1
|
Lu W, He Q, Mao Z, Fu S, Wang Y, Jiang Z, Wang Y, Cao Y, Li S, Liu C, Dong Q. A bioinspired helical hydrogel scaffold with real-time sensing for enhanced precision in gynecological digital vaginal examination. NANOSCALE HORIZONS 2025; 10:1131-1139. [PMID: 40163645 DOI: 10.1039/d4nh00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Precise diagnostic and therapeutic modalities are of utmost significance in driving forward patient care within the sphere of gynecological medicine. Bionics, involving the application of nature-inspired designs in medical apparatus, has emerged as a highly promising approach in this field. Specifically, helical architectures observed in natural organisms like vines display remarkable adaptability and mechanical strength, presenting novel perspectives for the development of ergonomic and effective gynecological examination and surgical instruments. Harnessing these insights, this study presents a helical polydimethylsiloxane (PDMS) scaffold inspired by the deformability of vines. This scaffold not only integrates Janus wettability hydrogel properties to enhance tissue interaction, ensuring increased comfort and adaptability during clinical procedures, but also incorporates sensors for real-time monitoring and feedback, thereby overcoming the limitations of conventional gynecological devices that often lack such capabilities. We meticulously detail the fabrication of this helical finger scaffold, using a sandwich thermoplastic method to produce hydrogel fibers possessing shape memory, thermal responsiveness, and deformation sensing via relative resistance changes. Additionally, the study explores finger motion monitoring through surface electromyography (sEMG) signals, which advances the precision and safety of cervical palpation and related surgeries. Overall, our findings highlight the potential of these responsive and adaptable hydrogels to transform gynecological medical devices, providing a solid theoretical foundation and practical applications for future innovations in gynecological diagnostics and surgical support.
Collapse
Affiliation(s)
- Weipeng Lu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Qing He
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Zheng Mao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Songchao Fu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Wang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Zhiwei Jiang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Ying Wang
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Cao
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Sunlong Li
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Qian Dong
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Zhang JX, Pan P, Yang ZC, He J, Zeng PF, Zhang R. A Printable Deep Eutectic/Copper Conductive Colloid for Wearable Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40383928 DOI: 10.1021/acs.langmuir.5c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The advancement of wearable electronics has placed higher demands on the comfort and convenience of flexible materials. In this work, a conductive pseudoplastic colloid was developed by utilizing the oxygen elements adsorbed on the surface of copper powder, which forms donor-acceptor interactions with the hydrogen bond donors in a deep eutectic solvent. The flakelike copper powder, serving as a conductive filler, provides more efficient spatial conductive pathways and further enhances the cross-linking ability between the copper powder and the deep eutectic solvent. The resulting deep eutectic/copper colloid not only exhibits low volume resistivity (1.19 × 10-3 (Ω·m)), high viscosity, and excellent thermal stability but also demonstrates outstanding strain-resistance characteristics. By printing onto a textile substrate, a flexible strain sensor with a wide linear strain range (5-90%) and ultrahigh sensitivity (gauge factor ≈ 1 × 105) was fabricated. This sensor can sensitively and stably detect human body movements such as joint and muscle motions. Furthermore, the sensor has been integrated into a portable glove for motion detection and human-machine interaction, showcasing its great potential as a high-performance wearable strain sensor.
Collapse
Affiliation(s)
- Jin-Xian Zhang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Peng Pan
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Zheng-Chun Yang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Jie He
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Pei-Feng Zeng
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Rui Zhang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| |
Collapse
|
3
|
Li S, Meng X, Zhu C, Xu W, Sun Y, Lu X, Dai Y. Revolutionizing Inorganic Nanofibers: Bridging Functional Elements to a Future System. ACS NANO 2025; 19:14579-14604. [PMID: 40193232 DOI: 10.1021/acsnano.4c17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The advancement of intelligent ecosystems depends upon not only technological innovation but also a multidimensional understanding of material-world interactions. This theoretical transformation prompts increasing demands for multifunctional materials exhibiting hierarchical organization across multiple length scales. Inorganic nanofibers demonstrate potential in bridging the gap between microscale and macroscale through their three-dimensional architectures. However, their inherent brittleness, primarily resulting from inferior structural integrity poses, significantly limits their current applications. This critical limitation highlights the urgent necessity for developing fabrication strategies that simultaneously enhance the mechanical flexibility and robustness, ensuring reliable performance under extreme operational conditions. This comprehensive review systematically examines brittle mechanism fracture through multiscale analysis including molecular, nanoscale, and microscale dimensions. It presents innovative methodologies integrating simulation-guided structural design with advanced in situ characterization techniques capable of real-time monitoring under a practical stress-strain process. Furthermore, the discussion progresses to address contemporary challenges and emergent solutions in oxide nanofiber engineering, providing strategic insights for developing mechanically robust flexible systems with stable functional properties. Ultimately, this review examines the potential of inorganic nanofibers to overcome the limitations of nano powder materials and achieve their promising real-world applications.
Collapse
Affiliation(s)
- Shujing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chuntong Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wanlin Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| |
Collapse
|
4
|
Lv Y, Wei J, Wang W, Deng H, Huang Z, Zhou J, Chen Z, Xie J, Huang X, Guo Y, Chen Y. Superelastic bamboo cellulose nanofiber based carbon aerogel with layered network microstructure for high sensitivity piezoresistive sensor. Int J Biol Macromol 2025; 295:139553. [PMID: 39778844 DOI: 10.1016/j.ijbiomac.2025.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials. The fabrication process involved directional ice-crystal growth and mild hydrothermal reduction methods where the directional ice-crystal growth technique imparted a stable network-like pore structure, while the mild hydrothermal reduction method ensured electrical conductivity without compromising the original properties of the CNF. Taking advantage of the stress transfer properties of the cross-linked network structure, BCNF-rGO-CS exhibited exceptional reversible compressibility (sustaining 80 % strain), high fatigue resistance (10,000 cycles at 60 % strain), and high stress retention (84.6 %) over long-term cycling. Furthermore, the BCNF-rGO-CS sensor exhibited notable low-pressure sensitivity, excellent response time (66/76 ms), and it was capable of responding to ultra-low pressures of 10 Pa. Based on these favorable characteristics, the piezoresistive sensor holds promising prospects for applications in body motion detection, health monitoring, and flexible electronic-skin.
Collapse
Affiliation(s)
- Yan Lv
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | - Jie Wei
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | - Wenfei Wang
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | - Huanyang Deng
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | - Zhi Huang
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | - Juan Zhou
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | - Zelin Chen
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | - Jiamin Xie
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China
| | | | - Yong Guo
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China.
| | - Yuxia Chen
- School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China.
| |
Collapse
|
5
|
Huang HX, Yang F, Huang LQ, Xu H, Yu N, Zhang JL, Li P, Jiang Y, Wang SF, Ren XM, Zhao H. A Tough Polyurethane with Self-Healing Ability for Wearable Triboelectric Nanogenerator Devices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12621-12630. [PMID: 39960511 DOI: 10.1021/acsami.4c20096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Lack of a convenient and sustainable power supply and device failure after material damage are important factors limiting the development of traditional wearable sensors. In this study, a self-healing triboelectric nanogenerator (TENG) was designed and prepared for motion sensing and energy harvesting. Hydrogen bonds and disulfide bonds were introduced into a polyurethane (PU) chain segment to provide it with self-healing ability. Then, carbon nanotubes (CNTs) were added to PU to confer electrical conductivity to the composite film. The conductive composite film is sandwiched between the original PU films as an electrode in a sandwich structure, and the three-layer films were tightly bonded by hydrogen bonds and disulfide bonds using a simple hot-pressing method. The output performance of the prepared TENG with a contact area of 4 cm2 can reach 89.4 V and 96 μW/cm2 because of the triboelectric effect. The TENG can still retain 95.6% of its electrical output performance after being broken and then healed. In this regard, TENG can be applied for harvesting human motion energy and monitoring human motion, which shows huge application potential in wearable sensing devices.
Collapse
Affiliation(s)
- Hua-Xin Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fang Yang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Li-Quan Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Han Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ning Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jia-Le Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Yan Jiang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuang-Fei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao-Ming Ren
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| |
Collapse
|
6
|
Wang S, Li Y, Wei L, Zhu J, Zhang Q, Lan L, Tang L, Wang F, Zhang Z, Wang L, Mao J. Strain-Insensitive Supercapacitors for Self-Powered Sensing Textiles. ACS NANO 2025; 19:6357-6370. [PMID: 39913174 DOI: 10.1021/acsnano.4c16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Yarn-based supercapacitors and sensors can be easily integrated into textiles to form flexible and lightweight self-powered wearable electronic devices, which enable stable and continuous signal detection without an external power source. However, most current supercapacitors for self-powered systems lack the stretchability to adapt to complex human body deformations, which restricts their application as a stable wearable power source. This study presents a high-performance strain-insensitive yarn supercapacitor via prestretching in situ polymerization strategy, which can be integrated into self-powered wearable sensing textiles. The supercapacitor delivers a high specific capacitance of 20.79 mF cm-1 (116.94 F g-1), a power density of 37.54 μW cm-1 (211.22 W kg-1), and an energy density of 1.85 μWh cm-1 (10.39 Wh kg-1). The strain-insensitive ability is demonstrated with nearly unchanged performance at a high static strain of 200%, dynamic strain rates of 10% s-1, and retains 96.46% of its capacitance after 3500 cycles under 50% strain. The pressure sensor, featuring a striped coating structure, shows a high sensitivity of 0.67 kPa-1 and a short response time of 100 ms. The strain-insensitive yarn supercapacitors with superior reliability serve as an energy source to power pressure sensors that efficiently recognize Morse code, showing great potential in truly wearable health monitoring and rehabilitation training applications.
Collapse
Affiliation(s)
- Shasha Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yimeng Li
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Leqian Wei
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jianhua Zhu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lizhen Lan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Liqin Tang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Ze Zhang
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jifu Mao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, Jiang S. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications. MATERIALS HORIZONS 2024; 11:5843-5873. [PMID: 39221699 DOI: 10.1039/d4mh00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc., which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
Collapse
Affiliation(s)
- Minmin Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
8
|
Chen Y, Xue T, Chen C, Jang S, Braun PV, Cheng J, Evans CM. Helical peptide structure improves conductivity and stability of solid electrolytes. NATURE MATERIALS 2024; 23:1539-1546. [PMID: 39107570 DOI: 10.1038/s41563-024-01966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/03/2024] [Indexed: 10/09/2024]
Abstract
Ion transport is essential to energy storage, cellular signalling and desalination. Polymers have been explored for decades as solid-state electrolytes by either adding salt to polar polymers or tethering ions to the backbone to create less flammable and more robust systems. New design paradigms are needed to advance the performance of solid polymer electrolytes beyond conventional systems. Here the role of a helical secondary structure is shown to greatly enhance the conductivity of solvent-free polymer electrolytes using cationic polypeptides with a mobile anion. Longer helices lead to higher conductivity, and random coil peptides show substantially lower conductivity. The macrodipole of the helix increases with peptide length, leading to larger dielectric constants. The hydrogen bonding of the helix also imparts thermal and electrochemical stability, while allowing for facile dissolution back to monomer in acid. Peptide polymer electrolytes present a promising platform for the design of next-generation ion-transporting materials.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tianrui Xue
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chen Chen
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Seongon Jang
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paul V Braun
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- School of Engineering, Westlake University, Hangzhou, China
| | - Christopher M Evans
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Sun X, Guo X, Gao J, Wu J, Huang F, Zhang JH, Huang F, Lu X, Shi Y, Pan L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024; 12:2307. [PMID: 39457619 PMCID: PMC11505155 DOI: 10.3390/biomedicines12102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
E-skin is a bionic device with flexible and intelligent sensing ability that can mimic the touch, temperature, pressure, and other sensing functions of human skin. Because of its flexibility, breathability, biocompatibility, and other characteristics, it is widely used in health management, personalized medicine, disease prevention, and other pan-health fields. With the proposal of new sensing principles, the development of advanced functional materials, the development of microfabrication technology, and the integration of artificial intelligence and algorithms, e-skin has developed rapidly. This paper focuses on the characteristics, fundamentals, new principles, key technologies, and their specific applications in health management, exercise monitoring, emotion and heart monitoring, etc. that advanced e-skin needs to have in the healthcare field. In addition, its significance in infant and child care, elderly care, and assistive devices for the disabled is analyzed. Finally, the current challenges and future directions of the field are discussed. It is expected that this review will generate great interest and inspiration for the development and improvement of novel e-skins and advanced health monitoring systems.
Collapse
Affiliation(s)
- Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jiansong Gao
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Xiao Lu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210093, China;
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| |
Collapse
|
10
|
Shen HY, Li YT, Liu H, Lin J, Zhao LY, Li GP, Wu YW, Ren TL, Wang Y. Machine Learning-Assisted Gesture Sensor Made with Graphene/Carbon Nanotubes for Sign Language Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52911-52920. [PMID: 39297553 DOI: 10.1021/acsami.4c10872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Gesture sensors are essential to collect human movements for human-computer interfaces, but their application is normally hampered by the difficulties in achieving high sensitivity and an ultrawide response range simultaneously. In this article, inspired by the spider silk structure in nature, a novel gesture sensor with a core-shell structure is proposed. The sensor offers a high gauge factor of up to 340 and a wide response range of 60%. Moreover, the sensor combining with a deep learning technique creates a system for precise gesture recognition. The system demonstrated an impressive 99% accuracy in single gesture recognition tests. Meanwhile, by using the sliding window technology and large language model, a high performance of 97% accuracy is achieved in continuous sentence recognition. In summary, the proposed high-performance sensor significantly improves the sensitivity and response range of the gesture recognition sensor. Meanwhile, the neural network technology is combined to further improve the way of daily communication by sign language users.
Collapse
Affiliation(s)
- Hao-Yuan Shen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Tao Li
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Hang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jie Lin
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu-Yu Zhao
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guo-Peng Li
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi-Wen Wu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Liu L, Dou Y, Wang J, Zhao Y, Kong W, Ma C, He D, Wang H, Zhang H, Chang A, Zhao P. Recent Advances in Flexible Temperature Sensors: Materials, Mechanism, Fabrication, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405003. [PMID: 39073012 PMCID: PMC11423192 DOI: 10.1002/advs.202405003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Flexible electronics is an emerging and cutting-edge technology which is considered as the building blocks of the next generation micro-nano electronics. Flexible electronics integrate both active and passive functions in devices, driving rapid developments in healthcare, the Internet of Things (IoT), and industrial fields. Among them, flexible temperature sensors, which can be directly attached to human skin or curved surfaces of objects for continuous and stable temperature measurement, have attracted much attention for applications in disease prediction, health monitoring, robotic signal sensing, and curved surface temperature measurement. Preparing flexible temperature sensors with high sensitivity, fast response, wide temperature measurement interval, high flexibility, stretchability, low cost, high reliability, and stability has become a research target. This article reviewed the latest development of flexible temperature sensors and mainly discusses the sensitive materials, working mechanism, preparation process, and the applications of flexible temperature sensors. Finally, conclusions based on the latest developments, and the challenges and prospects for research in this field are presented.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yingying Dou
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Junhua Wang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Yan Zhao
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Wenwen Kong
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Chaoyan Ma
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Donglin He
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Hongguang Wang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Huimin Zhang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Aimin Chang
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| | - Pengjun Zhao
- State Key Laboratory of Functional Materials and Devices for Special Environmental ConditionsXinjiang Key Laboratory of Electronic Information Materials and DevicesXinjiang Technical Institute of Physics & ChemistryCAS40–1 South Beijing RoadUrumqi830011China
| |
Collapse
|
12
|
Zhong H, Shan W, Liang L, Jiang X, Wu L. High stretchable and self-adhesive multifunctional hydrogel for wearable and flexible sensors. Heliyon 2024; 10:e35187. [PMID: 39161809 PMCID: PMC11332826 DOI: 10.1016/j.heliyon.2024.e35187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ionic conductive hydrogel has recently garnered significant research attention due to its potential applications in the field of wearable and flexible electronics. Nonetheless, the integration of multifunctional and synergistic advantages, including reliable electronic properties, high swelling capacity, exceptional mechanical characteristics, and self-adhesive properties, presents an ongoing challenge. In this study, we have developed an ionic conductive hydrogel through the co-polymerization of 4-Acryloylmorpholine (ACMO) and sodium acrylate using UV curing technology. The hydrogel exhibits excellent mechanical properties, high conductivity, superior swelling capacity, and remarkable self-adhesive attributes. The hydrogel serves as a highly sensitive strain sensor, enabling precise monitoring of both substantial and subtle human motions. Furthermore, the hydrogel demonstrates the capability to adhere to human skin, functioning as a human-machine interface for the detection of physiological signals, including electromyogram (EMG) signals, with low interfacial impedance. This work is anticipated to yield a new class of stretchable and conductive materials with diverse potential applications, ranging from flexible sensors and wearable bio-electronics to contributions in the field of artificial intelligence.
Collapse
Affiliation(s)
- Hao Zhong
- Hunan Electrical College of Technology, Xiangtan, 411101, China
| | - Wubin Shan
- Hunan Electrical College of Technology, Xiangtan, 411101, China
| | - Lei Liang
- Hunan Institute of Engineering, Xiangtan, 411104, China
| | | | - Linmei Wu
- College of Civil Engineering and Architecture, Hunan Institute of Science and Technology, Yue yang, Hunan, 414006, China
- Applied Mechanics & Advanced Materials,University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
13
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
14
|
Gao Y, Li H, Chao S, Wang Y, Hou L, Bai T, Bai J, Man X, Cui Z, Wang N, Li Z, Zhao Y. Zebra-Patterned Stretchable Helical Yarn for Triboelectric Self-Powered Multifunctional Sensing. ACS NANO 2024; 18:16958-16966. [PMID: 38907712 DOI: 10.1021/acsnano.4c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Smart textiles capable of both energy harvesting and multifunctional sensing are highly desirable for next-generation portable electronics. However, there are still challenges that need to be conquered, such as the innovation of an energy-harvesting model and the optimization of interface bonding between fibers and active materials. Herein, inspired by the spiral structure of natural vines, a highly stretchable triboelectric helical yarn (TEHY) was manufactured by twisting the carbon nanotube/polyurethane nanofiber (CNT/PU NF) Janus membrane. The TEHY had a zebra-stripe-like design that was composed of black interval conductive CNTs and white insulative PU NFs. Due to the different electron affinity, the zebra-patterned TEHY realized a self-frictional triboelectric effect because the numerous microscopic CNT/PU triboelectric interfaces generated an alternating current in the external conductive circuit without extra external friction layers. The helical geometry combined with the elastic PU matrix endowed TEHY with superelastic stretchability and outstanding output stability after 1000 cycles of the stretch-release test. By virtue of the robust mechanical and electrical stability, the TEHY can not only be used as a high-entropy mechanical energy harvester but also serve as a self-powered sensor to monitor the stretching or deforming stimuli and human physiological activities in real time. These merits manifested the versatile applications of TEHY in smart fabrics, wearable power supplies, and human-machine interactions.
Collapse
Affiliation(s)
- Yuan Gao
- School of Machinery and Automation, Weifang University, Weifang 261061, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Hu Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Shengyu Chao
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqiong Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Lanlan Hou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Tonghua Bai
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jie Bai
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, P. R. China
| | - Xingkun Man
- Center of Soft Matter Physics and Its Applications, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, P. R. China
| | - Zhimin Cui
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Nü Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051, P. R. China
| |
Collapse
|
15
|
Yu R, Wang C, Du X, Bai X, Tong Y, Chen H, Sun X, Yang J, Matsuhisa N, Peng H, Zhu M, Pan S. In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors. Natl Sci Rev 2024; 11:nwae158. [PMID: 38881574 PMCID: PMC11177883 DOI: 10.1093/nsr/nwae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 06/18/2024] Open
Abstract
Fiber electronics with flexible and weavable features can be easily integrated into textiles for wearable applications. However, due to small sizes and curved surfaces of fiber materials, it remains challenging to load robust active layers, thus hindering production of high-sensitivity fiber strain sensors. Herein, functional sensing materials are firmly anchored on the fiber surface in-situ through a hydrolytic condensation process. The anchoring sensing layer with robust interfacial adhesion is ultra-mechanically sensitive, which significantly improves the sensitivity of strain sensors due to the easy generation of microcracks during stretching. The resulting stretchable fiber sensors simultaneously possess an ultra-low strain detection limit of 0.05%, a high stretchability of 100%, and a high gauge factor of 433.6, giving 254-folds enhancement in sensitivity. Additionally, these fiber sensors are soft and lightweight, enabling them to be attached onto skin or woven into clothes for recording physiological signals, e.g. pulse wave velocity has been effectively obtained by them. As a demonstration, a fiber sensor-based wearable smart healthcare system is designed to monitor and transmit health status for timely intervention. This work presents an effective strategy for developing high-performance fiber strain sensors as well as other stretchable electronic devices.
Collapse
Affiliation(s)
- Rouhui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Changxian Wang
- MOE Key Lab of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China
| | - Xiangheng Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaowen Bai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongzhong Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai 200438, China
| | - Jing Yang
- Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Naoji Matsuhisa
- Research Center for Advanced Science and Technology, and Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai 200438, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
16
|
Yalcinkaya B, Buzgo M. Optimization of Electrospun TORLON ® 4000 Polyamide-Imide (PAI) Nanofibers: Bridging the Gap to Industrial-Scale Production. Polymers (Basel) 2024; 16:1516. [PMID: 38891462 PMCID: PMC11174607 DOI: 10.3390/polym16111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Polyamide-imide (PAI) is an exceptional polymer known for its outstanding mechanical, chemical, and thermal resistance. This makes it an ideal choice for applications that require excellent durability, such as those in the aerospace sector, bearings, gears, and the oil and gas industry. The current study explores the optimization of TORLON® 4000 T HV polyamide-imide nanofibers utilizing needleless electrospinning devices, ranging from laboratory-scale to industrial-scale production, for the first time. The PAI polymer has been dispersed in several solvent systems at varying concentrations. The diameter of the electrospun PAI nanofibers ranged from 65.8 nanometers to 1.52 μm. Their filtering efficiency was above 90% for particles with a size of 0.3 microns. The TGA results proved that PAI nanofibers have excellent resistance to high temperatures up to 450 °C. The PAI nanofibers are ideal for hot air intake filtration and fire-fighter personal protection equipment applications.
Collapse
Affiliation(s)
- Baturalp Yalcinkaya
- Respilon Membranes s.r.o., Nové sady 988/2, Staré Brno, 602 00 Brno, Czech Republic;
| | | |
Collapse
|
17
|
Papani R, Li Y, Wang S. Soft mechanical sensors for wearable and implantable applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1961. [PMID: 38723798 PMCID: PMC11108230 DOI: 10.1002/wnan.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/23/2024]
Abstract
Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Rithvik Papani
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois, United States
| |
Collapse
|
18
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
19
|
Dinuwan
Gunawardhana KRS, Simorangkir RBVB, McGuinness GB, Rasel MS, Magre Colorado LA, Baberwal SS, Ward TE, O’Flynn B, Coyle SM. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems. ACS NANO 2024; 18:2649-2684. [PMID: 38230863 PMCID: PMC10832067 DOI: 10.1021/acsnano.3c09077] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed.
Collapse
Affiliation(s)
- K. R. Sanjaya Dinuwan
Gunawardhana
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | | | | | - M. Salauddin Rasel
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| | - Luz A. Magre Colorado
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Sonal S. Baberwal
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Tomás E. Ward
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
- School
of Computing, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
| | - Brendan O’Flynn
- Tyndall
National Institute, Lee Maltings Complex
Dyke Parade, T12R5CP Cork, Ireland
| | - Shirley M. Coyle
- School
of Electronic Engineering, Dublin City University, Glasnevin D09Y074, Dublin, Ireland
- Insight
SFI Centre for Data Analytics, Dublin City
University, Glasnevin D09Y074, Dublin, Ireland
| |
Collapse
|
20
|
Gowda A, Pathak SK, Rohaley GAR, Acharjee G, Oprandi A, Williams R, Prévôt ME, Hegmann T. Organic chiral nano- and microfilaments: types, formation, and template applications. MATERIALS HORIZONS 2024; 11:316-340. [PMID: 37921354 DOI: 10.1039/d3mh01390a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Andrea Oprandi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Ryan Williams
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
21
|
Zhu H, Sun Z, Wang X, Xia H. A High-Performance Strain Sensor for the Detection of Human Motion and Subtle Strain Based on Liquid Metal Microwire. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:231. [PMID: 38276749 PMCID: PMC10818384 DOI: 10.3390/nano14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Flexible strain sensors have a wide range of applications, such as human motion monitoring, wearable electronic devices, and human-computer interactions, due to their good conformability and sensitive deformation detection. To overcome the internal stress problem of solid sensing materials during deformation and prepare small-sized flexible strain sensors, it is necessary to choose a more suitable sensing material and preparation technology. We report a simple and high-performance flexible strain sensor based on liquid metal nanoparticles (LMNPs) on a polyimide substrate. The LMNPs were assembled using the femtosecond laser direct writing technology to form liquid metal microwires. A wearable strain sensor from the liquid metal microwire was fabricated with an excellent gauge factor of up to 76.18, a good linearity in a wide sensing range, and a fast response/recovery time of 159 ms/120 ms. Due to these extraordinary strain sensing performances, the strain sensor can monitor facial expressions in real time and detect vocal cord vibrations for speech recognition.
Collapse
Affiliation(s)
- He Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zheng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xin Wang
- Department of Rheumatology, the First Hospital of Jilin University, Changchun 130012, China;
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
22
|
Kang L, Ma J, Wang C, Li K, Wu H, Zhu M. Highly Sensitive and Wide Detection Range Thermoplastic Polyurethane/Graphene Nanoplatelets Multifunctional Strain Sensor with a Porous and Crimped Network Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2814-2824. [PMID: 38181326 DOI: 10.1021/acsami.3c18397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
High-performance flexible strain sensors have tremendous potential applications in wearable devices and health monitoring. However, developing a flexible strain sensor with high sensitivity over a wide strain range remains a significant challenge. In this study, a fibrous membrane with a porous and crimped structure was designed as the substrate material for TPU/GNPs flexible strain sensors. This structural design effectively balances sensitivity with the strain range. The TPU-PEO fibrous membrane prepared using electrospinning with water washing, resulted in a porous fibrous membrane with a TPU framework. Subsequently, the fibrous membrane was subjected to anhydrous ethanol stimulation to obtain a porous and crimped network structure. GNPs were modified on the TPU fibrous membrane through ultrasonic treatment. The produced flexible strain sensor exhibited high sensitivity (GF = 4047.5) within a large strain range (350%) and demonstrated excellent sensing performance, stability, and durability (>10,000 cycles). It not only captured basic movements but also efficiently recognized and measured bending angles, enabling a more sophisticated human-machine interaction experience. This advancement opens up possibilities for future intelligent wearable technology and human-machine interaction, contributing to the evolution of these fields.
Collapse
Affiliation(s)
- Luhan Kang
- College of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Jing Ma
- College of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Chang Wang
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Kecheng Li
- College of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Haiyan Wu
- College of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Mingfu Zhu
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
23
|
Ai J, Wang Q, Li Z, Lu D, Liao S, Qiu Y, Xia X, Wei Q. Highly Stretchable and Fluorescent Visualizable Thermoplastic Polyurethane/Tetraphenylethylene Plied Yarn Strain Sensor with Heterogeneous and Cracked Structure for Human Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1428-1438. [PMID: 38150614 DOI: 10.1021/acsami.3c14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Smart wearable technology has been more and more widely used in monitoring and prewarning of human health and safety, while flexible yarn-based strain sensors have attracted extensive research interest due to their ability to withstand greater external strain and their significant application potential in real-time monitoring of human motion and health signals. Although several strain sensors based on yarn structures have been reported, it remains challenging to strike a balance between high sensitivity and wide strain ranges. At the same time, visual signal sensing is expected to be used in strain sensors thanks to its intuitiveness. In this work, thermoplastic polyurethane (TPU) and tetraphenylethylene (TPE) were wet-spun to fabricate flexible fluorescent fibers used as the substrate of the sensor, followed by the drop addition of polydimethylsiloxane (PDMS) beads and curing to produce a heterogeneous structure, which were further twisted into a plied yarn. Finally, a visualizable flexible yarn strain sensor based on solidified liquid beads and crack structure was obtained by loading polydopamine (PDA) and polypyrrole (PPy) in situ. The sensor exhibited high sensitivity (the GF value was 58.9 at the strain range of 143-184%), a wide working strain range (0-184%), a low monitoring limit (<0.1%), a fast response (58.82 ms), reliable responses at different frequencies, and excellent cycle durability (over 2000 cycles). At the same time, the yarn strain sensor also had excellent photothermal characteristics and a fluorescence crack visualization effect. These attractive advantages enabled yarn strain sensors to accurately monitor various human activities, showing great application potential in health monitoring, personalized medical diagnosis, and other aspects.
Collapse
Affiliation(s)
- Jingwen Ai
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| | - Zhuquan Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Dongxing Lu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| | - Yuyu Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| |
Collapse
|
24
|
Liang Q, Zhang D, He T, Zhang Z, Wang H, Chen S, Lee C. Fiber-Based Noncontact Sensor with Stretchability for Underwater Wearable Sensing and VR Applications. ACS NANO 2024; 18:600-611. [PMID: 38126347 DOI: 10.1021/acsnano.3c08739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The rapid development of artificial intelligent wearable devices has led to an increasing need for seamless information exchange between humans, machines, and virtual spaces, often relying on touch sensors as the primary interaction medium. Additionally, the demand for underwater detection technologies is on the rise owing to the prevalent wet and submerged environment. Here, a fiber-based capacitive sensor with superior stretchability and hydrophobicity is proposed, designed to cater to noncontact and underwater applications. The sensor is constructed using bacterial cellulose (BC)@BC/carbon nanotubes (CNTs) (BBT) helical fiber as the matrix and methyltrimethoxysilane (MTMS) as the hydrophobic modified agent, forming a hydrophobic silylated BC@BC/CNT (SBBT) helical fiber by the chemical vapor deposition (CVD) technique. These fibers exhibit an impressive contact angle of 132.8°. The SBBT helicalfiber-based capacitive sensor presents capabilities for both noncontact and underwater sensing, which exhibits a significant capacitance change of -0.27 (at a distance of 0.5 cm). We have achieved interactive control between real space and virtual space through intelligent data analysis technology with minimal interference from the presence of water. This work has laid a solid foundation of noncontact sensing with attributes such as degradability, stretchability, and hydrophobicity. Moreover, it offers promising solutions for barrier-free communication in virtual reality (VR) and underwater applications, providing avenues for smart human-machine interfaces for submerged use.
Collapse
Affiliation(s)
- Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
25
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
26
|
Zhou R, Zhang Y, Xu F, Song Z, Huang J, Li Z, Gao C, He J, Gao W, Pan C. Hierarchical Synergistic Structure for High Resolution Strain Sensor with Wide Working Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301544. [PMID: 37156739 DOI: 10.1002/smll.202301544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Strain sensors have been attracting tremendous attention for the promising application of wearable devices in recent years. However, the trade-off between high resolution, high sensitivity, and broad detection range is a great challenge for the application of strain sensors. Herein, a novel design of hierarchical synergistic structure (HSS) of Au micro cracks and carbon black (CB) nanoparticles is reported to overcome this challenge. The strain sensor based on the designed HSS exhibit high sensitivity (GF > 2400), high strain resolution (0.2%) even under large loading strain, broad detection range (>40%), outstanding stability (>12000 cycles), and fast response speed simultaneously. Further, the experiments and simulation results demonstrate that the carbon black layer greatly changed the morphology of Au micro-cracks, forming a hierarchical structure of micro-scale Au cracks and nano-scale carbon black particles, thus enabling synergistic effect and the double conductive network of Au micro-cracks and CB nanoparticles. Based on the excellent performance, the sensor is successfully applied to monitoring tiny signals of the carotid pulse during body movement, which illustrates the great potential in the application of health monitoring, human-machine interface, human motion detection, and electronic skin.
Collapse
Affiliation(s)
- Runhui Zhou
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
| | - Fan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zhuoyu Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jiaoya Huang
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Zemin Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Chen Gao
- School of Physics, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jiang He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
| | - Wenchao Gao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
27
|
Teng CP, Tan MY, Toh JPW, Lim QF, Wang X, Ponsford D, Lin EMJ, Thitsartarn W, Tee SY. Advances in Cellulose-Based Composites for Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103856. [PMID: 37241483 DOI: 10.3390/ma16103856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.
Collapse
Affiliation(s)
- Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ming Yan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jessica Pei Wen Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Esther Marie JieRong Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
28
|
Wu J, Sang M, Zhang J, Sun Y, Wang X, Zhang J, Pang H, Luo T, Pan S, Xuan S, Gong X. Ultra-Stretchable Spiral Hybrid Conductive Fiber with 500%-Strain Electric Stability and Deformation-Independent Linear Temperature Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207454. [PMID: 36808686 DOI: 10.1002/smll.202207454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Indexed: 05/11/2023]
Abstract
Stretchable configuration occupies priority in devising flexible conductors used in intelligent electronics and implantable sensors. While most conductive configurations cannot suppress electrical variations against extreme deformation and ignore inherent material characteristics. Herein, a spiral hybrid conductive fiber (SHCF) composed of aramid polymeric matrix and silver nanowires (AgNWs) coating is fabricated through shaping and dipping processes. The homochiral coiled configuration mimicked by plant tendrils not only enables its high elongation (958%), but also generates a superior deformation-insensitive effect to existing stretchable conductors. The resistance of SHCF maintains remarkable stability against extreme strain (500%), impact damage, air exposure (90 days), and cyclic bending (150 000 times). Moreover, the thermal-induced densification of AgNWs on SHCF achieves precise and linear temperature response toward a broad range (-20 to 100 °C). Its sensitivity further manifests high independence to tensile strain (0%-500%), allowing for flexible temperature monitoring of curved objects. Such unique strain-tolerant electrical stability and thermosensation hold broad prospects for SHCF in lossless power transferring and expeditious thermal analysis.
Collapse
Affiliation(s)
- Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Jingyi Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Yuxi Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Xinyi Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Junshuo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Haoming Pang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Shaoshan Pan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, P. R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
29
|
Liu C, Wang Y, Wang S, Xia X, Xiao H, Liu J, Hu S, Yi X, Liu Y, Wu Y, Shang J, Li RW. Design and 3D Printing of Stretchable Conductor with High Dynamic Stability. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3098. [PMID: 37109934 PMCID: PMC10146708 DOI: 10.3390/ma16083098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
As an indispensable part of wearable devices and mechanical arms, stretchable conductors have received extensive attention in recent years. The design of a high-dynamic-stability, stretchable conductor is the key technology to ensure the normal transmission of electrical signals and electrical energy of wearable devices under large mechanical deformation, which has always been an important research topic domestically and abroad. In this paper, a stretchable conductor with a linear bunch structure is designed and prepared by combining numerical modeling and simulation with 3D printing technology. The stretchable conductor consists of a 3D-printed bunch-structured equiwall elastic insulating resin tube and internally filled free-deformable liquid metal. This conductor has a very high conductivity exceeding 104 S cm-1, good stretchability with an elongation at break exceeding 50%, and great tensile stability, with a relative change in resistance of only about 1% at 50% tensile strain. Finally, this paper demonstrates it as a headphone cable (transmitting electrical signals) and a mobile phone charging wire (transmitting electrical energy), which proves its good mechanical and electrical properties and shows good application potential.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuwei Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shengding Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiangling Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huiyun Xiao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Siqi Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Dai Y, Qi K, Ou K, Song Y, Zhou Y, Zhou M, Song H, He J, Wang H, Wang R. Ag NW-Embedded Coaxial Nanofiber-Coated Yarns with High Stretchability and Sensitivity for Wearable Multi-Sensing Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11244-11258. [PMID: 36791272 DOI: 10.1021/acsami.2c20322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emerging intelligent piezoresistive yarn/textile-based sensors are of paramount importance for skin-interface electronics, owing to their unparalleled features including softness, breathability, and easy integration with functional devices. However, employing a facile way to fabricate 1D sensing yarns with mechanical robustness, multi-functional integration, and comfortability is still demanded for satisfying the practical applications. Herein, a facile one-step synchronous conjugated electrospinning and electrospraying technique is innovatively employed to continuously construct an Ag NW-embedded polyurethane (PU) nanofiber sensing yarn (AENSY) with hierarchical architecture. This 1D AENSY with weavability and stretchability can be woven into AENSY textile-based sensors integrated with functions of strain and pressure sensing. In this embedded multi-scale architecture, Ag NWs are evenly embedded and locked in the oriented and twisted PU nanofiber (PUNF) scaffold, forming the hierarchical mechanical sensing layer on the surface of the AENSY with favorable stability. Meanwhile, the presence of the elastic PUNFs enhances porosity, elasticity, and considerable deformation space, which in turn endow the AENSY textile-based sensor with a gauge factor (GF) up to 1010, a pressure sensitivity up to 16.7 N-1, high stretchability up to 160%, and high stability under long-term cycles. In addition, the AENSY textile-based sensor exhibits light weight and the unique advantage of skin-friendliness with the human body, which can be directly and conformally attached to the curved human skin to monitor the various human movements. Furthermore, the weavable AENSYs can be integrated into smart textiles with sensing arrays, which are capable for spatial pressure and strain mapping. Thus, the continuous one-step developing process and the stable embedded-twisted fiber structure provide a promising strategy to develop innovative smart yarns and textiles for personalized healthcare and human-machine interfaces.
Collapse
Affiliation(s)
- Yunling Dai
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Kun Qi
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Kangkang Ou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, P.R. China
| | - Yutang Song
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Yuman Zhou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Meiling Zhou
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Hongjing Song
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Jianxin He
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| | - Hongbo Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Rongwu Wang
- Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan International Joint Laboratory of New Textile Materials and Textiles, Zhengzhou 450007, P. R. China
| |
Collapse
|
31
|
Choi JH, Noh JH, Choi C. Highly Elastically Deformable Coiled CNT/Polymer Fibers for Wearable Strain Sensors and Stretchable Supercapacitors. SENSORS (BASEL, SWITZERLAND) 2023; 23:2359. [PMID: 36850957 PMCID: PMC9964788 DOI: 10.3390/s23042359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Stretchable yarn/fiber electronics with conductive features are optimal components for different wearable devices. This paper presents the construction of coil structure-based carbon nanotube (CNT)/polymer fibers with adjustable piezoresistivity. The composite unit fiber is prepared by wrapping a conductive carbon CNT sheath onto an elastic spandex core. Owing to the helical coil structure, the resultant CNT/polymer composite fibers are highly stretchable (up to approximately 300%) without a noticeable electrical breakdown. More specifically, based on the difference in the coil index (which is the ratio of the coil diameter to the diameter of the fiber within the coil) according to the polymeric core fiber (spandex or nylon), the composite fiber can be used for two different applications (i.e., as strain sensors or supercapacitors), which are presented in this paper. The coiled CNT/spandex composite fiber sensor responds sensitively to tensile strain. The coiled CNT/nylon composite fiber can be employed as an elastic supercapacitor with excellent capacitance retention at 300% strain.
Collapse
Affiliation(s)
- Jin Hyeong Choi
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Jun Ho Noh
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
- Department of Advanced Battery Convergence Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, 30 Pil-dong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
32
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
33
|
A Multi-model, Large-range Flexible Strain Sensor Based on Carbonized Silk Habotai for Human Health Monitoring. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
34
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
35
|
Shooshtari M, Rahbarpour S, Ghafoorifard H. Improvement in gas sensitivity of carbon nanotube to volatile organic compounds by covering zinc oxide nanowire. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2166076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mostafa Shooshtari
- Department of Electrical Engineering Tehran, Shahed University, Tehran, Iran
| | - Saeideh Rahbarpour
- Department of Electrical Engineering Tehran, Shahed University, Tehran, Iran
| | - Hasan Ghafoorifard
- Electrical Engineering Department Tehran, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
36
|
Wu S, Moody K, Kollipara A, Zhu Y. Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1798-1807. [PMID: 36548931 PMCID: PMC10403976 DOI: 10.1021/acsami.2c16741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft and stretchable strain sensors have been attracting significant attention. However, the trade-off between the sensitivity (gauge factor) and the sensing range has been a major challenge. In this work, we report a soft stretchable resistive strain sensor with an unusual combination of high sensitivity, large sensing range, and high robustness. The sensor is made of a silver nanowire network embedded below the surface of an elastomeric matrix (e.g., poly(dimethylsiloxane)). Periodic mechanical cuts are applied to the top surface of the sensor, changing the current flow from uniformly across the sensor to along the conducting path defined by the open cracks. Both experiment and finite element analysis are conducted to study the effect of the slit depth, slit length, and pitch between the slits. The stretchable strain sensor can be integrated into wearable systems for monitoring physiological functions and body motions associated with different levels of strain, such as blood pressure and lower back health. Finally, a soft three-dimensional (3D) touch sensor that tracks both normal and shear stresses is developed for human-machine interfaces and tactile sensing for robotics.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Katherine Moody
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Abhiroop Kollipara
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina27599, United States
| |
Collapse
|
37
|
Wu Y, Xu L, Xia C, Gan L. High performance flexible and antibacterial strain sensor based on silver‑carbon nanotubes coated cellulose/polyurethane nanofibrous membrane: Cellulose as reinforcing polymer blend and polydopamine as compatibilizer. Int J Biol Macromol 2022; 223:184-192. [PMID: 36343837 DOI: 10.1016/j.ijbiomac.2022.10.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
In this study, ethyl cellulose was used as the second-phase polymer blended with polyurethane to make nanofibrous membrane as antibacterial strain sensor. The results indicated that ethyl cellulose could regulate the morphology of polyurethane through strong hydrogen bonding, which observably enhanced the nanofiber uniformity of polyurethane. Furthermore, rigid cellulose also remarkably improved the mechanical strength and thermal stability of the nanofibrous membrane. After being coated with silver nanoparticles and carbon nanotubes assisted by polydopamine (PDA), the membrane with outstanding bacteria inhibition performance exhibited outstanding sensitivity toward external mechanical stretching, as well as real-time motion of human body parts. The conductive composite membrane possessed sensitive and regular resistance feedback to 100 cycles of varied human motions. The cellulose in the nanofiber structure ensured the shape recovery and longtime use stability of the membrane. This study proposed a novel thinking for the construction of high performance strain sensor by rational introduction of rigid polysaccharide into the polymer matrix.
Collapse
Affiliation(s)
- Ying Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Nie M, Li B, Hsieh YL, Fu KK, Zhou J. Stretchable One-Dimensional Conductors for Wearable Applications. ACS NANO 2022; 16:19810-19839. [PMID: 36475644 DOI: 10.1021/acsnano.2c08166] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continuous, one-dimensional (1D) stretchable conductors have attracted significant attention for the development of wearables and soft-matter electronics. Through the use of advanced spinning, printing, and textile technologies, 1D stretchable conductors in the forms of fibers, wires, and yarns can be designed and engineered to meet the demanding requirements for different wearable applications. Several crucial parameters, such as microarchitecture, conductivity, stretchability, and scalability, play essential roles in designing and developing wearable devices and intelligent textiles. Methodologies and fabrication processes have successfully realized 1D conductors that are highly conductive, strong, lightweight, stretchable, and conformable and can be readily integrated with common fabrics and soft matter. This review summarizes the latest advances in continuous, 1D stretchable conductors and emphasizes recent developments in materials, methodologies, fabrication processes, and strategies geared toward applications in electrical interconnects, mechanical sensors, actuators, and heaters. This review classifies 1D conductors into three categories on the basis of their electrical responses: (1) rigid 1D conductors, (2) piezoresistive 1D conductors, and (3) resistance-stable 1D conductors. This review also evaluates the present challenges in these areas and presents perspectives for improving the performance of stretchable 1D conductors for wearable textile and flexible electronic applications.
Collapse
Affiliation(s)
- Mingyu Nie
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - Boxiao Li
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - You-Lo Hsieh
- Biological and Agricultural Engineering, University of California at Davis, California95616, United States
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Jian Zhou
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| |
Collapse
|
39
|
Zhao Y, Li X, Yuan T, Huang S, Jiang R, Duan X, Li L, Li X, Zhang W. An ultra-thin flexible wearable sensor with multi-response capability prepared from ZIF-67 and conductive metal-organic framework composites for health signal monitoring. LAB ON A CHIP 2022; 22:4593-4602. [PMID: 36325953 DOI: 10.1039/d2lc00921h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Simulation of somatosensory systems in human skin with electronic devices has broad applications in the development of intelligent robots and wearable electronic devices. Here, we give an account of a new biomimetic flexible dual-mode pressure sensor, which is based on the first developed sea dandelion-like conductive metal-organic framework (cZIF-67@Cu-CAT) and the self-synthesized mechanically luminescent zinc sulfide nanoparticles and cleverly combines the microdome structure of the lotus leaf. According to finite element simulation analysis (FEA), the deformation behavior and pressure distribution of the contact interface with dandelion-like nanostructures cause the contact area of the sensor to increase rapidly and steadily with the load. It is for this reason that the piezoresistive pressure sensor has a high sensitivity of 71.74 kPa-1 over a wide range of 0.5 to 80 kPa. More importantly, it can roughly perceive stress changes in the external environment through mechanoluminescence materials without a power supply. The ultra-thin flexible pressure sensor is suitable for sensitive monitoring of small vibrations, including wrist pulse and joint motion. Combined with Bluetooth data transmission, it is not difficult to see that the high-sensitivity ultra-thin sensor designed in this study has broad potential in the applications of bio-wearable electronics and will play an immeasurable role in various sports training and joint protection in the future.
Collapse
Affiliation(s)
- Youwei Zhao
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Xiang Li
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Tian Yuan
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Shuhong Huang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Ronghui Jiang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Xuefei Duan
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Ling Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Xiaoting Li
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
40
|
Kim J, Choi C. Elastomeric Core/Conductive Sheath Fibers for Tensile and Torsional Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:8934. [PMID: 36433531 PMCID: PMC9693023 DOI: 10.3390/s22228934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Motion sensing, aimed at detecting and monitoring mechanical deformation, has received significant attention in various industrial and research fields. In particular, fiber-structured mechanical strain sensors with carbon-based materials have emerged as promising alternatives for wearable applications owing to their wearability and adaptability to the human body. Various materials, structures, sensing mechanisms, and fabrication methods have been used to fabricate high-performance fiber strain sensors. Nevertheless, developing multi-modal strain sensors that can monitor multiple deformations remains to be accomplished. This study established core/sheath fiber multi-modal strain sensors using polymer and carbon nanotubes (CNTs). Specifically, a flexible and conductive CNT sheet was wrapped onto the elastomeric core fiber at a certain angle. This wrapping angle allowed the CNTs to mechanically deform under tensile and torsional deformations without fatal structural damage. The CNTs could sense both tensile and torsional strains through reversible structural changes during deformations. The fiber strain sensor exhibited an increase of 124.9% and 9.6% in the resistance during tensile and torsional deformations of 100% and 1250 rad/m, respectively.
Collapse
|
41
|
Preparation of Nanofiber Bundles via Electrospinning Immiscible Polymer Blend for Oil/Water Separation and Air Filtration. Polymers (Basel) 2022; 14:polym14214722. [DOI: 10.3390/polym14214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Nanofiber bundles with specific areas bring a new opportunity for selective adsorption and oil/water or air separation. In this work, nanofiber bundles were prepared by the electrospinning of immiscible polystyrene (PS)/N-trifluoroacetylated polyamide 6 (PA6-TFAA) blends via the introduction of carbon nanotubes (CNTs) or a copolymer of styrene and 3-isopropenyl-α, α’-dimethylbenzene isocyanate (TMI), which was denoted as PS-co-TMI. Herein, CNT was used to increase the conductivity of the precursor for enhancing the stretch of PS droplets under the same electric field, and PS-co-TMI was used as a reactive compatibilizer to improve the compatibility of a PS/PA6-TFAA blend system for promoting the deformation. Those obtained nanofiber bundle membranes showed an increase in tensile strength and high hydrophobicity with a water contact angle of about 145.0 ± 0.5°. Owing to the special structure, the membranes also possessed a high oil adsorption capacity of 31.0 to 61.3 g/g for different oils. Moreover, it exhibits a high potential for gravity-driven oil/water separation. For example, those membranes had above 99% separation efficiency for silicon oil/water and paraffin wax/water. Furthermore, the air filtration efficiency of nanofiber bundle membranes could reach above 96%, which might be two to six times higher than the filtration efficiency of neat PS membranes.
Collapse
|
42
|
Gao Y, Yu L, Li Y, Wei L, Yin J, Wang F, Wang L, Mao J. Maple Leaf Inspired Conductive Fiber with Hierarchical Wrinkles for Highly Stretchable and Integratable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49059-49071. [PMID: 36251510 DOI: 10.1021/acsami.2c12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stretchable and durable conductors are significant to the development of wearable devices, robots, human-machine interfaces, and other artificial intelligence products. However, the desirable strain-insensitive conductivity and low hysteresis are restricted by the failure of stretchable structures and mismatch of mechanical properties (rigid conductive layer and elastic core substrate) under large deformation. Here, based on the principles of fractal geometry, a stretchable conductive fiber with hierarchical wrinkles inspired by the unique shape of the maple leaf was fabricated by combining surface modification, interfacial polymerization, and improved prestrain finishing methods to break through this dilemma. The shape and size of wrinkles predicted by buckling analysis via the finite element method fit well with that of actual wrinkles (30-80 μm of macro wrinkles and 4-6 μm of micro wrinkles) on the fabricated fiber. Such hierarchically wrinkled conductive fiber (HWCF) exhibited not only excellent strain-insensitive conductivity denoted by the relative resistance change ΔR/R0 = 0.66 with R0 the original resistance and ΔR the change of resistance after the concrete strain reaching up to 600%, but also low hysteresis (0.04) calculated by the difference in area between stretching and releasing curve of the ΔR/R0 strain under 300% strain and long-term durability (>1000 stretching-releasing cycles). Furthermore, the elastic conductive fiber with such a bionic structure design can be applied as highly stretchable electrical circuits for illumination and monitors for the human motion under large strains through tiny and rapid resistance changes as well. Such a smart biomimetic material holds great prospects in the field of stretchable electronics.
Collapse
Affiliation(s)
- Yaya Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
| | - Lingyao Yu
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin541004, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
| | - Jun Yin
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin541004, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai201620, China
| |
Collapse
|
43
|
High stretchability and conductive stability of flexible hybrid electronic materials for smart clothing. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
44
|
Uzabakiriho PC, Wang M, Wang K, Ma C, Zhao G. High-Strength and Extensible Electrospun Yarn for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46068-46076. [PMID: 36169212 DOI: 10.1021/acsami.2c13182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stretchable conductive yarns have received significant consideration in the direction of wearable and flexible electronics. Wearable electronic structures need strong materials to assure stability, durability, and an extensive range of strain to develop their applications. Therefore, manufacturing high-performance yarn-based devices with ultrarobustness and great stretchability with a simple, cost-effective, and scalable method remains a great challenge for wearable electronics. Here, a highly stretchable yarn with high performance is fabricated, which comprises a core TPU nanoyarn, successively decorated with a liquid metal (LM) layer, and a protective outer nanofiber layer. The ultrarobust (40 MPa) and high-strain (548%) conducting yarn presents potential applications in assembling strain sensors. Moreover, such a unique conductive yarn can be used as a highly deformable, stretchable conductor to charge a mobile phone or for data transfer, a sensor to monitor human activities, and as an effective control for a hand robot as well as for smart thermal management textile application. This research gives promising applications in the field of flexible and wearable electronics.
Collapse
Affiliation(s)
- Pierre Claver Uzabakiriho
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Meng Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Kai Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Chao Ma
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China
| |
Collapse
|
45
|
Sun H, Fang X, Fang Z, Zhao L, Tian B, Verma P, Maeda R, Jiang Z. An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. MICROSYSTEMS & NANOENGINEERING 2022; 8:111. [PMID: 36187892 PMCID: PMC9522852 DOI: 10.1038/s41378-022-00419-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 06/16/2023]
Abstract
Flexible strain sensors are promising candidates for intelligent wearable devices. Among previous studies, although crack-based sensors have attracted a lot of attention due to their ultrahigh sensitivity, large strain usually causes fractures in the conductive paths. Because of the unstable crack structure, the tradeoff between sensitivity and workable strain range is still a challenge. As carbon nanotubes (CNTs) and silver nanowires (AgNWs) can form a strong interface with the thermoplastic substrate and strengthen the conductive network by capillary force during water evaporation, CNTs and AgNWs were deposited on electrospun TPU fiber mats via vacuum-assisted filtration in this work. The prestretching treatment constructed a microcrack structure that endowed the sensor with the combined characteristics of a wide working range (0~171% strain), ultrahigh sensitivity (a gauge factor of 691 within 0~102% strain, ~2 × 104 within 102~135% strain, and >11 × 104 within 135~171% strain), a fast response time (~65 ms), small hysteresis, and superior durability (>2000 cycles). Subsequently, the sensing mechanism of the sensor was studied. Distributed microcrack propagation based on the "island-bridge" structure was explained in detail, and its influence on the strain-sensing behavior of the sensor was analyzed. Finally, the sensor was assembled to monitor various vibration signals and human motions, demonstrating its potential applications in the fields of electronic skin and human health monitoring.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xudong Fang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, and Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an, China
| | - Ziyan Fang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, and Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an, China
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, and Xi’an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi’an, China
| | - Prateek Verma
- School of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701 USA
| | - Ryutaro Maeda
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
46
|
Preparation of novel composite aerogel with conductive and antibacterial via constructing three-dimensional crosslinked structure. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Qin Z, Liu S, Bai J, Yin J, Li N, Jiao T. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors. Int J Biol Macromol 2022; 220:90-96. [PMID: 35970366 DOI: 10.1016/j.ijbiomac.2022.08.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
Ionically-conductive hydrogels are attracting increasing interest as skin-like sensors, however, the fabrication of ion-conductive hydrogels with excellent mechanical properties, high conductivity, self-adhesion and anti-freezing ability for high-performance sensors remains a challenge. Herein, a highly ion-conductive hydrogel is prepared by introducing LiCl into polyacrylamide/hydroxypropyl methyl cellulose (PAM/HPMC) composite hydrogel. The introduction of LiCl simultaneously endows the PAM/HPMC/LiCl hydrogel with outstanding stretchability (1453 %), high tensile strength (135 kPa), skin-like elasticity (9.18 kPa), high conductivity (7.85 S/m), good adhesiveness and wide operating temperature range. Impressively, this ion-conductive hydrogel can be utilized in skin-like sensor, which achieves high strain sensitivity (GF = 11.19) with wide sensing ranges (up to 600 %), and excellent endurance over 250 consecutive stretching. As a result, the wearable sensor assembled from the hydrogels can be used to detect complex human activities with high stability even at -40 °C. This work promotes the development of ion-conductive hydrogels with broad operating temperature in advanced sensory platform.
Collapse
Affiliation(s)
- Zhihui Qin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Shide Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jiahui Bai
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Juanjuan Yin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
48
|
Das R, Zeng W, Asci C, Del-Rio-Ruiz R, Sonkusale S. Recent progress in electrospun nanomaterials for wearables. APL Bioeng 2022; 6:021505. [PMID: 35783456 PMCID: PMC9249212 DOI: 10.1063/5.0088136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Wearables have garnered significant attention in recent years not only as consumer electronics for entertainment, communications, and commerce but also for real-time continuous health monitoring. This has been spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices to replace the traditional, bulky, and rigid electronic devices. However, engineering smart wearables that can seamlessly integrate with the human body is a daunting task. Some of the key material attributes that are challenging to meet are skin conformability, breathability, and biocompatibility while providing tunability of its mechanical, electrical, and chemical properties. Electrospinning has emerged as a versatile platform that can potentially address these challenges by fabricating nanofibers with tunable properties from a polymer base. In this article, we review advances in wearable electronic devices and systems that are developed using electrospinning. We cover various applications in multiple fields including healthcare, biomedicine, and energy. We review the ability to tune the electrical, physiochemical, and mechanical properties of the nanofibers underlying these applications and illustrate strategies that enable integration of these nanofibers with human skin.
Collapse
Affiliation(s)
- Riddha Das
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
49
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
50
|
Liang Q, Zhang D, Wu Y, Chen S, Han Z, Wang B, Wang H. Self-Stretchable Fiber Liquid Sensors Made with Bacterial Cellulose/Carbon Nanotubes for Smart Diapers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21319-21329. [PMID: 35471964 DOI: 10.1021/acsami.2c00960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid sensors for detecting water and body fluids are crucial in daily water usage and health monitoring, but it is challenging to combine sensing performance with high tensile deformation and multifunctional applications. Here, a substrate-free, self-stretchable bacterial cellulose (BC)/carbon nanotube (CNT) helical fiber liquid sensor was prepared by the solution spinning and coiling process using BC as the water-sensitive matrix and CNTs as the active sensing materials. The BC/CNT (BCT) fiber sensor has a high stretch ratio of more than 1000% and a rapid response for a current change rate of 104% within 1 s, which is almost unaffected under washing and various stretching or knotting deformations. By combination of the BCT fiber, we can design smart diapers or water level detectors, which rapidly monitor the status of smart diapers or water level, and the monitoring result can be transferred on time through an alarm device or smartphone. In short, the scalable and continuous preparation of the self-stretchable BCT helical fiber will provide a capacious platform for the development of a wearable sensor applied in daily life (such as smart diapers, water level detection, etc.).
Collapse
Affiliation(s)
- Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yuchen Wu
- College of Information Sciences and Technology, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|