1
|
Que M, Wang B, Yang Y. Electrocatalytic CO 2 Reduction to C 2 Products via Enhanced C─C Coupling Over Cu-based Catalysts: Dynamic Reaction and Regulation Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411628. [PMID: 40207886 DOI: 10.1002/smll.202411628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Indexed: 04/11/2025]
Abstract
Benefiting from the optimal interaction strength between Cu and reactants, Cu-based catalysts exhibit a unique capability of facilitating the formation of various multi-carbon products in electricity-driven CO2 reduction reactions (CO2ERR). Nonetheless, the CO2ERR process on these catalysts is characterized by intricate polyproton-electron transfer mechanisms that are frequently hindered by high energy barriers, sluggish reaction kinetics, and low C─C coupling efficiency. This review employs advanced characterization techniques, such as sum frequency generation technology, to provide a comprehensive analysis of the CO2ERR mechanism on the Cu surface, examining it from both spatial and temporal dimensions and proposing a spatial-temporal coupling reaction mechanism. To improve C─C coupling efficiency, a series of regulatory strategies are focused on surface microenvironment, catalyst surface structure, and internal electronic structure, thereby offering novel insights for the upcoming design and enhancement of Cu-based electrocatalysts.
Collapse
Affiliation(s)
- Meidan Que
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Bin Wang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Yawei Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Zhong K, Xue J, Ji Y, Jiang Q, Zheng T, Xia C. Strategies for Enhancing Stability in Electrochemical CO 2 Reduction. Chem Asian J 2025:e202500174. [PMID: 40200798 DOI: 10.1002/asia.202500174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a sustainable approach to address global energy challenges and reduce carbon emissions. However, achieving long-term stability in terms of catalytic performance remains a critical hurdle for large-scale commercial deployment. This mini-review provides a comprehensive exploration of the key factors influencing CO2RR stability, encompassing catalyst design, electrode architecture, electrolyzer optimization, and operational conditions. We examine how catalyst degradation occurs through mechanisms such as valence changes, elemental dissolution, structural reconfiguration, and active site poisoning and propose targeted strategies for improvement, including doping, alloying, and substrate engineering. Additionally, advancements in electrode design, such as structural modifications and membrane enhancements, are highlighted for their role in improving stability. Operational parameters such as temperature, pressure, and electrolyte composition also play crucial roles in extending the lifespan of the reaction. By addressing these diverse factors, this review aims to offer a deeper understanding of the determinants of long-term stability in the CO2RR, laying the groundwork for the development of robust, scalable technologies for efficient carbon dioxide conversion.
Collapse
Affiliation(s)
- Kexin Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
3
|
Liu S, Yin Y, Yang J, Zhao W, Zhou M, Qin H, Jiao J, Wang Y, Wang H, Tong X, Xu Y, Sun X, Zhu Q, Fan M, Kang X, Han B. Temperature-dependent pathways in carbon dioxide electroreduction. Sci Bull (Beijing) 2025; 70:889-896. [PMID: 39800629 DOI: 10.1016/j.scib.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 03/26/2025]
Abstract
Temperature affects both the thermodynamics of intermediate adsorption and the kinetics of elementary reactions. Despite its extensive study in thermocatalysis, temperature effect is typically overlooked in electrocatalysis. This study investigates how electrolyte temperature influences CO2 electroreduction over Cu catalysts. Theoretical calculations reveal the significant impact of temperature on *CO and *H intermediate adsorption thermodynamics, water microenvironment at the electrode surface, and the electron density and covalent property of the C-O bond in the *CH-COH intermediate, crucial for the reaction pathways. The theoretical calculations are strongly verified by experimental results over different Cu catalysts. Faradaic efficiency (FE) toward multicarbon (C2+) products is favored at low temperatures. Cu nanorod electrode could achieve a [Formula: see text] value of 90.1% with a current density of ∼400 mA cm-2 at -3 °C. [Formula: see text] and [Formula: see text] show opposite trends with decreasing temperature. The [Formula: see text] ratio can decrease from 1.86 at 40 °C to 0.98 at -3 °C.
Collapse
Affiliation(s)
- Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huisheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yiyong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng'an Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Xu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
4
|
Jonasse JP, Perxés Perich M, Turner SJ, van der Hoeven JES. Synthetic control over lattice strain in trimetallic AuCu-core Pt-shell nanoparticles. NANOSCALE 2025; 17:7100-7113. [PMID: 39903214 PMCID: PMC11793081 DOI: 10.1039/d4nr04424j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Core-shell nanoparticles can exhibit strongly enhanced performances in electro-, photo- and thermal catalysis. Lattice strain plays a key role in this and is induced by the mismatch between the crystal structure of the core and the shell metal. However, investigating the impact of lattice strain has been challenging due to the lack of a material system in which lattice strain can be controlled systematically, hampering further progress in the field of core-shell catalysis. In this work, we achieve such a core-shell nanoparticle system through the colloidal synthesis of trimetallic Pt-shell Au1-xCux-core nanoparticles. Our seed-mediated growth methodology yields well-defined Au1-xCux-cores, tunable in composition from 0 at% Cu to 77 at% Cu, and monodisperse in size. Subsequent overgrowth results in uniform, epitaxially grown Pt-shells with a controlled thickness of ∼3 atomic layers. By employing a multi-technique characterization strategy combining X-ray diffraction, electron diffraction and aberration corrected electron microscopy, we unravel the atomic structure of the trimetallic system on a single nanoparticle-, ensemble- and bulk scale level, and we unambiguously demonstrate the controlled variation of strain in the Pt-shell from -3.62% compressive-, to +3.79% tensile strain, while retaining full control over all other structural characteristics of the system.
Collapse
Affiliation(s)
- Just P Jonasse
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Savannah J Turner
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
5
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025; 54:2762-2831. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
6
|
Yan X, Wang W, Prezhdo OV, Xu L. Boron Phosphide Nanotubes for Electrocatalytic CO Reduction to Multicarbon Products. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:1382-1392. [PMID: 40026706 PMCID: PMC11866746 DOI: 10.1021/acs.chemmater.4c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Developing an efficient catalyst that can reduce CO to economically viable products provides a pathway to achieve carbon neutrality. For this purpose, we introduce and characterize boron phosphide nanotubes, a class of materials that allow one to reach a goal without costly and toxic metal atoms. The tubular configuration imparts a confining effect, facilitating CO adsorption and catalytic reduction into ethanol. By calculating the transition state conditions under different charging and using grand canonical potential kinetics, we establish the transition state energy barriers in the system at different electrochemical potentials. We further elucidate the kinetics and mechanism of the entire reaction process at the microkinetics level and predict the onset potential to be -0.30 V with the Tafel slope of 93.69 mV/dec. Finally, we demonstrate control over concentrations of the products and intermediate species by the choice of pH and the applied potential. The characterized material class and established chemical mechanisms guide design of electrocatalysts for producing multicarbon products.
Collapse
Affiliation(s)
- Xiaodong Yan
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for
Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Wugang Wang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for
Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Lai Xu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for
Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| |
Collapse
|
7
|
Wang J, Xu Y, Wei A, Reinhold JS, Wei L, Shi L, Zhang Y, Wang C, Zhang B, Liu S. The volcanic relationship of model phthalocyanine molecular catalysts in the CO 2 reduction reaction. Phys Chem Chem Phys 2025; 27:1784-1788. [PMID: 39803936 DOI: 10.1039/d4cp03912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
We have constructed a series of model metal phthalocyanines (MPc) for the carbon dioxide reduction reaction (CO2RR), constructed a volcano relationship through density functional theory (DFT) and experiments, and obtained cobalt phthalocyanine (CoPc) at the apex. The volcano diagram is conducive to the screening of catalysts and has a guiding role in the design of catalysts.
Collapse
Affiliation(s)
- Jiangfang Wang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Yang Xu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Anqi Wei
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Julian Skagfjörd Reinhold
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lixin Wei
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Yushuo Zhang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Chong Wang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Xu Z, Ma C, Tang B, Dong J, Zhang Q. GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO 2-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc. J Phys Chem Lett 2025; 16:294-307. [PMID: 39723941 DOI: 10.1021/acs.jpclett.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO2 to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range. The strongly electron-donating NMe2-substituted CoPc is found to be an excellent candidate. The dynamic product distribution reveals that the key to selectivity and durability balance is to regulate both the potential of the highest methanol Faradaic efficiency and the corresponding energy barrier of the selectivity-determining step for hydrogenated CoPc. The pivotal factor in HER regulation stems from hindered H adsorption due to ligand hydrogenation, arising from the decreased Co-to-H charge transfer. The dynamic product distribution analysis provides intuitive theoretical guidance for highly selective and durable CO2 electroreduction.
Collapse
Affiliation(s)
- Zhiyuan Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Beibei Tang
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Jieyang Dong
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Rodrigues Pinto M, Vos RE, Nagao R, Koper MTM. Electrolyte Effects on Electrochemical CO 2 Reduction Reaction at Sn Metallic Electrode. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21421-21429. [PMID: 39720328 PMCID: PMC11664572 DOI: 10.1021/acs.jpcc.4c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
Understanding the electrolyte factors governing the electrochemical CO2 reduction reaction (CO2RR) is fundamental for selecting the optimized electrolyte conditions for practical applications. While noble metals are frequently studied, the electrolyte effects on the CO2RR on Sn catalysts are not well explored. Here, we studied the electrolyte effect on Sn metallic electrodes, investigating the impact of electrolyte concentration, cation identity, and anion properties, and how it shapes the CO2RR activity and selectivity. The activity for formic acid and carbon monoxide increases with the cation concentration and size at mild acid conditions. In contrast, hydrogen production is not strongly influenced by the cathodic potential, electrolyte concentration, and cation size. Furthermore, we have compared the CO2RR performance at a constant cation concentration in K2SO4 (pH 4) and KHCO3 (pH 7), where we show that the reaction rate toward HCOOH and CO are minimally impacted by the anion identity on the SHE scale, while being affected by the cations in solution, which we attribute to the reaction being limited by cation-coupled electron transfer steps rather than by a proton-coupled electron transfer step. We propose that the HCOOH forms via adsorbed hydrides leading to *OCHO intermediate, while CO forms through an electron transfer step, producing *CO2 δ-. Cations facilitate both processes by stabilizing the negatively charged intermediates, and the difference in the extent of the promotion of HCOOH over CO formation would stem from the stronger cation effects on *H compared with *CO2 δ- species. Additionally, the presence of HCO3 - at high concentrations (1.0 mol L-1) is shown to significantly enhance the production of H2 at high overpotentials (>-1.0 V vs RHE) due to bicarbonate ions acting as protons donors, outcompeting water reduction. These findings underscore the significance of electrolyte engineering for enhanced formic acid synthesis, offering valuable insights for optimizing the CO2RR processes on Sn electrocatalysts.
Collapse
Affiliation(s)
- Maria Rodrigues Pinto
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Rafaël E. Vos
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Raphael Nagao
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center
for Innovation on New Energies, University
of Campinas, Campinas, São Paulo 13083-841, Brazil
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
10
|
Salamé A, Hon Cheah M, Bonin J, Robert M, Anxolabéhère‐Mallart E. Operando Spectroelectrochemistry Unravels the Mechanism of CO 2 Electrocatalytic Reduction by an Fe Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202412417. [PMID: 39158129 PMCID: PMC11627129 DOI: 10.1002/anie.202412417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Iron porphyrins are molecular catalysts recognized for their ability to electrochemically and photochemically reduce carbon dioxide (CO2). The main reduction product is carbon monoxide (CO). CO holds significant industrial importance as it serves as a precursor for various valuable chemical products containing either a single carbon atom (C1), like methanol or methane, or multiple carbon atoms (Cn), such as ethanol or ethylene. Despite the long-established efficiency of these catalysts, optimizing their catalytic activity and stability and comprehending the intricate reaction mechanisms remain a significant challenge. This article presents a comprehensive investigation of the mechanistic aspects of the selective electroreduction of CO2 to CO using an iron porphyrin substituted with four trimethylammonium groups in the para position [(pTMA)FeIII-Cl]4+. By employing infrared and UV/Visible spectroelectrochemistry, changes in the electronic structure and coordination environment of the iron center can be observed in real-time as the electrochemical potential is adjusted, offering new insights into the reaction mechanisms. Catalytic species were identified, and evidence of a secondary reaction pathway was uncovered, potentially prompting a re-evaluation of the nature of the catalytically active species.
Collapse
Affiliation(s)
- Aude Salamé
- Laboratoire d'Electrochimie Moléculaire (LEM)Université Paris CitéFF-75013ParisFrance
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry—ÅngströmUppsala University751 20UppsalaSweden
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire (LEM)Université Paris CitéFF-75013ParisFrance
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire (LEM)Université Paris CitéFF-75013ParisFrance
- Institut Universitaire de France (IUF)F-75005ParisFrance
| | | |
Collapse
|
11
|
Rodriguez-Olguin MA, Lipin R, Suominen M, Ruiz-Zepeda F, Castañeda-Morales E, Manzo-Robledo A, Gardeniers JGE, Flox C, Kallio T, Vandichel M, Susarrey-Arce A. Temperature promotes selectivity during electrochemical CO 2 reduction on NiO:SnO 2 nanofibers. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:32821-32835. [PMID: 39219709 PMCID: PMC11363033 DOI: 10.1039/d4ta04116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Electrolyzers operate over a range of temperatures; hence, it is crucial to design electrocatalysts that do not compromise the product distribution unless temperature can promote selectivity. This work reports a synthetic approach based on electrospinning to produce NiO:SnO2 nanofibers (NFs) for selectively reducing CO2 to formate above room temperature. The NFs comprise compact but disjoined NiO and SnO2 nanocrystals identified with STEM. The results are attributed to the segregation of NiO and SnO2 confirmed with XRD. The NFs are evaluated for the CO2 reduction reaction (CO2RR) over various temperatures (25, 30, 35, and 40 °C). The highest faradaic efficiencies to formate (FEHCOO- ) are reached by NiO:SnO2 NFs containing 50% of NiO and 50% SnO2 (NiOSnO50NF), and 25% of NiO and 75% SnO2 (NiOSnO75NF), at an electroreduction temperature of 40 °C. At 40 °C, product distribution is assessed with in situ differential electrochemical mass spectrometry (DEMS), recognizing methane and other species, like formate, hydrogen, and carbon monoxide, identified in an electrochemical flow cell. XPS and EELS unveiled the FEHCOO- variations due to a synergistic effect between Ni and Sn. DFT-based calculations reveal the superior thermodynamic stability of Ni-containing SnO2 systems towards CO2RR over the pure oxide systems. Furthermore, computational surface Pourbaix diagrams showed that the presence of Ni as a surface dopant increases the reduction of the SnO2 surface and enables the production of formate. Our results highlight the synergy between NiO and SnO2, which can promote the electroreduction of CO2 at temperatures above room temperature.
Collapse
Affiliation(s)
- M A Rodriguez-Olguin
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
| | - R Lipin
- School of Chemical Sciences and Chemical Engineering, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - M Suominen
- Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering Kemistintie 1 02015 Espoo Finland
| | - F Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology Lepi pot 11 Ljubljana Slovenia
| | - E Castañeda-Morales
- Instituto Politécnico Nacional, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos CP 07708 CDMX Mexico
| | - A Manzo-Robledo
- Instituto Politécnico Nacional, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos CP 07708 CDMX Mexico
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
| | - C Flox
- Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering Kemistintie 1 02015 Espoo Finland
- Department of Electrical Energy Storage, Iberian Centre for Research in Energy Storage, Campus University of Extremadura Avda. de las Letras, s/n 10004 Cáceres Spain
| | - T Kallio
- Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering Kemistintie 1 02015 Espoo Finland
| | - M Vandichel
- School of Chemical Sciences and Chemical Engineering, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
| |
Collapse
|
12
|
Zhang Y, Gao C, Ren H, Luo P, Wan Q, Zhou H, Chen B, Zhang X. Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO 2 Using a Solar Energy Conversion Device. Int J Mol Sci 2024; 25:10608. [PMID: 39408936 PMCID: PMC11476564 DOI: 10.3390/ijms251910608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Solar-driven CO2 conversion into high-value-added chemicals, powered by photovoltaics, is a promising technology for alleviating the global energy crisis and achieving carbon neutrality. However, most of these endeavors focus on CO2 electroreduction to small-molecule fuels such as CO and ethanol. In this paper, inspired by the photosynthesis of green plants and artificial photosynthesis for the electroreduction of CO2 into value-added fuel, CO2 artificial photosynthesis for the electrocarboxylation of bromobenzene (BB) with CO2 to generate the value-added carboxylation product methyl benzoate (MB) is demonstrated. Using two series-connected dye-sensitized photovoltaics and high-performance catalyst Ag electrodes, our artificial photosynthesis system achieves a 61.1% Faraday efficiency (FE) for carboxylation product MB and stability of the whole artificial photosynthesis for up to 4 h. In addition, this work provides a promising approach for the artificial photosynthesis of CO2 electrocarboxylation into high-value chemicals using renewable energy sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Huawei Zhou
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | - Baoli Chen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | | |
Collapse
|
13
|
Tang YF, Liu LB, Yu M, Liu S, Sui PF, Sun W, Fu XZ, Luo JL, Liu S. Strong effect-correlated electrochemical CO 2 reduction. Chem Soc Rev 2024; 53:9344-9377. [PMID: 39162094 DOI: 10.1039/d4cs00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction (ECR) holds great potential to alleviate the greenhouse effect and our dependence on fossil fuels by integrating renewable energy for the electrosynthesis of high-value fuels from CO2. However, the high thermodynamic energy barrier, sluggish reaction kinetics, inadequate CO2 conversion rate, poor selectivity for the target product, and rapid electrocatalyst degradation severely limit its further industrial-scale application. Although numerous strategies have been proposed to enhance ECR performances from various perspectives, scattered studies fail to comprehensively elucidate the underlying effect-performance relationships toward ECR. Thus, this review presents a comparative summary and a deep discussion with respect to the effects strongly-correlated with ECR, including intrinsic effects of materials caused by various sizes, shapes, compositions, defects, interfaces, and ligands; structure-induced effects derived from diverse confinements, strains, and fields; electrolyte effects introduced by different solutes, solvents, cations, and anions; and environment effects induced by distinct ionomers, pressures, temperatures, gas impurities, and flow rates, with an emphasis on elaborating how these effects shape ECR electrocatalytic activities and selectivity and the underlying mechanisms. In addition, the challenges and prospects behind different effects resulting from various factors are suggested to inspire more attention towards high-throughput theoretical calculations and in situ/operando techniques to unlock the essence of enhanced ECR performance and realize its ultimate application.
Collapse
Affiliation(s)
- Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Shuo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Peng-Fei Sui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jing-Li Luo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
14
|
Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO 2 to value-added products. CHEMOSPHERE 2024; 364:143017. [PMID: 39103104 DOI: 10.1016/j.chemosphere.2024.143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.
Collapse
Affiliation(s)
- Arun Kumar Senthilkumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Melvin S Samuel
- Department of Civil, Construction & Environmental Engineering, Marquette University, 1637 W Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
15
|
Zhao Y, Merino-Garcia I, Albo J, Kaiser A. A Zero-Gap Gas Phase Photoelectrolyzer for CO 2 Reduction with Porous Carbon Supported Photocathodes. CHEMSUSCHEM 2024; 17:e202400518. [PMID: 38687205 DOI: 10.1002/cssc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
A modified Metal-Organic Framework UiO-66-NH2-based photocathode in a zero-gap gas phase photoelectrolyzer was applied for CO2 reduction. Four types of porous carbon fiber layers with different wettability were employed to tailor the local environment of the cathodic surface reactions, optimizing activity and selectivity towards formate, methanol, and ethanol. Results are explained by mass transport through the different type and arrangement of carbon fiber support layers in the photocathodes and the resulting local environment at the UiO-66-NH2 catalyst. The highest energy-to-fuel conversion efficiency of 1.06 % towards hydrocarbons was achieved with the most hydrophobic carbon fiber (H23C2). The results are a step further in understanding how the design and composition of the photoelectrodes in photoelectrochemical electrolyzers can impact the CO2 reduction efficiency and selectivity.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ivan Merino-Garcia
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n., 39005, Santander, Spain
| | - Jonathan Albo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n., 39005, Santander, Spain
| | - Andreas Kaiser
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Chen L, Chen J, Fu W, Chen J, Wang D, Xiao Y, Xi S, Ji Y, Wang L. Energy-efficient CO (2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst. Nat Commun 2024; 15:7053. [PMID: 39147764 PMCID: PMC11327302 DOI: 10.1038/s41467-024-51466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Electrocatalytic CO2 reduction to multi-carbon products is a promising approach for achieving carbon-neutral economies. However, the energy efficiency of these processes remains low, particularly at high current densities. Herein, we demonstrate that the low energy efficiencies are, in part, sometimes significantly, attributed to the high concentration overpotential resulting from the instability (i.e., flooding) of catalyst-layer during electrolysis. To tackle this challenge, we develop copper/gallium bimetallic catalysts with reduced activation energies for the formation of multi-carbon products. Consequently, the reduced activation overpotential allows us to achieve practical-relevant current densities for CO2 reduction at low cathodic potentials, ensuring good stability of the catalyst-layer and thereby minimizing the undesired concentration overpotential. The optimized bimetallic catalyst achieves over 50% cathodic energy efficiency for multi-carbon production at a high current density of over 1.0 A cm - 2 . Furthermore, we achieve current densities exceeding 2.0 A cm - 2 in a zero-gap membrane-electrode-assembly reactor, with a full-cell energy efficiency surpassing 30%.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Weiwei Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, China.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, Singapore, Singapore.
| |
Collapse
|
17
|
Jacobs T, Park S, Schönig M, Weckhuysen BM, Koper MT, van der Stam W. Luminescence Thermometry Probes Local Heat Effects at the Platinum Electrode Surface during Alkaline Water Electrolysis. ACS ENERGY LETTERS 2024; 9:3335-3341. [PMID: 39022670 PMCID: PMC11250089 DOI: 10.1021/acsenergylett.4c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Accurate determination of the temperature dynamics at the electrode surface is crucial for advancing electrocatalysis, particularly in the development of stable materials that aid energy conversion and storage technologies. Here, lanthanide-based in situ luminescence thermometry was used to probe local heat effects at the platinum electrode surface during alkaline water electrolysis. It is demonstrated that the oxygen evolution reaction (OER) induces a more significant temperature increase compared to the hydrogen evolution reaction (HER) under the same electrochemical conditions. This difference is attributed to variations in overpotential heating and local effects on Joule heating. Furthermore, local heat effects are not observed at increased electrolyte concentrations during the HER, whereas substantial temperature variations (up to 2 K) are detected for the OER at higher electrolyte concentrations. Our observations highlight the potential of in situ luminescence thermometry to measure interfacial temperature effects during electrocatalytic reactions.
Collapse
Affiliation(s)
- Thimo
S. Jacobs
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science & Institute for Sustainable and Circular
Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sunghak Park
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Marco Schönig
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science & Institute for Sustainable and Circular
Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Marc T.M. Koper
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Ward van der Stam
- Inorganic
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science & Institute for Sustainable and Circular
Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
18
|
Zhou J, Liang Q, Huang P, Xu J, Niu T, Wang Y, Dong Y, Zhang J. Efficient CO 2 electroreduction to ethanol enabled by tip-curvature-induced local electric fields. NANOSCALE 2024; 16:13011-13018. [PMID: 38912545 DOI: 10.1039/d4nr01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Electrocatalytic reduction of CO2 into multicarbon (C2+) products offers a promising pathway for CO2 utilization. However, achieving high selectivity towards multicarbon alcohols, such as ethanol, remains a challenge. In this work, we present a novel CuO nanoflower catalyst with engineered tip curvature, achieving remarkable selectivity and efficiency in the electroreduction of CO2 to ethanol. This catalyst exhibits an ethanol faradaic efficiency (FEethanol) of 47% and a formation rate of 320 μmol h-1 cm-2, with an overall C2+ product faradaic efficiency (FEC2+) reaching ∼77.8%. We attribute this performance to the catalyst's sharp tip, which generates a strong local electric field, thereby accelerating CO2 activation and facilitating C-C coupling for deep CO2 reduction. In situ Raman spectroscopy reveals an increased *OH coverage under operating conditions, where the enhanced *OH adsorption facilitates the stabilization of *CHCOH intermediates through hydrogen bonding interaction, thus improving ethanol selectivity. Our findings demonstrate the pivotal role of local electric fields in altering reaction kinetics for CO2 electroreduction, presenting a new avenue for catalyst design aiming at converting CO2 to ethanol.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Qianyue Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Pu Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Jing Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tengfei Niu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jiawei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Huang J, Zhang X, Yang J, Yu J, Chen Q, Peng L. Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO 2 Electrocatalysis: Unlocking the Mystery of Product Selectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309865. [PMID: 38634577 PMCID: PMC11199994 DOI: 10.1002/advs.202309865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO2 (eCO2RR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCO2RR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCO2RR to multi-carbon fuels with high selectivity.
Collapse
Affiliation(s)
- Jiabao Huang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Xinping Zhang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Jiao Yang
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
| | - Qingjun Chen
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Chinese Academy of SciencesGanjiang Innovation AcademyChinese Academy of SciencesGanzhou341119China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
20
|
Bartlett ER, Borkowski AK, Nilles CK, Blakemore JD, Thompson WH. Entropy Drives Accelerated Ion Diffusion upon Carbon Dioxide Expansion of Electrolytes. J Phys Chem B 2024. [PMID: 38703113 DOI: 10.1021/acs.jpcb.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Carbon dioxide-expanded liquids, organic solvents with high concentrations of soluble carbon dioxide (CO2) at mild pressures, have gained attention as green catalytic media due to their improved properties over traditional solvents. More recently, carbon dioxide-expanded electrolytes (CXEs) have demonstrated improved reaction rates in the electrochemical reduction of CO2, by increasing the rate of delivery of CO2 to the electrode while maintaining facile charge transport. However, recent studies indicate that the limiting behavior of CXEs at higher CO2 pressures is a decline in solution conductivity due to reduced polarity, leading to poorer charge screening and greater ion pairing. In this article, we employ molecular dynamics simulations to investigate the energetic driving forces behind the diffusive properties of an acetonitrile and tetrapropylammonium hexafluorophosphate (TPrAPF6) CXE with increasing CO2 concentration. Our results indicate that entropy drives solvent and electrolyte diffusion with increasing CO2 pressure. The activation energy of ion diffusion increases with higher concentrations of CO2, indicating that increasing the temperature may improve solution conductivity in these systems. This trend in the activation energies is traced to stronger cation-anion Coulombic interactions due to weaker solvent screening at high CO2 concentrations, suggesting that the choice of ion may provide a route to diminish this effect.
Collapse
Affiliation(s)
- Elizabeth R Bartlett
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ashley K Borkowski
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christian K Nilles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ward H Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
21
|
Watkins N, Lai Y, Schiffer ZJ, Canestraight VM, Atwater HA, Agapie T, Peters JC, Gregoire JM. Electrode Surface Heating with Organic Films Improves CO 2 Reduction Kinetics on Copper. ACS ENERGY LETTERS 2024; 9:1440-1445. [PMID: 38633999 PMCID: PMC11019637 DOI: 10.1021/acsenergylett.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Management of the electrode surface temperature is an understudied aspect of (photo)electrode reactor design for complex reactions, such as CO2 reduction. In this work, we study the impact of local electrode heating on electrochemical reduction of CO2 reduction. Using the ferri/ferrocyanide open circuit voltage as a reporter of the effective reaction temperature, we reveal how the interplay of surface heating and convective cooling presents an opportunity for cooptimizing mass transport and thermal assistance of electrochemical reactions, where we focus on reduction of CO2 to carbon-coupled (C2+) products. The introduction of an organic coating on the electrode surface facilitates well-behaved electrode kinetics with near-ambient bulk electrolyte temperature. This approach helps to probe the fundamentals of thermal effects in electrochemical reactions, as demonstrated through Bayesian inference of Tafel kinetic parameters from a suite of high throughput experiments, which reveal a decrease in overpotential for C2+ products by 0.1 V on polycrystalline copper via 60 °C surface heating.
Collapse
Affiliation(s)
- Nicholas
B. Watkins
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yungchieh Lai
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| | - Zachary J. Schiffer
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| | - Virginia M. Canestraight
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Harry A. Atwater
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C. Peters
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - John M. Gregoire
- Liquid
Sunlight Alliance, California Institute
of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
23
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
24
|
Vos R, Koper MTM. Nickel as Electrocatalyst for CO (2) Reduction: Effect of Temperature, Potential, Partial Pressure, and Electrolyte Composition. ACS Catal 2024; 14:4432-4440. [PMID: 38601778 PMCID: PMC11002821 DOI: 10.1021/acscatal.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Electrochemical CO2 reduction on Ni has recently been shown to have the unique ability to produce longer hydrocarbon chains in small but measurable amounts. However, the effects of the many parameters of this reaction remain to be studied in more detail. Here, we have investigated the effect of temperature, bulk CO2 concentration, potential, the reactant, cations, and anions on the formation of hydrocarbons via a chain growth mechanism on Ni. We show that temperature increases the activity but also the formation of coke, which deactivates the catalyst. The selectivity and thus the chain growth probability is mainly affected by the potential and the electrolyte composition. Remarkably, CO reduction shows lower activity but a higher chain growth probability than CO2 reduction. We conclude that hydrogenation is likely to be the rate-determining step and hypothesize that this could happen either by *CO hydrogenation or by termination of the hydrocarbon chain. These insights open the way to further development and optimization of Ni for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Rafaël
E. Vos
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300
RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300
RA Leiden, The Netherlands
| |
Collapse
|
25
|
Fan J, Pan B, Wu J, Shao C, Wen Z, Yan Y, Wang Y, Li Y. Immobilized Tetraalkylammonium Cations Enable Metal-free CO 2 Electroreduction in Acid and Pure Water. Angew Chem Int Ed Engl 2024; 63:e202317828. [PMID: 38165224 DOI: 10.1002/anie.202317828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Carbon dioxide reduction reaction (CO2 RR) provides an efficient pathway to convert CO2 into desirable products, yet its commercialization is greatly hindered by the huge energy cost due to CO2 loss and regeneration. Performing CO2 RR under acidic conditions containing alkali cations can potentially address the issue, but still causes (bi)carbonate deposition at high current densities, compromising product Faradaic efficiencies (FEs) in present-day acid-fed membrane electrode assemblies. Herein, we present a strategy using a positively charged polyelectrolyte-poly(diallyldimethylammonium) immobilized on graphene oxide via electrostatic interactions to displace alkali cations. This enables a FE of 85 %, a carbon efficiency of 93 %, and an energy efficiency (EE) of 35 % for CO at 100 mA cm-2 on modified Ag catalysts in acid. In a pure-water-fed reactor, we obtained a 78 % CO FE with a 30 % EE at 100 mA cm-2 at 40 °C. All the performance metrics are comparable to or even exceed those attained in the presence of alkali metal cations.
Collapse
Affiliation(s)
- Jia Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jialing Wu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| | - Chaochen Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Zhaoyu Wen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuchen Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| |
Collapse
|
26
|
Jiang X, Ke L, Zhao K, Yan X, Wang H, Cao X, Liu Y, Li L, Sun Y, Wang Z, Dang D, Yan N. Integrating hydrogen utilization in CO 2 electrolysis with reduced energy loss. Nat Commun 2024; 15:1427. [PMID: 38365776 PMCID: PMC10873292 DOI: 10.1038/s41467-024-45787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Electrochemical carbon dioxide reduction reaction using sustainable energy is a promising approach of synthesizing chemicals and fuels, yet is highly energy intensive. The oxygen evolution reaction is particularly problematic, which is kinetically sluggish and causes anodic carbon loss. In this context, we couple CO2 electrolysis with hydrogen oxidation reaction in a single electrochemical cell. A Ni(OH)2/NiOOH mediator is used to fully suppress the anodic carbon loss and hydrogen oxidation catalyst poisoning by migrated reaction products. This cell is highly flexible in producing either gaseous (CO) or soluble (formate) products with high selectivity (up to 95.3%) and stability (>100 h) at voltages below 0.9 V (50 mA cm-2). Importantly, thanks to the "transferred" oxygen evolution reaction to a water electrolyzer with thermodynamically and kinetically favored reaction conditions, the total polarization loss and energy consumption of our H2-integrated CO2 reduction reaction, including those for hydrogen generation, are reduced up to 22% and 42%, respectively. This work demonstrates the opportunity of combining CO2 electrolysis with the hydrogen economy, paving the way to the possible integration of various emerging energy conversion and storage approaches for improved energy/cost effectiveness.
Collapse
Affiliation(s)
- Xiaoyi Jiang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Le Ke
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Kai Zhao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Yan
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hongbo Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaojuan Cao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuchen Liu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Lingjiao Li
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yifei Sun
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Zhiping Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ning Yan
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China.
| |
Collapse
|
27
|
Moklis MH, Shuo C, Boonyubol S, Cross JS. Electrochemical Valorization of Glycerol via Electrocatalytic Reduction into Biofuels: A Review. CHEMSUSCHEM 2024; 17:e202300990. [PMID: 37752085 DOI: 10.1002/cssc.202300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical conversion of underutilized biomass-based glycerol into high-value-added products provides a green approach for biomass and waste valorization. Plus, this approach offers an alternative to biofuel manufacturing procedure, under mild operating conditions, compared to the traditional thermochemical routes. Nevertheless, glycerol has been widely valorized via electrooxidation, with lower-value products generated at the cathode, ignoring the electroreduction. Here, a review of the efficient glycerol reduction into various products via the electrocatalytic reduction (ECR) process was presented. This review has been built upon the background of glycerol underutilization and theoretical knowledge about the state-of-the-art ECR. The experimental understanding of the processing parameter influences towards electrochemical efficiency, catalytic activity, and product selectivity are comprehensively reviewed, based on the recent glycerol ECR studies. We conclude by outlining present issues and highlighting potential future research avenues for enhanced ECR application.
Collapse
Affiliation(s)
- Muhammad Harussani Moklis
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Cheng Shuo
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Sasipa Boonyubol
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Jeffrey S Cross
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, 2-12-1 I4-19, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
28
|
Xue J, Chen Z, Dang K, Wu L, Ji H, Chen C, Zhang Y, Zhao J. The plasmonic effect of Cu on tuning CO 2 reduction activity and selectivity. Phys Chem Chem Phys 2024; 26:2915-2925. [PMID: 38186081 DOI: 10.1039/d3cp05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Copper (Cu) has been widely used for catalyzing the CO2 reduction reaction (CO2RR), but the plasmonic effect of Cu has rarely been explored for tuning the activity and selectivity of the CO2RR. Herein, we conducted a quantitative analysis on the plasmon-generated photopotential (Ehv) of a Cu nanowire array (NA) photocathode and found that Ehv exclusively reduced the apparent activation energy (Ea) of reducing CO2 to CO without affecting the competitive hydrogen evolution reaction (HER). As a result, the CO production rate was enhanced by 52.6% under plasmon excitation when compared with that under dark conditions. On further incorporation with a polycrystalline Si photovoltaic device, the Cu NA photocathode exhibits good stability in terms of photocurrent and syngas production (CO : H2 = 2 : 1) within 10 h. This work validates the crucial role of the plasmonic effect of Cu on modulating the activity and selectivity of the CO2RR.
Collapse
Affiliation(s)
- Jing Xue
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenlin Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|