1
|
Rosa ART, do Valle RF, da Silva MV, Perini HF, Oliveira CJF, Rosa RC, Shimano AC, Silva ACA, de Morais LC. Nano- and Microstructured Systems for Controlled Release of Agricultural Inputs: Innovations for Efficiency and Sustainability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10681-10691. [PMID: 40273343 DOI: 10.1021/acs.jafc.4c12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Nano and microstructured systems for the controlled release of agricultural inputs represent a significant advancement in sustainable agriculture. These technologies enable the encapsulation of nutrients and pesticides, ensuring gradual and targeted delivery while reducing waste and enhancing plant absorption. Biodegradable materials, such as chitosan and alginate, offer eco-friendly solutions that improve efficiency under challenging conditions, including salinity and drought. Recent innovations have led to increased crop productivity, reduced pesticide application, and improved soil remediation. For example, nanoparticles can adsorb heavy metals like cadmium and lead, facilitating the restoration of contaminated soils. Despite these benefits, challenges remain, including the need for clear regulatory frameworks and further research on the long-term ecological impacts of nanomaterials. This review highlights the critical role of nano and microstructured systems in advancing agricultural sustainability. By bridging technological innovation with practical applications, these systems have the potential to transform global farming, making it more efficient, resilient, and environmentally sustainable.
Collapse
Affiliation(s)
- Aline Rombega Tito Rosa
- Network of Translational Nanobioplatforms, Federal University of Triângulo Mineiro Mineira (UFTM), Vigário Carlos Street, 100, CEP, Abadia, 38025-350 Uberaba, Minas Gerais, Brazil
| | - Renato Farias do Valle
- Geoprocessing Laboratory, Federal Institute of Triângulo Mineiro (IFTM), João Batista Ribeiro Street, 4000 - Distrito Industrial II, 38064-790 Uberaba,Minas Gerais, Brazil
| | - Marcos Vinicius da Silva
- Network of Translational Nanobioplatforms, Federal University of Triângulo Mineiro Mineira (UFTM), Vigário Carlos Street, 100, CEP, Abadia, 38025-350 Uberaba, Minas Gerais, Brazil
| | - Hugo Felix Perini
- Network of Translational Nanobioplatforms, Federal University of Triângulo Mineiro Mineira (UFTM), Vigário Carlos Street, 100, CEP, Abadia, 38025-350 Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Network of Translational Nanobioplatforms, Federal University of Triângulo Mineiro Mineira (UFTM), Vigário Carlos Street, 100, CEP, Abadia, 38025-350 Uberaba, Minas Gerais, Brazil
| | - Rodrigo César Rosa
- Network of Translational Nanobioplatforms, Federal University of Triângulo Mineiro Mineira (UFTM), Vigário Carlos Street, 100, CEP, Abadia, 38025-350 Uberaba, Minas Gerais, Brazil
| | - Antonio Carlos Shimano
- Network of Translational Nanobioplatforms, Federal University of Triângulo Mineiro Mineira (UFTM), Vigário Carlos Street, 100, CEP, Abadia, 38025-350 Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Physics Institute, Federal University of Alagoas, Lourival Melo Mota Avenue, s/n, CEP, Tabuleiro do Martins, 57072-900 Maceió, Alagoas, Brazil
| | - Luís Carlos de Morais
- Network of Translational Nanobioplatforms, Federal University of Triângulo Mineiro Mineira (UFTM), Vigário Carlos Street, 100, CEP, Abadia, 38025-350 Uberaba, Minas Gerais, Brazil
| |
Collapse
|
2
|
Truong H, Abaci A, Gharacheh H, Guvendiren M. Embedded bioprinting of dense cellular constructs in bone allograft-enhanced hydrogel matrices for bone tissue engineering. Biomater Sci 2025. [PMID: 40018866 DOI: 10.1039/d4bm01616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Bone tissue engineering aims to address critical-sized defects by developing biomimetic scaffolds that promote repair and regeneration. This study introduces a material extrusion-based embedded bioprinting approach to fabricate dense cellular constructs within methacrylated hyaluronic acid (MeHA) hydrogels enhanced with bioactive microparticles. Composite matrices containing human bone allograft or tricalcium phosphate (TCP) particles were evaluated for their rheological, mechanical, and osteoinductive properties. High cell viability (>95%) and uniform strand dimensions were achieved across all bioprinting conditions, demonstrating the method's ability to preserve cellular integrity and structural fidelity. The inclusion of bone or TCP particles did not significantly alter the viscosity, crosslinking kinetics, or compressive modulus of the MeHA hydrogels, ensuring robust mechanical stability and shape retention. However, bone allograft particles significantly enhanced osteogenic differentiation of human mesenchymal stem cells (hMSCs), as evidenced by increased alkaline phosphatase (ALP) activity and calcium deposition. Notably, osteogenesis was observed even in basal media, with a dose-dependent response to bone particle concentration, highlighting the intrinsic bioactivity of allograft particles. This study demonstrates the potential of combining embedded bioprinting with bioactive matrices to create dense, osteoinductive cellular constructs. The ability to induce osteogenesis without external growth factors positions this platform as a scalable and clinically relevant solution for bone repair and regeneration.
Collapse
Affiliation(s)
- Hang Truong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Alperen Abaci
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Bilgili H, Aydin MS, Sahin M, Sahin SB, Cetinel S, Kiziltas G. 3D-Printed Functionally Graded PCL-HA Scaffolds with Multi-Scale Porosity. ACS OMEGA 2025; 10:6502-6519. [PMID: 40028112 PMCID: PMC11866177 DOI: 10.1021/acsomega.4c06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/05/2025]
Abstract
Functionally graded scaffolds (FGSs) designed for bone tissue regeneration exhibit three-dimensional (3D) constructs with spatially varying pores, mirroring the natural bone structure, aiming to offer temporary support and a conducive environment for cells during tissue regeneration in defect sites. While existing research on FGSs has primarily focused on altering pore architecture and tuning biomechanical properties for improved tissue regeneration, limited exploration exists on 3D spatially varying FGSs with multiscale porosity to closely mimic natural bone. In this study, we fabricated and investigated FGSs with macropores varying radially and longitudinally, along with micropores within the struts. Utilizing nonsolvent-induced phase separation integrated with 3D printing, we printed poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite scaffolds with both uniform and FG geometries. Two HA content variations (10 and 20 wt %) were employed to assess their impact on scaffold properties. Rheological analysis of polymer suspensions gauged the viscosity and shear stress. Thermogravimetric analysis (thermal gravimetric analysis) determined PCL decomposition and the final HA content in the scaffold. Morphological properties, including porosity, pore size, and pore distribution, were evaluated using microcomputed tomography (micro-CT), while field-emission scanning electron microscopy imaged scaffold surface and cross-sectional morphology. Mechanical tests (compression and tension) assessed the scaffold strength. In vitro assays with MC3T3-E1 preosteoblast cells measured cell viability and alkaline phosphatase enzyme activity in uniform and FGSs with 10% and 20% HA content. Results confirmed that the achieved porosity levels provided sufficient strength and supported effective cell proliferation. Cell culture results demonstrated that uniform scaffolds with 10% HA promoted osteogenesis with slow cell proliferation, whereas FGSs with 20% HA promoted both proliferation and osteogenesis of preosteoblast cells. Overall, the structural, compositional, and biological characterization indicated that both uniform and FGSs provide suitable environments for bone tissue regeneration, with functionally graded scaffold morphology potentially offering a favorable environment for cell response.
Collapse
Affiliation(s)
- Hatice
Kubra Bilgili
- Department
of Material Science and Nanoengineering, Faculty of Engineering and
Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Division
of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Mehmet Serhat Aydin
- Department
of Material Science and Nanoengineering, Faculty of Engineering and
Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Center
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Bergen 5009, Norway
| | - Mervenaz Sahin
- Department
of Material Science and Nanoengineering, Faculty of Engineering and
Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Department
of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering
and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Sabanci
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
| | - Gullu Kiziltas
- Sabanci
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
- Department
of Mechatronics, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
4
|
Wang C, Liu A, Zhao Z, Ying T, Deng S, Jian Z, Zhang X, Yi C, Li D. Application and progress of 3D printed biomaterials in osteoporosis. Front Bioeng Biotechnol 2025; 13:1541746. [PMID: 39968010 PMCID: PMC11832546 DOI: 10.3389/fbioe.2025.1541746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Osteoporosis results from a disruption in skeletal homeostasis caused by an imbalance between bone resorption and bone formation. Conventional treatments, such as pharmaceutical drugs and hormone replacement therapy, often yield suboptimal results and are frequently associated with side effects. Recently, biomaterial-based approaches have gained attention as promising alternatives for managing osteoporosis. This review summarizes the current advancements in 3D-printed biomaterials designed for osteoporosis treatment. The benefits of biomaterial-based approaches compared to traditional systemic drug therapies are discussed. These 3D-printed materials can be broadly categorized based on their functionalities, including promoting osteogenesis, reducing inflammation, exhibiting antioxidant properties, and inhibiting osteoclast activity. 3D printing has the advantages of speed, precision, personalization, etc. It is able to satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. The limitations of existing biomaterials are critically analyzed and future directions for biomaterial-based therapies are considered.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ziwen Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ting Ying
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuang Deng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhen Jian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
5
|
Gharacheh H, Abaci A, Alkhoury K, Choudhury E, Liaw CY, Chester SA, Guvendiren M. Comparative evaluation of melt- vs. solution-printed poly(ε-caprolactone)/hydroxyapatite scaffolds for bone tissue engineering applications. SOFT MATTER 2025; 21:844-854. [PMID: 39611880 DOI: 10.1039/d4sm01197j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Material extrusion-based three-dimensional (3D) printing is a widely used manufacturing technology for fabricating scaffolds and devices in bone tissue engineering (BTE). This technique involves two fundamentally different extrusion approaches: solution-based and melt-based printing. In solution-based printing, a polymer solution is extruded and solidifies via solvent evaporation, whereas in melt-based printing, the polymer is melted at elevated temperatures and solidifies as it cools post-extrusion. Solution-based printing can also be enhanced to generate micro/nano-scale porosity through phase separation by printing the solution into a nonsolvent bath. The choice of the printing method directly affects scaffold properties and the biological response of stem cells. In this study, we selected polycaprolactone (PCL), a biodegradable polymer frequently used in BTE, blended with hydroxyapatite (HA) nanoparticles, a bioceramic known for promoting bone formation, to investigate the effects of the printing approach on scaffold properties and performance in vitro using human mesenchymal stem cells (hMSCs). Our results showed that while both printing methods produced scaffolds with similar strut and overall scaffold dimensions, solvent-based printing resulted in porous struts, higher surface roughness, lower stiffness, and increased crystallinity compared to melt-based printing. Although stem cell viability and proliferation were not significantly influenced by the printing approach, melt-printed scaffolds promoted a more spread morphology and exhibited pronounced vinculin staining. Furthermore, composite scaffolds outperformed their neat counterparts, with melt-printed composite scaffolds significantly enhancing bone formation. This study highlights the critical role of the printing process in determining scaffold properties and performance, providing valuable insights for optimizing scaffold design in BTE.
Collapse
Affiliation(s)
- Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Alperen Abaci
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Keven Alkhoury
- Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ediha Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Chya-Yan Liaw
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Shawn A Chester
- Department of Mechanical & Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 PMCID: PMC11697815 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
7
|
Sinha P, Lahare P, Sahu M, Cimler R, Schnitzer M, Hlubenova J, Hudak R, Singh N, Gupta B, Kuca K. Concept and Evolution in 3D Printing for Excellence in Healthcare. Curr Med Chem 2025; 32:831-879. [PMID: 38265395 DOI: 10.2174/0109298673262300231129102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/05/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024]
Abstract
Three-dimensional printing (3DP) has gained popularity among scientists and researchers in every field due to its potential to drastically reduce energy costs for the production of customized products by utilizing less energy-intensive machines as well as minimizing material waste. The 3D printing technology is an additive manufacturing approach that uses material layer-by-layer fabrication to produce the digitally specified 3D model. The use of 3D printing technology in the pharmaceutical sector has the potential to revolutionize research and development by providing a quick and easy means to manufacture personalized one-off batches, each with unique dosages, distinct substances, shapes, and sizes, as well as variable release rates. This overview addresses the concept of 3D printing, its evolution, and its operation, as well as the most popular types of 3D printing processes utilized in the health care industry. It also discusses the application of these cutting-edge technologies to the pharmaceutical industry, advancements in various medical fields and medical equipment, 3D bioprinting, the most recent initiatives to combat COVID-19, regulatory frameworks, and the major challenges that this technology currently faces. In addition, we attempt to provide some futuristic approaches to 3DP applications.
Collapse
Affiliation(s)
- Priyank Sinha
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Preeti Lahare
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Meena Sahu
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Richard Cimler
- Department of Chemistry, Faculty of Science, Center for Applied Technologies, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, Czech Republic
| | - Marek Schnitzer
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 1/9 Kosice, Slovakia
| | - Jana Hlubenova
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 1/9 Kosice, Slovakia
| | - Radovan Hudak
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 1/9 Kosice, Slovakia
| | - Namrata Singh
- Department of Chemistry, Faculty of Science, Center for Applied Technologies, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, Czech Republic
- Department of Engineering Sciences, Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai, Maharashtra 400706, India
| | - Bhanushree Gupta
- Department of Chemistry, Centre for Basic Sciences, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, Center for Applied Technologies, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
8
|
Sobreiro-Almeida R, Santos SC, Decarli MC, Costa M, Correia TR, Babilotte J, Custódio CA, Moroni L, Mano JF. Leveraging Blood Components for 3D Printing Applications Through Programmable Ink Engineering Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406569. [PMID: 39450696 DOI: 10.1002/advs.202406569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Indexed: 10/26/2024]
Abstract
This study proposes a tunable ink engineering methodology to allow 3D printing processability of highly bioactive but otherwise low-viscous and unprintable blood-derived materials. The hypothesis relies on improving the viscoelasticity and shear thinning behavior of platelet lysates (PL) and albumins (BSA) solutions by covalent coupling, enabling simultaneous extrusion and photocrosslinking upon filament deposition. The available amine groups on proteins (PL and BSA) are exploited for coupling with carboxyl groups present in methacrylated proteins (hPLMA and BSAMA), by leveraging carbodiimide chemistry. This reaction enabled the creation of a pre-gel from these extremely low-viscous materials (≈ 1 Pa), with precise tuning of the reaction, resulting in inks with a range of controlled viscosities and elasticities. Shape-fidelity analysis is performed on 3D-printed multilayered constructs, demonstrating the ability to reach clinically relevant sizes (>2 cm in size). After photocrosslinking, the scaffolds showcased a mechanically robust structure with sustained protein release over time. Bioactivity is evaluated using human adipose-derived stem cells, resulting in increased viability and metabolic activity over time. The herein described research methodology widens the possibilities for the use of low-viscosity materials in 3D printing but also enables the direct application of patient and blood-derived materials in precision medicine.
Collapse
Affiliation(s)
- Rita Sobreiro-Almeida
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Sara C Santos
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Monize C Decarli
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ET, The Netherlands
| | - Marcelo Costa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Tiago R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Joanna Babilotte
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ET, The Netherlands
| | - Catarina A Custódio
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
- Metatissue - PCI Creative Science Park Aveiro Region, Ílhavo, 3830-352, Portugal
| | - Lorenzo Moroni
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ET, The Netherlands
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
9
|
Pal S, Gavhane UA, S K A. Biocompatible PVAc- g-PLLA Acrylate Polymers for DLP 3D Printing with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62594-62605. [PMID: 39472155 DOI: 10.1021/acsami.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The technological advancement of Additive Manufacturing has enabled the fabrication of various customized artifacts and devices, which has prompted a huge demand for multimaterials that can cater to stringent mechanical, chemical, and other functional property requirements. Photocurable formulations that are widely used for Digital Light Processing (DLP)/Stereolithography (SLA) 3D printing applications are now expected to meet these new challenges of hard and soft or stretchable structural requirements in addition to good resolution in multiple scales. Here we present a biocompatible photocurable resin formulation with tunable mechanical properties that can produce hard or stretchable elastomeric 3D printed materials in a graded manner. Acrylate poly(lactic acid) (PLA) grafted polyvinyl acetate (PVAc) polymer was mixed with hydroxyl ethyl methacrylate (HEMA) and hydroxyl ethyl acrylate (HEA) as reactive diluents (50-70 wt %) in various compositions to form a series of photocurable resin formulations. Depending on the nature of the reactive diluent (HEMA or HEA) and their weight percentage, the mechanical properties of the 3D printed parts could be fine-tuned from hard (Tensile strength 20.6 ± 2 MPa, elongation 2 ± 1%) to soft (Tensile strength 1.1 ± 0.2 MPa, elongation 62 ± 8%) materials. The printed materials displayed remarkable dye absorption (95%), showing stimuli-responsive behavior for dye release (with respect to both pH and enzyme), while also demonstrating high cell viability (>90%) for mouse embryonic (WT-MEF) cells and degradability in PBS solution. These biobased 3D printing resins have the potential for a variety of applications, including tissue engineering, soft robotics, dye absorption, and elastomeric actuators.
Collapse
Affiliation(s)
- Shibam Pal
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Asha S K
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
10
|
Wang G, Liu J, Lian T, Sun Y, Chen X, Todo M, Osaka A. Distribution and propagation of stress and strain in cube honeycombs as trabecular bone substitutes: Finite element model analysis. J Mech Behav Biomed Mater 2024; 159:106647. [PMID: 39178822 DOI: 10.1016/j.jmbbm.2024.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 08/26/2024]
Abstract
For designing trabecular (Tb) bone substitutes suffering from osteoporosis, finite element model (FEM) simulations were conducted on honeycombs (HCs) of 8 × 8 × 1 (2D) and 8 × 8 × 8 (3D) assemblies of cube cellular units consisting of 0.9 mm long Nylon® 66 (PA, Young's modulus E: 2.83 GPa) and polyethylene (PE, E: 1.1 GPa) right square prisms. Osteoporotic damage to the Tb bone was simulated by removing the inner vertical struts (pillars; the number of removed pillars: Δn ≤ 300) and by thinning the strut (thickness, d: 0.4-0.1 mm), while the six facade lattices were kept flawless. Uniform and uniaxial compressive loads on the HCs induced elastic deformation of the struts. The pillars held almost all the load, while the horizontal struts (beams) shared little. E for PA 3D HCs of all d smoothly decreased with Δn. PA 3D HCs of 0.2 mm struts deserved to be the substitutes for Tb bone, while PE 3D HCs of 0.05 mm struts were only for the Tb bone of the poorest bone quality. For the PA 3D HCs, the maximum von Mises stress (σM) first rapidly increased with Δn and showed a break at Δñ50, then gradually approached the yield stress of PA (50 MPa). Moreover, small portions of the stress were transferred from the façade pillars to the adjacent inner beams, especially those near the lost-pillar sites, denoted as X defects. The floor beams of thinner struts associated with the X-defects were lifted, and similar lifting effects in smaller amounts were propagated to the other floors. The 3DHCs of the thicker struts showed no such flexural deformations. The concept of force percolation through the remaining struts was proposed to interpret those mechanical behaviors of the HCs.
Collapse
Affiliation(s)
- Guangxin Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China.
| | - Jiaqi Liu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Tingting Lian
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Yanyan Sun
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Xuewen Chen
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, 816-8580, Japan
| | - Akiyoshi Osaka
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China; Faculty of Engineering, Okayama University, Tsushima, Okayama, 700-8530, Japan.
| |
Collapse
|
11
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Boretti G, Amirfallah A, Edmunds KJ, Hamzehpour H, Sigurjónsson ÓE. Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39381849 DOI: 10.1089/ten.teb.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Arsalan Amirfallah
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| | - Kyle J Edmunds
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Helena Hamzehpour
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| |
Collapse
|
13
|
Zhang J, Mohd Said F, Daud NFS, Jing Z. Present status and application prospects of green chitin nanowhiskers: A comprehensive review. Int J Biol Macromol 2024; 278:134235. [PMID: 39079565 DOI: 10.1016/j.ijbiomac.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Petrochemical resources are non-renewable, which has impeded the development of synthetic polymers. The poor degradability of synthetic polymers poses substantial environmental pressure. Additionally, the high cost of synthetic biopolymers with excellent degradation performance limits their widespread application. Thus, it is crucial to seek green, sustainable, low-cost polymers as alternatives to petrochemical-based synthetic polymers and synthetic biopolymers. Chitin is a natural and renewable biopolymer discovered in crustacean shells, insect exoskeletons, and fungal cell walls. Chitin chains consist of crystalline and amorphous regions. Note that various treatments can be employed to remove the amorphous region, enhancing the crystallinity of chitin. Chitin nanowhiskers are a high crystallinity nanoscale chitin product with a high aspect ratio, a large surface area, adjustable surface morphology, and biocompatibility. They discover widespread applications in biomedicine, environmental treatment, food packaging, and biomaterials. Various methods can be utilized for preparing chitin nanowhiskers, including chemical, ionic liquids, deacetylation, and mechanical methods. However, developing an environmentally friendly preparation process remains a big challenge for expanding their applications in different materials and large-scale production. This article comprehensively analyzes chitin nanowhiskers' preparation strategies and their drawbacks. It also highlights the extensive application in different materials and various fields, besides the potential for commercial application.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nur Fathin Shamirah Daud
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
14
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
15
|
Radisic M, Kaplan DL. Serving a Diverse Biomaterials Community for 10 Years. ACS Biomater Sci Eng 2024; 10:5409-5411. [PMID: 39246059 DOI: 10.1021/acsbiomaterials.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
|
16
|
Jin H, Zhu X, Liu H, Wang L, Liu S, Zhang H. Type-I Collagen Polypeptide-Based Composite Nanofiber Membranes for Fast and Efficient Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5632-5640. [PMID: 39150362 DOI: 10.1021/acsbiomaterials.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The clinical treatment of bone defects includes allogeneic bone transplantation and autologous bone transplantation. However, they all have their own limitations, and the scope of application is limited. In recent years, bone tissue engineering scaffolds based on a variety of materials have been well developed and achieved good bone regeneration ability. However, most scaffold materials always face problems such as high biotoxicity, leading to inflammation and poor bioactivity, which limits the bone regeneration effect and prolongs the bone regeneration time. In our work, we prepared hydroxyapatite, erythropoietin (EPO), and osteogenic growth peptide (OGP) codoped type-I collagen (Col I) polypeptide nanofiber membranes (NFMs) by electrostatic spinning. In cell experiments, the composite NFMs had low cytotoxicity and promoted osteogenic differentiation of rat bone marrow mesenchymal stem cells. Quantitative real-time polymerase chain reaction and alkaline phosphatase staining confirmed the high expression of osteogenic genes, and alizarin red S staining directly confirmed the appearance of calcium nodules. In animal experiments, the loaded hydroxyapatite formed multiple independent mineralization centers in the defect center. Under the promotion of Col I, EPO, and OGP, the bone continued to grow along the mineralization centers as well as inward the defect edge, and the bone defect completely regenerated in about two months. The hematological and histological analyses proved the safety of the experiments. This kind of design to promote bone regeneration by simulating bone composition, introducing mineralization center and signal molecules, can shorten repair time, improve repair effect, and has good practical prospects in the future.
Collapse
Affiliation(s)
- Hao Jin
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xuanqi Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Heng Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Lu Wang
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Shuwei Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Hao Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Nan X, Qin B, Xu Z, Jia Q, Hao J, Cao X, Mei S, Wang X, Kang T, Zhang J, Bai T. The effect of feed mechanisms on the structural design of flexible antennas, and research on their material processing and applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:091501. [PMID: 39287479 DOI: 10.1063/5.0206788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Flexible antennas are widely used in mobile communications, the Internet of Things, personalized medicine, aerospace, and military technologies due to their superior performance in terms of adaptability, impact resistance, high degree of freedom, miniaturization of structures, and cost-effectiveness. With excellent flexibility and portability, these antennas are now being integrated into paper, textiles, and even the human body to withstand the various mechanical stresses of daily life without compromising their performance. The purpose of this paper is to provide a comprehensive overview of the basic principles and current development of flexible antennas, systematically analyze the key performance factors of flexible antennas, such as structure, process, material, and application environment, and then discuss in detail the design structure, material selection, preparation process, and corresponding experimental validation of flexible antennas. Flexible antenna design in mobile communication, wearable devices, biomedical technology, and other fields in recent years has been emphasized. Finally, the development status of flexible antenna technology is summarized, and its future development trend and research direction are proposed.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bolin Qin
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikun Jia
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Shixuan Mei
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Tingting Bai
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
18
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
19
|
Ghelardini MM, Geisler M, Weigel N, Hankwitz JP, Hauck N, Schubert J, Fery A, Tracy JB, Thiele J. 3D-Printed Hydrogels as Photothermal Actuators. Polymers (Basel) 2024; 16:2032. [PMID: 39065349 PMCID: PMC11281285 DOI: 10.3390/polym16142032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Thermoresponsive hydrogels were 3D-printed with embedded gold nanorods (GNRs), which enable shape change through photothermal heating. GNRs were functionalized with bovine serum albumin and mixed with a photosensitizer and poly(N-isopropylacrylamide) (PNIPAAm) macromer, forming an ink for 3D printing by direct ink writing. A macromer-based approach was chosen to provide good microstructural homogeneity and optical transparency of the unloaded hydrogel in its swollen state. The ink was printed into an acetylated gelatin hydrogel support matrix to prevent the spreading of the low-viscosity ink and provide mechanical stability during printing and concurrent photocrosslinking. Acetylated gelatin hydrogel was introduced because it allows for melting and removal of the support structure below the transition temperature of the crosslinked PNIPAAm structure. Convective and photothermal heating were compared, which both triggered the phase transition of PNIPAAm and induced reversible shrinkage of the hydrogel-GNR composite for a range of GNR loadings. During reswelling after photothermal heating, some structures formed an internally buckled state, where minor mechanical agitation recovered the unbuckled structure. The BSA-GNRs did not leach out of the structure during multiple cycles of shrinkage and reswelling. This work demonstrates the promise of 3D-printed, photoresponsive structures as hydrogel actuators.
Collapse
Affiliation(s)
- Melanie M. Ghelardini
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Martin Geisler
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Niclas Weigel
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jameson P. Hankwitz
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Nicolas Hauck
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jonas Schubert
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Physical Chemistry and Polymer Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Joseph B. Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Julian Thiele
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
20
|
Gade S, Glover K, Mishra D, Sharma S, Guy O, Donnelly RF, Vora LK, Thakur RRS. Hollow microneedles for ocular drug delivery. J Control Release 2024; 371:43-66. [PMID: 38735395 DOI: 10.1016/j.jconrel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Microneedles (MNs) are micron-sized needles, typically <2 mm in length, arranged either as an array or as single needle. These MNs offer a minimally invasive approach to ocular drug delivery due to their micron size (reducing tissue damage compared to that of hypodermic needles) and overcoming significant barriers in drug administration. While various types of MNs have been extensively researched, significant progress has been made in the use of hollow MNs (HMNs) for ocular drug delivery, specifically through suprachoroidal injections. The suprachoroidal space, situated between the sclera and choroid, has been targeted using optical coherence tomography-guided injections of HMNs for the treatment of uveitis. Unlike other MNs, HMNs can deliver larger volumes of formulations to the eye. This review primarily focuses on the use of HMNs in ocular drug delivery and explores their ocular anatomy and the distribution of formulations following potential HMN administration routes. Additionally, this review focuses on the influence of formulation characteristics (e.g., solution viscosity, particle size), HMN properties (e.g., bore or lumen diameter, MN length), and routes of administration (e.g., periocular transscleral, suprachoroidal, intravitreal) on the ocular distribution of drugs. Overall, this paper highlights the distinctive properties of HMNs, which make them a promising technology for improving drug delivery efficiency, precision, and patient outcomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Shilpkala Gade
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Sanjiv Sharma
- College of Engineering, Swansea University, Swansea, UK; Pharmacology and Therapeutics, University of Liverpool, UK
| | - Owen Guy
- Department of Chemistry, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | | |
Collapse
|
21
|
Wang D, Feng Z, Zeng J, Wang Q, Zheng Y, Liu X, Jiang H. Low-Temperature Extrusion of Waterborne Polyurethane-Polycaprolactone Composites for Multi-Material Bioprinting of Engineered Elastic Cartilage. Macromol Biosci 2024; 24:e2300557. [PMID: 38409648 DOI: 10.1002/mabi.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Indexed: 02/28/2024]
Abstract
3D bioprinting of elastic cartilage tissues that are mechanically and structurally comparable to their native counterparts, while exhibiting favorable cellular behavior, is an unmet challenge. A practical solution for this problem is the multi-material bioprinting of thermoplastic polymers and cell-laden hydrogels using multiple nozzles. However, the processing of thermoplastic polymers requires high temperatures, which can damage hydrogel-encapsulated cells. In this study, the authors developed waterborne polyurethane (WPU)-polycaprolactone (PCL) composites to allow multi-material co-printing with cell-laden gelatin methacryloyl (GelMA) hydrogels. These composites can be extruded at low temperatures (50-60 °C) and high speeds, thereby reducing heat/shear damage to the printed hydrogel-capsulated cells. Furthermore, their hydrophilic nature improved the cell behavior in vitro. More importantly, the bioprinted structures exhibited good stiffness and viscoelasticity compared to native elastic cartilage. In summary, this study demonstrated low-temperature multi-material bioprinting of WPU-PCL-based constructs with good mechanical properties, degradation time-frames, and cell viability, showcasing their potential in elastic cartilage bio-fabrication and regeneration to serve broad biomedical applications in the future.
Collapse
Affiliation(s)
- Di Wang
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100144, P. R. China
| | - Zhaoxuan Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jinshi Zeng
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100144, P. R. China
| | - Qian Wang
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100144, P. R. China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xia Liu
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100144, P. R. China
| | - Haiyue Jiang
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100144, P. R. China
| |
Collapse
|
22
|
Alzhrani RF, Xu H, Zhang Y, Maniruzzaman M, Cui Z. Development of novel 3D printable inks for protein delivery. Int J Pharm 2024; 659:124277. [PMID: 38802027 DOI: 10.1016/j.ijpharm.2024.124277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained β-galactosidase (β-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of β-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the β-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in β-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The β-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The β-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the β-gal release from the constructs was delayed to 3 h by printing a backing layer of β-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the β-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed.
Collapse
Affiliation(s)
- Riyad F Alzhrani
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States
| | - Yu Zhang
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Mohammed Maniruzzaman
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, United States.
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States.
| |
Collapse
|
23
|
Barakeh W, Zein O, Hemdanieh M, Sleem B, Nassereddine M. Enhancing Hip Arthroplasty Outcomes: The Multifaceted Advantages, Limitations, and Future Directions of 3D Printing Technology. Cureus 2024; 16:e60201. [PMID: 38868274 PMCID: PMC11167579 DOI: 10.7759/cureus.60201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
In the evolving field of orthopedic surgery, the integration of three-dimensional printing (3D printing) has emerged as a transformative technology, particularly in addressing the rising incidence of degenerative joint diseases. The integration of 3D printing technology in hip arthroplasty offers substantial advantages throughout the surgical process. In preoperative planning, 3D models enable meticulous assessments, aiding in accurate implant selection and precise surgical strategies. Intraoperatively, the technology contributes to precise prosthesis design, reducing operation duration, X-ray exposures, and blood loss. Beyond surgery, 3D printing revolutionizes medical equipment production, imaging, and implant design, showcasing benefits such as enhanced osseointegration and reduced stress shielding with titanium cups. Challenges include a higher risk of postoperative infection due to the porous surfaces of 3D-printed implants, technical complexities in the printing process, and the need for skilled manpower. Despite these challenges, the evolving nature of 3D printing technologies underscores the importance of relying on existing orthopedic surgical practices while emphasizing the need for standardized guidelines to fully harness its potential in improving patient care.
Collapse
Affiliation(s)
- Wael Barakeh
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Omar Zein
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Maya Hemdanieh
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Bshara Sleem
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | | |
Collapse
|
24
|
Diederichs EV, Mondal D, Patil H, Gorbet M, Willett TL. The effect of triglycerol diacrylate on the printability and properties of UV curable, bio-based nanohydroxyapatite composites. J Mech Behav Biomed Mater 2024; 153:106499. [PMID: 38490049 DOI: 10.1016/j.jmbbm.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
3D printable biopolymer nanocomposites composed of hydroxyapatite nanoparticles and functionalized plant-based monomers demonstrate potential as sustainable and structural biomaterials. To increase this potential, their printability and performance must be improved. For extrusion-based 3D printing, such as Direct Ink Writing (DIW), printability is important for print fidelity. In this work, triglycerol diacrylate (TGDA) was added to an acrylated epoxidized soybean oil:polyethylene glycol diacrylate resin to increase hydrogen bonding. Greater hydrogen bonding was hypothesized to improve printability by increasing the ink's shear yield strength, and therefore shape holding after deposition. The effects of this additive on material and mechanical properties were quantified. Increased hydrogen bonding due to TGDA content increased the ink's shear yield stress and viscosity by 916% and 27.6%, respectively. This resulted in improved printability, with best performance at 3 vol% TGDA. This composition achieved an ultimate tensile strength (UTS) of 32.4 ± 2.1 MPa and elastic modulus of 1.15 ± 0.21 GPa. These were increased from the 0 vol% TGDA composite, which had an UTS of 24.8 ± 1.8 MPa and a modulus of 0.88 ± 0.06 GPa. This study demonstrates the development of bio-based additive manufacturing feedstocks for potential uses in sustainable manufacturing, rapid prototyping, and biomaterial applications.
Collapse
Affiliation(s)
- Elizabeth V Diederichs
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada
| | - Dibakar Mondal
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada
| | - Haresh Patil
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada
| | - Maud Gorbet
- Material Interaction with Biological Systems Laboratory, Department of Systems Design, University of Waterloo, Carl A. Pollock Hall, 200 University Avenue West, Waterloo, Canada
| | - Thomas L Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design, University of Waterloo, Douglas Wright Engineering Building, 200 University Avenue West, Waterloo, Canada.
| |
Collapse
|
25
|
Kosowska K, Korycka P, Jankowska-Snopkiewicz K, Gierałtowska J, Czajka M, Florys-Jankowska K, Dec M, Romanik-Chruścielewska A, Małecki M, Westphal K, Wszoła M, Klak M. Graphene Oxide (GO)-Based Bioink with Enhanced 3D Printability and Mechanical Properties for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:760. [PMID: 38727354 PMCID: PMC11085087 DOI: 10.3390/nano14090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.
Collapse
Affiliation(s)
- Katarzyna Kosowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Paulina Korycka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Kamila Jankowska-Snopkiewicz
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Joanna Gierałtowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Milena Czajka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Katarzyna Florys-Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Magdalena Dec
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| | - Agnieszka Romanik-Chruścielewska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland;
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Kinga Westphal
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (P.K.); (K.J.-S.); (J.G.); (M.C.); (K.F.-J.); (M.D.); (A.R.-C.); (K.W.); (M.W.)
- Polbionica Sp. z o.o., 01-793 Warsaw, Poland
| |
Collapse
|
26
|
Alía García C, Rodríguez Ortiz Á, Arenas Reina JM, Cano-Moreno JD, Gómez Gómez M. Analysis and Simulation of the Compressive Strength of Bioinspired Lightweight Structures Manufactured by a Stereolithography 3D Printer. Biomimetics (Basel) 2024; 9:240. [PMID: 38667251 PMCID: PMC11048445 DOI: 10.3390/biomimetics9040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The use of metamaterials is a good alternative when looking for structures that can withstand compression forces without increasing their weight. In this sense, using nature as a reference can be an appropriate option to design this type of material. Therefore, in this work, a comparative study of a selection of eight representative models of a wide variety of existing solutions, both bioinspired and proposed by various researchers, is presented. These models have been manufactured using stereolithography (SLA) printing, which allows complex geometries to be obtained in a simple way that would be more complicated to achieve by other procedures. Additionally, the manufacturing cost of each model has been determined. The compression tests of the different models have made it possible to evaluate the breaking force and its corresponding deformation. Likewise, a finite element analysis of the manufactured models has been carried out to simulate their behavior under compression, achieving results very similar to those obtained in the experimental tests. In this way, it has been concluded that, among the three-dimensional patterns, the structure called "3D auxetic" is the one that supports the greatest breaking force due to the topographic characteristics of its bar structure. Similarly, among the two-dimensional patterns, the structure called "Auxetic 1", with a topography based on curves, is capable of supporting the greatest deformation in the compression direction before breaking. Moreover, the highest resistance-force-to-cost ratio has been obtained with a "3D auxetic" structure.
Collapse
Affiliation(s)
| | | | - José Manuel Arenas Reina
- Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, 28012 Madrid, Spain; (C.A.G.); (Á.R.O.); (J.D.C.-M.); (M.G.G.)
| | | | | |
Collapse
|
27
|
Zhang H, Xue Y, Jiang C, Liu D, Zhang L, Lang G, Mao T, Effrem DB, Iimaa T, Surenjav U, Liu M. 3-Dimentional printing of polysaccharides for water-treatment: A review. Int J Biol Macromol 2024; 265:131117. [PMID: 38522684 DOI: 10.1016/j.ijbiomac.2024.131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Biological polysaccharides such as cellulose, chitin, chitosan, sodium alginate, etc., serve as excellent substrates for 3D printing due to their inherent advantages of biocompatibility, biodegradability, non-toxicity, and absence of secondary pollution. In this review we comprehensively overviewed the principles and processes involved in 3D printing of polysaccharides. We then delved into the diverse application of 3D printed polysaccharides in wastewater treatment, including their roles as adsorbents, photocatalysts, biological carriers, micro-devices, and solar evaporators. Furthermore, we assessed the technical superiority and future potential of polysaccharide 3D prints, envisioning its widespread application. Lastly, we remarked the challenging scientific and engineering aspects that require attention in the scientific research, industrial production, and engineering utilization. By addressing these key points, we aimed to advance the field and facilitate the practical implementation of polysaccharide-based 3D printing technologies in wastewater treatment and beyond.
Collapse
Affiliation(s)
- Hua Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongjun Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenyu Jiang
- Suzhou Key Laboratory of Biophotonics, School of Optical and Electrical Information, Suzhou City University, Suzhou, Jiangsu Province 215104, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Lu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Gaoyuan Lang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tingting Mao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dally Bozi Effrem
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tuyajargal Iimaa
- Department of Science and Bio-Innovation, National Center for Public Health, Ministry of Health, Ulaanbaatar 13381, Mongolia
| | - Unursaikhan Surenjav
- Department of Science and Bio-Innovation, National Center for Public Health, Ministry of Health, Ulaanbaatar 13381, Mongolia
| | - Ming Liu
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Dessau-Rosslau 06844, Germany
| |
Collapse
|
28
|
Amaya-Rivas JL, Perero BS, Helguero CG, Hurel JL, Peralta JM, Flores FA, Alvarado JD. Future trends of additive manufacturing in medical applications: An overview. Heliyon 2024; 10:e26641. [PMID: 38444512 PMCID: PMC10912264 DOI: 10.1016/j.heliyon.2024.e26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Additive Manufacturing (AM) has recently demonstrated significant medical progress. Due to advancements in materials and methodologies, various processes have been developed to cater to the medical sector's requirements, including bioprinting and 4D, 5D, and 6D printing. However, only a few studies have captured these emerging trends and their medical applications. Therefore, this overview presents an analysis of the advancements and achievements obtained in AM for the medical industry, focusing on the principal trends identified in the annual report of AM3DP.
Collapse
Affiliation(s)
- Jorge L. Amaya-Rivas
- Advanced Manufacturing and Prototyping Laboratory (CAMPRO), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Bryan S. Perero
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Carlos G. Helguero
- Advanced Manufacturing and Prototyping Laboratory (CAMPRO), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Jorge L. Hurel
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Juan M. Peralta
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - Francisca A. Flores
- Faculty of Natural Sciences and Mathematics (FCNM), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| | - José D. Alvarado
- Faculty of Mechanical Engineering and Production Sciences (FIMCP), ESPOL Polytechnic University, Km 30.5 Vía Perimetral, P.O. Box: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
29
|
Baniasadi H, Abidnejad R, Fazeli M, Lipponen J, Niskanen J, Kontturi E, Seppälä J, Rojas OJ. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv Colloid Interface Sci 2024; 324:103095. [PMID: 38301316 DOI: 10.1016/j.cis.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Direct ink writing (DIW) stands as a pioneering additive manufacturing technique that holds transformative potential in the field of hydrogel fabrication. This innovative approach allows for the precise deposition of hydrogel inks layer by layer, creating complex three-dimensional structures with tailored shapes, sizes, and functionalities. By harnessing the versatility of hydrogels, DIW opens up possibilities for applications spanning from tissue engineering to soft robotics and wearable devices. This comprehensive review investigates DIW as applied to hydrogels and its multifaceted applications. The paper introduces a diverse range of printing techniques while providing a thorough exploration of DIW for hydrogel-based printing. The investigation aims to explain the progress made, challenges faced, and potential trajectories that lie ahead for DIW in hydrogel-based manufacturing. The fundamental principles underlying DIW are carefully examined, specifically focusing on rheological attributes and printing parameters, prompting a comprehensive survey of the wide variety of hydrogel materials. These encompass both natural and synthetic variations, all of which can be effectively harnessed for this purpose. Furthermore, the review explores the latest applications of DIW for hydrogels in biomedical areas, with a primary focus on tissue engineering, wound dressing, and drug delivery systems. The document not only consolidates the existing state of DIW within the context of hydrogel-based manufacturing but also charts potential avenues for further research and innovative breakthroughs.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Niskanen
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
30
|
Cheng YJ, Wu TH, Tseng YS, Chen WF. Development of hybrid 3D printing approach for fabrication of high-strength hydroxyapatite bioscaffold using FDM and DLP techniques. Biofabrication 2024; 16:025003. [PMID: 38226849 DOI: 10.1088/1758-5090/ad1b20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
This study develops a hybrid 3D printing approach that combines fused deposition modeling (FDM) and digital light processing (DLP) techniques for fabricating bioscaffolds, enabling rapid mass production. The FDM technique fabricates outer molds, while DLP prints struts for creating penetrating channels. By combining these components, hydroxyapatite (HA) bioscaffolds with different channel sizes (600, 800, and 1000μm) and designed porosities (10%, 12.5%, and 15%) are fabricated using the slurry casting method with centrifugal vacuum defoaming for significant densification. This innovative method produces high-strength bioscaffolds with an overall porosity of 32%-37%, featuring tightly bound HA grains and a layered surface structure, resulting in remarkable cell viability and adhesion, along with minimal degradation rates and superior calcium phosphate deposition. The HA scaffolds show hardness ranging from 1.43 to 1.87 GPa, with increasing compressive strength as the designed porosity and channel size decrease. Compared to human cancellous bone at a similar porosity range of 30%-40%, exhibiting compressive strengths of 13-70 MPa and moduli of 0.8-8 GPa, the HA scaffolds demonstrate robust strengths ranging from 40 to 73 MPa, paired with lower moduli of 0.7-1.23 GPa. These attributes make them well-suited for cancellous bone repair, effectively mitigating issues like stress shielding and bone atrophy.
Collapse
Affiliation(s)
- Yu-Jui Cheng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tsung-Han Wu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Yu-Sheng Tseng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wen-Fan Chen
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
31
|
Timofticiuc IA, Călinescu O, Iftime A, Dragosloveanu S, Caruntu A, Scheau AE, Badarau IA, Didilescu AC, Caruntu C, Scheau C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J Funct Biomater 2023; 15:7. [PMID: 38248674 PMCID: PMC10816811 DOI: 10.3390/jfb15010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D printing, with its main advantages being a high printing speed and the ability to produce high-resolution structures. A major challenge in using VPP 3D-printed materials in medicine is the general incompatibility of standard VPP resin mixtures with the requirements of biocompatibility and biofunctionality. Instead of developing completely new materials, an alternate approach to solving this problem involves adapting existing biomaterials. These materials are incompatible with VPP 3D printing in their pure form but can be adapted to the VPP chemistry and general process through the use of innovative mixtures and the addition of specific pre- and post-printing steps. This review's primary objective is to highlight biofunctional and biocompatible materials that have been adapted to VPP. We present and compare the suitability of these adapted materials to different medical applications and propose other biomaterials that could be further adapted to the VPP 3D printing process in order to fulfill patient-specific medical requirements.
Collapse
Affiliation(s)
- Iosif-Aliodor Timofticiuc
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Octavian Călinescu
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Adrian Iftime
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
32
|
Lee J, Lee S, Lim JW, Byun I, Jang KJ, Kim JW, Chung JH, Kim J, Seonwoo H. Development of Plum Seed-Derived Carboxymethylcellulose Bioink for 3D Bioprinting. Polymers (Basel) 2023; 15:4473. [PMID: 38231895 PMCID: PMC10708124 DOI: 10.3390/polym15234473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Three-dimensional bioprinting represents an innovative platform for fabricating intricate, three-dimensional (3D) tissue structures that closely resemble natural tissues. The development of hybrid bioinks is an actionable strategy for integrating desirable characteristics of components. In this study, cellulose recovered from plum seed was processed to synthesize carboxymethyl cellulose (CMC) for 3D bioprinting. The plum seeds were initially subjected to α-cellulose recovery, followed by the synthesis and characterization of plum seed-derived carboxymethyl cellulose (PCMC). Then, hybrid bioinks composed of PCMC and sodium alginate were fabricated, and their suitability for extrusion-based bioprinting was explored. The PCMC bioinks exhibit a remarkable shear-thinning property, enabling effortless extrusion through the nozzle and maintaining excellent initial shape fidelity. This bioink was then used to print muscle-mimetic 3D structures containing C2C12 cells. Subsequently, the cytotoxicity of PCMC was evaluated at different concentrations to determine the maximum acceptable concentration. As a result, cytotoxicity was not observed in hydrogels containing a suitable concentration of PCMC. Cell viability was also evaluated after printing PCMC-containing bioinks, and it was observed that the bioprinting process caused minimal damage to the cells. This suggests that PCMC/alginate hybrid bioink can be used as a very attractive material for bioprinting applications.
Collapse
Affiliation(s)
- Juo Lee
- Department of Animal Science & Technology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea;
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sungmin Lee
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Human Harmonized Robotics, College of Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Woon Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Iksong Byun
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Agricultural Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science & Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Jungsil Kim
- Department of Bio-Industrial Machinery Engineering, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hoon Seonwoo
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Convergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
33
|
S S, R G AP, Bajaj G, John AE, Chandran S, Kumar VV, Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:62. [PMID: 37982917 PMCID: PMC10661719 DOI: 10.1007/s10856-023-06765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
3D printing technology is an emerging method that gained extensive attention from researchers worldwide, especially in the health and medical fields. Biopolymers are an emerging class of materials offering excellent properties and flexibility for additive manufacturing. Biopolymers are widely used in biomedical applications in biosensing, immunotherapy, drug delivery, tissue engineering and regeneration, implants, and medical devices. Various biodegradable and non-biodegradable polymeric materials are considered as bio-ink for 3d printing. Here, we offer an extensive literature review on the current applications of synthetic biopolymers in the field of 3D printing. A trend in the publication of biopolymers in the last 10 years are focused on the review by analyzing more than 100 publications. Their application and classification based on biodegradability are discussed. The various studies, along with their practical applications, are elaborated in the subsequent sections for polyethylene, polypropylene, polycaprolactone, polylactide, etc. for biomedical applications. The disadvantages of various biopolymers are discussed, and future perspectives like combating biocompatibility problems using 3D printed biomaterials to build compatible prosthetics are also discussed and the potential application of using resin with the combination of biopolymers to build customized implants, personalized drug delivery systems and organ on a chip technologies are expected to open a new set of chances for the development of healthcare and regenerative medicine in the future.
Collapse
Affiliation(s)
- Shiva S
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| | - Asuwin Prabu R G
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gauri Bajaj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Amy Elsa John
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sharan Chandran
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vishnu Vijay Kumar
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
- Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Mechanical and Industrial Engineering, Gadjah Mada University, Yogyakarta, 55281, Indonesia
- Department of Aerospace Engineering, Jain deemed to be University, Bangalore, India
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
34
|
Neumann M, di Marco G, Iudin D, Viola M, van Nostrum CF, van Ravensteijn BGP, Vermonden T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023; 56:8377-8392. [PMID: 38024154 PMCID: PMC10653276 DOI: 10.1021/acs.macromol.3c00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Indexed: 12/01/2023]
Abstract
In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers. The resulting swelling-shrinking, shape-morphing, as well as patterns have been shown to influence cell function in a spatiotemporally controlled manner. Furthermore, the use of stimuli-responsive hydrogels as bioinks in 4D bioprinting is very promising as they allow the biofabrication of complex microstructures. This perspective discusses recent cutting-edge advances as well as current challenges in the field of smart biomaterials for tissue engineering. Additionally, emerging trends and potential future directions are addressed.
Collapse
Affiliation(s)
- Myriam Neumann
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Greta di Marco
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Dmitrii Iudin
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Martina Viola
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Bas G. P. van Ravensteijn
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| |
Collapse
|
35
|
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A, Sadanandan P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology 2023; 21:414. [PMID: 37946240 PMCID: PMC10634178 DOI: 10.1186/s12951-023-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Alosh Greeny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Amritasree Nandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Ranjay Kumar Sah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | | | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| |
Collapse
|
36
|
Kim J, Raja N, Choi YJ, Gal CW, Sung A, Park H, Yun HS. Enhancement of properties of a cell-laden GelMA hydrogel-based bioink via calcium phosphate phase transition. Biofabrication 2023; 16:015010. [PMID: 37871585 DOI: 10.1088/1758-5090/ad05e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
To improve the properties of the hydrogel-based bioinks, a calcium phosphate phase transition was applied, and the products were examined. We successfully enhanced the mechanical properties of the hydrogels by adding small amounts (< 0.5 wt%) of alpha-tricalcium phosphate (α-TCP) to photo-crosslinkable gelatin methacrylate (GelMA). As a result of the hydrolyzing calcium phosphate phase transition involvingα-TCP, which proceeded for 36 h in the cell culture medium, calcium-deficient hydroxyapatite was produced. Approximately 18 times the compressive modulus was achieved for GelMA with 0.5 wt%α-TCP (20.96 kPa) compared with pure GelMA (1.18 kPa). Although cell proliferation decreased during the early stages of cultivation, both osteogenic differentiation and mineralization activities increased dramatically when the calcium phosphate phase transition was performed with 0.25 wt%α-TCP. The addition ofα-TCP improved the printability and fidelity of GelMA, as well as the structural stability and compressive modulus (approximately six times higher) after three weeks of culturing. Therefore, we anticipate that the application of calcium phosphate phase transition to hydrogels may have the potential for hard tissue regeneration.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Naren Raja
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Chang-Woo Gal
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Aram Sung
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| |
Collapse
|
37
|
Rickert CA, Mansi S, Fan D, Mela P, Lieleg O. A Mucin-Based Bio-Ink for 3D Printing of Objects with Anti-Biofouling Properties. Macromol Biosci 2023; 23:e2300198. [PMID: 37466113 DOI: 10.1002/mabi.202300198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023]
Abstract
With its potential to revolutionize the field of personalized medicine by producing customized medical devices and constructs for tissue engineering at low costs, 3D printing has emerged as a highly promising technology. Recent advancements have sparked increasing interest in the printing of biopolymeric hydrogels. However, owing to the limited printability of those soft materials, the lack of variability in available bio-inks remains a major challenge. In this study, a novel bio-ink is developed based on functionalized mucin-a glycoprotein that exhibits a multitude of biomedically interesting properties such as immunomodulating activity and strong anti-biofouling behavior. To achieve sufficient printability of the mucin-based ink, its rheological properties are tuned by incorporating Laponite XLG as a stabilizing agent. It is shown that cured objects generated from this novel bio-ink exhibit mechanical properties partially similar to that of soft tissue, show strong anti-biofouling properties, good biocompatibility, tunable cell adhesion, and immunomodulating behavior. The presented findings suggest that this 3D printable bio-ink has a great potential for a wide range of biomedical applications, including tissue engineering, wound healing, and soft robotics.
Collapse
Affiliation(s)
- Carolin A Rickert
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching b. München, Germany
| | - Salma Mansi
- TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Di Fan
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching b. München, Germany
| | - Petra Mela
- TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Oliver Lieleg
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching b. München, Germany
| |
Collapse
|
38
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
39
|
Ghalia MA, Alhanish A. Mechanical and biodegradability of porous PCL/PEG copolymer-reinforced cellulose nanofibers for soft tissue engineering applications. Med Eng Phys 2023; 120:104055. [PMID: 37838404 DOI: 10.1016/j.medengphy.2023.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Mechanical properties, biological and controlling pores scaffold of the biomaterials are important factors to encourage cell growth and eventual tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt.% into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1 % have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1 %. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials.
Collapse
Affiliation(s)
| | - Atika Alhanish
- Department of Chemical Engineering, Faculty Oil, Gas and Renewable Energy Engineering, University of Zawia, Libya
| |
Collapse
|
40
|
Cakmak HY, Ege H, Yilmaz S, Agturk G, Yontem FD, Enguven G, Sarmis A, Cakmak Z, Gunduz O, Ege ZR. 3D printed Styrax Liquidus (Liquidambar orientalis Miller)-loaded poly (L-lactic acid)/chitosan based wound dressing material: Fabrication, characterization, and biocompatibility results. Int J Biol Macromol 2023; 248:125835. [PMID: 37473890 DOI: 10.1016/j.ijbiomac.2023.125835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The medicinal plant of Styrax liquidus (ST) (sweet gum balsam) which extracted from Liquidambar orientalis Mill tree, was loaded into the 3D printed polylactic acid (PLA)/chitosan (CS) based 3D printed scaffolds to investigate its wound healing and closure effect, in this study. The morphological and chemical properties of the ST loaded 3D printed scaffolds with different concentrations (1 %, 2 %, and 3 % wt) were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR), respectively. In addition, the mechanical and thermal properties of the materials were investigated by Tensile test and Differential Scanning Calorimetry (DSC), respectively. The antimicrobial activities of the ST loaded 3D printed scaffolds and their incubation media in the PBS (pH 7.4, at 37 °C for 24 h) were investigated on two Gram-positive and two Gram-negative standard pathogenic bacteria with the agar disc diffusion method. The colorimetric MTT assay was used to determine the cell viability of human fibroblast cells (CCD-1072Sk) incubated with free ST, ST loaded, and unloaded 3D printed scaffolds. The 1 % and 2 % (wt) ST loaded PLA/CS/ST 3D printed scaffolds showed an increase in the cell number. Annexin V/PI double stain assay was performed to test whether early or late apoptosis was induced in the PLA/CS/1 % ST and PLA/CS/2 % ST loaded groups and the results were consistent with the MTT assay. Furthermore, a wound healing assay was carried out to investigate the effect of ST loaded 3D printed scaffolds on wound healing in CCD-1072Sk cells. The highest wound closure compared to the control group was observed on cells treated with PLA/CS/1 % ST for 72 h. According to the results, novel biocompatible ST loaded 3D printed scaffolds with antimicrobial effect can be used as wound healing material for potential tissue engineering applications.
Collapse
Affiliation(s)
| | - Hasan Ege
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Institute of Health Sciences, Department of Physiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Senanur Yilmaz
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Gokhan Agturk
- Institute of Health Sciences, Department of Physiology, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Physiology, School of Medicine, Halic University, Istanbul, Turkey
| | - Fulya Dal Yontem
- Department of Biophysics, Koc University School of Medicine, Koç University, Sariyer, Istanbul, Turkey; Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450 Istanbul, Turkey
| | - Gozde Enguven
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Abdurrahman Sarmis
- Department of Medical Microbiology Laboratory, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Zeren Cakmak
- Kartal Prof. Dr. Saban Teoman Durali Science and Art Center, Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Zeynep Ruya Ege
- Center for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey.
| |
Collapse
|
41
|
Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Mishra YK, Christie G, Mostafavi E, Boukherroub R, Hutmacher DW, Han SS. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int J Biol Macromol 2023; 247:125606. [PMID: 37406894 DOI: 10.1016/j.ijbiomac.2023.125606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yogendra Kumar Mishra
- Smart Materials, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
42
|
Gerardo‐Nava JL, Jansen J, Günther D, Klasen L, Thiebes AL, Niessing B, Bergerbit C, Meyer AA, Linkhorst J, Barth M, Akhyari P, Stingl J, Nagel S, Stiehl T, Lampert A, Leube R, Wessling M, Santoro F, Ingebrandt S, Jockenhoevel S, Herrmann A, Fischer H, Wagner W, Schmitt RH, Kiessling F, Kramann R, De Laporte L. Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner. Adv Healthc Mater 2023; 12:e2301030. [PMID: 37311209 PMCID: PMC11468549 DOI: 10.1002/adhm.202301030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/21/2023] [Indexed: 06/15/2023]
Abstract
Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.
Collapse
|
43
|
Hammerstone DE, Babuska TF, Lazarte S, Krick BA, Chow LW. Characterizing properties of scaffolds 3D printed with peptide-polymer conjugates. BIOMATERIALS ADVANCES 2023; 152:213498. [PMID: 37295132 DOI: 10.1016/j.bioadv.2023.213498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) printing is a popular biomaterials fabrication technique because it enables scaffold composition and architecture to be tuned for different applications. Modifying these properties can also alter mechanical properties, making it challenging to decouple biochemical and physical properties. In this study, inks containing peptide-poly(caprolactone) (PCL) conjugates were solvent-cast 3D printed to create peptide-functionalized scaffolds. We characterized how different concentrations of hyaluronic acid-binding (HAbind-PCL) or mineralizing (E3-PCL) conjugates influenced properties of the resulting 3D-printed constructs. The peptide sequences CGGGRYPISRPRKR (HAbind-PCL; positively charged) and CGGGAAAEEE (E3-PCL; negatively charged) enabled us to evaluate how conjugate chemistry, charge, and concentration affected 3D-printed architecture, conjugate location, and mechanical properties. For both HAbind-PCL and E3-PCL, conjugate addition did not affect ink viscosity, filament diameter, scaffold architecture, or scaffold compressive modulus. Increasing conjugate concentration in the ink prior to printing correlated with an increase in peptide concentration on the scaffold surface. Interestingly, conjugate type affected final conjugate location within the 3D-printed filament cross-section. HAbind-PCL conjugates remained within the filament bulk while E3-PCL conjugates were located closer to the filament surface. E3-PCL at all concentrations did not affect mechanical properties, but an intermediate HAbind-PCL concentration resulted in a moderate decrease in filament tensile modulus. These data suggest final conjugate location within the filament bulk may influence mechanical properties. However, no significant differences were observed between PCL filaments printed without conjugates and filaments printed with higher HAbind-PCL concentrations. These results demonstrate that this 3D printing platform can be used to functionalize the surface without significant changes to the physical properties of the scaffold. The downstream potential of this strategy will enable decoupling of biochemical and physical properties to fine-tune cellular responses and support functional tissue regeneration.
Collapse
Affiliation(s)
- Diana E Hammerstone
- Department of Materials Science and Engineering, Lehigh University, 5 E Packer Avenue, Bethlehem, PA 18015, USA.
| | - Tomas F Babuska
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Building A Room A229, Tallahassee, FL 32310, USA; Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Dr W, Bethlehem, PA 18015, USA.
| | - Santiago Lazarte
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Building A, Room A131, Tallahassee, FL 32310, USA.
| | - Brandon A Krick
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Building A Room A229, Tallahassee, FL 32310, USA.
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, 5 E Packer Avenue, Bethlehem, PA 18015, USA; Department of Bioengineering, Lehigh University, 7 Asa Drive, Suite 205, Bethlehem, PA 18015, USA.
| |
Collapse
|
44
|
Zennifer A, Thangadurai M, Sundaramurthi D, Sethuraman S. Additive manufacturing of peripheral nerve conduits - Fabrication methods, design considerations and clinical challenges. SLAS Technol 2023; 28:102-126. [PMID: 37028493 DOI: 10.1016/j.slast.2023.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are a viable clinical alternative to autografts and allografts and have been widely used to treat peripheral nerve injuries (PNIs). Although these NGCs are successful to some extent, they cannot aid in native regeneration by improving native-equivalent neural innervation or regrowth. Further, NGCs exhibit longer recovery period and high cost limiting their clinical applications. Additive manufacturing (AM) could be an alternative to the existing drawbacks of the conventional NGCs fabrication methods. The emergence of the AM technique has offered ease for developing personalized three-dimensional (3D) neural constructs with intricate features and higher accuracy on a larger scale, replicating the native feature of nerve tissue. This review introduces the structural organization of peripheral nerves, the classification of PNI, and limitations in clinical and conventional nerve scaffold fabrication strategies. The principles and advantages of AM-based techniques, including the combinatorial approaches utilized for manufacturing 3D nerve conduits, are briefly summarized. This review also outlines the crucial parameters, such as the choice of printable biomaterials, 3D microstructural design/model, conductivity, permeability, degradation, mechanical property, and sterilization required to fabricate large-scale additive-manufactured NGCs successfully. Finally, the challenges and future directions toward fabricating the 3D-printed/bioprinted NGCs for clinical translation are also discussed.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
45
|
Pugliese R, Graziosi S. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications. SLAS Technol 2023; 28:165-182. [PMID: 37127136 DOI: 10.1016/j.slast.2023.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
The design of biomimetic porous scaffolds has been gaining attention in the biomedical sector lately. Shells, marine sponges, shark teeth, cancellous bone, sea urchin spine, and the armadillo armor structure are examples of biological systems that have already been studied to drive the design of innovative, porous, and multifunctional structures. Among these, triply periodic minimal surfaces (TPMSs) have attracted the attention of scientists for the fabrication of biomimetic porous scaffolds. The interest stems from their outstanding properties, which include mathematical controllable geometry features, highly interconnected porous architectures, high surface area to volume ratio, less stress concentration, tunable mechanical properties, and increased permeability. All these distinguishing features enable better cell adhesion, optimal integration to the surrounding tissue avoiding stress shieldings, a good permeability of fluid media and oxygen, and the possibility of vascularization. However, the sophisticated geometry of these TPMS-based structures has proven challenging to fabricate by conventional methods. The emergence of additive manufacturing (AM) and the enhanced manufacturing freedoms and flexibility it guarantees could solve some of the bottlenecks, thus leading to a surge of interest in designing and fabricating such structures in this field. Also, the feasibility of using AM technologies allows for obtaining size programmable TPMS printable in various materials, from polymers to metal alloys. Here, a comprehensive overview of 3D-printed TPMS porous structures is provided from a design for additive manufacturing (DfAM) and application perspective. First, design strategies, geometry design algorithms, and related topological optimization are introduced according to diverse requirements. Based on that, the performance control of TPMS and the pros and cons of the different AM processes for fabricating TPMS scaffolds are summarized. Lastly, practical applications of 3D-printed biomimetic TPMS porous structures for the biomedical field are presented to clarify the advantages and potential of such structures.
Collapse
Affiliation(s)
| | - Serena Graziosi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
46
|
Zou S, Ye J, Wei Y, Xu J. Characterization of 3D-Bioprinted In Vitro Lung Cancer Models Using RNA-Sequencing Techniques. Bioengineering (Basel) 2023; 10:667. [PMID: 37370598 DOI: 10.3390/bioengineering10060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE To construct an in vitro lung cancer model using 3D bioprinting and evaluate the feasibility of the model. Transcriptome sequencing was used to compare the differential genes and functions of 2D and 3D lung cancer cells. METHODS 1. A549 cells were mixed with sodium alginate/gelatine/fibrinogen as 3D-printed biological ink to construct a hydrogel scaffold for the in vitro model of lung cancer; 2. A hydrogel scaffold was printed using a extrusion 3D bioprinter; 3. The printed lung cancer model was evaluated in vitro; and 4. A549 cells cultured in 2D and 3D tumour models in vitro were collected, and RNA-seq conducted bioinformatics analysis. RESULTS 1. The in vitro lung cancer model printed using 3D-bioprinting technology was a porous microstructure model, suitable for the survival of A549 cells. Compared with the 2D cell-line model, the 3D model is closer to the fundamental human growth environment; 2. There was no significant difference in cell survival rate between the 2D and 3D groups; 3. In the cell proliferation rate measurement, it was found that the cells in the 2D group had a speedy growth rate in the first five days, but after five days, the growth rate slowed down. Cell proliferation showed a declining process after the ninth day of cell culture. However, cells in the 3D group showed a slow growth process at the beginning, and the growth rate reached a peak on the 12th day. Then, the growth rate showed a downward trend; and 4. RNA-seq compared A549 cells from 2D and 3D lung cancer models. A total of 3112 genes were differentially expressed, including 1189 up-regulated and 1923 down-regulated genes, with p-value ≤ 0.05 and |Log2Ratio| ≥ 1 as screening conditions. After functional enrichment analysis of differential genes, these differential genes affect the biological regulation of A549 cells, thus promoting lung cancer progression. CONCLUSION This study uses 3D-bioprinting technology to construct a tumour model of lung cancer that can grow sustainably in vitro. Three-dimensional bioprinting may provide a new research platform for studying the lung cancer TME mechanism and anticancer drug screening.
Collapse
Affiliation(s)
- Sheng Zou
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| | - Jiayue Ye
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| | - Yiping Wei
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| | - Jianjun Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| |
Collapse
|
47
|
Donate R, Paz R, Quintana Á, Bordón P, Monzón M. Calcium Carbonate Coating of 3D-Printed PLA Scaffolds Intended for Biomedical Applications. Polymers (Basel) 2023; 15:polym15112506. [PMID: 37299304 DOI: 10.3390/polym15112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The incorporation of ceramic additives is the most commonly used strategy to improve the biofunctionality of polymer-based scaffolds intended for bone regeneration. By embedding ceramic particles as a coating, the functionality improvement in the polymeric scaffolds can be concentrated on the cell-surface interface, thus creating a more favourable environment for the adhesion and proliferation of osteoblastic cells. In this work, a pressure-assisted and heat-induced method to coat polylactic acid (PLA) scaffolds with calcium carbonate (CaCO3) particles is presented for the first time. The coated scaffolds were evaluated by optical microscopy observations, a scanning electron microscopy analysis, water contact angle measurements, compression testing, and an enzymatic degradation study. The ceramic particles were evenly distributed, covered more than 60% of the surface, and represented around 7% of the coated scaffold weight. A strong bonding interface was achieved, and the thin layer of CaCO3 (~20 µm) provided a significant increase in the mechanical properties (with a compression modulus improvement up to 14%) while also enhancing the surface roughness and hydrophilicity. The results of the degradation study confirmed that the coated scaffolds were able to maintain the pH of the media during the test (~7.6 ± 0.1), in contrast to the pure PLA scaffolds, for which a value of 5.07 ± 0.1 was obtained. The ceramic-coated scaffolds developed showed potential for further evaluations in bone tissue engineering applications.
Collapse
Affiliation(s)
- Ricardo Donate
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Rubén Paz
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Álvaro Quintana
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Pablo Bordón
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| | - Mario Monzón
- Departamento de Ingeniería Mecánica, Grupo de Investigación en Fabricación Integrada y Avanzada, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas, Spain
| |
Collapse
|
48
|
Monavari M, Homaeigohar S, Medhekar R, Nawaz Q, Monavari M, Zheng K, Boccaccini AR. A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde-Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37155412 DOI: 10.1021/acsami.2c23252] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, a wound dressing composed of an alginate dialdehyde-gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles stiffened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more effective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing.
Collapse
Affiliation(s)
- Mahshid Monavari
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Rucha Medhekar
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Institute of Biomaterials and Advanced Materials and Processes Master Programme, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Qaisar Nawaz
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Mehran Monavari
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translation Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
49
|
Abstract
Tumor metastasis is a multiple cascade process where tumor cells disseminate from the primary site to distant organs and subsequently adapt to the foreign microenvironment. Simulating the physiology of tumor metastatic events in a realistic and three-dimensional (3D) manner is a challenge for in vitro modeling. 3D bioprinting strategies, which can generate well-customized and bionic structures, enable the exploration of dynamic tumor metastasis process in a species-homologous, high-throughput and reproducible way. In this review, we summarize the recent application of 3D bioprinting in constructing in vitro tumor metastatic models and discuss its advantages and current limitations. Further perspectives on how to harness the potential of accessible 3D bioprinting strategies to better model tumor metastasis and guide anti-cancer therapies are also provided.
Collapse
Affiliation(s)
- Manqing Lin
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Mengyi Tang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
50
|
Jia MS, Rao RR, Elsaadany M. Early introduction of 3D modeling modules promotes the development of simulation skills in downstream biomedical engineering curricula. J Biol Eng 2023; 17:26. [PMID: 36998089 PMCID: PMC10064548 DOI: 10.1186/s13036-023-00339-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Recent advancements in additive manufacturing have made 3D design a desirable skill in combating the historically slow development of biomedical products. Due to the broad applicability of additive manufacturing to biomedical engineering, 3D design and 3D printing are attractive educational tools for biomedical engineering students. However, due to the multidisciplinary nature of biomedical engineering, finding a suitable spot in the curriculum to teach students basic and application-based skills for 3D manufacturing is difficult. Furthermore, prior training in fundamental 3D design skills may be needed to support the use of application-based supplementary content. RESULTS We designed a SolidWorks Simulations toolkit to complement a sophomore (2nd-year)-level Biomechanics course and distributed this assignment to students with and without prior training in 3D design delivered in an introductory biomedical engineering course. Using short videos, example-based problem solving, and step-by-step tutorials, students completed this as an extra-credit assignment and completed a survey gauging student opinion on SolidWorks and 3D design, confidence in each target skill, and the effectiveness of assignment delivery. The compilation of survey responses suggests that the assignment effectively increased positive responses in student opinion on interest in and likeliness to use SolidWorks in both groups. However, confidence in the target assignment skills was higher in the trained group and fewer problems occurred in operating SolidWorks for trained students. Further, analyzing the distribution of student grades with respect to survey responses suggests that responses had no relationship with initial class grade. CONCLUSION These data collectively indicate that prior training provided to the students had a positive impact on the effectiveness of the assignment although increases in student opinion on the utility of 3D design were observed in both trained and untrained students. Our work has generated and identified a useful educational supplement to enrich existing biomedical engineering course materials with practical skills.
Collapse
Affiliation(s)
- Mary S Jia
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, USA
| | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, USA
| | - Mostafa Elsaadany
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, USA.
| |
Collapse
|