1
|
Akobundu UU, Ifijen IH, Duru P, Igboanugo JC, Ekanem I, Fagbolade M, Ajayi AS, George M, Atoe B, Matthews JT. Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: a public health perspective. RSC Adv 2025; 15:10902-10957. [PMID: 40196828 PMCID: PMC11974500 DOI: 10.1039/d5ra00308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Strontium-based nanoparticles (SrNPs) have emerged as a versatile and promising class of nanomaterials with a wide range of potential applications in healthcare, particularly in the fields of bone regeneration and combating antimicrobial resistance (AMR). Recent research has highlighted the unique properties of SrNPs, including their ability to promote osteogenesis, enhance bone healing, and exhibit strong antimicrobial activity against multidrug-resistant pathogens. These attributes position SrNPs as innovative therapeutic agents with the potential to address challenges such as osteoporosis, bone infections, and the growing global AMR crisis. This comprehensive review critically examines the dual functional potential of SrNPs by analyzing their synthesis methods, physicochemical properties, biological interactions, and translational applications in orthopedic and antimicrobial therapies. Specifically, the review emphasizes SrNPs' ability to enhance bone density, accelerate fracture healing, and reduce the economic burden associated with prolonged treatment and rehabilitation for bone-related diseases. Furthermore, their novel application as antimicrobial agents is explored, highlighting their ability to target bacterial metabolic pathways and combat the rise of antibiotic resistance. The review focuses on the synthesis methods used for SrNPs, particularly co-precipitation, hydrothermal synthesis, and sol-gel techniques. Each method is explored for its ability to produce SrNPs with controlled size, shape, and functionality, while addressing their scalability, cost-effectiveness, and environmental impact. Additionally, the toxicological risks associated with SrNPs are also explored, emphasizing the need for comprehensive preclinical and clinical evaluations to ensure safety for humans and ecosystems. The regulatory and ethical landscape of SrNPs highlights the need for global safety protocols, equitable access, and international cooperation to ensure ethical nanotechnology use. Environmental fate studies address bioaccumulation risks and ecological concerns. This review identifies opportunities and challenges in advancing bone regenerative medicine and combating AMR while emphasizing sustainable and ethical SrNP development for researchers, policymakers, and stakeholders.
Collapse
Affiliation(s)
| | - Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Prince Duru
- Emergency Medicine Department, University of Tennessee Medical Center 1924 Alcoa Hwy Knoxville TN 37920 USA
| | - Juliet C Igboanugo
- Department of Health, Human Performance and Recreation, University of Arkansas 155 Stadium Drive Fayetteville AR 72701 USA
| | - Innocent Ekanem
- College of Engineering Technology and SHEQ Specialist-Rocjhester Gas and Electric (RG&E), Rochester Institute of Technology (RIT) Rochester NY USA
| | - Moshood Fagbolade
- Department of Biological Sciences, Mississippi State University 295 Lee Boulevard Mississippi State MS 39762 USA
| | | | - Mayowa George
- Biological and Agricultural Engineering, Kansas State University 1016 Seaton Hall Manhattan KS 66506 USA
| | - Best Atoe
- Atoe Specialist Medical Centre Limited 54, Atoe Street, Off Adolor College Road, Ugbowo Benin City Edo State Nigeria
| | - John Tsado Matthews
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai Niger State Nigeria
| |
Collapse
|
2
|
Ozgen A, Kilic B, Ghaffarlou M, Karaaslan C, Aydin HM. Injectable carboxymethyl chitosan/oxidized dextran hydrogels containing zoledronic acid modified strontium hydroxyapatite nanoparticles. RSC Adv 2025; 15:4014-4028. [PMID: 39926244 PMCID: PMC11799889 DOI: 10.1039/d4ra08123d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Nanocomposite hydrogels have potential in bone regeneration due to the inorganic and polymeric material content. In this study, new types of nanocomposite hydrogels composed of zoledronic acid/strontium hydroxyapatite nanoparticles and carboxymethyl chitosan/oxidized dextran (CMC/OD) hydrogels were reported. Pure hydroxyapatite, 5%, 10% and 15% (w/w) strontium-substituted strontium hydroxyapatite nanoparticles were produced and then modified with zoledronic acid at ratios of 5% to 7.5% (w/w). These modified structures were then incorporated into CMC/OD hydrogels. Zoledronic acid modified strontium hydroxyapatite nanoparticles were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). CMC/OD structures were investigated using Fourier Transform Infrared Analysis (FTIR), Scanning Electron Microscopy (SEM). The physical properties of the hydrogels were determined via degradation behavior and rheological measurements. Cell-material interactions were investigated in vitro. The results showed that the incorporation of hydroxyapatite nanoparticles into CMC would significantly improve the rheological properties. The addition of strontium to hydroxyapatite nanoparticles significantly enhanced cell proliferation. In addition, a significant increase in alkaline phosphatase (ALP) and calcium deposition was observed with the addition of zoledronic acid. In conclusion, the nanocomposite hydrogels of CMC/OD containing zoledronic acid modified strontium hydroxyapatite demonstrate potential for orthopedic and craniofacial applications due to their superior properties, including the ability to be easily injected into targeted areas, potent antibacterial activity that helps prevent infections and remarkable self-healing capabilities that promote tissue regeneration and repair.
Collapse
Affiliation(s)
- Alkin Ozgen
- Bioengineering Division, Institute of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Busra Kilic
- Molecular Biology Section, Department of Biology, Faculty of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Mohammadreza Ghaffarlou
- Bioengineering Division, Institute of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Cagatay Karaaslan
- Molecular Biology Section, Department of Biology, Faculty of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University Beytepe Ankara 06800 Turkey
- Centre for Bioengineering, Hacettepe University Beytepe Ankara 06800 Turkey
| |
Collapse
|
3
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
4
|
M'Pemba Hennebert P, Amirthalingam S, Kang TH, So KH, Hwang NS. Strontium-Doped Whitlockite Scaffolds for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39567238 DOI: 10.1021/acsami.4c13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Bone graft substitutes to repair critical-sized bone fractures have experienced significant development over the last few decades. Among them, whitlockite (WH)-based bone grafts have proven to be effective in mediating bone healing. In the current study, a next generation, nature-inspired scaffold was developed with strontium-functionalized whitlockite nanoparticles (nSrWH) to enhance the intrinsic properties of WH. A series of nSrWH (with 2.5, 5, 7.5% Sr atomic substitution) were fabricated using a rapid-mixing wet precipitation route. Subsequently, the functionalized whitlockite was integrated into a gelatin-chondroitin sulfate scaffold and subjected to both in vitro and in vivo studies to investigate its osteogenic potential. Results indicated that nSrWH-containing scaffolds promoted osteogenic differentiation while inhibiting osteoclast activity. The positive impact of nSrWH was found to be dose-dependent, with the 7.5% Sr atomic substitution exhibiting the most significant results. Furthermore, the scaffold induced superior de novo bone regeneration compared to its undoped counterpart in the mouse calvarial critical-sized defect model. Collectively, these findings suggest that nSrWH nanoparticles inherit the beneficial properties of whitlockite, coupled by the therapeutic effects of Sr2+, operating in concert for an overall enhanced bone regeneration. As such, they constitute promising candidates to meet the biomedical requirements for bioactive bone graft substitutes.
Collapse
Affiliation(s)
- Perrine M'Pemba Hennebert
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ha So
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Rubina A, Sceglovs A, Ramata-Stunda A, Pugajeva I, Skadins I, Boyd AR, Tumilovica A, Stipniece L, Salma-Ancane K. Injectable mineralized Sr-hydroxyapatite nanoparticles-loaded ɛ-polylysine-hyaluronic acid composite hydrogels for bone regeneration. Int J Biol Macromol 2024; 280:135703. [PMID: 39288854 DOI: 10.1016/j.ijbiomac.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
In this study, multifunctional injectable mineralized antibacterial nanocomposite hydrogels were prepared by a homogenous distribution of high content of (up to 60 wt%) Sr-substituted hydroxyapatite (Sr-HAp) nanoparticles into covalently cross-linked ɛ-polylysine (ɛ-PL) and hyaluronic acid (HA) hydrogel network. The developed bone-targeted nanocomposite hydrogels were to synergistically combine the functional properties of bioactive Sr-HAp nanoparticles and antibacterial ɛ-PL-HA hydrogels for bone tissue regeneration. Viscoelasticity, injectability, structural parameters, degradation, antibacterial activity, and in vitro biocompatibility of the fabricated nanocomposite hydrogels were characterized. Physical performances of the ɛ-PL-HA hydrogels can be tailored by altering the mass ratio of Sr-HAp. The nanocomposite hydrogels revealed good stability against enzymatic degradation, which increased from 5 to 19 weeks with increasing the mass ratio of Sr-HAp from 40 % to 60 %. The loading of the Sr-HAp at relatively high mass ratios did not suppress the fast-acting and long-term antibacterial activity of the ɛ-PL-HA hydrogels against S. aureus and E. coli. The cell studies confirmed the cytocompatibility and pre-collagen I synthesis-promoting activity of the fabricated nanocomposite hydrogels.
Collapse
Affiliation(s)
- A Rubina
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - I Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - I Skadins
- Department of Biology and Microbiology, Riga Stradins University, Dzirciema St. 16, Riga LV-1007, Latvia
| | - A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom of Great Britain and Northern Ireland
| | - A Tumilovica
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - L Stipniece
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| | - K Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
6
|
Xia Y, Chen Z, Zheng Z, Chen H, Chen Y. Nanomaterial-integrated injectable hydrogels for craniofacial bone reconstruction. J Nanobiotechnology 2024; 22:525. [PMID: 39217329 PMCID: PMC11365286 DOI: 10.1186/s12951-024-02801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The complex anatomy and biology of craniofacial bones pose difficulties in their effective and precise reconstruction. Injectable hydrogels (IHs) with water-swollen networks are emerging as a shape-adaptive alternative for noninvasively rebuilding craniofacial bones. The advent of versatile nanomaterials (NMs) customizes IHs with strengthened mechanical properties and therapeutically favorable performance, presenting excellent contenders over traditional substitutes. Structurally, NM-reinforced IHs are energy dissipative and covalently crosslinked, providing the mechanics necessary to support craniofacial structures and physiological functions. Biofunctionally, incorporating unique NMs into IH expands a plethora of biological activities, including immunomodulatory, osteogenic, angiogenic, and antibacterial effects, further favoring controllable dynamic tissue regeneration. Mechanistically, NM-engineered IHs optimize the physical traits to direct cell responses, regulate intracellular signaling pathways, and control the release of biomolecules, collectively bestowing structure-induced features and multifunctionality. By encompassing state-of-the-art advances in NM-integrated IHs, this review offers a foundation for future clinical translation of craniofacial bone reconstruction.
Collapse
Affiliation(s)
- Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zihan Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zebin Zheng
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Huimin Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuming Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
7
|
Singhmar R, Son Y, Jo YJ, Zo S, Min BK, Sood A, Han SS. Fabrication of alginate composite hydrogel encapsulated retinoic acid and nano Se doped biphasic CaP to augment in situ mineralization and osteoimmunomodulation for bone regeneration. Int J Biol Macromol 2024; 275:133597. [PMID: 38960232 DOI: 10.1016/j.ijbiomac.2024.133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.
Collapse
Affiliation(s)
- Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Yumi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Yoo Jung Jo
- Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Sunmi Zo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Bong Ki Min
- Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Core Research Support Centre for Natural Products and Medical Materials, 280 Daehak-ro, Gyeongsan 38541, South Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
8
|
Sajid A, Amjad M, Manzoor Q, Wazir S, Sajid A, Alwadai N, Iqbal M, Tamam N. Synthesis of bimetallic oxides (SrO-CoO) nanoparticles decorated polyacrylamide hydrogels for controlled drug release and wound healing applications. Int J Biol Macromol 2024; 274:133194. [PMID: 38885867 DOI: 10.1016/j.ijbiomac.2024.133194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels are polymeric structures characterized by their three-dimensional nature, insolubility in aqueous media, and remarkable ability to absorb significant amounts of water. Owing to their exceptional biocompatibility with living tissues, hydrogels find extensive use in various biomedical applications. Guggul gum grafted polyacrylamide hydrogels (SG) were prepared and green synthesized SrO, CoO and SrO-CoO nanoparticles (NPs) were incorporated with hydrogels (SrG, CoG, Sr-CoG) respectively. The fabricated hydrogels were characterized by various analytical techniques such as FTIR, XRD and SEM. XRD results confirmed the presence of Sr and Co metal nanoparticles in the fabricated hydrogels matrix, SrG pattern showed diffraction peaks at 2θ = 30°, 36.59°, 44.11°, 50.22° and 62.20° while CoG peaks appeared at 2θ = 36.59°, 42.32°, 61.18°, 74.05° and 77.08°. SG, SrG, CoG and Sr-CoG hydrogels showed 11%, 32%, 23% and 45% radical scavenging activity respectively as compared to standard BHT (Butylated hydroxyl toluene). In vitro drug release tests results showed that SG, SrG, CoG and Sr-CoG exhibited 21%, 16%, 13% and 10% sustained release of naproxen respectively. The results revealed that SrO and CoO nanoparticles dopped hydrogels possessed good wound healing potential as compared to conventional hydrogels, which provides great potential in clinical treatment for wounds.
Collapse
Affiliation(s)
- Arfaa Sajid
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan.
| | - Muniba Amjad
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan
| | - Qaisar Manzoor
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan.
| | - Saba Wazir
- Department of Chemistry, The University of Lahore, 54590 Lahore, Pakistan
| | - Anam Sajid
- Department of natural sciences and humanities, University of engineering and technology Lahore New Campus, Kala Sha Kaku, Pakistan.
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Munawar Iqbal
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Nissren Tamam
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
9
|
Tian C, Li K, Chu F, Wei Q, Xu S, Qiang L, Gou X. Preparation and performance study of in situ mineralized bone tissue engineering scaffolds. RSC Adv 2024; 14:22420-22433. [PMID: 39010908 PMCID: PMC11248912 DOI: 10.1039/d4ra04047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Traditional bone tissue engineering techniques require the extraction and proliferation of seed cells, followed by prolonged in vitro culture to form bone tissue constructs. In contrast, in situ mineralization bone tissue engineering utilizes alkaline phosphatase within the body's microenvironment to induce scaffold mineralization. This approach promotes further proliferation and differentiation of osteoblasts and the formation of bone tissue constructs, thereby simplifying the traditional bone tissue engineering process. This study uses electrospinning technology to prepare a novel biologically active scaffold for bone tissue engineering using poly(lactic-co-glycolic acid) (PLGA) and calcium glycerophosphate. The morphology and composition of the scaffolds were characterized using SEM, EDS, and XRD, revealing well-defined fibrous structures and the successful incorporation of calcium glycerophosphate into the PLGA fibers. In vitro simulation of the bone microenvironment using alkaline phosphatase effectively catalyzed the in situ mineralization of calcium glycerophosphate within the scaffold. SEM observations showed substantial mineral aggregation on the surface of the fibrous membranes, and XRD characterization confirmed that the diffraction peaks of the minerals correspond to hydroxyapatite. The cytotoxicity, cell proliferation, and osteogenic differentiation assessments on MC3T3-E1 pre-osteoblasts cultured on the prepared scaffolds indicate that the scaffolds are non-toxic to cells and possess good osteogenic differentiation ability, enabling in situ mineralization. This suggests that the scaffolds have broad prospects for application in bone defect repair.
Collapse
Affiliation(s)
- Chunyan Tian
- Department of Biomedical Engineering, Chengde Medical University Chengde 067000 Hebei China +86-13343396119 +86-17774937339
| | - Kun Li
- Department of Biomedical Engineering, Chengde Medical University Chengde 067000 Hebei China +86-13343396119 +86-17774937339
| | - Fuhuan Chu
- Department of Biomedical Engineering, Chengde Medical University Chengde 067000 Hebei China +86-13343396119 +86-17774937339
| | - Qiujiang Wei
- Department of Biomedical Engineering, Chengde Medical University Chengde 067000 Hebei China +86-13343396119 +86-17774937339
| | - Shiqi Xu
- Department of Biomedical Engineering, Chengde Medical University Chengde 067000 Hebei China +86-13343396119 +86-17774937339
- Hebei International Research Center for Medical-Engineering, Chengde Medical University Chengde 067000 Hebei China
- Chengde Medical Additive Manufacturing Technology Innovation Center, Chengde Medical University Chengde 067000 Hebei China
| | - Linhui Qiang
- Department of Biomedical Engineering, Chengde Medical University Chengde 067000 Hebei China +86-13343396119 +86-17774937339
- Hebei International Research Center for Medical-Engineering, Chengde Medical University Chengde 067000 Hebei China
- Chengde Medical Additive Manufacturing Technology Innovation Center, Chengde Medical University Chengde 067000 Hebei China
| | - Xinrui Gou
- Department of Biomedical Engineering, Chengde Medical University Chengde 067000 Hebei China +86-13343396119 +86-17774937339
| |
Collapse
|
10
|
Huang C, Shi S, Qin M, Rong X, Ding Z, Fu X, Zeng W, Luo L, Wang D, Luo Z, Li Y, Zhou Z. A Composite Hydrogel Functionalized by Borosilicate Bioactive Glasses and VEGF for Critical-Size Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400349. [PMID: 38713747 PMCID: PMC11234436 DOI: 10.1002/advs.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Indexed: 05/09/2024]
Abstract
Critical-size bone defects pose a formidable challenge in clinical treatment, prompting extensive research efforts to address this problem. In this study, an inorganic-organic multifunctional composite hydrogel denoted as PLG-g-TA/VEGF/Sr-BGNPs is developed, engineered for the synergistic management of bone defects. The composite hydrogel demonstrated the capacity for mineralization, hydroxyapatite formation, and gradual release of essential functional ions and vascular endothelial growth factor (VEGF) and also maintained an alkaline microenvironment. The composite hydrogel promoted the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), as indicated by increased expression of osteogenesis-related genes and proteins in vitro. Moreover, the composite hydrogel significantly enhanced the tube-forming capability of human umbilical vein endothelial cells (HUVECs) and effectively inhibited the process of osteoblastic differentiation of nuclear factor kappa-B ligand (RANKL)-induced Raw264.7 cells and osteoclast bone resorption. After the implantation of the composite hydrogel into rat cranial bone defects, the expression of osteogenic and angiogenic biomarkers increased, substantiating its efficacy in promoting bone defect repair in vivo. The commendable attributes of the multifunctional composite hydrogel underscore its pivotal role in expediting hydrogel-associated bone growth and repairing critical bone defects, positioning it as a promising adjuvant therapy candidate for large-segment bone defects.
Collapse
Affiliation(s)
- Chao Huang
- Department of OrthopaedicsWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Shun Shi
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Muyan Qin
- School of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Xiao Rong
- Department of UltrasoundWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Zichuan Ding
- Department of OrthopaedicsWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Xiaoxue Fu
- Department of OrthopaedicsWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Weinan Zeng
- Department of OrthopaedicsWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Lei Luo
- West China School of Clinical MedicineSichuan UniversityChengduSichuan610041P. R. China
| | - Deping Wang
- School of Materials Science and EngineeringTongji UniversityShanghai201804P. R. China
| | - Zeyu Luo
- Department of OrthopaedicsWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| | - Yiwen Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Zongke Zhou
- Department of OrthopaedicsWest China HospitalSichuan UniversityChengduSichuan610041P. R. China
| |
Collapse
|
11
|
Qin S, Niu Y, Zhang Y, Wang W, Zhou J, Bai Y, Ma G. Metal Ion-Containing Hydrogels: Synthesis, Properties, and Applications in Bone Tissue Engineering. Biomacromolecules 2024; 25:3217-3248. [PMID: 38237033 DOI: 10.1021/acs.biomac.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hydrogel, as a unique scaffold material, features a three-dimensional network system that provides conducive conditions for the growth of cells and tissues in bone tissue engineering (BTE). In recent years, it has been discovered that metal ion-containing hybridized hydrogels, synthesized with metal particles as the foundation, exhibit excellent physicochemical properties, osteoinductivity, and osteogenic potential. They offer a wide range of research prospects in the field of BTE. This review provides an overview of the current state and recent advancements in research concerning metal ion-containing hydrogels in the field of BTE. Within materials science, it covers topics such as the binding mechanisms of metal ions within hydrogel networks, the types and fabrication methods of various metal ion-containing hydrogels, and the influence of metal ions on the properties of hydrogels. In the context of BTE, the review delves into the osteogenic mechanisms of various metal ions, the applications of metal ion-containing hydrogels in BTE, and relevant experimental studies in vitro and in vivo. Furthermore, future improvements in bone repair can be anticipated through advancements in bone bionics, exploring interactions between metal ions and the development of a wider range of metal ions and hydrogel types.
Collapse
Affiliation(s)
- Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yihan Zhang
- School of Stomatology, Harbin Medical University, Harbin 150020, P. R. China
| | - Weiyi Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P. R. China
| | - Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, No. 397 Huangpu Road, Shahekou District, Dalian 116086, P. R. China
| |
Collapse
|
12
|
Li X, Pang Y, Guan L, Li L, Zhu Y, Whittaker AK, Yang B, Zhu S, Lin Q. Mussel-inspired antimicrobial hydrogel with cellulose nanocrystals/tannic acid modified silver nanoparticles for enhanced calvarial bone regeneration. Int J Biol Macromol 2024; 270:132419. [PMID: 38759859 DOI: 10.1016/j.ijbiomac.2024.132419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Bacterial infection is a serious challenge in the treatment of open bone defects, and reliance on antibiotic therapy may contribute to the emergence of drug-resistant bacteria. To solve this problem, this study developed a mineralized hydrogel (PVA-Ag-PHA) with excellent antibacterial properties and osteogenic capabilities. Silver nanoparticles (CNC/TA@AgNPs) were greenly synthesized using natural macromolecular cellulose nanocrystals (CNC) and plant polyphenolic tannins (TA) as stabilizers and reducing agents respectively, and then introduced into polyvinyl alcohol (PVA) and polydopamine-modified hydroxyapatite (PDA@HAP) hydrogel. The experimental results indicate that the PVA-Ag-PHA hydrogel, benefiting from the excellent antibacterial properties of CNC/TA@AgNPs, can not only eliminate Staphylococcus aureus and Escherichia coli, but also maintain a sustained sterile environment. At the same time, the HAP modified by PDA is uniformly dispersed within the hydrogel, thus releasing and maintaining stable concentrations of Ca2+ and PO43- ions in the local environment. The porous structure of the hydrogel with excellent biocompatibility creates a suitable bioactive environment that facilitates cell adhesion and bone regeneration. The experimental results in the rat critical-sized calvarial defect model indicate that the PVA-Ag-PHA hydrogel can effectively accelerate the bone healing process. Thus, this mussel-inspired hydrogel with antibacterial properties provides a feasible solution for the repair of open bone defects, demonstrating the considerable potential for diverse applications in bone repair.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuxuan Pang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanlin Zhu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology. The University of Queensland Brisbane, QLD 4072, Australia.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Cheng S, Hu X, Sun K, Huang Z, Zhao Y, Sun Y, Zeng B, Wang J, Zhao D, Lu S, Shi Q, Wang Y, Zhang W, Liu X, Shu B. Local Application of Tanshinone IIA protects mesenchymal stem cells from apoptosis and promotes fracture healing in ovariectomized mice. J Orthop Surg Res 2024; 19:309. [PMID: 38783358 PMCID: PMC11112815 DOI: 10.1186/s13018-024-04793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.
Collapse
Affiliation(s)
- Shao Cheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
- School of Orthopedics, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaohui Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Ziyu Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Bo Zeng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Jing Wang
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
14
|
Liu Z, Li S, Xu Z, Li L, Liu Y, Gao X, Diao Y, Chen L, Sun J. Preparation and Characterization of Carboxymethyl Chitosan/Sodium Alginate Composite Hydrogel Scaffolds Carrying Chlorhexidine and Strontium-Doped Hydroxyapatite. ACS OMEGA 2024; 9:22230-22239. [PMID: 38799338 PMCID: PMC11112597 DOI: 10.1021/acsomega.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Herein, we introduce a novel composite hydrogel scaffold designed for addressing infectious jaw defects, a significant challenge in clinical settings caused by the inherent limited self-regenerative capacity of bone tissues. The scaffold was engineered from a blend of carboxymethyl chitosan (CMCS)/sodium alginate (SA) hydrogel (CSH), β-cyclodextrin/chlorhexidine clathrate (β-CD-CHX), and strontium-nanohydroxyapatite nanoparticles (Sr-nHA). The β-CD-CHX and Sr-nHA components were synthesized using a saturated aqueous solution and a coprecipitation method, respectively. Subsequently, these elements were encapsulated within the CSH matrix. Comprehensive characterization of the CMCS/SA/β-CD-CHX/Sr-nHA composite hydrogel scaffold via scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy validated the successful synthesis. The swelling and in vitro degradation behaviors proved that the composite hydrogel had good physical properties, while in vitro evaluations demonstrated favorable biocompatibility and osteoinductive properties. Additionally, antibacterial assessments revealed its effectiveness against common pathogens, Staphylococcus aureus and Escherichia coli. Overall, our results indicate that the CMCS/SA/β-CD-CHX/Sr-nHA composite hydrogel scaffolds exhibit significant potential for effectively treating infection-prone jaw defects.
Collapse
Affiliation(s)
- Zijian Liu
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Shangbo Li
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Zexian Xu
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Li Li
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yanshan Liu
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
- Dental
Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, China
| | - Xiaohan Gao
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yaru Diao
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
| | - Liqiang Chen
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
- Dental
Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, China
- The
Climbing Peak Discipline Project of Qingdao, Qingdao 266003, China
| | - Jian Sun
- Department
of Oral and Maxillofacial Surgery, The Affiliated
Hospital of Qingdao University, Qingdao 266003, China
- School
of Stomatology, Qingdao University, Qingdao 266003, China
- Dental
Digital Medicine and 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, China
- The
Climbing Peak Discipline Project of Qingdao, Qingdao 266003, China
| |
Collapse
|
15
|
Yang W, Ni W, Yu C, Gu T, Ye L, Sun R, Ying X, Yik JHN, Haudenschild DR, Yao S, Hu Z. Biomimetic Bone-Like Composite Hydrogel Scaffolds Composed of Collagen Fibrils and Natural Hydroxyapatite for Promoting Bone Repair. ACS Biomater Sci Eng 2024; 10:2385-2397. [PMID: 38538611 DOI: 10.1021/acsbiomaterials.3c01468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Bone is a complex organic-inorganic composite tissue composed of ∼30% organics and ∼70% hydroxyapatite (HAp). Inspired by this, we used 30% collagen and 70% HAp extracted from natural bone using the calcination method to generate a biomimetic bone composite hydrogel scaffold (BBCHS). In one respect, BBCHS, with a fixed proportion of inorganic and organic components similar to natural bone, exhibits good physical properties. In another respect, the highly biologically active and biocompatible HAp from natural bone effectively promotes osteogenic differentiation, and type I collagen facilitates cell adhesion and spreading. Additionally, the well-structured porosity of the BBCHS provides sufficient growth space for bone marrow mesenchymal stem cells (BMSCs) while promoting substance exchange. Compared to the control group, the new bone surface of the defective location in the B-HA70+Col group is increased by 3.4-fold after 8 weeks of in vivo experiments. This strategy enables the BBCHS to closely imitate the chemical makeup and physical structure of natural bone. With its robust biocompatibility and osteogenic activity, the BBCHS can be easily adapted for a wide range of bone repair applications and offers promising potential for future research and development.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, Zhejiang 310003, China
| | - Jasper H N Yik
- Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California System, Davis, California 60601, United States
| | - Dominik R Haudenschild
- Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California System, Davis, California 60601, United States
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Ziang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
16
|
Vaidya G, Pramanik S, Kadi A, Rayshan AR, Abualsoud BM, Ansari MJ, Masood R, Michaelson J. Injecting hope: chitosan hydrogels as bone regeneration innovators. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:756-797. [PMID: 38300215 DOI: 10.1080/09205063.2024.2304952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Spontaneous bone regeneration encounters substantial restrictions in cases of bone defects, demanding external intervention to improve the repair and regeneration procedure. The field of bone tissue engineering (BTE), which embraces a range of disciplines, offers compelling replacements for conventional strategies like autografts, allografts, and xenografts. Among the diverse scaffolding materials utilized in BTE applications, hydrogels have demonstrated great promise as templates for the regeneration of bone owing to their resemblance to the innate extracellular matrix. In spite of the advancement of several biomaterials, chitosan (CS), a natural biopolymer, has garnered significant attention in recent years as a beneficial graft material for producing injectable hydrogels. Injectable hydrogels based on CS formulations provide numerous advantages, including their capacity to absorb and preserve a significant amount of water, their minimally invasive character, the existence of porous structures, and their capability to adapt accurately to irregular defects. Moreover, combining CS with other naturally derived or synthetic polymers and bioactive materials has displayed its effectiveness as a feasible substitute for traditional grafts. We aim to spotlight the composition, production, and physicochemical characteristics and practical utilization of CS-based injectable hydrogels, explicitly focusing on their potential implementations in bone regeneration. We consider this review a fundamental resource and a source of inspiration for future research attempts to pioneer the next era of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Gayatri Vaidya
- Department of Studies and Research in Food Technology, Davangere University, Davangere, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, Russia
| | - Ahmed Raheem Rayshan
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Jacob Michaelson
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
17
|
Wang H, Sun R, Huang S, Wu H, Zhang D. Fabrication and properties of hydroxyapatite/chitosan composite scaffolds loaded with periostin for bone regeneration. Heliyon 2024; 10:e25832. [PMID: 38463831 PMCID: PMC10920147 DOI: 10.1016/j.heliyon.2024.e25832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
This paper reports a facile fabrication method of hydroxyapatite/chitosan (HAp/CS) composite scaffold with 3D porous structure without using any chemical cross-linkers. The HAp particles had an urchin-like hollow microstructure and high surface area, which was uniformly dispersed into the pore walls of the HAp/CS scaffold. The addition of HAp can efficiently enhance the mechanical properties and bioactivity of the HAp/CS scaffold. Moreover, periostin was successfully loaded onto the HAp/CS scaffold. When applied to the repair of bone defect in a rat mandibular model, the HAp/CS scaffold loaded with periostin can enhance osteointegration and accelerate bone regeneration. Our research combines periostin with the HAp/CS composite material, which provides a novel strategy to improve bone regeneration and has great application prospect in bone repair fields.
Collapse
Affiliation(s)
- Huachun Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Qingdao, 266035, China
| | - Ruixue Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shengyun Huang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
| | - Haiwei Wu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
| |
Collapse
|
18
|
Shi W, Jiang Y, Wu T, Zhang Y, Li T. Advancements in drug-loaded hydrogel systems for bone defect repair. Regen Ther 2024; 25:174-185. [PMID: 38230308 PMCID: PMC10789937 DOI: 10.1016/j.reth.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Bone defects are primarily the result of high-energy trauma, pathological fractures, bone tumor resection, or infection debridement. The treatment of bone defects remains a huge clinical challenge. The current treatment options for bone defects include bone traction, autologous/allogeneic bone transplantation, gene therapy, and bone tissue engineering amongst others. With recent developments in the field, composite scaffolds prepared using tissue engineering techniques to repair bone defects are used more often. Among the various composite scaffolds, hydrogel exhibits the advantages of good biocompatibility, high water content, and degradability. Its three-dimensional structure is similar to that of the extracellular matrix, and as such it is possible to load stem cells, growth factors, metal ions, and small molecule drugs upon these scaffolds. Therefore, the hydrogel-loaded drug system has great potential in bone defect repair. This review summarizes the various natural and synthetic materials used in the preparation of hydrogels, in addition to the latest research status of hydrogel-loaded drug systems.
Collapse
Affiliation(s)
- Weipeng Shi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Bhushan S, Singh S, Maiti TK, Chaudhari LR, Joshi MG, Dutt D. Silver-doped hydroxyapatite laden chitosan-gelatin nanocomposite scaffolds for bone tissue engineering: an in-vitro and in-ovo evaluation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:206-227. [PMID: 37947007 DOI: 10.1080/09205063.2023.2279795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Despite the advancements in bone tissue engineering, the majority of implant failures are caused due to microbial contamination. So, efforts are being made to develop biomaterial with antimicrobial property enhancing the regeneration of damaged bone tissue. In the present study, chitosan-gelatin (CG) scaffolds containing silver-doped hydroxyapatite (AgHAP) nanoparticles at 0.5%, 1.0% and 1.5% (w/v) were fabricated by lyophilization technique. The results confirmed the synthesis of AgHAP nanoparticles and showed interconnected porous structure of the nanocomposite scaffolds with 89%-75% porosity. Similarly, the swelling percentage, degradation behavior and compressive modulus of CG-AgHAP nanocomposite scaffolds were 1666%, 40% and 0.7 MPa, respectively. The developed nanocomposite scaffolds revealed better antimicrobial properties and bioactivity. The cell culture studies showed favorable viability of Wharton's jelly stem cells on CG-AgHAP nanocomposite scaffolds. CAM (chorioallantoic membrane) assay determined the angiogenic potential with better visualization of blood vessels in the CAM area. Hence, the obtained results confirmed that CG-AgHAP3 nanocomposite scaffold was the most suitable for bone tissue engineering applications among all scaffolds.
Collapse
Affiliation(s)
- Sakchi Bhushan
- Department of Paper Technology, IIT Roorkee-Saharanpur Campus, Saharanpur, Uttar Pradesh, India
| | - Sandhya Singh
- Department of Paper Technology, IIT Roorkee-Saharanpur Campus, Saharanpur, Uttar Pradesh, India
| | | | - Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Dharm Dutt
- Department of Paper Technology, IIT Roorkee-Saharanpur Campus, Saharanpur, Uttar Pradesh, India
| |
Collapse
|
20
|
Zou X, Xie B, Peng X, Lu M, Xu D, Yuan H, Zhang Y, Wang D, Zhao M, Liu R, Wen X. p75NTR antibody-conjugated microspheres: an approach to guided tissue regeneration by selective recruitment of endogenous periodontal ligament cells. Front Bioeng Biotechnol 2024; 12:1338029. [PMID: 38357709 PMCID: PMC10864659 DOI: 10.3389/fbioe.2024.1338029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Repairing defects in alveolar bone is essential for regenerating periodontal tissue, but it is a formidable challenge. One promising therapeutic approach involves using a strategy that specifically recruits periodontal ligament cells (PDLCs) with high regenerative potential to achieve in situ regeneration of alveolar bone. In this study, we have created a new type of microsphere conjugated with an antibody to target p75 neurotrophin receptor (p75NTR), which is made of nano-hydroxyapatite (nHA) and chitosan (CS). The goal of this design is to attract p75NTR+hPDLCs selectively and promote osteogenesis. In vitro experiments demonstrated that the antibody-conjugated microspheres attracted significantly more PDLCs compared to non-conjugated microspheres. Incorporating nHA not only enhances cell adhesion and proliferation on the surface of the microsphere but also augments its osteoinductive properties. Microspheres effectively recruited p75NTR+ cells at bone defect sites in SD rats, as observed through immunofluorescent staining of p75NTR antibodies. This p75NTR antibody-conjugated nHA/CS microsphere presents a promising approach for selectively recruiting cells and repairing bone defects.
Collapse
Affiliation(s)
- Xuqiang Zou
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Bo Xie
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xuelian Peng
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Mingjie Lu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Dan Xu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Hongyan Yuan
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Di Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Manzhu Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiujie Wen
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Zhang P, Qi J, Zhang R, Zhao Y, Yan J, Gong Y, Liu X, Zhang B, Wu X, Wu X, Zhang C, Zhao B, Li B. Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomater Sci 2024; 12:308-329. [PMID: 38108454 DOI: 10.1039/d3bm01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone defects are often difficult to treat due to their complexity and specificity, and therefore pose a serious threat to human life and health. Currently, the clinical treatment of bone defects is mainly surgical. However, this treatment is often more harmful to patients and there is a potential risk of rejection and infection. Hydrogels have a unique three-dimensional structure that can accommodate a variety of materials, including particles, polymers and small molecules, making them ideal for treating bone defects. Therefore, emerging composite hydrogels are considered one of the most promising candidates for the treatment of bone defects. This review describes the use of different types of composite hydrogel in the treatment of bone defects. We present the basic concepts of hydrogels, different preparation techniques (including chemical and physical crosslinking), and the clinical requirements for hydrogels used to treat bone defects. In addition, a review of numerous promising designs of different types of hydrogel doped with different materials (e.g., nanoparticles, polymers, carbon materials, drugs, and active factors) is also highlighted. Finally, the current challenges and prospects of composite hydrogels for the treatment of bone defects are presented. This review will stimulate research efforts in this field and promote the application of new methods and innovative ideas in the clinical field of composite hydrogels.
Collapse
Affiliation(s)
- Pengfei Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jin Qi
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yifan Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jingyu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajuan Gong
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiaoming Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Binbin Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiao Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
22
|
Huang H, Qiang L, Fan M, Liu Y, Yang A, Chang D, Li J, Sun T, Wang Y, Guo R, Zhuang H, Li X, Guo T, Wang J, Tan H, Zheng P, Weng J. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater 2024; 31:18-37. [PMID: 37593495 PMCID: PMC10432151 DOI: 10.1016/j.bioactmat.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
The resection of malignant osteosarcoma often results in large segmental bone defects, and the residual cells can facilitate recurrence. Consequently, the treatment of osteosarcoma is a major challenge in clinical practice. The ideal goal of treatment for osteosarcoma is to eliminate it thoroughly, and repair the resultant bone defects as well as avoid bacterial infections. Herein, we fabricated a selenium/strontium/zinc-doped hydroxyapatite (Se/Sr/Zn-HA) powder by hydrothermal method, and then employed it with polycaprolactone (PCL) as ink to construct composite scaffolds through 3D printing, and finally introduced them in bone defect repair induced by malignant osteosarcoma. The resultant composite scaffolds integrated multiple functions involving anti-tumor, osteogenic, and antibacterial potentials, mainly attributed to the anti-tumor effects of SeO32-, osteogenic effects of Sr2+ and Zn2+, and antibacterial effects of SeO32- and Zn2+. In vitro studies confirmed that Se/Sr/Zn-HA leaching solution could induce apoptosis of osteosarcoma cells, differentiation of MSCs, and proliferation of MC3T3-E1 while showing excellent antibacterial properties. In vivo tests demonstrated that Se/Sr/Zn-HA could significantly suppress tumors after 8 days of injection, and the Se/Sr/Zn-HA-PCLs scaffold repaired femoral defects effectively after 3 months of implantation. Summarily, the Se/Sr/Zn-HA-PCLs composite scaffolds developed in this study were effective for tumor treatment, bone defect repair, and post-operative anti-infection, which provided a great potential to be a facile therapeutic material for osteosarcoma resection.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dongbiao Chang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Xiangyu Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Huan Tan
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
23
|
Zhao S, Guo L, Cui W, Zhao Y, Wang J, Sun K, Zhang H, Sun Y, Zhao D, Hu X, Huang Z, Lu S, Wang Y, Liu X, Zhang W, Shu B. Monotropein Protects Mesenchymal Stem Cells from Lipopolysaccharide-Induced Impairments and Promotes Fracture Healing in an Ovariectomized Mouse Model. Calcif Tissue Int 2023; 113:558-570. [PMID: 37747519 DOI: 10.1007/s00223-023-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023]
Abstract
Monotropein is one of the active ingredients in Morinda Officinalis, which has been used for the treatment in multiple bone and joint diseases. This study aimed to observe the in vitro effects of Monotropein on osteogenic differentiation of lipopolysaccharide treated bone marrow mesenchymal stem cells (bMSCs), and the in vivo effects of local application of Monotropein on bone fracture healing in ovariectomized mice. Lipopolysaccharide was used to set up the inflammatory model in bMSCs, which were treated by Monotropein. Molecular docking analysis was performed to evaluate the potential interaction between Monotropein and p65. Transverse fractures of middle tibias were established in ovariectomized mice, and Monotropein was locally applied to the fracture site using injectable hydrogel. Monotropein enhanced the ability of primary bMSCs in chondro-osteogenic differentiation. Furthermore, Monotropein rescued lipopolysaccharide-induced osteogenic differentiation impairment and inhibited lipopolysaccharide-induced p65 phosphorylation in primary bMSCs. Docking analysis showed that the binding activity of Monotropein and p65/14-3-3 complex is stronger than the selective inhibitor of NF-κB (p65), DP-005. Local application of Monotropein partially rescued the decreased bone mass and biomechanical properties of callus or healed tibias in ovariectomized mice. The expressions of Runx2, Osterix and Collagen I in the 2-week callus were partially restored in Monotropein-treated ovariectomized mice. Taking together, local application of Monotropein promoted fracture healing in ovariectomized mice. Inhibition of p65 phosphorylation and enhancement in osteogenesis of mesenchymal stem cells could be partial of the effective mechanisms.
Collapse
Affiliation(s)
- Shitian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Liqiang Guo
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Wei Cui
- Caolu Community Health Service Center, Shanghai, 200120, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Jing Wang
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Xiaohui Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Ziyu Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
24
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
25
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
26
|
Murugan E, Akshata CR. Dextrose, maltose and starch guide crystallization of strontium-substituted hydroxyapatite: A comparative study for bone tissue engineering application. Int J Biol Macromol 2023; 248:125927. [PMID: 37481177 DOI: 10.1016/j.ijbiomac.2023.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The influence of carbohydrates on the crystallization of metal-substituted hydroxyapatite predicts its relevance to natural bone growth. This study demonstrates the role of carbohydrates in the crystallization of strontium-substituted hydroxyapatite (SHAP). The increasing order of hydroxyl groups, dextrose (monosaccharide) < maltose (disaccharide) < starch (polysaccharide), coordinated with Ca2+/Sr2+ and thus guided SHAP crystallization, with crystal size reduced from 35 to 19 nm, lattice volume increased from 518 to 537 Å3, and residual carbohydrates increased from 1.8 to 20.2 %. The variation in residual carbohydrates is due to their interaction with apatite and/or aqueous insolubility. Compared to pure SHAP, the starch-SHAP with higher residual starch showed increased water uptake from 1.23 ± 0.18 to 4.26 ± 0.21 % and degradation from 0.22 ± 0.06 to 1.53 ± 0.14 %, but decreased microhardness from 0.73 ± 0.12 to 0.38 ± 0.01 GPa and protein affinity from 4.82 ± 0.01 to 0.81 ± 0.01 μg/mg. However, its microhardness value was bone-like, and the reduced protein adsorption was masked by the rich osteogenic behaviour. In vitro cellular response demonstrated that the residual carbohydrate and strontium augmented osteocompatibility, proliferation, differentiation and biomineralization. The result concludes that carbohydrates drive SHAP crystallization, and starch-SHAP replicates natural bone.
Collapse
Affiliation(s)
- E Murugan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - C R Akshata
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
27
|
Jin M, Sun N, Weng W, Sang Z, Liu T, Xia W, Wang S, Sun X, Wang T, Li H, Yang H. The effect of GelMA/alginate interpenetrating polymeric network hydrogel on the performance of porous zirconia matrix for bone regeneration applications. Int J Biol Macromol 2023; 242:124820. [PMID: 37178890 DOI: 10.1016/j.ijbiomac.2023.124820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Bone tissue is a natural composite, exhibiting complicated structures and unique mechanical/biological properties. With an attempt of mimicking the bone tissue, a novel inorganic-organic composite scaffolds (ZrO2-GM/SA) was designed and prepared via the vacuum infiltration method and the single/double cross-linking strategy by blending GelMA/alginate (GelMA/SA) interpenetrating polymeric network (IPN) into the porous zirconia (ZrO2) scaffold. The structure, morphology, compressive strength, surface/interface properties, and biocompatibility of the ZrO2-GM/SA composite scaffolds were characterized to evaluate the performance of the composite scaffolds. Results showed that compared to ZrO2 bare scaffolds with well-defined open pores, the composite scaffolds prepared by double cross-linking of GelMA hydrogel and sodium alginate (SA) presented a continuous, tunable and honeycomb-like microstructure. Meanwhile, GelMA/SA showed favorable and controllable water-uptake capacity, swelling property and degradability. After the introduction of IPN components, the mechanical strength of composite scaffolds was further improved. The compressive modulus of composite scaffolds was significantly higher than the bare ZrO2 scaffolds. In addition, ZrO2-GM/SA composite scaffolds had highly biocompatibility and displayed a potent proliferation and osteogenesis of MC3T3-E1 pre-osteoblasts compared to bare ZrO2 scaffolds and ZrO2-GelMA composite scaffolds. At the same time, ZrO2-10GM/1SA composite scaffold regenerated significantly greater bone than other groups in vivo. This study demonstrated that the proposed ZrO2-GM/SA composite scaffolds had great research and application potential in bone tissue engineering.
Collapse
Affiliation(s)
- Meiqi Jin
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Ningning Sun
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China.
| | - Wenxian Weng
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Zhentao Sang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Taotao Liu
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Wei Xia
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Shuze Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Tianlin Wang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
28
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
29
|
Phogat K, Ghosh SB, Bandyopadhyay‐Ghosh S. Recent advances on injectable nanocomposite hydrogels towards bone tissue rehabilitation. J Appl Polym Sci 2023; 140. [DOI: 10.1002/app.53362] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/23/2022] [Indexed: 01/06/2025]
Abstract
AbstractThere has been significant interest in the recent past to develop injectable hydrogel scaffolds that follow minimally invasive implantation procedures towards efficient healing and regeneration of defective bone tissues. Such scaffolds offer several advantages, as they can be injected into the irregularly shaped defect and can act as a low‐density aqueous reservoir, incorporating necessary components for bone tissue repair and augmentation. Considering that bone is a biocomposite of natural biopolymer and bioapatite nanofiller, there has been a growing trend to develop nanocomposite scaffolds by combining biopolymers and inorganic nanofillers to biomimic the hierarchical nanostructure and composition of natural bone. Furthermore, the nanocomposite scaffolds can be tailored to have patient‐specific bone properties, which can lead to better biological responses. The present article begins with the introduction, followed by an overview of polymer matrices, property requirements, and crosslinking techniques employed for injectable hydrogels. Various strategies to develop injectable composites, with emphasis on nanocomposite hydrogels incorporating bioinert and bioactive nanofillers have been discussed. The fundamental challenges related to the development of injectable hydrogel nanocomposite scaffolds and the research efforts directed towards solving these problems have also been reviewed. Finally, future trends and conclusions on new generation injectable hydrogel nanocomposite bone scaffolds have been discussed in this article.
Collapse
Affiliation(s)
- Kapender Phogat
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering Manipal University Jaipur Jaipur Rajasthan India
- Department of Mechanical Engineering JECRC University Jaipur Rajasthan India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering Manipal University Jaipur Jaipur Rajasthan India
| | | |
Collapse
|
30
|
Bashir MH, Korany NS, Farag DBE, Abbass MMS, Ezzat BA, Hegazy RH, Dörfer CE, Fawzy El-Sayed KM. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules 2023; 13:biom13020205. [PMID: 36830575 PMCID: PMC9953024 DOI: 10.3390/biom13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite biomaterials combine a biopolymeric matrix structure with nanoscale fillers. These bioactive and easily resorbable nanocomposites have been broadly divided into three groups, namely natural, synthetic or composite, based on the polymeric origin. Preparing such nanocomposite structures in the form of hydrogels can create a three-dimensional natural hydrophilic atmosphere pivotal for cell survival and new tissue formation. Thus, hydrogel-based cell distribution and drug administration have evolved as possible options for bone tissue engineering and regeneration. In this context, nanogels or nanohydrogels, created by cross-linking three-dimensional polymer networks, either physically or chemically, with high biocompatibility and mechanical properties were introduced as promising drug delivery systems. The present review highlights the potential of hydrogels and nanopolymers in the field of craniofacial tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Maha H. Bashir
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Nahed S. Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Bassant A. Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Radwa H. Hegazy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence: ; Tel.: +49-431-500-26210
| |
Collapse
|
31
|
Liang K, Zhao C, Song C, Zhao L, Qiu P, Wang S, Zhu J, Gong Z, Liu Z, Tang R, Fang X, Zhao Y. In Situ Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:292-308. [PMID: 36583968 DOI: 10.1021/acsami.2c16217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A critical-sized bone defect, which cannot be repaired through self-healing, is a major challenge in clinical therapeutics. The combination of biomimetic hydrogels and nano-hydroxyapatite (nano-HAP) is a promising way to solve this problem by constructing an osteogenic microenvironment. However, it is challenging to generate nano-HAP with a similar morphology and structure to that of natural bone, which limits the improvement of bone regeneration hydrogels. Inspired by our previous works on organic-inorganic cocross-linking, here, we built a strong organic-inorganic interaction by cross-linking periosteum-decellularized extracellular matrix and calcium phosphate oligomers, which ensured the in situ mineralization of bone-like nano-HAP in hydrogels. The resulting biomimetic osteogenic hydrogel (BOH) promotes bone mineralization, construction of immune microenvironment, and angiogenesis improvement in vitro. The BOH exhibited acceleration of osteogenesis in vivo, achieving large-sized bone defect regeneration and remodeling within 8 weeks, which is superior to many previously reported hydrogels. This study demonstrates the important role of bone-like nano-HAP in osteogenesis, which deepens the understanding of the design of biomaterials for hard tissue repair. The in situ mineralization of bone-like nano-HAP emphasizes the advantages of inorganic ionic oligomers in the construction of organic-inorganic interaction, which provides an alternative method for the preparation of advanced biomimetic materials.
Collapse
Affiliation(s)
- Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Chenchen Zhao
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chenxin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Lan Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
32
|
Liu Y, Zhang B, Liu F, Qiu Y, Mu W, Chen L, Ma C, Ye T, Wang Y. Strontium doped electrospinning fiber membrane with antibacterial and osteogenic properties prepared by pulse electrochemical method. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Guo A, Zheng Y, Zhong Y, Mo S, Fang S. Effect of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related influencing factors in animal models: A systematic review. Front Bioeng Biotechnol 2022; 10:986212. [PMID: 36394038 PMCID: PMC9643585 DOI: 10.3389/fbioe.2022.986212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Bone tissue engineering (BTE) provides a promising alternative for transplanting. Due to biocompatibility and biodegradability, chitosan-based scaffolds have been extensively studied. In recent years, many inorganic nanomaterials have been utilized to modify the performance of chitosan-based materials. In order to ascertain the impact of chitosan/inorganic nanomaterial scaffolds on bone regeneration and related key factors, this study presents a systematic comparison of various scaffolds in the calvarial critical-sized defect (CSD) model. A total of four electronic databases were searched without publication date or language restrictions up to April 2022. The Animal Research Reporting of In Vivo Experiments 2.0 guidelines (ARRIVE 2.0) were used to assess the quality of the included studies. Moreover, the risk of bias (RoB) was evaluated via the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. After the screening, 22 studies were selected. None of these studies achieved high quality or had a low RoB. In the available studies, scaffolds reconstructed bone defects in radically different extensions. Several significant factors were identified, including baseline characteristics, physicochemical properties of scaffolds, surgery details, and scanning or reconstruction parameters of micro-computed tomography (micro-CT). Further studies should focus on not only improving the osteogenic performance of the scaffolds but also increasing the credibility of studies through rigorous experimental design and normative reports.
Collapse
Affiliation(s)
| | | | | | - Shuixue Mo
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Shanbao Fang
- College of Stomatology, Guangxi Medical University, Nanning, China
| |
Collapse
|
34
|
Ahmed Omar N, Amédée J, Letourneur D, Fricain JC, Fenelon M. Recent Advances of Pullulan and/or Dextran-Based Materials for Bone Tissue Engineering Strategies in Preclinical Studies: A Systematic Review. Front Bioeng Biotechnol 2022; 10:889481. [PMID: 35845411 PMCID: PMC9280711 DOI: 10.3389/fbioe.2022.889481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Bone tissue engineering (BTE) strategies are increasingly investigated to overcome the limitations of currently used bone substitutes and to improve the bone regeneration process. Among the natural polymers used for tissue engineering, dextran and pullulan appear as natural hydrophilic polysaccharides that became promising biomaterials for BTE. This systematic review aimed to present the different published applications of pullulan and dextran-based biomaterials for BTE. An electronic search in Pubmed, Scopus, and Web of Science databases was conducted. Selection of articles was performed following PRISMA guidelines. This systematic review led to the inclusion of 28 articles on the use of pullulan and/or dextran-based biomaterials to promote bone regeneration in preclinical models. Sixteen studies focused on dextran-based materials for bone regeneration, six on pullulan substitutes and six on the combination of pullulan and dextran. Several strategies have been developed to provide bone regeneration capacity, mainly through their fabrication processes (functionalization methods, cross-linking process), or the addition of bioactive elements. We have summarized here the strategies employed to use the polysaccharide scaffolds (fabrication process, composition, application usages, route of administration), and we highlighted their relevance and limitations for BTE applications.
Collapse
Affiliation(s)
| | - Joëlle Amédée
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
| | - Didier Letourneur
- SILTISS, Saint-Viance, France
- Université Paris Cité, Université Sorbonne Paris Nord, INSERM U1148, LVTS, X Bichat Hospital, Université de Paris, Paris, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
| | - Mathilde Fenelon
- Université de Bordeaux, INSERM U1026, BIOTIS, Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, Bordeaux, France
- *Correspondence: Mathilde Fenelon,
| |
Collapse
|
35
|
Salar Amoli M, EzEldeen M, Jacobs R, Bloemen V. Materials for Dentoalveolar Bioprinting: Current State of the Art. Biomedicines 2021; 10:biomedicines10010071. [PMID: 35052751 PMCID: PMC8773444 DOI: 10.3390/biomedicines10010071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Although current treatments can successfully address a wide range of complications in the dentoalveolar region, they often still suffer from drawbacks and limitations, resulting in sub-optimal treatments for specific problems. In recent decades, significant progress has been made in the field of tissue engineering, aiming at restoring damaged tissues via a regenerative approach. Yet, the translation into a clinical product is still challenging. Novel technologies such as bioprinting have been developed to solve some of the shortcomings faced in traditional tissue engineering approaches. Using automated bioprinting techniques allows for precise placement of cells and biological molecules and for geometrical patient-specific design of produced biological scaffolds. Recently, bioprinting has also been introduced into the field of dentoalveolar tissue engineering. However, the choice of a suitable material to encapsulate cells in the development of so-called bioinks for bioprinting dentoalveolar tissues is still a challenge, considering the heterogeneity of these tissues and the range of properties they possess. This review, therefore, aims to provide an overview of the current state of the art by discussing the progress of the research on materials used for dentoalveolar bioprinting, highlighting the advantages and shortcomings of current approaches and considering opportunities for further research.
Collapse
Affiliation(s)
- Mehdi Salar Amoli
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
- Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; (M.E.); (R.J.)
- Department of Dental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-30-10-95
| |
Collapse
|
36
|
Cernencu AI, Dinu AI, Stancu IC, Lungu A, Iovu H. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 2021; 119:762-783. [PMID: 34961918 DOI: 10.1002/bit.28020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Nanostructured compounds already validated as performant reinforcements for biomedical applications together with different fabrication strategies have been often used to channel the biophysical and biochemical features of hydrogel networks. Ergo, a wide array of nanostructured compounds has been employed as additive materials integrated with hydrophilic networks based on naturally-derived polymers to produce promising scaffolding materials for specific fields of regenerative medicine. To date, nanoengineered hydrogels are extensively explored in (bio)printing formulations, representing the most advanced designs of hydrogel (bio)inks able to fabricate structures with improved mechanical properties and high print fidelity along with a cell-interactive environment. The development of printing inks comprising organic-inorganic hybrid nanocomposites is in full ascent as the impact of a small amount of nanoscale additive does not translate only in improved physicochemical and biomechanical properties of bioink. The biopolymeric nanocomposites may even exhibit additional particular properties engendered by nano-scale reinforcement such as electrical conductivity, magnetic responsiveness, antibacterial or antioxidation properties. The present review focus on hydrogels nanoengineered for 3D printing of biomimetic constructs, with particular emphasis on the impact of the spatial distribution of reinforcing agents (0D, 1D, 2D). Here, a systematic analysis of the naturally-derived nanostructured inks is presented highlighting the relationship between relevant length scales and size effects that influence the final properties of the hydrogels designed for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Andreea I Dinu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela C Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
37
|
Ding X, Shi J, Wei J, Li Y, Wu X, Zhang Y, Jiang X, Zhang X, Lai H. A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. SCIENCE ADVANCES 2021; 7:eabj7857. [PMID: 34890238 PMCID: PMC8664252 DOI: 10.1126/sciadv.abj7857] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Composite hydrogels incorporating natural polymers and bioactive glass (BG) are promising materials for bone regeneration. However, their applications are compromised by the poor interfacial compatibility between organic and inorganic phases. In this study, we developed an electrostatically reinforced hydrogel (CAG) with improved interfacial compatibility by introducing amino-functionalized 45S5 BG to the alginate/gellan gum (AG) matrix. BAG composed of AG and unmodified BG (10 to 100 μm in size) was prepared as a control. Compared with BAG, CAG had a more uniform porous structure with a pore size of 200 μm and optimal compressive strength of 66 kPa. Furthermore, CAG promoted the M2 phenotype transition of macrophages and up-regulated the osteogenic gene expression of stem cells. The new bone formation in vivo was also accelerated due to the enhanced biomineralization of CAG. Overall, this work suggests CAG with improved interfacial compatibility is an ideal material for bone regeneration application.
Collapse
|
38
|
Lu CH, Yeh YC. Fabrication of Multiresponsive Magnetic Nanocomposite Double-Network Hydrogels for Controlled Release Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105997. [PMID: 34791796 DOI: 10.1002/smll.202105997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) have been demonstrated as promising biomaterials to present several desired properties (e.g., high mechanical strength, stimuli-responsiveness, and local therapy) for biomedicine. Here, a new type of ncDN hydrogels featuring definable microstructures and properties as well as multistimuli responsiveness for controlled release applications is developed. Amine-functionalized iron oxide nanoparticles (IOPs_NH2 ) are used as nanoparticle cross-linkers to simultaneously connect the dual networks of gelatin (Gel) and polydextran aldehyde (PDA) through hydrogen bonding, electrostatic interactions, and dynamic imine bonds. The pH- and temperature-responsive Gel/PDA/IOP_NH2 ncDN hydrogels present a fast release profile of proteins at acidic pH and high temperature. Besides, IOP_NH2 also contributes the magnetic-responsiveness to the ncDN hydrogels, allowing the use of magnetic field to generate heat to facilitate the structural change of hydrogels and the subsequent applications. Taken together, a versatile ncDN hydrogel platform capable of multistimuli responsiveness and local heating for controlled release is developed for advanced biomedical applications.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
39
|
Abstract
Cellulose acetate (CA)/strontium phosphate (SrP) hybrid coating has been proposed as an effective strategy to build up novel bone-like structures for bone healing since CA is soluble in most organic solvents. Strontium (Sr2+) has been reported as a potential agent to treat degenerative bone diseases due to its osteopromotive and antibacterial effects. Herein, bioactive hybrid composite SrP-based coatings (CASrP) were successfully produced for the first time. CASrP was synthesized via a modified biomimetic method (for 7—CA7dSrP, and 14 days—CA14dSrP), in which the metal ion Sr2+ was used in place of Ca2+ in the simulated body fluid. Energy-dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the SrP incorporation chemically in the CASrP samples. Atomic absorption spectroscopy (AAS) supported EDX data, showing Sr2+ adsorption into CA, and its significant increase with the augmentation of time of treatment (ca. 92%—CA7dSrP and 96%—CA14dSrP). An increment in coating porosity and the formation of SrP crystals were evidenced by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) evidenced a greater crystallinity than CA membranes and a destabilization of CA14dSrP structure compared to CA7dSrP. The composites were extremely biocompatible for fibroblast and osteoblast cells. Cell viability (%) was higher either for CA7dSrP (48 h: ca. 92% and 115%) and CA14dSrP (48 h: ca. 88% and 107%) compared to CA (48 h: ca. 70% and 51%) due to SrP formation and Sr2+ presence in its optimal dose in the culture media (4.6–9 mg·L−1). In conclusion, the findings elucidated here evidence the remarkable potential of CA7dSrP and CA14dSrP as bioactive coatings on the development of implant devices for inducing bone regeneration.
Collapse
|
40
|
Liu C, Pan L, Liu C, Liu W, Li Y, Cheng X, Jian X. Enhancing Tissue Adhesion and Osteoblastic Differentiation of MC3T3-E1 Cells on Poly(aryl ether ketone) by Chemically Anchored Hydroxyapatite Nanocomposite Hydrogel Coating. Macromol Biosci 2021; 21:e2100078. [PMID: 34146384 DOI: 10.1002/mabi.202100078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/19/2021] [Indexed: 11/08/2022]
Abstract
Tissue adhesion to bone implant and osteoblastic differentiation are the key factors to achieve poly(aryl ether ketone) (PAEK) implant osseointegration. However, physical interaction of implant with tissue and hydroxyapatite coating suffers from slow implant tissue integration and lack of long-term stability. In this study, a novel poly(phthalazinone ether sulfone ketone) containing allyl groups (APPBAESK) is coated onto PPBESK sheet for reacting with the allyl groups of the hydrogel coating to enhance its stability. N-Succinimidyl (NHS)-ester activated group and nano-hydroxyapatite (nano-HA) are introduced into the hydrogel synthesized from gelatin methacrylate (GelMA) and acrylic acid to construct a nanocomposite hydrogel coating on PPBESK which is a promising PAEK implant material. The hydrophilicity of the PPBESK sheet is improved by the hydrogel coating. The chemical components of the nanocomposite hydrogel coating are confirmed by X-ray photoelectron spectroscope, Attenuated total reflection infrared, and X-ray powder diffraction. The tissue shear adhesion strength of the hydrogel coating toward pig skin is enhanced due to the synergism of NHS-ester activated group and nano-HA. The osteogenic differentiation of MC3T3-E1 preosteoblasts is promoted by nano-HA in nanocomposite hydrogel coating. Therefore, the bifunctional nanocomposite hydrogel coating provides a great application prospect in the surface modification of PAEK implants in bone tissue engineering.
Collapse
Affiliation(s)
- Chengde Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Liang Pan
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yizheng Li
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
41
|
Li C, Liu L, Zhang T, Wang F, Wang L. β-Tricalcium phosphate contained beaded-fiber scaffolds characterized by high early osteoinductive activity for vascularized bone regeneration. Colloids Surf B Biointerfaces 2021; 201:111639. [PMID: 33639511 DOI: 10.1016/j.colsurfb.2021.111639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 10/24/2022]
Abstract
The calcium phosphate component and surface topology of a scaffold are considered the two main factors that influence osteogenic differentiation. This research reports a one-step but effective scaffold preparation method that can regulate the morphology of nanofibers and control the distribution and release behavior of calcium phosphate nanoparticles (CaPs). Two beaded-on-string CaPs-loaded electrospun scaffolds (PT7.5 and PT4.5) with composite microstructures of microbeads and nanofibers were fabricated by adjusting the concentration of the electrospinning solution. The presence of the composite microstructure was conducive to the surface exposure and sustained release of bioactive components, which in turn could significantly promote the biomineralization and protein adsorption of the scaffold. A study of the human umbilical vein endothelial cells (HUVECs) and rat-bone marrow-derived mesenchymal stem cells (rBMSCs) revealed that cells cultured on scaffolds with composite microstructures (especially PT4.5) could enhance tube formation of the HUVECs and osteogenic differentiation of rBMSCs. The PT4.5 with significantly different microbead and nanofiber sizes presented the high potential to improve the early osteoinductive activity and angiogenesis of the CaPs-loaded electrospun scaffold and expand its advantage in bone regeneration.
Collapse
Affiliation(s)
- Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Tiantian Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Fujun Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
42
|
Griffin DM, Kennedy MA, Bhatia SR. Calcium phosphate nanocomposites via in situ mineralization in block copolymer hydrogels. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David M. Griffin
- Department of Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
- Department of Chemical and Petroleum Engineering University of Kansas Lawrence Kansas USA
| | | | - Surita R. Bhatia
- Department of Chemistry Stony Brook University Stony Brook New York USA
| |
Collapse
|
43
|
Krok-Borkowicz M, Reczyńska K, Rumian Ł, Menaszek E, Orzelski M, Malisz P, Silmanowicz P, Dobrzyński P, Pamuła E. Surface-Modified Poly(l-lactide- co-glycolide) Scaffolds for the Treatment of Osteochondral Critical Size Defects-In Vivo Studies on Rabbits. Int J Mol Sci 2020; 21:E7541. [PMID: 33066080 PMCID: PMC7590021 DOI: 10.3390/ijms21207541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 12/27/2022] Open
Abstract
Poly(l-lactide-co-glycolide) (PLGA) porous scaffolds were modified with collagen type I (PLGA/coll) or hydroxyapatite (PLGA/HAp) and implanted in rabbits osteochondral defects to check their biocompatibility and bone tissue regeneration potential. The scaffolds were fabricated using solvent casting/particulate leaching method. Their total porosity was 85% and the pore size was in the range of 250-320 µm. The physico-chemical properties of the scaffolds were evaluated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), sessile drop, and compression tests. Three types of the scaffolds (unmodified PLGA, PLGA/coll, and PLGA/HAp) were implanted into the defects created in New Zealand rabbit femoral trochlears; empty defect acted as control. Samples were extracted after 1, 4, 12, and 26 weeks from the implantation, evaluated using micro-computed tomography (µCT), and stained by Masson-Goldner and hematoxylin-eosin. The results showed that the proposed method is suitable for fabrication of highly porous PLGA scaffolds. Effective deposition of both coll and HAp was confirmed on all surfaces of the pores through the entire scaffold volume. In the in vivo model, PLGA and PLGA/HAp scaffolds enhanced tissue ingrowth as shown by histological and morphometric analyses. Bone formation was the highest for PLGA/HAp scaffolds as evidenced by µCT. Neo-tissue formation in the defect site was well correlated with degradation kinetics of the scaffold material. Interestingly, around PLGA/coll extensive inflammation and inhibited tissue healing were detected, presumably due to immunological response of the host towards collagen of bovine origin. To summarize, PLGA scaffolds modified with HAp are the most promising materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Łucja Rumian
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland;
| | - Maciej Orzelski
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, ul. Głęboka 30, 20-612 Lublin, Poland; (M.O.); (P.S.)
| | - Piotr Malisz
- Department of Electroradiology, Collegium Medicum, Faculty of Health Science, Jagiellonian University, ul. Michałowskiego 12, 31-126 Kraków, Poland;
| | - Piotr Silmanowicz
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, ul. Głęboka 30, 20-612 Lublin, Poland; (M.O.); (P.S.)
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. Curie-Sklodowskiej 34, 41-800 Zabrze, Poland;
- Faculty of Science & Technology, Jan Długosz University in Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| |
Collapse
|
44
|
Wu S, Lei L, Zhang H, Liu J, Weir MD, Schneider A, Zhao L, Liu J, Xu HH. Nanographene oxide‐calcium phosphate to inhibit
Staphylococcus aureus
infection and support stem cells for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1779-1791. [PMID: 33025745 DOI: 10.1002/term.3139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
| | - Jin Liu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Michael D. Weir
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences University of Maryland School of Dentistry Baltimore MD USA
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hockin H.K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Marlene and Stewart Greenebaum Cancer Center University of Maryland School of Medicine Baltimore MD USA
- Center for Stem Cell Biology and Regenerative Medicine University of Maryland School of Medicine Baltimore MD USA
| |
Collapse
|
45
|
Lavanya K, Chandran SV, Balagangadharan K, Selvamurugan N. Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110862. [DOI: 10.1016/j.msec.2020.110862] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023]
|
46
|
De Bonis A, Uskoković V, Barbaro K, Fadeeva I, Curcio M, Imperatori L, Teghil R, Rau JV. Pulsed laser deposition temperature effects on strontium-substituted hydroxyapatite thin films for biomedical implants. Cell Biol Toxicol 2020; 36:537-551. [PMID: 32377851 DOI: 10.1007/s10565-020-09527-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
Substituting small molecule drugs with abundant and easily affordable ions may have positive effects on the way countless disease treatments are approached. The interest in strontium cation in bone therapies soared in the wake of the success of strontium ranelate in the treatment of osteoporosis. A new method for producing thin strontium-containing hydroxyapatite (Sr-HA, Ca9Sr(PO4)6(OH)2) films as coatings that render bioinert titanium implant bioactive is reported here. The method is based on the combination of a mechanochemical synthesis of Sr-HA targets and their deposition in form of thin films on top of titanium with the use of laser ablation at low pressure. The films were 1-2 μm in thickness and their formation was studied at different temperatures, including 25, 300, and 500 °C. Highly crystalline Sr-HA target transformed during pulsed laser deposition to a fully amorphous film, whose degree of long-range order recovered with temperature. Particle edges became somewhat sharper and surface roughness moderately increased with temperature, but the (Ca+Sr)/P atomic ratio, which increased 1.5 times during the film formation, remained approximately constant at different temperatures. Despite the mostly amorphous structure of the coatings, their affinity for capturing atmospheric carbon dioxide and accommodating it as carbonate ions that replace both phosphates and hydroxyls of HA was confirmed in an X-ray photoelectron spectroscopic analysis. As the film deposition temperature increased, the lattice voids got reduced in concentration and the structure gradually "closed," becoming more compact and entailing a linear increase in microhardness with temperature, by 0.03 GPa/°C for the entire 25-500 °C range. Biocompatibility and bioactivity of Sr-HA thin films deposited on titanium were confirmed in an interaction with dental pulp stem cells, suggesting that these coatings, regardless of the processing temperature, may be viable candidates for the surface components of metallic bone implants.
Collapse
Affiliation(s)
- Angela De Bonis
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA, 92697, USA
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178, Rome, Italy
| | - Inna Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, Moscow, Russia, 119991
| | - Mariangela Curcio
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Luca Imperatori
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Roberto Teghil
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
47
|
Lim KT, Patel DK, Choung HW, Seonwoo H, Kim J, Chung JH. Evaluation of Bone Regeneration Potential of Long-Term Soaked Natural Hydroxyapatite. ACS APPLIED BIO MATERIALS 2019; 2:5535-5543. [DOI: 10.1021/acsabm.9b00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Wool Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 151921, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, Suncheon National University, Suncheon 57922, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|