV-assisted ZnO, EGs, and AAO-based capacitance sensor material for rapidly detecting hazardous gaseous light organic molecules at ambient conditions, and the overall approach can be easily expanded to a novel non-invasive monitoring strategy for light and hazardous volatile organic exposures.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Yeonsu Kwak
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark 19716, United States
| | - Hyo-Ryoung Lim
- Major of Human Biocovergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Si-Woo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Seob Lim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong-Baek Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, United States
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
28
|
Singh AK, Bhowmik B. Selective gas detection of titania nanoparticles via impedance spectroscopy and capacitive measurement. NANOTECHNOLOGY 2022; 33:435501. [PMID: 35835069 DOI: 10.1088/1361-6528/ac810d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The present paper demonstrated the impedance analysis of Au/TiO2nanoparticles/Si-Al capacitive sensor for selective detection of volatile organic compounds (VOCs) at different frequency regimes. TiO2nanoparticles (NP) were synthesized through the solution process and characterized by field-emission scanning electron microscopy , x-ray diffraction analysis, photoluminescence spectroscopy, and atomic force microscopy. The gas sensitivity of Au/TiO2-NP/Si-Al was investigated, with the effect of temperature modulation (25 °C-250 °C) and dielectric variation in the vicinity of nanoparticles. Impedance spectroscopy of TiO2-NP was carried out to obtain resonant peaks over the frequency ranging from 0.05 to 225 kHz and fitted with a complex nonlinear least-squares method. The optimum sensor response of 136%, 63%, 152%, and 174% was found at resonant frequencies of 0.38 kHz, 0.22 kHz, 0.15 kHz, and 0.1 kHz for the exposure of 2-propanol, acetone, ethanol, and methanol, respectively. The fastest response time and recovery time were found to be 32/21 s, 31.2/8 s, 32.5/9 s, and 40/26 s for acetone, 2-propanol, ethanol, and methanol, respectively. Selective detection of different VOCs at various resonant frequencies has correlated with the dielectric variation of the NPs and their associated void region under gas exposure.
Collapse
Affiliation(s)
- Aditya Kumar Singh
- Thin Film Device Laboratory, Department of Electronics and Communication Engineering, National Institute of Technology, Jamshedpur-831014, India
| | - Basanta Bhowmik
- Thin Film Device Laboratory, Department of Electronics and Communication Engineering, National Institute of Technology, Jamshedpur-831014, India
| |
Collapse
|
29
|
Metalloporphyrin functionalized multivariate IRMOF-74-IV analogs for photocatalytic CO2 reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Pham TKN, Garcia GA, Brown JJ. Measurement of isosteric heat of gas adsorption and Brunauer-Emmett-Teller (BET) surface area using a quartz crystal microbalance. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:064105. [PMID: 35778017 DOI: 10.1063/5.0073233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The study of gas adsorption on a solid surface evaluates the affinity between sorbate gas and sorbent substrate and factors that contribute to this. This paper presents a test platform for adsorption experiments of various gases on various solid surfaces. Controlled environmental conditions enable investigations in materials surface science and increase the consistency among adsorption data. The system utilizes a quartz crystal microbalance to perform gravimetric analysis of deposition and adsorption, enabling investigation of the interaction of gaseous molecules with solid surfaces. In this study, a quartz crystal microbalance as gas adsorption detector was integrated with an environmental chamber to create a versatile tool for gas adsorption experiments on thin films. Experimental operation of this apparatus was demonstrated via acquisition of the adsorption isotherms of cyclohexane vapor on a gold surface at 55 and 70 °C. The result indicated International Union of Pure and Applied Chemistry Type II adsorption. Consequentially, application of the Brunauer-Emmett-Teller model to the isotherm data subject to predefined criteria for linear region selection yielded a surface area of the sorbent of 0.53 cm2 at 55 °C. From the monolayer region of the isotherms, the isosteric heat of adsorption of the cyclohexane vapor on gold was calculated to be 37 kJ mol-1.
Collapse
Affiliation(s)
- Thi Kieu Ngan Pham
- Department of Mechanical Engineering, University of Hawai`i at Mānoa, Honolulu, Hawaii 96822, USA
| | - Geoffrey A Garcia
- Department of Mechanical Engineering, University of Hawai`i at Mānoa, Honolulu, Hawaii 96822, USA
| | - Joseph J Brown
- Department of Mechanical Engineering, University of Hawai`i at Mānoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
31
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
32
|
Methane Hydrate Formation in Hollow ZIF-8 Nanoparticles for Improved Methane Storage Capacity. Catalysts 2022. [DOI: 10.3390/catal12050485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Methane hydrate has been extensively studied as a potential medium for natural gas storage and transportation. Due to their high specific surface area, tunable porous structure, and surface chemistry, metal–organic frameworks are ideal materials to exhibit the catalytic effect for the formation process of gas hydrate. In this paper, hollow ZIF-8 nanoparticles are synthesized using the hard template method. The synthesized hollow ZIF-8 nanoparticles are used in the adsorption and methane hydrate formation process. The effect of pre-adsorbed water mass in hollow ZIF-8 nanoparticles on methane storage capacity and the hydrate formation rate is investigated. The storage capacity of methane on wet, hollow ZIF-8 is augmented with an increase in the mass ratio of pre-adsorbed water and dry, hollow ZIF-8 (RW), and the maximum adsorption capacity of methane on hollow ZIF-8 with a RW of 1.2 can reach 20.72 mmol/g at 275 K and 8.57 MPa. With the decrease in RW, the wet, hollow ZIF-8 exhibits a shortened induction time and an accelerated growth rate. The formation of methane hydrate on hollow ZIF-8 is further demonstrated with the enthalpy of the generation reaction. This work provides a promising alternative material for methane storage.
Collapse
|
33
|
Andreo J, Ettlinger R, Zaremba O, Peña Q, Lächelt U, de Luis RF, Freund R, Canossa S, Ploetz E, Zhu W, Diercks CS, Gröger H, Wuttke S. Reticular Nanoscience: Bottom-Up Assembly Nanotechnology. J Am Chem Soc 2022; 144:7531-7550. [PMID: 35389641 DOI: 10.1021/jacs.1c11507] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chemistry of metal-organic and covalent organic frameworks (MOFs and COFs) is perhaps the most diverse and inclusive among the chemical sciences, and yet it can be radically expanded by blending it with nanotechnology. The result is reticular nanoscience, an area of reticular chemistry that has an immense potential in virtually any technological field. In this perspective, we explore the extension of such an interdisciplinary reach by surveying the explored and unexplored possibilities that framework nanoparticles can offer. We localize these unique nanosized reticular materials at the juncture between the molecular and the macroscopic worlds, and describe the resulting synthetic and analytical chemistry, which is fundamentally different from conventional frameworks. Such differences are mirrored in the properties that reticular nanoparticles exhibit, which we described while referring to the present state-of-the-art and future promising applications in medicine, catalysis, energy-related applications, and sensors. Finally, the bottom-up approach of reticular nanoscience, inspired by nature, is brought to its full extension by introducing the concept of augmented reticular chemistry. Its approach departs from a single-particle scale to reach higher mesoscopic and even macroscopic dimensions, where framework nanoparticles become building units themselves and the resulting supermaterials approach new levels of sophistication of structures and properties.
Collapse
Affiliation(s)
- Jacopo Andreo
- Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Romy Ettlinger
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Orysia Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, 52074, Germany
| | - Ulrich Lächelt
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, 1090, Austria
| | | | - Ralph Freund
- Institute of Physics, Chair of Solid State and Materials Chemistry, Augsburg University, Augsburg, 86150, Germany
| | - Stefano Canossa
- Department of Nanochemistry, Max Planck Institute for Solid State Research, Stuttgart, 70569, Germany
| | - Evelyn Ploetz
- Department of Chemisrty and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Munich, 81377, Germany
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Christian S Diercks
- The Scripps Research Institute, SR202, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
34
|
Huang X, Gong Z, Lv Y. Advances in Metal-Organic Frameworks-based Gas Sensors for Hazardous Substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Chen Y, Yang Z, Hu H, Zhou X, You F, Yao C, Liu FJ, Yu P, Wu D, Yao J, Hu R, Jiang X, Yang H. Advanced Metal-Organic Frameworks-Based Catalysts in Electrochemical Sensors. Front Chem 2022; 10:881172. [PMID: 35433639 PMCID: PMC9010028 DOI: 10.3389/fchem.2022.881172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023] Open
Abstract
Developing efficient catalysts is vital for the application of electrochemical sensors. Metal-organic frameworks (MOFs), with high porosity, large specific surface area, good conductivity, and biocompatibility, have been widely used in catalysis, adsorption, separation, and energy storage applications. In this invited review, the recent advances of a novel MOF-based catalysts in electrochemical sensors are summarized. Based on the structure-activity-performance relationship of MOF-based catalysts, their mechanism as electrochemical sensor, including metal cations, synthetic ligands, and structure, are introduced. Then, the MOF-based composites are successively divided into metal-based, carbon-based, and other MOF-based composites. Furthermore, their application in environmental monitoring, food safety control, and clinical diagnosis is discussed. The perspective and challenges for advanced MOF-based composites are proposed at the end of this contribution.
Collapse
Affiliation(s)
- Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhiquan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huilin Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xinchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Chu Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Peng Yu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Dan Wu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
36
|
A New Fully Closed-Loop, High-Precision, Class-AB CCII for Differential Capacitive Sensor Interfaces. ELECTRONICS 2022. [DOI: 10.3390/electronics11060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of capacitive sensors has advantages in different industrial applications due to their low cost and low-temperature dependence. In this sense, the current-mode approach by means of second-generation current conveyors (CCIIs) allows for improvements in key features, such as sensitivity and resolution. In this paper, a novel architecture of CCII for differential capacitive sensor interfaces is presented. The proposed topology shows a closed-loop configuration for both the voltage and the current buffer, thus leading to better interface impedances at terminals X and Z. Moreover, a low power consumption of 600 µW was obtained due to class-AB biasing of both buffers, and the inherent drawbacks in terms of linearity under the mismatch of class-AB buffering are overcome by its closed-loop configuration. The advantages of the novel architecture are demonstrated by circuit analysis and simulations; in particular, very good robustness under process, supply voltage and temperature variations and mismatches were obtained due to the closed-loop approach. The CCII was also used to design a capacitive sensor interface in integrated CMOS technology, where it was possible to achieve a sensitivity of 2.34 nA/fF, with a full-scale sensor variation of 8 pF and a minimum detectable capacitance difference of 40 fF.
Collapse
|
37
|
Wang JX, Yin J, Shekhah O, Bakr OM, Eddaoudi M, Mohammed OF. Energy Transfer in Metal-Organic Frameworks for Fluorescence Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9970-9986. [PMID: 35175725 PMCID: PMC8895374 DOI: 10.1021/acsami.1c24759] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of materials with outstanding performance for sensitive and selective detection of multiple analytes is essential for the development of human health and society. Luminescent metal-organic frameworks (LMOFs) have controllable surface and pore sizes and excellent optical properties. Therefore, a variety of LMOF-based sensors with diverse detection functions can be easily designed and applied. Furthermore, the introduction of energy transfer (ET) into LMOFs (ET-LMOFs) could provide a richer design concept and a much more sensitive and accurate sensing performance. In this review, we focus on the recent five years of advances in ET-LMOF-based sensing materials, with an emphasis on photochemical and photophysical mechanisms. We discuss in detail possible energy transfer processes within a MOF structure or between MOFs and guest materials. Finally, the possible sensing applications of the ET-LMOF-based sensors are highlighted.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Fabrication of MIL-96 nanosheets and relevant c-oriented ultrathin membrane through solvent optimization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Selectivity of Relative Humidity Using a CP Based on S-Block Metal Ions. SENSORS 2022; 22:s22041664. [PMID: 35214565 PMCID: PMC8875507 DOI: 10.3390/s22041664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022]
Abstract
Herein, we present the syntheses of a novel coordination polymer (CP) based on the perylene-3,4,9,10-tetracarboxylate (pery) linkers and sodium metal ions. We have chosen sodium metal center with the aim of surmising the effect that the modification of the metal ion may have on the relative humidity (RH) experimental measurements of the material. We confirm the role of the ions in the functionalization of the deposited layer by modifying their selectivity towards moisture content, paving the way to the generation of sensitive and selective chemical sensors.
Collapse
|
40
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
41
|
Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-Organic Framework Based Gas Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104374. [PMID: 34939370 PMCID: PMC8867161 DOI: 10.1002/advs.202104374] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Indexed: 05/08/2023]
Abstract
The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Nanxi Li
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Hong Cai
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| |
Collapse
|
42
|
Majhi SM, Ali A, Rai P, Greish YE, Alzamly A, Surya SG, Qamhieh N, Mahmoud ST. Metal-organic frameworks for advanced transducer based gas sensors: review and perspectives. NANOSCALE ADVANCES 2022; 4:697-732. [PMID: 36131834 PMCID: PMC9417493 DOI: 10.1039/d1na00798j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/11/2021] [Indexed: 05/13/2023]
Abstract
The development of gas sensing devices to detect environmentally toxic, hazardous, and volatile organic compounds (VOCs) has witnessed a surge of immense interest over the past few decades, motivated mainly by the significant progress in technological advancements in the gas sensing field. A great deal of research has been dedicated to developing robust, cost-effective, and miniaturized gas sensing platforms with high efficiency. Compared to conventional metal-oxide based gas sensing materials, metal-organic frameworks (MOFs) have garnered tremendous attention in a variety of fields, including the gas sensing field, due to their fascinating features such as high adsorption sites for gas molecules, high porosity, tunable morphologies, structural diversities, and ability of room temperature (RT) sensing. This review summarizes the current advancement in various pristine MOF materials and their composites for different electrical transducer-based gas sensing applications. The review begins with a discussion on the overview of gas sensors, the significance of MOFs, and their scope in the gas sensing field. Next, gas sensing applications are divided into four categories based on different advanced transducers: chemiresistive, capacitive, quartz crystal microbalance (QCM), and organic field-effect transistor (OFET) based gas sensors. Their fundamental concepts, gas sensing ability towards various gases, sensing mechanisms, and their advantages and disadvantages are discussed. Finally, this review is concluded with a summary, existing challenges, and future perspectives.
Collapse
Affiliation(s)
- Sanjit Manohar Majhi
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Ashraf Ali
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | | | - Yaser E Greish
- Department of Chemistry, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Sensor Group, R&D Section, Dyson Tech. Limited Malmesbury UK
| | - Naser Qamhieh
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Saleh T Mahmoud
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| |
Collapse
|
43
|
Li C, Liu J, Peng H, Sui Y, Song J, Liu Y, Huang W, Chen X, Shen J, Ling Y, Huang C, Hong Y, Huang W. A Camel Nose-Inspired Highly Durable Neuromorphic Humidity Sensor with Water Source Locating Capability. ACS NANO 2022; 16:1511-1522. [PMID: 34908409 DOI: 10.1021/acsnano.1c10004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Numerous emerging applications in modern society require humidity sensors that are not only sensitive and specific but also durable and intelligent. However, conventional humidity sensors do not have all of these simultaneously because they require very different or even contradictory design principles. Here, inspired by camel noses, we develop a porous zwitterionic capacitive humidity sensor. Relying on the synergistic effect of a porous structure and good chemical and thermal stabilities of hygroscopic zwitterions, this sensor simultaneously exhibits high sensitivity, discriminability, excellent durability, and, in particular, the highest respond speed among reported capacitive humidity sensors, with demonstrated applications in the fast discrimination between fresh, stale, and dry leaves, high-resolution touchless human-machine interactive input devices, and the real-time monitoring humidity level of a hot industrial exhaust. More importantly, this sensor exhibits typical synapse behaviors such as paired-pulse facilitation due to the strong binding interactions between water and zwitterions. This leads to learning and forgetting features with a tunable memory, thus giving the sensor artificial intelligence and enabling the location of water sources. This work offers a general design principle expected to be applied to develop other high-performance biochemical sensors and the next-generation intelligent sensors with much broader applications.
Collapse
Affiliation(s)
- Caicong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, Fujian, P. R. China
| | - Hailong Peng
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Yuan Sui
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
| | - Jian Song
- Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, Fujian, P. R. China
| | - Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, Fujian, P. R. China
| | - Xiaowei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yao Ling
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chongyu Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Youwei Hong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou 350002, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
44
|
Niu B, Zhai Z, Hao X, Ren T, Li C. Flexible Acetone Gas Sensor based on ZIF-8/Polyacrylonitrile (PAN) Composite Film. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Huo Y, Bu M, Ma Z, Sun J, Yan Y, Xiu K, Wang Z, Hu N, Li YF. Flexible, non-contact and multifunctional humidity sensors based on two-dimensional phytic acid doped co-metal organic frameworks nanosheets. J Colloid Interface Sci 2021; 607:2010-2018. [PMID: 34798709 DOI: 10.1016/j.jcis.2021.09.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
The development of high-performance humidity sensors is of great significance to explore their practical applications in the fields of environment, energy saving and safety monitoring. Herein, a flexible, non-contact and multifunctional humidity sensor based on two-dimensional Co-metal organic frameworks (Co-MOF) nanosheets is proposed, which is fabricated by simple bottom-up synthesis method. Furthermore, environmentally friendly, renewable and abundant biomass phytic acid (PA) is modified on the surface of Co-MOF nanosheets, which releases free protons being capable of etching the framework of MOF to improve the hydrophilicity and conductivity of MOF. Compared with Co-MOF-based sensor, the Co-MOF@PA-based sensor exhibits significantly enhanced sensitivity and broadened response range within 23-95% relative humidity (RH). The humidity sensor has an excellent humidity sensing response over 2 × 103. The Co-MOF@PA-based sensor shows good flexibility and humidity sensing properties, endowing it with multifunctional applications in real-time facial respiration monitoring, skin humidity perception, cosmetic moisturizing evaluation and fruit freshness testing. Four respiration patterns, including slow breath, deep breath, normal breath and fast breath are wirelessly monitored in real time by Co-MOF@PA-based sensor and recorded by mobile phone software. The research work presents potential applications in human-machine interactions (HMI) devices in future.
Collapse
Affiliation(s)
- Yanming Huo
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Miaomiao Bu
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Zongtao Ma
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Jingyao Sun
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Yuhua Yan
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Kunhao Xiu
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Ziying Wang
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, PR China; National Engineering Research Center for Technological Innovation Method and Tool, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, PR China; National Engineering Research Center for Technological Innovation Method and Tool, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Yun-Fei Li
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, PR China.
| |
Collapse
|
46
|
Enhanced Capacitive Humidity Sensing Performance at Room Temperature via Hydrogen Bonding of Cyanopyridone-Based Oligothiophene Donor. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyanopyridone-based oligothiophene donors with both hydrophobic and hydrophilic characters have been evaluated as active layers within simple capacitive devices for humidity sensing at room temperature. Surface studies using atomic force microscopy revealed a self-assembled nanofibrous network with a thin needle-like structure for the terminal hydroxy example (CP6), devoid in the methyl example (CP1). The sensing performance of each sensor was investigated over a broad range of relative humidity levels as a function of capacitance at room temperature. The sensor CP6 demonstrated favourable features such as high sensitivity (12.2 pF/%RH), quick response/recovery (13 s/20.7 s), wide working range of relative humidity (10%–95% RH), low hysteresis (0.57%), outstanding recyclability, and excellent long-term stability. From the results obtained, hydrophilicity and hydrogen bonding appear to play a vital role in enhancing humidity sensing performance, leading to possible new design directions for simple organic semiconductor-based sensors.
Collapse
|
47
|
Wu K, Guan X, Hou Z, Liu L, Zhao H, Liu S, Fei T, Zhang T. Humidity sensors based on metal organic frameworks derived polyelectrolyte films. J Colloid Interface Sci 2021; 602:646-653. [PMID: 34153705 DOI: 10.1016/j.jcis.2021.06.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Application of metal organic frameworks (MOFs) on sensors is of great interest for researchers. Film forming ability of the sensing material is very important for both the preparation process and sensing properties of the devices. Humidity sensors based on UIO-66 derived polyelectrolyte films were well prepared by in situ thiol-ene click cross-linking polymerization in this work. The hydrophilicity of the sensing film could be controlled by the feed ratios. The optimized humidity sensor shows a fast response to RHs change (Res/Rec time is 3.1 s/1.5 s, respectively) with ∼1.2% RH of humidity hysteresis. The water molecules adsorption behavior of the film and the sensing mechanism were also be investigated. The humidity sensor with good water and thermal stability and repeatability was applied in breath monitoring, which can well distinguish different breath states.
Collapse
Affiliation(s)
- Ke Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China; State Key Laboratory of Transducer Technology, Shanghai 200050, PR China
| | - Xin Guan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Zhaonan Hou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Lichao Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China; State Key Laboratory of Transducer Technology, Shanghai 200050, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
48
|
Vijjapu MT, Surya SG, He JH, Salama KN. Highly Selective Self-Powered Organic-Inorganic Hybrid Heterojunction of a Halide Perovskite and InGaZnO NO 2 Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40460-40470. [PMID: 34415137 DOI: 10.1021/acsami.1c06546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-powered sensors can lead to disruptive advances in self-sustainable sensing systems that are imperative for evolving human lifestyles. For the first time, we demonstrate the fabrication of a heterojunction sensor using p-type hybrid-halide perovskites (CH3NH3PbBr3) and an n-type semiconducting metal oxide thin film [InGaZnO (IGZO)] for the detection of NO2 gas and power generation. Combining the excellent photoelectric properties of perovskites and the remarkable gas-sensing properties of IGZO at room temperature, the devised sensors generate open-circuit voltage and modulate according to the ambient NO2 concentration. The major challenge in devising self-powered gas sensors is to attain harvesting capability and selectivity simultaneously, owing to perovskites reactivity in the presence of oxygen and humidity. In this work, we developed a novel approach and fabricated a heterojunction sensor using parylene-c as an additional layer to curb the cross-sensitivity and to enhance the selectivity of the sensor. Even under the low concentrations of NO2, the developed sensor exhibits remarkable sensitivity, selectivity, and repeatability. The devices are sensitive and robust even under extreme humidity conditions (80% RH) and synthetic air. The devised sensor configuration is one way to eliminate the cross-sensitivity issue of the perovskite-based devices and serves as a reference for the development of self-powered sensors.
Collapse
Affiliation(s)
- Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jr-Hau He
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metal-organic frameworks for chemical sensing devices. MATERIALS HORIZONS 2021; 8:2387-2419. [PMID: 34870296 DOI: 10.1039/d1mh00609f] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are exceptionally large surface area materials with organized porous cages that have been investigated for nearly three decades. Due to the flexibility in their design and predisposition toward functionalization, they have shown promise in many areas of application, including chemical sensing. Consequently, they are identified as advanced materials with potential for deployment in analytical devices for chemical and biochemical sensing applications, where high sensitivity is desirable, for example, in environmental monitoring and to advance personal diagnostics. To keep abreast of new research, which signposts the future directions in the development of MOF-based chemical sensors, this review examines studies since 2015 that focus on the applications of MOF films and devices in chemical sensing. Various examples that use MOF films in solid-state sensing applications were drawn from recent studies based on electronic, electrochemical, electromechanical and optical sensing methods. These examples underscore the readiness of MOFs to be integrated in optical and electronic analytical devices. Also, preliminary demonstrations of future sensors are indicated in the performances of MOF-based wearables and smartphone sensors. This review will inspire collaborative efforts between scientists and engineers working within the field of MOFs, leading to greater innovations and accelerating the development of MOF-based analytical devices for chemical and biochemical sensing applications.
Collapse
Affiliation(s)
- Joseph F Olorunyomi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Shu Teng Geh
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | | |
Collapse
|
50
|
Chandresh A, Zhang Z, Heinke L. Insights in the Ionic Conduction inside Nanoporous Metal-Organic Frameworks by Using an Appropriate Equivalent Circuit. MATERIALS 2021; 14:ma14164352. [PMID: 34442873 PMCID: PMC8399861 DOI: 10.3390/ma14164352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
The conduction of protons and other ions in nanoporous materials, such as metal-organic frameworks (MOFs), is intensively explored with the aim of enhancing the performance of energy-related electrochemical systems. The ionic conductivity, as a key property of the material, is typically determined by using electrochemical impedance spectroscopy (EIS) in connection with a suitable equivalent circuit. Often, equivalent circuits are used where the physical meaning of each component is debatable. Here, we present an equivalent circuit for the ionic conduction of electrolytes in nanoporous, nonconducting materials between inert and impermeable electrodes without faradaic electrode reactions. We show the equivalent circuit perfectly describes the impedance spectra measured for the ion conduction in MOFs in the form of powders pressed into pellets as well as for MOF thin films. This is demonstrated for the ionic conduction of an aprotic ionic liquid, and of various protic solvents in different MOF structures. Due to the clear physical meaning of each element of the equivalent circuit, further insights into the electrical double layer forming at the MOF-electrode interface can be obtained. As a result, EIS combined with the appropriate reference circuit allows us to make statements of the quality of the MOF-substrate interface of different MOF-film samples.
Collapse
|