1
|
Anuthum S, Papan P, Pasena A, Yimklan S, Aramrat C, Sangthong P, Jakmunee J, Ounnunkad K. Sensitive electrochemical detection of glycated hemoglobin (HbA1c) using cobalt metal-organic framework/two-dimensional molybdenum diselenide nanocomposite-based immunosensors amplified by polyoxometalate/DNA aptamer. Colloids Surf B Biointerfaces 2025; 248:114461. [PMID: 39705874 DOI: 10.1016/j.colsurfb.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Clinical diagnosis and long-term diabetes management are advanced by monitoring glycated hemoglobin A1c (HbA1c) levels. New sensitive sandwich-like immunosensors for the diagnosis of early diabetes toward detecting HbA1c and hemoglobin (Hb) are demonstrated for the first time. DNA aptamers are used for signal amplification in the sensors for the detection of HbA1c and Hb. The immunosensors are constructed by coating with a cobalt-based metal-organic framework (Co-MOF)/two-dimensional molybdenum diselenide (2D MoSe2) composite onto a working electrode of an ItalSens screen-printed electrode (SPE) inserted into a Sensit/Smart Potentiostat affixed to a smartphone. After the immobilization of the antibodies, the detection is obtained by incubating the resultant SPEs in target solutions and then detecting the response of Keggin-type polyoxometalate (POM) bound on the DNA aptamer chains. In the selected potential window, the POM (silicotungstic acid, H4[α-SiW12O40]) used in this study exhibits the electron-transfer processes I and II ([α-SiW12O40]4-/5- and [α-SiW12O40]5-/6-, respectively) in the acidic buffer electrolyte. Our proposed device demonstrates exceptional performance in the recovery test of %HbA1c in healthy human plasma samples. The sensitivity, selectivity, and stability of this immunosensor are exceedingly outstanding, which makes it one of the potential analytical devices for diagnosing early diabetes by a %HbA1c assay.
Collapse
Affiliation(s)
- Siriporn Anuthum
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phakorn Papan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Arnat Pasena
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranphong Yimklan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanchanok Aramrat
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Sarma N, Das H, Saikia P. Borophene: The Frontier of Next-Generation Sensor Applications. ACS Sens 2025; 10:622-641. [PMID: 39932539 DOI: 10.1021/acssensors.4c03289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Two-dimensional (2D) materials have captivated scientific imagination, and among this proliferating cadre of 2D compounds, borophene; a single layer of boron atoms emerges as a nonpareil substance owing to its distinctive structural, electronic, and mechanical properties. This review investigates the extraordinary properties that borophene possesses, notably in its χ3 and β12 phases, which add directional metallic behavior, along with quite a lot of mechanical plasticity and high carrier mobility. The synthesis of borophene has made significant strides thanks to cutting-edge techniques like molecular beam epitaxy (MBE), atomic layer deposition (ALD), and chemical vapor deposition (CVD) and physical vapor deposition (PVD), with recent innovations breaking through the scalability no-go areas that, in the past, hindered the material's widespread use. Borophene's superior electronic, thermal, and mechanical properties, in contrast to other 2D materials like graphene, accentuate its potential for diverse applications, particularly in the realm of next-generation sensors. It places particular emphasis on borophene's appositeness for sensor technology, detailing the structural intricacies and unique topological characteristics that make borophene an exceptional candidate. By focusing on the mechanisms that enable its high sensitivity and flexibility, the discussion brings to light the transformative potential of this interesting 2D material while concurrently addressing the state-of-the-art advancements in borophene research, thereby providing a forward-looking perspective on future opportunities and challenges. Ultimately, this work pinpoints how borophene, with its unprecedented properties and technological promise, is poised to reshape sensor technology and opens new avenues for exploration in the broader field of advanced functional materials.
Collapse
Affiliation(s)
- Nilpawan Sarma
- Department of Applied Sciences (Chemical Science Division), Gauhati University, Guwahati-14, Assam-781014, India
| | - Hirendra Das
- Department of Electronics and Communication Technology, Gauhati University, Guwahati-14, Assam-781014, India
| | - Pranjal Saikia
- Department of Applied Sciences (Chemical Science Division), Gauhati University, Guwahati-14, Assam-781014, India
| |
Collapse
|
3
|
Wang Z, Chen K, Xu Y, Wang Z, Kong L, Wang S, Su WS. Structure, stability and electronic properties of two-dimensional monolayer noble metals with triangular lattices: Cu, Ag, and Au. Phys Chem Chem Phys 2025; 27:4766-4774. [PMID: 39950720 DOI: 10.1039/d4cp04590d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
First-principles calculations were performed to investigate the structure, stability, and electronic properties of two-dimensional noble metal monolayers, including Cu, Ag, and Au, inspired by the recent synthesis of a two-dimensional gold monolayer. All 2D noble metals exhibit great stability with almost standard equilateral triangular lattice structures. These monolayers can survive 10 ps MD annealing simulations under 300 K. Phonon spectra do not exhibit negative frequencies. The independent elastic constants, Young's modulus, and Poisson's ratio were obtained, indicating that these monolayers are mechanically stable and slightly anisotropic. Additionally, the results of band structures and density of states (DOS) calculations reveal typical metallic electronic properties. The dumbbell-like Fermi surfaces suggest anisotropic electron transport properties. These findings highlight the immense application potential of 2D noble metal monolayers in diverse fields.
Collapse
Affiliation(s)
- Zhefeng Wang
- Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Kai Chen
- Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Youmin Xu
- Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Zengjie Wang
- Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Lingbao Kong
- Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Songyou Wang
- Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China
- State Key Laboratory of Photovoltaic Science & Technology Laboratory, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Wan-Sheng Su
- National Taiwan Science Education Center, Taipei, 111081, Taiwan.
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
- Department of Physics, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan
| |
Collapse
|
4
|
Fender SS, Gonzalez O, Bediako DK. Altermagnetism: A Chemical Perspective. J Am Chem Soc 2025; 147:2257-2274. [PMID: 39786173 DOI: 10.1021/jacs.4c14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Altermagnets have been recently introduced as a classification of collinear, spin compensated magnetic materials that host net-zero magnetization yet display some electronic behaviors typically associated with noncompensated magnetic materials like ferromagnets. The emergence of such properties are a consequence of spin-split bands that arise under specific symmetry conditions in the limit of zero spin-orbit coupling. In this Perspective, we summarize the fundamental criteria for realizing an altermagnetic phase and present a qualitative electronic band structure derivation and symmetry analysis through chemical principles. We then discuss the properties that make altermagnets distinctive candidates for charge-to-spin conversion elements in spintronic devices and provide a brief review of some altermagnetic candidate materials. Finally, we discuss future directions for altermagnetism and highlight opportunities for chemists to advance this emerging field.
Collapse
Affiliation(s)
- Shannon S Fender
- Department of Chemistry, University of California, Berkeley, California 97420, United States
| | - Oscar Gonzalez
- Department of Chemistry, University of California, Berkeley, California 97420, United States
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, California 97420, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Cui F, García-López V, Wang Z, Luo Z, He D, Feng X, Dong R, Wang X. Two-Dimensional Organic-Inorganic van der Waals Hybrids. Chem Rev 2025; 125:445-520. [PMID: 39692750 DOI: 10.1021/acs.chemrev.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications. Here, this review provides a comprehensive overview of the latest advancements in the chemical synthesis, structural characterization, and numerous applications of 2DOI-vdWhs. Firstly, we introduce the chemistry and the physical properties of the recently rising organic 2D crystals (O2DCs), which feature crystalline 2D nanostructures comprising carbon-rich repeated units linked by covalent/noncovalent bonds and exhibit strong in-plane extended π-conjugation and weak interlayer vdWs interaction. Simultaneously, representative inorganic 2D crystals (I2DCs) are briefly summarized. After that, the synthetic strategies will be systematically summarized, including synthesizing single-component O2DCs with dimensional control and their vdWhs with I2DCs. With these synthetic approaches, the control in the dimension, the stacking modes, and the composition of the 2DOI-vdWhs will be highlighted. Subsequently, a special focus will be given on the discussion of the optical and electronic properties of the single-component 2D materials and their vdWhs, which will be closely relevant to their structures, so that we can establish a general structure-property relationship of 2DOI-vdWhs. In addition to these physical properties, the (opto-)electronic devices such as transistors, photodetectors, sensors, spintronics, and neuromorphic devices as well as energy devices will be discussed. Finally, we provide an outlook to discuss the key challenges for the 2DOI-vdWhs and their future development. This review aims to provide a foundational understanding and inspire further innovation in the development of next-generation 2DOI-vdWhs with transformative technological potential.
Collapse
Affiliation(s)
- Fucai Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Víctor García-López
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Daowei He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Xinran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University, Suzhou 215163, China
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou 215163, China
- Suzhou Laboratory, Suzhou 215163, China
| |
Collapse
|
6
|
Narváez-Romero AM, Rodríguez-Lozano FJ, Pecci-Lloret MP. Graphene-Based Materials for Bone Regeneration in Dentistry: A Systematic Review of In Vitro Applications and Material Comparisons. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:88. [PMID: 39852703 PMCID: PMC11767789 DOI: 10.3390/nano15020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
INTRODUCTION Graphene, a two-dimensional arrangement of carbon atoms, has drawn significant interest in medical research due to its unique properties. In the context of bone regeneration, graphene has shown several promising applications. Its robust structure, electrical conductivity, and biocompatibility make it an ideal candidate for enhancing bone tissue regeneration and repair processes. Studies have revealed that the presence of graphene can stimulate the proliferation and differentiation of bone cells, thereby promoting the formation of new bone tissue. Additionally, its ability to act as an effective carrier for growth factors and drugs allows controlled release, facilitating the engineering of specific tissues for bone regeneration. AIM To assess the efficacy of graphene in enhancing bone regeneration through in vitro studies, identify key safety concerns, and propose directions for future research to optimize its clinical applicability. MATERIALS AND METHODS The present systematic review was carried out using the PRISMA 2020 guideline. A first search was carried out on 20 November 2023 and was later updated on 14 February and 15 April 2024 in the databases of PubMed, Scopus, and Web of Science. Those in vitro studies published in English that evaluated the potential for bone regeneration with graphene in dentistry and also those which met the search terms were selected. Furthermore, the quality of the studies was assessed following the modified CONSORT checklist of in vitro studies on dental materials. RESULTS A total of 17 in vitro studies met the inclusion criteria. Among these, 12 showed increased osteoblast adhesion, proliferation, and differentiation, along with notable enhancements in mineralized matrix formation. Additionally, they exhibited a significant upregulation of osteogenic markers such as RUNX and COL1 (p < 0.05). However, the variability in methodologies and a lack of long-term assessments were noted as critical gaps. CONCLUSIONS The evaluation of the efficacy and safety of graphene in bone regeneration in dentistry revealed significant potential. However, it is recognized that clinical implementation should be approached with caution, considering identified areas of improvement and suggestions for future research. Future studies should focus on standardized experimental designs, including in vivo studies to evaluate long-term safety, immune responses, and vascularization processes in realistic biological environments.
Collapse
Affiliation(s)
| | - Francisco Javier Rodríguez-Lozano
- Dermatology, Stomatology, Radiology and Physical Medicine, Hospital Morales Meseguer, Medicine School, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain; (A.M.N.-R.); (M.P.P.-L.)
| | | |
Collapse
|
7
|
Bao K, Zhao Y, Ding W, Xiao Y, Yang B. First Principles Study of p-Type Transition and Enhanced Optoelectronic Properties of g-ZnO Based on Diverse Doping Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1863. [PMID: 39683252 DOI: 10.3390/nano14231863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This research study delves into the effects of strategies such as single-acceptor doping, double-acceptor co-doping, and donor-acceptor co-doping on the properties of g-ZnO. This study found that single-acceptor doping with Li and Ag elements can form shallow acceptor levels, thereby facilitating p-type conductivity. Furthermore, the introduction of the donor element F can compensate for the deep acceptor levels formed by double-acceptor co-doping, transforming them into shallow acceptor levels and modulating the energy band structure. The co-doping strategy involving double-acceptor elements and a donor element further optimizes the properties of g-ZnO, such as reducing the bandgap and enhancing carrier mobility. Additionally, in terms of optical properties, g-Zn14Li2FO15 demonstrates outstanding performance in the visible-light region compared with other doping systems, especially generating a higher absorption peak around the wavelength of 520 nm. These findings provide a theoretical foundation for the application of g-ZnO in optoelectronic devices.
Collapse
Affiliation(s)
- Kaiqi Bao
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yanfang Zhao
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Wei Ding
- School of Electrical Engineering and Automation, Changshu Institute of Technology, Changshu 215500, China
| | - Yuanbin Xiao
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China
- Key Laboratory of Materials Surface Science and Technology, Jiangsu Province Higher Education Institutes (Changzhou University), Changzhou 213164, China
| | - Bing Yang
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
8
|
Achehboune M, Zhour K, Dabrowski J, Vignaud D, Franck M, Lukosius M, Colomer JF, Henrard L. Atomistic insights into the nucleation and growth of hexagonal boron nitride and graphene heterostructures. Phys Chem Chem Phys 2024; 26:28198-28207. [PMID: 39498725 DOI: 10.1039/d4cp03300k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Graphene and hexagonal boron nitride (hBN) are two-dimensional (2D) materials with a similar atomic structure but drastically different although complementary electronic properties. The large-scale synthesis of h-BN/graphene heterostructures with high crystallographic quality is required to fully benefit of the graphene electronic properties. In this study, we examine numerically the interaction of graphene precursors on hBN and of hBN precursors on graphene to gain deep insight of the CVD and MBE growth mechanism of graphene/hBN heterostructures. Density functional theory (DFT) calculations reveal the adsorption and diffusion behaviors for B, N, and C atoms on these surfaces. In particular, the adsorption energy is found to be similar to the diffusion barriers, except for the nearly free diffusion of B atoms on both graphene and hBN. We have also investigated the transition from individual atoms to graphene or h-BN seeds by considering the stability of linear chains as well as branched and ring seeds. Furthermore, for larger clusters, the triangular h-BN domains are found to be equally thermodynamically stable on graphene regardless of their orientation. These findings provide preliminary hints for the ability of graphene to grow on hBN layers and hBN layer on graphene.
Collapse
Affiliation(s)
- Mohamed Achehboune
- Laboratoire de Physique du solide, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - Kazem Zhour
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Jaroslaw Dabrowski
- IHP - Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, Frankfurt (Oder) 15236, Germany
| | - Dominique Vignaud
- Univ. Lille, CNRS, Univ Polytechnique Hauts-de-France, UMR 8520 Institut d'Electronique de Microélectronique et de Nanotechnologie (IEMN), Lille F-59000, France
| | - Max Franck
- IHP - Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, Frankfurt (Oder) 15236, Germany
| | - Mindaugas Lukosius
- IHP - Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, Frankfurt (Oder) 15236, Germany
| | - Jean-François Colomer
- Laboratoire de Physique du solide, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - Luc Henrard
- Laboratoire de Physique du solide, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
9
|
Abidi KR, Koskinen P. Gentle tension stabilizes atomically thin metallenes. NANOSCALE 2024; 16:19649-19655. [PMID: 39370967 DOI: 10.1039/d4nr03266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Metallenes are atomically thin two-dimensional (2D) materials lacking a layered structure in the bulk form. They can be stabilized by nanoscale constrictions like pores in 2D covalent templates, but the isotropic metallic bonding makes stabilization difficult. A few metallenes have been stabilized but comparison with theory predictions has not always been clear. Here, we use density-functional theory calculations to explore the energetics and dynamic stabilities of 45 metallenes at six lattices (honeycomb, square, hexagonal, and their buckled counterparts) and varying atomic densities. We found that of the 270 different crystalline lattices, 128 were dynamically stable at sporadic densities, mostly under tensile strain. At the energy minima, lattices were often dynamically unstable against amorphization and the breaking down of metallene planarity. Consequently, the results imply that crystalline metallenes should be seen through a novel paradigm: they should be considered not as membranes with fixed structures and lattice constants but as yielding membranes that can be stabilized better under tensile strain and low atomic density. Following this paradigm, we rank the most promising metallenes for 2D stability and hope that the paradigm will help develop new strategies to synthesize larger and more stable metallene samples for plasmonic, optical, and catalytic applications.
Collapse
Affiliation(s)
- Kameyab Raza Abidi
- Nanoscience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland.
| | - Pekka Koskinen
- Nanoscience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland.
| |
Collapse
|
10
|
Baumler K, Schaak RE. Tutorial on Describing, Classifying, and Visualizing Common Crystal Structures in Nanoscale Materials Systems. ACS NANOSCIENCE AU 2024; 4:290-316. [PMID: 39430373 PMCID: PMC11487663 DOI: 10.1021/acsnanoscienceau.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 10/22/2024]
Abstract
Crystal structures underpin many aspects of nanoscience and technology, from the arrangements of atoms in nanoscale materials to the ways in which nanoscale materials form and grow to the structures formed when nanoscale materials interact with each other and assemble. The impacts of crystal structures and their relationships to one another in nanoscale materials systems are vast. This Tutorial provides nanoscience researchers with highlights of many crystal structures that are commonly observed in nanoscale materials systems, as well as an overview of the tools and concepts that help to derive, describe, visualize, and rationalize key structural features. The scope of materials focuses on the elements and their compounds that are most frequently encountered as nanoscale materials, including both close-packed and nonclose-packed structures. Examples include three-dimensionally and two-dimensionally bonded compounds related to the rocksalt, nickel arsenide, fluorite, zincblende, wurtzite, cesium chloride, and perovskite structures, as well as layered perovskites, intergrowth compounds, MXenes, transition metal dichalcogenides, and other layered materials. Ordered versus disordered structures, high entropy materials, and instructive examples of more complex structures, including copper sulfides, are also discussed to demonstrate how structural visualization tools can be applied. The overall emphasis of this Tutorial is on the ways in which complex structures are derived from simpler building blocks, as well as the similarities and interrelationships among certain classes of structures that, at first glance, may be interpreted as being very different. Identifying and appreciating these structural relationships is useful to nanoscience researchers, as it allows them to deconstruct complex structures into simpler components, which is important for designing, understanding, and using nanoscale materials.
Collapse
Affiliation(s)
- Katelyn
J. Baumler
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E. Schaak
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Maity G, Mishra PK, Patel G, Dubey S. Advances in borophene based photodetectors for a sustainable tomorrow: a comprehensive review. NANOSCALE 2024; 16:18295-18318. [PMID: 39279467 DOI: 10.1039/d4nr02638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Borophene, with its unique properties such as excellent conductivity, high thermal stability, and tunable electronic band structure, holds immense promise for advancing photodetector technology. These qualities make it an attractive material for enhancing the efficiency and performance of photodetectors across various wavelengths. Research so far has highlighted borophene's potential in improving sensitivity, response time, and overall functionality in optoelectronic devices. However, to fully realize the potential of borophene-based photodetectors, several challenges must be addressed. A major hurdle is the reproducibility and scalability of borophene synthesis, which is essential for its widespread use in practical applications. Furthermore, understanding the underlying physics of borophene and optimizing the device architecture are critical for achieving consistent performance under different operating conditions. These challenges must be overcome to enable the effective integration of borophene into commercial photodetector devices. A thorough evaluation of borophene-based photodetectors is necessary to guide future research and development in this field. This review will provide a detailed account of the current synthesis methods, discuss the experimental results, and identify the challenges that need to be addressed. Additionally, the review will explore potential strategies to overcome these obstacles, paving the way for significant advancements in solar cells, light-based sensors, and environmental monitoring systems. By addressing these issues, the development of borophene-based photodetectors could lead to substantial improvements in optoelectronic technology, benefiting various applications and industries.
Collapse
Affiliation(s)
- Gurupada Maity
- Department of Physics, School of Basic and Applied Sciences, Galgotias University, Gautam Buddha Nagar-203201, India.
| | - Prashant Kumar Mishra
- Department of Physics, School of Basic and Applied Sciences, Galgotias University, Gautam Buddha Nagar-203201, India.
| | - Geetika Patel
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, India
| | - Santosh Dubey
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
12
|
Choudhary S, Saroha R, Banerjee S. Efficient Electron Injection into Graphullerene Enables Reversible NaC 2 Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50859-50869. [PMID: 39279679 DOI: 10.1021/acsami.4c11178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Sodium-ion batteries are emerging as promising alternatives to conventional lithium-based technology, offering solutions to challenges in large-scale grid storage. However, the capacity of conventional graphite-based anodes for storing Na-ions is inherently limited by suboptimal thermodynamic interactions and irreversible structural changes that occur in the anode during charge-discharge cycles. Herein, we present a computational design that explores the potential of graphullerene, a two-dimensional framework with interconnected fullerene moieties, for the reversible storage of Na-ions. A unique aspect of this design is the electron injection capacity into the graphullerene anode, reaching 15 electrons per fullerene moiety, which is the highest limit to date. This advancement enables large-scale Na-ion storage up to the stoichiometry of NaC2, exhibiting specific capacity of 551 mAhg-1 and averaged open circuit voltage of 0.18 V vs Na/Na+. In addition, the multilayered arrangement of stored Na-ions enhances the Na-ion diffusivity on the graphullerene surface, leading to rapid insertion and extraction kinetics. Thus, raising the electron injection limit offers a promising strategy to transform carbon-based anodes into suitable candidates for reversible Na-ion storage, without relying on artificial defect introduction or doping.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ritika Saroha
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Swastika Banerjee
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
13
|
Sun L, Xu H, Bai Y, Chang L, Gao J, Zhao M, Huang AT, Ma L, Lei Y, Kang F, Terrones M. Vanadium Single Atoms Embedded in MoS 2 Enabled Gut-Brain Axis Neurotransmitter Detection at pM Levels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307410. [PMID: 38778499 DOI: 10.1002/smll.202307410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Indexed: 05/25/2024]
Abstract
The detection of monoamine neurotransmitters is of paramount importance as the neurotransmitters are the chemical messengers regulating the gut-brain axis (GBA). It requires real-time, ultrasensitive, and selective sensing of the neurotransmitters in the gastric/intestinal fluid. However, multi-components present in the gastric/intestinal fluid make sensing challenging to achieve in terms of ultra-high sensitivity and selectivity. Herein, an approach is introduced to utilize vanadium single atom catalytic (SAC) centers in van der Waals MoS2 (V-MoS2) to selectively detect real-time serotonin (5-HT) in artificial gastric/intestinal fluid. The synergetic effect of V-SACs and the surface S-bonds on the MoS2 surface, enables an extremely wide range of 5-HT detection (from 1 pM to 100 µM), with optimum selectivity and interference resistance. By combining density functional theory calculations and scanning transmission electron microscopy, it is concluded that the V-SACs embedded in the MoS2 network create active sites that greatly facilitate the charge exchange between the material and the 5-HT molecules. This result allows the 5-HT detection in GBA studies to be more reliable, and the material tunability provides a general platform to achieve real-time and multi-component detection of other monoamine neurotransmitters in GBA such as dopamine and norepinephrine.
Collapse
Affiliation(s)
- Linxuan Sun
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yichao Bai
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liang Chang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, P. R. China
| | - Jianxiang Gao
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Mingchuang Zhao
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Arthur Tran Huang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yu Lei
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Feiyu Kang
- Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center and Shenzhen Geim Graphene Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Mauricio Terrones
- Department of Physics, Department of Chemistry, Department of Materials Sciences, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Research Initiative for Supra-Materials, Shinshu University, Nagano, 380-8553, Japan
| |
Collapse
|
14
|
Politano GG. Optical Properties of Graphene Nanoplatelets on Amorphous Germanium Substrates. Molecules 2024; 29:4089. [PMID: 39274937 PMCID: PMC11397050 DOI: 10.3390/molecules29174089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
In this work, the integration of graphene nanoplatelets (GNPs) with amorphous germanium (Ge) substrates is explored. The optical properties were characterized using Variable-Angle Spectroscopic Ellipsometry (VASE). The findings of this study reveal a strong interaction between GNPs and amorphous germanium, indicated by a significant optical absorption. This interaction suggests a change in the electronic structure of the GNPs, implying that amorphous germanium could enhance their effectiveness in devices such as optical sensors, photodetectors, and solar cells. Herein, the use of amorphous germanium as a substrate for GNPs, which notably increases their refractive index and extinction coefficient, is introduced for the first time. By exploring this unique material combination, this study provides new insights into the interaction between GNPs and amorphous substrates, paving the way for the develop of high-performance, scalable optoelectronic devices with enhanced efficiency.
Collapse
|
15
|
Milligan GM, Cordova DLM, Yao ZF, Zhi BY, Scammell LR, Aoki T, Arguilla M. Encapsulation of crystalline and amorphous Sb 2S 3 within carbon and boron nitride nanotubes. Chem Sci 2024; 15:10464-10476. [PMID: 38994401 PMCID: PMC11234864 DOI: 10.1039/d4sc01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
The recent rediscovery of 1D and quasi-1D (q-1D) van der Waals (vdW) crystals has laid foundation for the realization of emergent electronic, optical, and quantum-confined physical phenomena in both bulk and at the nanoscale. Of these, the highly anisotropic q-1D vdW crystal structure and the visible-light optical/optoelectronic properties of antimony trisulfide (Sb2S3) have led to its widespread consideration as a promising building block for photovoltaic and non-volatile phase change devices. However, while these applications will greatly benefit from well-defined and sub-nanometer-thick q-1D structures, little has been known about feasible synthetic routes that can access single covalent chains of Sb2S3. In this work, we explore how encapsulation in single or multi-walled carbon nanotubes (SWCNTs or MWCNTs) and visible-range transparent boron nitride nanotubes (BNNTs) influences the growth and phase of Sb2S3 nanostructures. We demonstrate that nanotubes with smaller diameters had a more pronounced effect in the crystallographic growth direction and orientation of Sb2S3 nanostructures, promoting the crystallization of the guest structures along the long-axis [010]-direction. As such, we were able to reliably access well-ordered few to single covalent chains of Sb2S3 when synthesized within defect-free SWCNTs with sub-2 nm inner diameters. Intriguingly, we found that the degree of crystalline order of Sb2S3 nanostructures was strongly influenced by the presence of defects and discontinuities along the Sb2S3-nanotube interface. We show that amorphous nanowire domains of Sb2S3 form around defect sites in larger, multi-walled nanotubes that manifest inner wall defects and discontinuities, suggesting a means to manipulate the crystallization dynamics of confined sub-10 nm-thick Sb2S3 nanostructures within nanotubes. Lastly, we show that ultranarrow amorphous Sb2S3 can impart functionality onto isolable BNNTs with photocurrent generation in the pA range which, alongside the dispersibility of the Sb2S3@BNNTs, could be leveraged to easily fabricate photoresistors only a few nm in width. Altogether, our results serve to solidify the understanding of how q-1D vdW pnictogen chalcogenides crystallize within confined synthetic platforms and are a step towards realizing functional materials from ensembles of encapsulated heterostructures.
Collapse
Affiliation(s)
- Griffin M Milligan
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| | | | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, University of California Irvine Irvine California 92697 USA
| | - Brian Y Zhi
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| | | | - Toshihiro Aoki
- Irvine Materials Research Institute, University of California Irvine Irvine California 92697 USA
| | - Maxx Arguilla
- Department of Chemistry, University of California Irvine Irvine California 92697 USA
| |
Collapse
|
16
|
Liu H, Zhang T, Wu P, Lee HW, Liu Z, Tang TW, Tang SY, Kang T, Park JH, Wang J, Zhang K, Zheng X, Peng YR, Chueh YL, Liu Y, Palacios T, Kong J, Luo Z. Boosting Monolayer Transition Metal Dichalcogenides Growth by Hydrogen-Free Ramping during Chemical Vapor Deposition. NANO LETTERS 2024; 24:8277-8286. [PMID: 38949123 DOI: 10.1021/acs.nanolett.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peng Wu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hae Won Lee
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tsz Wing Tang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
| | - Shin-Yi Tang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ting Kang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Ji-Hoon Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun Wang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
| | - Kenan Zhang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yu-Ren Peng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
17
|
Qin T, Wang T, Zhu J. Recent progress in on-surface synthesis of nanoporous graphene materials. Commun Chem 2024; 7:154. [PMID: 38977754 PMCID: PMC11231364 DOI: 10.1038/s42004-024-01222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Nanoporous graphene (NPG) materials are generated by removing internal degree-3 vertices from graphene and introducing nanopores with specific topological structures, which have been widely explored and exploited for applications in electronic devices, membranes, and energy storage. The inherent properties of NPGs, such as the band structures, field effect mobilities and topological properties, are crucially determined by the geometric structure of nanopores. On-surface synthesis is an emerging strategy to fabricate low-dimensional carbon nanostructures with atomic precision. In this review, we introduce the progress of on-surface synthesis of atomically precise NPGs, and classify NPGs from the aspects of element types, topological structures, pore shapes, and synthesis strategies. We aim to provide a comprehensive overview of the recent advancements, promoting interdisciplinary collaboration to further advance the synthesis and applications of NPGs.
Collapse
Affiliation(s)
- Tianchen Qin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Junfa Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| |
Collapse
|
18
|
Toom SR, Sato T, Milne Z, Bernal RA, Jeng YR, Muratore C, Glavin NR, Carpick RW, Schall JD. Nanoscale Adhesion and Material Transfer at 2D MoS 2-MoS 2 Interfaces Elucidated by In Situ Transmission Electron Microscopy and Atomistic Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30506-30520. [PMID: 38805354 DOI: 10.1021/acsami.4c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Low-dimensional materials, such as MoS2, hold promise for use in a host of emerging applications, including flexible, wearable sensors due to their unique electrical, thermal, optical, mechanical, and tribological properties. The implementation of such devices requires an understanding of adhesive phenomena at the interfaces between these materials. Here, we describe combined nanoscale in situ transmission electron microscopy (TEM)/atomic force microscopy (AFM) experiments and simulations measuring the work of adhesion (Wadh) between self-mated contacts of ultrathin nominally amorphous and nanocrystalline MoS2 films deposited on Si scanning probe tips. A customized TEM/AFM nanoindenter permitted high-resolution imaging and force measurements in situ. The Wadh values for nanocrystalline and nominally amorphous MoS2 were 604 ± 323 mJ/m2 and 932 ± 647 mJ/m2, respectively, significantly higher than previously reported values for mechanically exfoliated MoS2 single crystals. Closely matched molecular dynamics (MD) simulations show that these high values can be explained by bonding between the opposing surfaces at defects such as grain boundaries. Simulations show that as grain size decreases, the number of bonds formed, the Wadh and its variability all increase, further supporting that interfacial covalent bond formation causes high adhesion. In some cases, sliding between delaminated MoS2 flakes during separation is observed, which further increases the Wadh and the range of adhesive interaction. These results indicate that for low adhesion, the MoS2 grains should be large relative to the contact area to limit the opportunity for bonding, whereas small grains may be beneficial, where high adhesion is needed to prevent device delamination in flexible systems.
Collapse
Affiliation(s)
- Sathwik Reddy Toom
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Takaaki Sato
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zachary Milne
- Gatan, Inc., Pleasanton, California 94588, United States
| | - Rodrigo A Bernal
- Department of Mechanical Engineering, University of Texas, Dallas, Richardson, Texas 75080, United States
| | - Yeau-Ren Jeng
- Department of Biomedical Engineering, National Cheng Kung University in Tainan, Tainan 70101, Taiwan
| | - Christopher Muratore
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469, United States
| | - Nicholas R Glavin
- Materials and Manufacturing Directorate, US Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Robert W Carpick
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J David Schall
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| |
Collapse
|
19
|
Adinehloo D, Hendrickson JR, Perebeinos V. Wetting and strain engineering of 2D materials on nanopatterned substrates. NANOSCALE ADVANCES 2024; 6:2823-2829. [PMID: 38817431 PMCID: PMC11134232 DOI: 10.1039/d3na01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/31/2024] [Indexed: 06/01/2024]
Abstract
The fascinating realm of strain engineering and wetting transitions in two-dimensional (2D) materials takes place when placed on a two-dimensional array of nanopillars or one-dimensional rectangular grated substrates. Our investigation encompasses a diverse set of atomically thin 2D materials, including transition metal dichalcogenides, hexagonal boron nitride, and graphene, with a keen focus on the impact of van der Waals adhesion energies to the substrate on the wetting/dewetting behavior on nanopatterned substrates. We find a critical aspect ratio of the nanopillar or grating heights to the period of the pattern when the wetting/dewetting transition occurs. Furthermore, energy hysteresis analysis reveals dynamic detachment and re-engagement events during height adjustments, shedding light on energy barriers of 2D monolayer transferred on patterned substrates. Our findings offer avenues for strain engineering in 2D materials, leading to promising prospects for future technological applications.
Collapse
Affiliation(s)
- Davoud Adinehloo
- Department of Electrical Engineering, University at Buffalo Buffalo NY 14228 USA
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory Wright-Patterson AFB Ohio 45433 USA
| | - Vasili Perebeinos
- Department of Electrical Engineering, University at Buffalo Buffalo NY 14228 USA
| |
Collapse
|
20
|
Balakrishnan D, Lee CI. Photodynamic impact of curcumin enhanced silver functionalized graphene nanocomposites on Candida virulence. DISCOVER NANO 2024; 19:71. [PMID: 38683264 PMCID: PMC11058173 DOI: 10.1186/s11671-024-04017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Candida species are escalating resistance to conventional antifungal treatments, intensifying their virulence, and obstructing the effectiveness of antifungal medications. Addressing this challenge is essential for effectively managing Candida infections. The overarching objective is to advance the development of more efficient and precise therapies tailored to counter Candida infections. This study focuses on developing antifungal combined drugs using curcumin-enhanced silver-functionalized graphene nanocomposites (Cur-AgrGO) to effectively target key virulence factors of C. albicans, C. tropicalis, and C. glabrata (Candida spp.). The green reduction of graphene oxide (GO) using bioentities and active molecules makes this approach cost-effective and environmentally friendly. The nanocomposites were characterized using various techniques. Combining Cur-AgrGO with photodynamic therapy (PDT) demonstrated effective antifungal and antibiofilm activity with delayed growth and metabolism. The nanocomposites effectively suppressed hyphal transition and reduced key virulence factors, including proteinases, phospholipases, ergosterol levels, and cell membrane integrity. The findings suggest that Cur-AgrGO + PDT has potential as a treatment option for Candida infections. This innovative approach holds promise for treating Candida infections.
Collapse
Affiliation(s)
| | - Cheng-I Lee
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chiayi, 62102, Taiwan, ROC.
- Center for Nano Bio-Detections, National Chung Cheng University, Min-Hsiung, Chiayi, 62102, Taiwan, ROC.
- Center for Innovative Research On Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chiayi, 62102, Taiwan, ROC.
- Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University, Chiayi, 62102, Taiwan, ROC.
| |
Collapse
|
21
|
Thomas JC, Chen W, Xiong Y, Barker BA, Zhou J, Chen W, Rossi A, Kelly N, Yu Z, Zhou D, Kumari S, Barnard ES, Robinson JA, Terrones M, Schwartzberg A, Ogletree DF, Rotenberg E, Noack MM, Griffin S, Raja A, Strubbe DA, Rignanese GM, Weber-Bargioni A, Hautier G. A substitutional quantum defect in WS 2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation. Nat Commun 2024; 15:3556. [PMID: 38670956 PMCID: PMC11519662 DOI: 10.1038/s41467-024-47876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (CoS 0 ) and fabricate it with scanning tunneling microscopy (STM). The CoS 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.
Collapse
Affiliation(s)
- John C Thomas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Wei Chen
- Institute of Condensed Matter and Nanoscicence, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Yihuang Xiong
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Bradford A Barker
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA
| | - Junze Zhou
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Weiru Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Antonio Rossi
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nolan Kelly
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shalini Kumari
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16082, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Adam Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - D Frank Ogletree
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marcus M Noack
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sinéad Griffin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Archana Raja
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Strubbe
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA
| | - Gian-Marco Rignanese
- Institute of Condensed Matter and Nanoscicence, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Alexander Weber-Bargioni
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Geoffroy Hautier
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
22
|
Dong C, Lu LS, Lin YC, Robinson JA. Air-Stable, Large-Area 2D Metals and Semiconductors. ACS NANOSCIENCE AU 2024; 4:115-127. [PMID: 38644964 PMCID: PMC11027125 DOI: 10.1021/acsnanoscienceau.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 04/23/2024]
Abstract
Two-dimensional (2D) materials are popular for fundamental physics study and technological applications in next-generation electronics, spintronics, and optoelectronic devices due to a wide range of intriguing physical and chemical properties. Recently, the family of 2D metals and 2D semiconductors has been expanding rapidly because they offer properties once unknown to us. One of the challenges to fully access their properties is poor stability in ambient conditions. In the first half of this Review, we briefly summarize common methods of preparing 2D metals and highlight some recent approaches for making air-stable 2D metals. Additionally, we introduce the physicochemical properties of some air-stable 2D metals recently explored. The second half discusses the air stability and oxidation mechanisms of 2D transition metal dichalcogenides and some elemental 2D semiconductors. Their air stability can be enhanced by optimizing growth temperature, substrates, and precursors during 2D material growth to improve material quality, which will be discussed. Other methods, including doping, postgrowth annealing, and encapsulation of insulators that can suppress defects and isolate the encapsulated samples from the ambient environment, will be reviewed.
Collapse
Affiliation(s)
- Chengye Dong
- 2-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Li-Syuan Lu
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Chuan Lin
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Joshua A. Robinson
- 2-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Yin L, Cheng R, Ding J, Jiang J, Hou Y, Feng X, Wen Y, He J. Two-Dimensional Semiconductors and Transistors for Future Integrated Circuits. ACS NANO 2024; 18:7739-7768. [PMID: 38456396 DOI: 10.1021/acsnano.3c10900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Silicon transistors are approaching their physical limit, calling for the emergence of a technological revolution. As the acknowledged ultimate version of transistor channels, 2D semiconductors are of interest for the development of post-Moore electronics due to their useful properties and all-in-one potentials. Here, the promise and current status of 2D semiconductors and transistors are reviewed, from materials and devices to integrated applications. First, we outline the evolution and challenges of silicon-based integrated circuits, followed by a detailed discussion on the properties and preparation strategies of 2D semiconductors and van der Waals heterostructures. Subsequently, the significant progress of 2D transistors, including device optimization, large-scale integration, and unconventional devices, are presented. We also examine 2D semiconductors for advanced heterogeneous and multifunctional integration beyond CMOS. Finally, the key technical challenges and potential strategies for 2D transistors and integrated circuits are also discussed. We envision that the field of 2D semiconductors and transistors could yield substantial progress in the upcoming years and hope this review will trigger the interest of scientists planning their next experiment.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiahui Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yutang Hou
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| |
Collapse
|
24
|
Lee H, Heo E, Yoon H. Physically Exfoliating 2D Materials: A Versatile Combination of Different Materials into a Layered Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18678-18695. [PMID: 38095583 DOI: 10.1021/acs.langmuir.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Improving the properties of the existing two-dimensional (2D) materials is a major concern for many researchers today. Synergistic coupling of single-phase 2D material species with secondary functional materials has resulted in 2D nanohybrids with significantly enhanced properties beyond the sum of their individual components. In particular, nanohybrids created by alternatingly integrating different material species in the confined 2D nanometer regime have the potential to meet the needs of a wide variety of applications, particularly the many important energy-related applications that are of interest. However, scaling up production of 2D nanohybrids is still challenging, which is a major barrier to their practical application. Delamination and exfoliation by physical means separate the weakly bound 2D nanosheets into kinetically stable single- or few-layers. Herein, we provide a concise overview of recent achievements in the physical exfoliation-based fabrication of 2D nanohybrids featuring controlled heterolayered structures. Several strategies to efficiently produce heterolayered 2D nanohybrids in large quantities are described, such as (i) coexfoliation of different 2D species, (ii) aqueous-phase synthesis, and (iii) gas-phase synthesis. The versatility of the 2D nanohybrids was also illustrated by remarkable research examples, especially in energy-related applications.
Collapse
Affiliation(s)
- Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
25
|
Lan J, Peng Y, Liang L, Duan X, Kong Z, Zhang L, Shen JW. Theoretical study of protein adsorption on graphene/h-BN heterostructures. Phys Chem Chem Phys 2023; 25:31206-31221. [PMID: 37955184 DOI: 10.1039/d3cp03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The biological characteristics of planar heterojunction nanomaterials and their interactions with biomolecules are crucial for the potential application of these materials in the biomedical field. This study employed molecular dynamics (MD) simulations to investigate the interactions between proteins with distinct secondary structures (a single α-helix representing the minimal oligomeric domain protein, a single β-sheet representing the WW structural domain of the Yap65 protein, and a mixed α/β structure representing the BBA protein) and a planar two-dimensional heterojunction (a GRA/h-BN heterojunction consisting of a graphene nanoplate (GRA) and a hexagonal boron nitride nanoplate (h-BN)). The results indicate that all three kinds of protein can be quickly and stably adsorbed on the GRA/h-BN heterojunction due to the strong van der Waals interaction, regardless of their respective types, structures and initial orientations. Moreover, the proteins exhibit a pronounced binding preference for the hBN region of the GRA/h-BN heterojunction. Upon adsorption, the α-helix structure of the minimal oligomeric domain protein experiences partial or complete denaturation. Conversely, while the secondary structure of the single β-sheet and mixed α/β structure (BBA protein) undergoes slight changes (focus on the coil and turn regions), the main α-helix and β-sheet structures remain intact. The initial orientation significantly impacts the degree of protein adsorption and its position on the GRA/h-BN heterojunction. However, regardless of the initial orientation, proteins can ultimately be adsorbed onto the GRA/h-BN heterojunction. Furthermore, the initial orientation has a minor influence on the structural changes of proteins. Significantly, the combination of different secondary structures helps mitigate the denaturation of a single α-helix structure to some extent. Overall, the adsorption of proteins on GRA/h-BN is primarily driven by van der Waals and hydrophobic interactions. Proteins with β-sheet or mixed structures exhibit stronger biocompatibility on the GRA/h-BN heterojunction. Our research elucidated the biological characteristics of GRA/h-BN heterojunction nanomaterials and their interactions with proteins possessing diverse secondary structures. It offers a theoretical foundation for considering heterojunction nanomaterials as promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Jun Lan
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Yiran Peng
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Xing Duan
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
26
|
Inchingolo F, Inchingolo AM, Latini G, Palmieri G, Di Pede C, Trilli I, Ferrante L, Inchingolo AD, Palermo A, Lorusso F, Scarano A, Dipalma G. Application of Graphene Oxide in Oral Surgery: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6293. [PMID: 37763569 PMCID: PMC10532659 DOI: 10.3390/ma16186293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The current review aims to provide an overview of the most recent research in the last 10 years on the potentials of graphene in the dental surgery field, focusing on the potential of graphene oxide (GO) applied to implant surfaces and prosthetic abutment surfaces, as well as to the membranes and scaffolds used in Guided Bone Regeneration (GBR) procedures. "Graphene oxide" and "dental surgery" and "dentistry" were the search terms utilized on the databases Scopus, Web of Science, and Pubmed, with the Boolean operator "AND" and "OR". Reviewers worked in pairs to select studies based on specific inclusion and exclusion criteria. They included animal studies, clinical studies, or case reports, and in vitro and in vivo studies. However, they excluded systematic reviews, narrative reviews, and meta-analyses. Results: Of these 293 studies, 19 publications were included in this review. The field of graphene-based engineered nanomaterials in dentistry is expanding. Aside from its superior mechanical properties, electrical conductivity, and thermal stability, graphene and its derivatives may be functionalized with a variety of bioactive compounds, allowing them to be introduced into and improved upon various scaffolds used in regenerative dentistry. This review presents state-of-the-art graphene-based dental surgery applications. Even if further studies and investigations are still needed, the GO coating could improve clinical results in the examined dental surgery fields. Better osseointegration, as well as increased antibacterial and cytocompatible qualities, can benefit GO-coated implant surgery. On bacterially contaminated implant abutment surfaces, the CO coating may provide the optimum prospects for soft tissue sealing to occur. GBR proves to be a safe and stable material, improving both bone regeneration when using GO-enhanced graft materials as well as biocompatibility and mechanical properties of GO-incorporated membranes.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Giulia Latini
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Giulia Palmieri
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Chiara Di Pede
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Irma Trilli
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Laura Ferrante
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti–Pescara, 66100 Chieti, Italy; (F.L.); (A.S.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti–Pescara, 66100 Chieti, Italy; (F.L.); (A.S.)
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.I.); (A.M.I.); (G.L.); (G.P.); (C.D.P.); (I.T.); (L.F.); (G.D.)
| |
Collapse
|
27
|
Ghosh S, Zhang J, Wasala M, Patil P, Pradhan N, Talapatra S. Probing the Electronic and Opto-Electronic Properties of Multilayer MoS 2 Field-Effect Transistors at Low Temperatures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2333. [PMID: 37630917 PMCID: PMC10459643 DOI: 10.3390/nano13162333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Transition metal dichalcogenides (TMDs)-based field-effect transistors (FETs) are being investigated vigorously for their promising applications in optoelectronics. Despite the high optical response reported in the literature, most of them are studied at room temperature. To extend the application of these materials in a photodetector, particularly at a low temperature, detailed understanding of the photo response behavior of these materials at low temperatures is crucial. Here we present a systematic investigation of temperature-dependent electronic and optoelectronic properties of few-layers MoS2 FETs, synthesized using the mechanical exfoliation of bulk MoS2 crystal, on the Si/SiO2 substrate. Our MoS2 FET show a room-temperature field-effect mobility μFE ~40 cm2·V-1·s-1, which increases with decreasing temperature, stabilizing at 80 cm2·V-1·s-1 below 100 K. The temperature-dependent (50 K < T < 300 K) photoconductivity measurements were investigated using a continuous laser source λ = 658 nm (E = 1.88 eV) over a broad range of effective illuminating laser intensity, Peff (0.02 μW < Peff < 0.6 μW). Photoconductivity measurements indicate a fractional power dependence of the steady-state photocurrent. The room-temperature photoresponsivity (R) obtained in these samples was found to be ~2 AW-1, and it increases as a function of decreasing temperature, reaching a maximum at T = 75 K. The optoelectronic properties of MoS2 at a low temperature give an insight into photocurrent generation mechanisms, which will help in altering/improving the performance of TMD-based devices for various applications.
Collapse
Affiliation(s)
- Sujoy Ghosh
- School of Physics and Applied Physics, Southern Illinois University, Carbondale, IL 62901, USA; (S.G.); (M.W.); (P.P.)
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jie Zhang
- School of Physics and Applied Physics, Southern Illinois University, Carbondale, IL 62901, USA; (S.G.); (M.W.); (P.P.)
| | - Milinda Wasala
- School of Physics and Applied Physics, Southern Illinois University, Carbondale, IL 62901, USA; (S.G.); (M.W.); (P.P.)
| | - Prasanna Patil
- School of Physics and Applied Physics, Southern Illinois University, Carbondale, IL 62901, USA; (S.G.); (M.W.); (P.P.)
| | - Nihar Pradhan
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA;
| | - Saikat Talapatra
- School of Physics and Applied Physics, Southern Illinois University, Carbondale, IL 62901, USA; (S.G.); (M.W.); (P.P.)
| |
Collapse
|
28
|
Gomes ASL, Campos CLAV, de Araújo CB, Maldonado M, da Silva-Neto ML, Jawaid AM, Busch R, Vaia RA. Intensity-Dependent Optical Response of 2D LTMDs Suspensions: From Thermal to Electronic Nonlinearities. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2267. [PMID: 37570584 PMCID: PMC10421368 DOI: 10.3390/nano13152267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light-matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with semiconducting and metallic optical properties. In this article, we review most of our work in studies of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the nonlinear optical response of semiconducting MoS2, MoSe2, MoTe2, WS2, semimetallic WTe2, ZrTe2, and metallic NbS2 and NbSe2. The nonlinear optical response from a thermal to non-thermal origin was studied, and the nonlinear refraction index and nonlinear absorption coefficient, where present, were measured. Theoretical support was given to explain the origin of the nonlinear responses, which is very dependent on the spectro-temporal regime of the optical source employed in the studies.
Collapse
Affiliation(s)
- Anderson S. L. Gomes
- Departamento de Física, Universidade Federal of Pernambuco, Recife 50670-901, PE, Brazil; (C.L.A.V.C.); (C.B.d.A.); (M.M.); (M.L.d.S.-N.)
| | - Cecília L. A. V. Campos
- Departamento de Física, Universidade Federal of Pernambuco, Recife 50670-901, PE, Brazil; (C.L.A.V.C.); (C.B.d.A.); (M.M.); (M.L.d.S.-N.)
| | - Cid B. de Araújo
- Departamento de Física, Universidade Federal of Pernambuco, Recife 50670-901, PE, Brazil; (C.L.A.V.C.); (C.B.d.A.); (M.M.); (M.L.d.S.-N.)
| | - Melissa Maldonado
- Departamento de Física, Universidade Federal of Pernambuco, Recife 50670-901, PE, Brazil; (C.L.A.V.C.); (C.B.d.A.); (M.M.); (M.L.d.S.-N.)
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Manoel L. da Silva-Neto
- Departamento de Física, Universidade Federal of Pernambuco, Recife 50670-901, PE, Brazil; (C.L.A.V.C.); (C.B.d.A.); (M.M.); (M.L.d.S.-N.)
| | - Ali M. Jawaid
- Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (A.M.J.); (R.B.); (R.A.V.)
| | - Robert Busch
- Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (A.M.J.); (R.B.); (R.A.V.)
| | - Richard A. Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (A.M.J.); (R.B.); (R.A.V.)
| |
Collapse
|
29
|
Lin YC, Torsi R, Younas R, Hinkle CL, Rigosi AF, Hill HM, Zhang K, Huang S, Shuck CE, Chen C, Lin YH, Maldonado-Lopez D, Mendoza-Cortes JL, Ferrier J, Kar S, Nayir N, Rajabpour S, van Duin ACT, Liu X, Jariwala D, Jiang J, Shi J, Mortelmans W, Jaramillo R, Lopes JMJ, Engel-Herbert R, Trofe A, Ignatova T, Lee SH, Mao Z, Damian L, Wang Y, Steves MA, Knappenberger KL, Wang Z, Law S, Bepete G, Zhou D, Lin JX, Scheurer MS, Li J, Wang P, Yu G, Wu S, Akinwande D, Redwing JM, Terrones M, Robinson JA. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS NANO 2023; 17:9694-9747. [PMID: 37219929 PMCID: PMC10324635 DOI: 10.1021/acsnano.2c12759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Albert F Rigosi
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Heather M Hill
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Hsiu Lin
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Maldonado-Lopez
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - John Ferrier
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Swastik Kar
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nadire Nayir
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70100, Turkey
| | - Siavash Rajabpour
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiwen Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rafael Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Seng Huat Lee
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leticia Damian
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Yuanxi Wang
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Megan A Steves
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhengtianye Wang
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George Bepete
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Jia Li
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Guo Yu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sanfeng Wu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas, Austin, Texas 78758, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, Nagano 380-8553, Japan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
30
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:7839-7867. [PMID: 37200572 PMCID: PMC10166465 DOI: 10.1007/s10853-023-08534-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Graphene-based materials have undergone substantial investigation in recent years owing to their wide array of physicochemical characteristics. Employment of these materials in the current state, where infectious illnesses caused by microbes have severely damaged human life, has found widespread application in combating fatal infectious diseases. These materials interact with the physicochemical characteristics of the microbial cell and alter or damage them. The current review is dedicated to molecular mechanisms underlying the antimicrobial property of graphene-based materials. Various physical and chemical mechanisms leading to cell membrane stress, mechanical wrapping, photo-thermal ablation as well as oxidative stress exerting antimicrobial effect have also been thoroughly discussed. Furthermore, an overview of the interactions of these materials with membrane lipids, proteins, and nucleic acids has been provided. A thorough understanding of discussed mechanisms and interactions is essential to develop extremely effective antimicrobial nanomaterial for application as an antimicrobial agent. Graphical abstract
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
31
|
Maździarz M. Transferability of interatomic potentials for silicene. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:574-585. [PMID: 37200833 PMCID: PMC10186261 DOI: 10.3762/bjnano.14.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
The ability of various interatomic potentials to reproduce the properties of silicene, that is, 2D single-layer silicon, polymorphs was examined. Structural and mechanical properties of flat, low-buckled, trigonal dumbbell, honeycomb dumbbell, and large honeycomb dumbbell silicene phases, were obtained using density functional theory and molecular statics calculations with Tersoff, MEAM, Stillinger-Weber, EDIP, ReaxFF, COMB, and machine-learning-based interatomic potentials. A quantitative systematic comparison and a discussion of the results obtained are reported.
Collapse
Affiliation(s)
- Marcin Maździarz
- Department of Computational Science, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|