1
|
Gani MA, Marhaeny HD, Lee G, Rahmawati SF, Anjalikha PDA, Sugito T, Lebullenger R, Adnyana IK, Lee K, Brézulier D. Ceramic-based 3D printed bone graft in bone tissue reconstruction: a systematic review and proportional meta-analysis of clinical studies. Expert Rev Med Devices 2025:1-19. [PMID: 40227056 DOI: 10.1080/17434440.2025.2492232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION This systematic review and proportional meta-analysis aims to evaluate the postoperative complication rate (CR%) of ceramic-based 3D-printed bone grafts based on the reported scientific articles conducted with human individuals. METHODS MEDLINE and SCOPUS were used as information sources. The synthesis of the study was carried out from studies with human individuals and the use of 3D-printed bone graft-ceramic as inclusion criteria. Cohen's kappa (κ) was calculated for interrater reliability. Qualitative analysis was performed based on the characteristics and outcomes of the individual study, and quantitative analysis was performed using proportional meta-analysis for CR%. RESULTS A total of 1352 records were identified through databases and resulted in 11 included studies (κ = 0.81-1.00) consisting of prospective clinical trials (64.63%), case series (16.67%), and case reports (18.18%). The overall postoperative complication rate was 14.3% (95% Cl: 0.19-53.6). The postoperative complication rate for studies conducted on the cranial defect, the maxillofacial-zygomatic defect, and the tibial-femoral defect was 2.7%, 11.1%, and 15.6%, respectively. This review also highlights common 3D printing techniques, materials, and grafs' characteristics, as well as their clinical applications. CONCLUSIONS Ceramic-based 3D-printed bone grafts show potential as alternatives for bone tissue reconstruction.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Gyubok Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Siti Farah Rahmawati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Putu Diah Apri Anjalikha
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Timothy Sugito
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Ronan Lebullenger
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
| | - I Ketut Adnyana
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Kangwon Lee
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Suwon, Republic of Korea
| | - Damien Brézulier
- Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Univ Rennes, Rennes, France
- CHU Rennes, Pole Odontologie, Univ Rennes, Rennes, France
| |
Collapse
|
2
|
Chaudhari VS, White B, Dahiya A, Bose S. Gingerol-zinc complex loaded 3D-printed calcium phosphate for controlled release application. Drug Deliv Transl Res 2025; 15:1317-1329. [PMID: 39179707 DOI: 10.1007/s13346-024-01677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/26/2024]
Abstract
The therapeutic potential of natural medicines in treating bone disorders is well-established. Modifications in formulation or molecular structure can enhance their efficacy. Gingerol, an osteogenic active compound derived from ginger roots (Zingiber officinale), can form metal ion complexes. Zinc (Zn), a trace element that combats bacterial infections and promotes osteoblast proliferation, can be complexed with gingerol to form a G-Zn+2 complex. This study investigates a porous 3D-printed (3DP) calcium phosphate (CaP) scaffold loaded with the G-Zn+2 complex for drug release and cellular interactions. The scaffold is coated with polycaprolactone (PCL) to control the drug release. Diffusion-mediated kinetics results in 50% release of the G-Zn+2 complex over 6 weeks. The G-Zn+2 complex demonstrates cytotoxicity against MG-63 osteosarcoma cells, indicated by the formation of apoptotic bodies and ruptured cell morphology on the scaffolds. G-Zn+2 PCL-coated scaffolds show a 1.2 ± 0.1-fold increase in osteoblast cell viability, and an 11.6 ± 0.5% increase in alkaline phosphatase compared to untreated scaffolds. Treated scaffolds also exhibit reduced bacterial colonization against Staphylococcus aureus bacteria, highlighting the antibacterial potential of the G-Zn+2 complex. The functionalized 3DP CaP scaffold with the G-Zn+2 complex shows significant potential for enhancing bone regeneration and preventing infections in low-load-bearing applications.
Collapse
Affiliation(s)
- Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Bryson White
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Aditi Dahiya
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
3
|
Jo Y, Kushram P, Bose S. Curcumin and vitamin D3 release from calcium phosphate enhances bone regeneration. Biomater Sci 2025; 13:1568-1577. [PMID: 39960074 DOI: 10.1039/d4bm01188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Improving early in vivo osseointegration and removing residual cancer cells after tumor removal requires the development of novel bone implants with osteogenic and anti-cancer properties. Here, curcumin and vitamin D3 (Cur/VitD3) are loaded into calcium phosphate (CaP) matrices to improve in vivo osteogenesis and inhibit the proliferation of human osteosarcoma cells. Patient-specific, 3D-printed tricalcium phosphate (TCP) loaded with Cur/VitD3 increases the viability of in vitro osteoblast cells after 11 days. When delivered in combination, Cur/VitD3 loaded hydroxyapatite (HA)-coated Ti64 implant promotes new bone formation by 2.7-fold compared to the control after 6 weeks. This delivery system also decreases osteosarcoma cell viability relative to the 3D-printed TCP after day 11, indicating its anti-cancer properties. These findings contribute to the understanding of multifunctional CaP bone grafts to improve early osteogenesis after severe bone trauma and suppress the proliferation of osteosarcoma cells after tumor resection surgery.
Collapse
Affiliation(s)
- Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
4
|
Habiburrohman MR, Jamilludin MA, Cahyati N, Herdianto N, Yusuf Y. Fabrication and in vitro cytocompatibility evaluation of porous bone scaffold based on cuttlefish bone-derived nano-carbonated hydroxyapatite reinforced with polyethylene oxide/chitosan fibrous structure. RSC Adv 2025; 15:5135-5150. [PMID: 39963456 PMCID: PMC11831101 DOI: 10.1039/d4ra08457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
A novel porous bone scaffold based on nano-carbonated hydroxyapatite reinforced with fibrous-like structured polyethylene oxide/chitosan network (nCHA/PEO/CS) was introduced and fabricated via freeze-drying. Prior to this, the nCHA was synthesized through a hydrothermal reaction based on cuttlefish bone (CFB, Sepia officinalis). The raw cuttlefish bone (raw-CFB) was first decomposed to obtain cuttlefish bone-derived calcium oxide (CaO-CFB) by calcination at 1000 °C, which was used for synthesizing nCHA. The chemical composition analysis showed that the nCHA formed AB-type CHA with a high carbonate content of 7.38 wt%, which is in the range of carbonate content in native bone (2-9 wt%). The Ca/P molar ratio of nCHA was 1.712, very close to the Ca/P of biological apatite of 1.71. Morphological analysis revealed that nCHA consists of nanosized particles, potentially offering a large surface area to volume to promote ion exchange and cell interaction. The excellent physicochemical and morphological properties of nCHA proposed suitability as a bone scaffold precursor combined with PEO and CS. The nCHA/PEO/CS scaffolds were freeze-dried with varying PEO/CS concentrations. Physicochemical analysis indicated that increasing the PEO/CS concentration decreased the crystallinity of the scaffold, causing it to be lower than the nCHA crystallinity, which may be beneficial for cell growth. Morphological analysis revealed that the scaffold structure comprised nCHA cross-linked within a fibrous-like structured PEO/CS network, which appropriately mimics the fibrous structure of extracellular matrix (ECM) in natural bone. However, the nCHA/PEO/CS-11 scaffold formed more appropriate pores with suitable porosity for cell development, blood vessel formation, and nutrient perfusion. The nCHA/PEO/CS-11 scaffold also demonstrated sufficient compressive strength and good swelling behavior, which may favor bone regeneration. The nCHA/PEO/CS-11 scaffold demonstrated high cytocompatibility and facilitated the adherence of MC3T3E1 cells on the scaffold surface. The nCHA/PEO/CS-11 scaffold also promoted cell osteogenic differentiation. Owing to its desirable and suitable characteristics, the nCHA/PEO/CS-11 scaffold is promising in bone tissue engineering.
Collapse
Affiliation(s)
- Musyafa Riziq Habiburrohman
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Muhammad Amir Jamilludin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Nilam Cahyati
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Nendar Herdianto
- Research Centre for Advanced Material, National Research and Innovation Agency (BRIN) South Tangerang 15314 Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| |
Collapse
|
5
|
Deng M, Wu S, Ning M. 3D printing for controlled release Pharmaceuticals: Current trends and future directions. Int J Pharm 2025; 669:125089. [PMID: 39694160 DOI: 10.1016/j.ijpharm.2024.125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
In recent years, 3D printers have grown strongly in drug delivery and personalised medicine, being used more and more widely. In medicine, 3DP technology can advance personalised medicine and design dosage forms to regulate the drug release rate. This review gives an overview of the 3D printing for controlled-release pharmaceuticals, detailing the technical principles, common types (including extrusion, powder, liquid, and sheet lamination-based systems), drug release control mechanisms (e.g., dissolution and diffusion, osmosis, and swelling, partitioning and erosion, and targeting), and the advantages, status, and challenges. It discusses the future direction of the technology, including multidisciplinary cross-fertilisation and the advancement of personalised medicine. The technology has potential but faces many challenges such as cost, production capacity, materials, regulations, and quality control.
Collapse
Affiliation(s)
- Mingyue Deng
- Department of Pharmacology, University College London, London, United Kingdom
| | - Siyi Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (CN), Beijing, China
| | - Meiying Ning
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (CN), Beijing, China.
| |
Collapse
|
6
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Kashi PA, Mohammadi A. Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review. Adv Colloid Interface Sci 2024; 333:103285. [PMID: 39216400 DOI: 10.1016/j.cis.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Henry Jäger
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources Tehran University, Tehran, Iran
| | - Adeleh Mohammadi
- Department of Chemistry, University Hamburg, Institute of Food Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Chaudhari VS, Kushram P, Bose S. Drug delivery strategies through 3D-printed calcium phosphate. Trends Biotechnol 2024; 42:1396-1409. [PMID: 38955569 DOI: 10.1016/j.tibtech.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
3D printing has revolutionized bone tissue engineering (BTE) by enabling the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration. The superior biocompatibility, customizable bioactivity, and biodegradability have enabled calcium phosphate (CaP) to gain significance as a bone graft material. 3D-printed (3DP) CaP scaffolds allow precise drug delivery due to their porous structure, adaptable structure-property relationship, dynamic chemistry, and controlled dissolution. The effectiveness of conventional scaffold-based drug delivery is hampered by initial burst release and drug loss. This review summarizes different multifunctional drug delivery approaches explored in controlling drug release, including polymer coatings, formulation integration, microporous scaffold design, chemical crosslinking, and direct extrusion printing for BTE applications. The review also outlines perspectives and future challenges in drug delivery research, paving the way for next-generation bone repair methodologies.
Collapse
Affiliation(s)
- Vishal S Chaudhari
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Priya Kushram
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
8
|
Toulou C, Chaudhari VS, Bose S. Extrusion 3D-printed tricalcium phosphate-polycaprolactone biocomposites for quercetin-KCl delivery in bone tissue engineering. J Biomed Mater Res A 2024; 112:1472-1483. [PMID: 38477071 PMCID: PMC11239310 DOI: 10.1002/jbm.a.37692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Critical-sized bone defects pose a significant challenge in advanced healthcare due to limited bone tissue regenerative capacity. The complex interplay of numerous overlapping variables hinders the development of multifunctional biocomposites. Phytochemicals show promise in promoting bone growth, but their dose-dependent nature and physicochemical properties halt clinical use. To develop a comprehensive solution, a 3D-printed (3DP) extrusion-based tricalcium phosphate-polycaprolactone (TCP-PCL) scaffold is augmented with quercetin and potassium chloride (KCl). This composite material demonstrates a compressive strength of 30 MPa showing promising stability for low load-bearing applications. Quercetin release from the scaffold follows a biphasic pattern that persists for up to 28 days, driven via diffusion-mediated kinetics. The incorporation of KCl allows for tunable degradation rates of scaffolds and prevents the initial rapid release. Functionalization of scaffolds facilitates the attachment and proliferation of human fetal osteoblasts (hfOB), resulting in a 2.1-fold increase in cell viability. Treated scaffolds exhibit a 3-fold reduction in osteosarcoma (MG-63) cell viability as compared to untreated substrates. Ruptured cell morphology and decreased mitochondrial membrane potential indicate the antitumorigenic potential. Scaffolds loaded with quercetin and quercetin-KCl (Q-KCl) demonstrate 76% and 89% reduction in bacterial colonies of Staphylococcus aureus, respectively. This study provides valuable insights as a promising strategy for bone tissue engineering (BTE) in orthopedic repair.
Collapse
Affiliation(s)
- Connor Toulou
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Unagolla JM, Gaihre B, Jayasuriya AC. In Vitro and In Vivo Evaluation of 3D Printed Poly(Ethylene Glycol) Dimethacrylate-Based Photocurable Hydrogel Platform for Bone Tissue Engineering. Macromol Biosci 2024; 24:e2300414. [PMID: 38035771 PMCID: PMC11018466 DOI: 10.1002/mabi.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Indexed: 12/02/2023]
Abstract
This study focuses to develop a unique hybrid hydrogel bioink formulation that incorporates poly(ethylene glycol) dimethacrylate (PEGDMA), gelatin (Gel), and methylcellulose (MC). This formulation achieves the necessary viscosity for extrusion-based three-dimensional (3D) printing of scaffolds intended for bone regeneration. After thorough optimization of the hybrid bioink system with Gel, three distinct scaffold groups are investigated in vitro: 0%, 3%, and 6% (w/v) Gel. These scaffold groups are examined for their morphology, mechanical strength, biodegradation, in vitro cell proliferation and differentiation, and in vivo bone formation using a rat cranial defect model. Among these scaffold compositions, the 3% Gel scaffold exhibits the most favorable characteristics, prompting further evaluation as a rat mesenchymal stem cell (rMSC) carrier in a critical-size cranial defect within a Lewis rat model. The compressive strength of all three scaffold groups range between 1 and 2 MPa. Notably, the inclusion of Gel in the scaffolds leads to enhanced bioactivity and cell adhesion. The Gel-containing scaffolds notably amplify osteogenic differentiation, as evidenced by alkaline phosphatase (ALP) and Western blot analyses. The in vivo results, as depicted by microcomputed tomography, showcase augmented osteogenesis within cell-seeded scaffolds, thus validating this innovative PEGDMA-based scaffold system as a promising candidate for cranial bone defect healing.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Bipin Gaihre
- Biomedical Engineering Program, Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA
- Department of Orthopedic Surgery, College of Medicine and Life Sciences, 3000 Arlington Avenue, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
10
|
Li J, Lv Y, Chen Z, Zhao J, Wang S. Citric Acid Loaded Hydrogel-Coated Stent for Dissolving Pancreatic Duct Calculi. Gels 2024; 10:125. [PMID: 38391455 PMCID: PMC10888429 DOI: 10.3390/gels10020125] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, the incidence of chronic pancreatitis has increased significantly. Pancreatic calculi obstruct the pancreatic duct and induce abdominal pain in the patients. Pancreatic duct stenting is the major treatment option for chronic pancreatitis with calculi. In this study, a new kind of drug-eluting stent, a pancreatic stent coated by methacrylated gelatin (GelMA) hydrogel loaded with citric acid (CA), was designed for the interventional treatment of pancreatic duct calculi. The CA loading capacity reached up to 0.7 g CA/g hydrogel-coated stent. The GelMA hydrogel coating has higher mechanical strength and lower swelling performance after loading with CA. The in vitro experiments of stents exhibited good performance in CA sustained release and the calculi can be dissolved in almost 3 days. The stents also showed good blood compatibility and cell compatibility. This research has important clinical value in the treatment of chronic pancreatitis with pancreatic calculi.
Collapse
Affiliation(s)
- Jing Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
- Public Experiment Center, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Yanwei Lv
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai 200093, China
| |
Collapse
|
11
|
Bose S, Sarkar N, Jo Y. Natural medicine delivery from 3D printed bone substitutes. J Control Release 2024; 365:848-875. [PMID: 37734674 PMCID: PMC11147672 DOI: 10.1016/j.jconrel.2023.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Unmet medical needs in treating critical-size bone defects have led to the development of numerous innovative bone tissue engineering implants. Although additive manufacturing allows flexible patient-specific treatments by modifying topological properties with various materials, the development of ideal bone implants that aid new tissue regeneration and reduce post-implantation bone disorders has been limited. Natural biomolecules are gaining the attention of the health industry due to their excellent safety profiles, providing equivalent or superior performances when compared to more expensive growth factors and synthetic drugs. Supplementing additive manufacturing with natural biomolecules enables the design of novel multifunctional bone implants that provide controlled biochemical delivery for bone tissue engineering applications. Controlled release of naturally derived biomolecules from a three-dimensional (3D) printed implant may improve implant-host tissue integration, new bone formation, bone healing, and blood vessel growth. The present review introduces us to the current progress and limitations of 3D printed bone implants with drug delivery capabilities, followed by an in-depth discussion on cutting-edge technologies for incorporating natural medicinal compounds embedded within the 3D printed scaffolds or on implant surfaces, highlighting their applications in several pre- and post-implantation bone-related disorders.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
12
|
Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0239. [PMID: 37818034 PMCID: PMC10561823 DOI: 10.34133/research.0239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
In the advancing landscape of technology and novel material development, additive manufacturing (AM) is steadily making strides within the biomedical sector. Moving away from traditional, one-size-fits-all implant solutions, the advent of AM technology allows for patient-specific scaffolds that could improve integration and enhance wound healing. These scaffolds, meticulously designed with a myriad of geometries, mechanical properties, and biological responses, are made possible through the vast selection of materials and fabrication methods at our disposal. Recognizing the importance of precision in the treatment of bone defects, which display variability from macroscopic to microscopic scales in each case, a tailored treatment strategy is required. A patient-specific AM bone scaffold perfectly addresses this necessity. This review elucidates the pivotal role that customized AM bone scaffolds play in bone defect treatment, while offering comprehensive guidelines for their customization. This includes aspects such as bone defect imaging, material selection, topography design, and fabrication methodology. Additionally, we propose a cooperative model involving the patient, clinician, and engineer, thereby underscoring the interdisciplinary approach necessary for the effective design and clinical application of these customized AM bone scaffolds. This collaboration promises to usher in a new era of bioactive medical materials, responsive to individualized needs and capable of pushing boundaries in personalized medicine beyond those set by traditional medical materials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Carmine Wang See
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Sai Sreenivasamurthy
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
13
|
Yin Z, Gong G, Liu X, Yin J. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis. Front Immunol 2023; 14:1274679. [PMID: 37860014 PMCID: PMC10582964 DOI: 10.3389/fimmu.2023.1274679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Joint replacement surgery is the most effective treatment for end-stage arthritis. Aseptic loosening caused by periprosthetic osteolysis is a common complication after joint replacement. Inflammation induced by wear particles derived from prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone marrow-derived macrophages and their fusion-derived osteoclasts play a key role in this pathological process. Researchers have developed multiple intervention approaches to regulate macrophage/osteoclast activation. Aiming at wear particle-induced periprosthetic aseptic osteolysis, this review separately discusses the molecular mechanism of regulation of ROS formation and inflammatory response through intervention of macrophage/osteoclast RANKL-MAPKs-NF-κB pathway. These molecular mechanisms regulate osteoclast activation in different ways, but they are not isolated from each other. There is also a lot of crosstalk among the different mechanisms. In addition, other bone and joint diseases related to osteoclast activation are also briefly introduced. Therefore, we discuss these new findings in the context of existing work with a view to developing new strategies for wear particle-associated osteolysis based on the regulation of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
15
|
Funayama N, Yagyuu T, Imada M, Ueyama Y, Nakagawa Y, Kirita T. Impact of beta-tricalcium phosphate on preventing tooth extraction-triggered bisphosphonate-related osteonecrosis of the jaw in rats. Sci Rep 2023; 13:16032. [PMID: 37749392 PMCID: PMC10520003 DOI: 10.1038/s41598-023-43315-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Antiresorptive or antiangiogenic drugs can cause medication-related osteonecrosis of the jaw that is refractory. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) may be caused by procedures such as tooth extraction damage the alveolar bone, release bisphosphonates (BPs) and impede healing. This study investigated strategies for BRONJ prevention and molecular mechanisms of its onset. We assessed the effectiveness of filling extraction sockets with beta-tricalcium phosphate (β-TCP). Rats were administered zoledronic acid (ZA) 1.2 mg/kg once per week for 2 weeks, and a molar was extracted. They were randomly assigned to the β-TCP group (bone defects filled with 0.01 g of β-TCP) or control group. Tissue content measurements indicated 2.2 ng of ZA per socket in the β-TCP group and 4.9 ng in the control group, confirming BP distribution and BP adsorption by β-TCP in vivo. At 4 weeks after extraction, the β-TCP group had normal mucosal coverage without inflammation. Moreover, at 8 weeks after extraction, enhanced bone healing, socket coverage, and new bone formation were observed in the β-TCP group. Connective tissue in the extraction sockets suggested that local increases in BP concentrations may suppress the local autophagy mechanisms involved in BRONJ. Filling extraction sockets with β-TCP may prevent BRONJ.
Collapse
Affiliation(s)
- Naoki Funayama
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara, 634-8521, Japan
| | - Takahiro Yagyuu
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara, 634-8521, Japan.
| | - Mitsuhiko Imada
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara, 634-8521, Japan
| | - Yoshihiro Ueyama
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara, 634-8521, Japan
| | - Yosuke Nakagawa
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara, 634-8521, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara, 634-8521, Japan
| |
Collapse
|
16
|
Kaimonov MR, Safronova TV. Materials in the Na 2O-CaO-SiO 2-P 2O 5 System for Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5981. [PMID: 37687671 PMCID: PMC10488989 DOI: 10.3390/ma16175981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Calcium phosphate materials and materials based on silicon dioxide have been actively studied for more than 50 years due to their high biocompatibility and bioactivity. Hydroxyapatite and tricalcium phosphate are the most known among calcium phosphate materials, and Bioglass 45S5 is the most known material in the Na2O-CaO-SiO2-P2O5 system. Each of these materials has its application limits; however, some of them can be eliminated by obtaining composites based on calcium phosphate and bioglass. In this article, we provide an overview of the role of silicon and its compounds, including Bioglass 45S5, consider calcium phosphate materials, talk about the limits of each material, demonstrate the potential of the composites based on them, and show the other ways of obtaining composite ceramics in the Na2O-CaO-SiO2-P2O5 system.
Collapse
Affiliation(s)
- Maksim R. Kaimonov
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
| | - Tatiana V. Safronova
- Department of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1, Building 73, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| |
Collapse
|
17
|
Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng 2023; 9:4020-4044. [PMID: 37339247 PMCID: PMC10336748 DOI: 10.1021/acsbiomaterials.3c00115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
In bone tissue engineering, the performance of scaffolds underpins the success of the healing of bone. Microbial infection is the most challenging issue for orthopedists. The application of scaffolds for healing bone defects is prone to microbial infection. To address this challenge, scaffolds with a desirable shape and significant mechanical, physical, and biological characteristics are crucial. 3D printing of antibacterial scaffolds with suitable mechanical strength and excellent biocompatibility is an appealing strategy to surmount issues of microbial infection. The spectacular progress in developing antimicrobial scaffolds, along with beneficial mechanical and biological properties, has sparked further research for possible clinical applications. Herein, the significance of antibacterial scaffolds designed by 3D, 4D, and 5D printing technologies for bone tissue engineering is critically investigated. Materials such as antibiotics, polymers, peptides, graphene, metals/ceramics/glass, and antibacterial coatings are used to impart the antimicrobial features for the 3D scaffolds. Polymeric or metallic biodegradable and antibacterial 3D-printed scaffolds in orthopedics disclose exceptional mechanical and degradation behavior, biocompatibility, osteogenesis, and long-term antibacterial efficiency. The commercialization aspect of antibacterial 3D-printed scaffolds and technical challenges are also discussed briefly. Finally, the discussion on the unmet demands and prevailing challenges for ideal scaffold materials for fighting against bone infections is included along with a highlight of emerging strategies in this field.
Collapse
Affiliation(s)
- Anshu Dubey
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| | - Henri Vahabi
- Université
de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Vignesh Kumaravel
- International
Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology Żeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
18
|
Gharibshahian M, Salehi M, Beheshtizadeh N, Kamalabadi-Farahani M, Atashi A, Nourbakhsh MS, Alizadeh M. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1168504. [PMID: 37469447 PMCID: PMC10353441 DOI: 10.3389/fbioe.2023.1168504] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Atashi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
19
|
Bhattacharjee A, Jo Y, Bose S. In vivo and In vitro properties evaluation of curcumin loaded MgO doped 3D printed TCP scaffolds. J Mater Chem B 2023; 11:4725-4739. [PMID: 37171110 PMCID: PMC10314738 DOI: 10.1039/d2tb02547g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The lack of site-specific chemotherapeutic agents to treat bone malignancy throws a significant challenge in the design of a delivery vehicle. The major scientific question posed in this study is, can we utilize curcumin-loaded magnesium oxide (MgO) doped 3D printed tricalcium phosphate (TCP) bone grafts as a localized delivery system that improves early stage in vivo osseointegration and in vitro chemoprevention, antibacterial properties? We have utilized curcumin as an alternative natural chemopreventive agent for bone cancer-specific delivery after direct incorporation on the 3D printed tricalcium phosphate (TCP) bone grafts. The addition of MgO as a dopant to TCP leads to ∼1.3 times enhancement in compressive strength. The designed drug delivery system shows up to ∼22% curcumin release in a physiological pH of 7.4 after 30 days. The presence of curcumin leads to up to ∼8.5 times reduction in osteosarcoma viability. In vitro results indicate that these scaffolds significantly enhance bone-forming osteoblast cells while reducing the bone-resorbing osteoclast cells. The in vivo rat distal femur model surgery followed by histological assessment with H&E, vWF, and Movat pentachrome staining results show that the designed scaffolds lead to new bone formation (up to ∼2.5 times higher than the control) after successful implantation. The presence of MgO and curcumin results in up to ∼71% antibacterial efficacy against osteomyelitis causing S. aureus. These 3D printed osteogenic and chemopreventive scaffolds can be utilized in patient-specific low load-bearing defect sites.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, USA.
| | - Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
20
|
Zhang Q, Zhou J, Zhi P, Liu L, Liu C, Fang A, Zhang Q. 3D printing method for bone tissue engineering scaffold. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 17:None. [PMID: 36909661 PMCID: PMC9995276 DOI: 10.1016/j.medntd.2022.100205] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
3D printing technology is an emerging technology. It constructs solid bodies by stacking materials layer by layer, and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients. The field of life sciences has received a great deal of attention. However, different 3D printing technologies and materials have their advantages and disadvantages, and there are limitations in clinical application. In this paper, the technology, materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed, and the future development trends and challenges in this field are prospected.
Collapse
Affiliation(s)
- Qiliang Zhang
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Jian Zhou
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Peixuan Zhi
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- The First Affiliated Hospital and Its National Resident Standardized Training Base, Dalian Medical University, Dalian, 116000, China
| | - Leixin Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- The First Affiliated Hospital and Its National Resident Standardized Training Base, Dalian Medical University, Dalian, 116000, China
| | - Chaozong Liu
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
| | - Ao Fang
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China
- Corresponding author. Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom.
| | - Qidong Zhang
- Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Corresponding author. Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, London, United Kingdom.
| |
Collapse
|
21
|
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10020204. [PMID: 36829698 PMCID: PMC9952306 DOI: 10.3390/bioengineering10020204] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
Collapse
|
22
|
Introduction to three-dimensional printing in medicine. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
23
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
24
|
Klara J, Lewandowska-Łańcucka J. How Efficient are Alendronate-Nano/Biomaterial Combinations for Anti-Osteoporosis Therapy? An Evidence-Based Review of the Literature. Int J Nanomedicine 2022; 17:6065-6094. [PMID: 36510618 PMCID: PMC9738991 DOI: 10.2147/ijn.s388430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Because of the systemic nature of osteoporosis, the associated escalation in fracture risk affects virtually all skeletal sites. The problem is serious since it is estimated that more than 23 million men and women are at high risk of osteoporotic-like breakages in the European Union. Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate (BP) for the prevention and the therapy of osteoporosis. This is also one of the most intensely studied drugs in this field. However, ALN is characterized by restricted oral absorption and bioavailability and simultaneously its administration has serious side-effects (jaw osteonecrosis, irritation of the gastrointestinal system, nausea, musculoskeletal pain, and cardiovascular risks). Therefore, delivery systems enabling controlled release and local action of this drug are of great interest, being widely researched and presented in the literature. In this review, we discuss the current trends in the design of various types of alendronate carriers. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for ALN delivery, including nano/microformulations, synthetic/natural polymeric and inorganic materials, hydrogel-based materials, scaffolds, coated-like structures, as well as organic-inorganic hybrids. Topics related to the treatment of complex bone diseases including osteoporosis have been covered in several more general reviews; however, the systems for this particular drug have not yet been discussed in detail.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Kraków, 30-387, Poland
| | | |
Collapse
|
25
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
26
|
Chang CJ, Lee W, Liou YC, Chang YL, Lai YC, Ding S, Chen HY, Chen HY, Chang YC. Synergy Effect of Aluminum Complexes During the Ring-Opening Polymerization of ε-Caprolactone: Inductive Effects Between Dinuclear Metal Catalysts. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Zheng W, Bai Z, Huang S, Jiang K, Liu L, Wang X. The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis. Int J Mol Sci 2022; 23:12670. [PMID: 36293527 PMCID: PMC9604128 DOI: 10.3390/ijms232012670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
There is still an urgent need for more efficient biological scaffolds to promote the healing of bone defects. Vessels can accelerate bone growth and regeneration by transporting nutrients, which is an excellent method to jointly increase osteogenesis and angiogenesis in bone regeneration. Therefore, we aimed to prepare a composite scaffold that could promote osteogenesis with angiogenesis to enhance bone defect repair. Here, we report that scaffolds were prepared by coaxial electrospinning with mesoporous bioactive glass modified with amino (MBG-NH2) adsorbing insulin-like growth factor-1 (IGF-1) as the core and silk fibroin (SF) adsorbing vascular endothelial growth factor (VEGF) as the shell. These scaffolds were named MBG-NH2/IGF@SF/VEGF and might be used as repair materials to promote bone defect repair. Interestingly, we found that the MBG-NH2/IGF@SF/VEGF scaffolds had nano-scale morphology and high porosity, as well as enough mechanical strength to support the tissue. Moreover, MBG-NH2 could sustain the release of IGF-1 to achieve long-term repair. Additionally, the MBG-NH2/IGF@SF/VEGF scaffolds could significantly promote the mRNA expression levels of osteogenic marker genes and the protein expression levels of Bmp2 and Runx2 in bone marrow mesenchymal stem cells (BMSCs). Meanwhile, the MBG-NH2/IGF@SF/VEGF scaffolds promoted osteogenesis by simulating Runx2 transcription activity through the phosphorylated Erk1/2-activated pathway. Intriguingly, the MBG-NH2/IGF@SF/VEGF scaffolds could also significantly promote the mRNA expression level of angiogenesis marker genes and the protein expression level of CD31. Furthermore, RNA sequencing verified that the MBG-NH2/IGF@SF/VEGF scaffolds had excellent performance in promoting bone defect repair and angiogenesis. Consistent with these observations, we found that the MBG-NH2/IGF@SF/VEGF scaffolds demonstrated a good repair effect on a critical skull defect in mice in vivo, which not only promoted the formation of blood vessels in the haversian canal but also accelerated the bone repair process. We concluded that these MBG-NH2/IGF@SF/VEGF scaffolds could promote bone defect repair under accelerating angiogenesis. Our finding provides a new potential biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Long Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiaoyan Wang
- Correspondence: (L.L.); (X.W.); Tel.: +86-0731-8700-1351 (X.W.); Fax: +86-0731-8700-1040 (X.W.)
| |
Collapse
|
28
|
Khodabukus A, Guyer T, Moore AC, Stevens MM, Guldberg RE, Bursac N. Translating musculoskeletal bioengineering into tissue regeneration therapies. Sci Transl Med 2022; 14:eabn9074. [PMID: 36223445 PMCID: PMC7614064 DOI: 10.1126/scitranslmed.abn9074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Musculoskeletal injuries and disorders are the leading cause of physical disability worldwide and a considerable socioeconomic burden. The lack of effective therapies has driven the development of novel bioengineering approaches that have recently started to gain clinical approvals. In this review, we first discuss the self-repair capacity of the musculoskeletal tissues and describe causes of musculoskeletal dysfunction. We then review the development of novel biomaterial, immunomodulatory, cellular, and gene therapies to treat musculoskeletal disorders. Last, we consider the recent regulatory changes and future areas of technological progress that can accelerate translation of these therapies to clinical practice.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University; Durham, NC, 27708 USA
| | - Tyler Guyer
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403 USA
| | - Axel C. Moore
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London; London, SW7 2AZ UK
- Department of Biomedical Engineering, University of Delaware; Newark, DE, 19716 USA
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London; London, SW7 2AZ UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute; Stockholm, 17177 SE
| | - Robert E. Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403 USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University; Durham, NC, 27708 USA
| |
Collapse
|
29
|
BOSE SUSMITA, BHATTACHARJEE ARJAK, HUYNH CHRISTINE, BANERJEE DISHARY. Allicin-Loaded Hydroxyapatite: Enhanced Release, Cytocompatibility, and Antibacterial Properties for Bone Tissue Engineering Applications. JOM (WARRENDALE, PA. : 1989) 2022; 74:3349-3356. [PMID: 36568491 PMCID: PMC9770096 DOI: 10.1007/s11837-022-05366-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 06/17/2023]
Abstract
Allicin, the active compound of garlic extract, is a naturally sourced biomolecule, which promotes a vast range of health benefits. However, the limited stability of allicin restricts its applications in tissue engineering. Additionally, the detailed effects of allicin in bone health are yet to be explored. Our work reports on the fabrication of a novel allicin-loaded hydroxyapatite drug delivery system with enhanced biological properties. The fabricated system shows excellent antibacterial efficiency against S. aureus after 36 h of bacterial interaction with a sample. The allicin release kinetics are enhanced with polycaprolactone (PCL). The obtained results after 20 days of drug release study indicate that PCL coating leads to an increase in cumulative allicin release from ~ 35% to 70% at a physiological pH of 7.4. These scaffolds maintain stability during the whole period of drug release. Cytocompatibility of tested compositions with osteoblasts indicates enhanced cell viability and good filopodial attachment on the sample surface at day 7. These allicin-loaded antibacterial and cytocompatible scaffolds can find applications as localized delivery vehicles for bone tissue engineering.
Collapse
Affiliation(s)
- SUSMITA BOSE
- W. M. Keck Biomedical Materials Research Laboratory, Washington State University, Pullman, WA 99164, USA
| | - ARJAK BHATTACHARJEE
- W. M. Keck Biomedical Materials Research Laboratory, Washington State University, Pullman, WA 99164, USA
| | - CHRISTINE HUYNH
- W. M. Keck Biomedical Materials Research Laboratory, Washington State University, Pullman, WA 99164, USA
| | - DISHARY BANERJEE
- W. M. Keck Biomedical Materials Research Laboratory, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
30
|
Seo YW, Park JY, Lee DN, Jin X, Cha JK, Paik JW, Choi SH. Three-dimensionally printed biphasic calcium phosphate blocks with different pore diameters for regeneration in rabbit calvarial defects. Biomater Res 2022; 26:25. [PMID: 35706067 PMCID: PMC9199220 DOI: 10.1186/s40824-022-00271-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Biphasic calcium phosphate (BCP) is the most frequently used synthetic bone substitutes, which comprises a combination of hydroxyapatite (HA) and beta-tricalcium phosphate (b-TCP). Thanks to the recent advances in digital dentistry and three-dimensional (3D) printing technology, synthetic block bone substitutes can be customized to fit individual defect morphologies. The diameter of the pores can influence the rate of bone formation and material resorption. The aim of this study was to compare three-dimensionally printed biphasic calcium phosphate (BCP) block bone substitutes with different pore diameters (0.8-, 1.0-, and 1.2- mm) for use in the regeneration of rabbit calvarial defects. Methods Four circular defects were formed on the calvaria of ten rabbits. Each defect was randomly allocated to one of the following study groups: (i) control group, (ii) 0.8-mm group, (iii) 1.0-mm group, and (iv) 1.2-mm group. All specimens were postoperatively harvested at 2 and 8 weeks, and radiographic and histomorphometric analyses were performed on the samples. Results Histologically, the BCP blocks remained unresorbed up to 8 weeks, and new bone formation occurred within the porous structures of the blocks. After the short healing period of 2 weeks, histomorphometric analysis indicated that new bone formation was significantly greater in the BCP groups compared with the control (p < 0.05). However, there were no significant differences between the groups with different pore diameters (p > 0.05). At 8 weeks, only the 1.0-mm group (3.42 ± 0.48 mm2, mean ± standard deviation) presented a significantly larger area of new bone compared with the control (2.26 ± 0.59 mm2) (p < 0.05). Among the BCP groups, the 1.0- and 1.2-mm groups exhibited significantly larger areas of new bone compared with the 0.8-mm group (3.42 ± 0.48 and 3.04 ± 0.66 vs 1.60 ± 0.70 mm2, respectively). Conclusions Within the limitations of this study, the BCP block bone substitutes can be applied to bone defects for successful bone regeneration. Future studies should investigate more-challenging defect configurations prior to considering clinical applications.
Collapse
Affiliation(s)
- Young-Wook Seo
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Da-Na Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Xiang Jin
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Jeong-Won Paik
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
31
|
Bhattacharjee A, Bose S. Zinc curcumin complex on fluoride doped hydroxyapatite with enhanced biological properties for dental and orthopedic applications. JOURNAL OF MATERIALS RESEARCH 2022; 37:2009-2020. [PMID: 37346089 PMCID: PMC10284581 DOI: 10.1557/s43578-022-00595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/06/2022] [Indexed: 06/23/2023]
Abstract
Since antiquity, curcumin, from turmeric is utilized in traditional Indian medicine (Ayurveda) to treat bone disorders. However, the hydrophobic nature and poor absorption of curcumin limit its clinical applications. There is a need to develop a novel strategy that can significantly enhance curcumin's biological properties. The current work reports the utilization of Zn2+-curcumin complex from a fluoride doped hydroxyapatite matrix for osteosarcoma inhibition, osteoblast growth, and anti-bacterial properties. The interaction between Zn2+ and curcumin increases curcumin release by ~ 2.5 folds. The fabricated drug delivery system shows up to ~ 1.6 times enhancement in osteoblast cell viability. The presence of curcumin results in ~ 4 times more osteosarcoma inhibition compared to control. The antibacterial efficacy of this system is confirmed against Staphylococcus aureus, due to the presence of antibacterial fluoride, zinc, and curcumin. This multifunctional drug delivery system can be utilized for various bone-tissue engineering and dental applications.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
32
|
Li MN, Wan B, Yang S, Tang Y, Zhang H, Zhang SQ, Liu HY, Ye Y. Aerobic Baeyer−Villiger oxidation catalyzed by metal corroles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meng-Ni Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Bei Wan
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Shuang Yang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yan Tang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hao Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Si-Quan Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hai-Yang Liu
- South China University of Technology Department of Chemistry 381# Wushan Road 510641 Guangzhou CHINA
| | - Yong Ye
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
33
|
Kadhim MM, Bokov DO, Ansari MJ, Suksatan W, Jawad MA, Chupradit S, Fenjan MN, Kazemnejadi M. Bone morphogenetic protein (BMP)-modified graphene oxide-reinforced polycaprolactone-gelatin nanofiber scaffolds for application in bone tissue engineering. Bioprocess Biosyst Eng 2022; 45:981-997. [PMID: 35396960 DOI: 10.1007/s00449-022-02717-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022]
Abstract
In this study, blend nanofibrous scaffolds were electrospun from polycaprolactone/gelatin (PCL/Gel) blend solutions reinforced by bone morphogenetic protein (BMP)-modified graphene oxide (GO). SEM results showed that uniform and bead-less nanofibers with 270 nm average diameter were obtained from electrospun of PCL/Gel blend solutions. Tensile strength test and contact angle measurement demonstrated that addition of PCL led to higher mechanical and physical properties of the resulting nanofibers. The addition of PCL as well as GO in the blend supports the suitable mechanical strength in the body media. The loading of BMP-modified graphene in the Gel/PCL structure caused the formation of nanofibrous substrate with great resemblance to bone tissue. Gel/PCL-G hybrid nanofibers revealed good biocompatibility in the presence of human osteosarcoma cells, and no trace of cellular toxicity was observed. The cells grown on the scaffolds exhibited a spindle-like and broad morphology and almost uniformly covered the entire nanofiber scaffold. Gel/PCL nanofibers reinforced by graphene oxide-immobilized bone morphogenetic protein was prepared as a promising safe and biocompatible nanofiber with high antibacterial activity for bone tissue engineering.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq.,College of Technical Engineering, The Islamic University, Najaf, Iraq.,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, 109240, Russian Federation
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Milad Kazemnejadi
- Department of Chemistry, College of Sciences, Shiraz University, 71946-84795, Shiraz, Iran.
| |
Collapse
|
34
|
Setia Budi H, Javed Ansari M, Abdalkareem Jasim S, Kamal Abdelbasset W, Bokov D, Fakri Mustafa Y, Najm MA, Kazemnejadi M. Preparation of antibacterial Gel/PCL nanofibers reinforced by dicalcium phosphate-modified graphene oxide with control release of clindamycin for possible application in bone tissue engineering. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, Chu PK, Wang H. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater 2022; 14:364-376. [PMID: 35386814 PMCID: PMC8964985 DOI: 10.1016/j.bioactmat.2022.01.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a desirable alternative to conventional biomedical metals for orthopedic implants due to the excellent mechanical properties. However, the inherent bioinertness of PEEK contributes to inferior osseointegration of PEEK implants, especially under pathological conditions of osteoporosis. Herein, a programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable hybrid coating consisting of poly(lactide-co-glycolide) and alendronate (ALN) loaded nano-hydroxyapatite is deposited on PEEK and then interleukin-4 (IL-4) is grafted onto the outer surface of the hybrid coating with the aid of N2 plasma immersion ion implantation and subsequent immersion in IL-4 solution. Dominant release of IL-4 together with ALN and Ca2+ during the first few days synergistically mitigates the early acute inflammatory reactions and creates an osteoimmunomodulatory microenvironment that facilitates bone regeneration. Afterwards, slow and sustained delivery of ALN and Ca2+ in the following weeks boosts osteogenesis and suppresses osteoclastogenesis simultaneously, consequently ameliorating bone-implant osseointegration even under osteoporotic conditions. By taking into account the different phases in bone repair, this strategy of constructing advanced bone implants with sequential functions provides customizable and clinically viable therapy to osteoporotic patients. A programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable coating consisting ALN loaded nano-HA is deposited on PEEK, with IL-4 being grafted onto the outmost surface. Dominant release of IL-4 together with ALN and Ca2+ synergistically mitigates the early acute inflammatory reactions. Slow and sustained delivery of ALN and Ca2+ boosts osteogenesis and suppresses osteoclastogenesis simultaneously. Sequential regulation of peri-implant biological responses is achieved to match the dynamic process of bone regeneration.
Collapse
Affiliation(s)
- Yanyan Zheng
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Corresponding author
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| |
Collapse
|
36
|
Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:141-159. [PMID: 33375900 DOI: 10.1089/ten.teb.2020.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.
Collapse
Affiliation(s)
- Daniela Geta Petre
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
38
|
Prasad A. Biomaterial-Based Nanofibers Scaffolds in Tissue Engineering Application. FUNCTIONAL BIOMATERIALS 2022:245-264. [DOI: 10.1007/978-981-16-7152-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Chen J, Wu X, Zhang L, Duan Z, Liu B. Ring-Opening Polymerization of ε-Caprolactone Mediated by Di-Zinc Complex Bearing Macrocyclic Thioether-phenolate [OSSO]-type Ligand. Polym Chem 2022. [DOI: 10.1039/d2py00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique example of zinc bromide complexes bearing macrocyclic [OSSO]-type thioetherphenolate ligand (Di-[OSSO]ZnBr) has been successfully explored toward ring-opening polymerization (ROP) of -caprolactone (ε-CL) in the presence of epoxides and...
Collapse
|
40
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
41
|
Raheem AA, Hameed P, Whenish R, Elsen RS, G A, Jaiswal AK, Prashanth KG, Manivasagam G. A Review on Development of Bio-Inspired Implants Using 3D Printing. Biomimetics (Basel) 2021; 6:65. [PMID: 34842628 PMCID: PMC8628669 DOI: 10.3390/biomimetics6040065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.
Collapse
Affiliation(s)
- Ansheed A. Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Pearlin Hameed
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Ruban Whenish
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Renold S. Elsen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
| | - Aswin G
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Erich Schmid Institute of Materials Science, Austrian Academy of Science, Jahnstrasse 12, 8700 Leoben, Austria
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| |
Collapse
|
42
|
Improved corrosion resistance and cytocompatibility of Mg–Zn–Y–Nd alloy by the electrografted polycaprolactone coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Zhang C, Zhu J, Jia J, Guan Z, Sun T, Zhang W, Yuan W, Wang H, Song C. Long-term pretreatment with alendronate inhibits calvarial defect healing in an osteoporotic rat model. J Bone Miner Metab 2021; 39:925-933. [PMID: 34091742 DOI: 10.1007/s00774-021-01235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION This study aimed to observe the effects of long-term alendronate pretreatment on the healing of osteoporotic calvarial defects, and further investigate the effect of alendronate combined with once-weekly parathyroid hormone following 12 weeks of alendronate treatment in ovariectomized rats. MATERIALS AND METHODS Thirty 3-month-old female rats were ovariectomized, and 24 rats received alendronate for 12 weeks. Then, a critical defect was created in the calvaria of all animals. Immediately after osteotomy, the animals received one of five treatments for 8 weeks: (1) continuation of vehicle (group E), (2) alendronate followed by vehicle (group A), (3) continuation of alendronate (group B), (4) alendronate followed by once-weekly parathyroid hormone alone (group C), or (5) continuation of alendronate combined with once-weekly parathyroid hormone (group D). Calvarial defect healing was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, histology, and sequential fluorescence labeling. RESULTS Group E showed a significantly higher volume of newly formed bone than groups A, B, C, and D. Evidence of new dense bone formation in group E was observed histologically. In addition, the immunohistochemical expression of runt-related transcription factor 2 was increased in group E but inhibited in groups A, B, C, and D. Sequential immunofluorescence also showed inhibited mineral apposition in groups A, B, C, and D compared with group E. CONCLUSION The present study shows that long-term pretreatment with alendronate inhibited calvarial defect healing in osteoporotic rats, and this effect could not be reversed by stopping alendronate, switching to parathyroid hormone, or combining with once-weekly parathyroid hormone.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Tiantong Sun
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, 100191, China.
- Beijing Key Laboratory of Spinal Diseases, Beijing, China.
| |
Collapse
|
44
|
Gilarska A, Hinz A, Bzowska M, Dyduch G, Kamiński K, Nowakowska M, Lewandowska-Łańcucka J. Addressing the Osteoporosis Problem-Multifunctional Injectable Hybrid Materials for Controlling Local Bone Tissue Remodeling. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49762-49779. [PMID: 34643364 PMCID: PMC8554765 DOI: 10.1021/acsami.1c17472] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 05/08/2023]
Abstract
Novel multifunctional biomimetic injectable hybrid systems were synthesized. The physicochemical as well as biological in vitro and in vivo tests demonstrated that they are promising candidates for bone tissue regeneration. The hybrids are composed of a biopolymeric collagen/chitosan/hyaluronic acid matrix and amine group-functionalized silica particles decorated with apatite to which the alendronate molecules were coordinated. The components of these systems were integrated and stabilized by cross-linking with genipin, a compound of natural origin. They can be precisely injected into the diseased tissue in the form of a viscous sol or a partially cross-linked hydrogel, where they can serve as scaffolds for locally controlled bone tissue regeneration/remodeling by supporting the osteoblast formation/proliferation and maintaining the optimal osteoclast level. These materials lack systemic toxicity. They can be particularly useful for the repair of small osteoporotic bone defects.
Collapse
Affiliation(s)
- Adriana Gilarska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Faculty
of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Alicja Hinz
- Department
of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika Bzowska
- Department
of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Grzegorz Dyduch
- Department
of Pathomorphology, Jagiellonian University
Medical College, 30-387 Kraków, Poland
| | - Kamil Kamiński
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | |
Collapse
|
45
|
Parhi R, Jena GK. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv Transl Res 2021; 12:2428-2462. [PMID: 34613595 DOI: 10.1007/s13346-021-01074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
The concept of "one size fits all" followed by the conventional healthcare system has drawbacks in providing precise pharmacotherapy due to variation in the pharmacokinetics of different patients leading to serious consequences such as side effects. In this regard, digital-based three-dimensional printing (3DP), which refers to fabricating 3D printed pharmaceutical dosage forms with variable geometry in a layer-by-layer fashion, has become one of the most powerful and innovative tools in fabricating "personalized medicine" to cater to the need of therapeutic benefits for patients to the maximum extent. This is achieved due to the tremendous potential of 3DP in tailoring various drug delivery systems (DDS) in terms of size, shape, drug loading, and drug release. In addition, 3DP has a huge impact on special populations including pediatrics, geriatrics, and pregnant women with unique or frequently changing medical needs. The areas covered in the present article are as follows: (i) the difference between traditional and 3DP manufacturing tool, (ii) the basic processing steps involved in 3DP, (iii) common 3DP methods with their pros and cons, (iv) various DDS fabricated by 3DP till date with discussing few research studies in each class of DDS, (v) the drug loading principles into 3D printed dosage forms, and (vi) regulatory compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India.
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Berhampur-7600010, Odisha, India
| |
Collapse
|
46
|
Cheng L, Li Y, Xia Q, Meng M, Ye Z, Tang Z, Feng H, Chen X, Chen H, Zeng X, Luo Y, Dong Q. Enamel matrix derivative (EMD) enhances the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Bioengineered 2021; 12:7033-7045. [PMID: 34587869 PMCID: PMC8806549 DOI: 10.1080/21655979.2021.1971504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the EMD's capacity in BMSCs osteogenic differentiation. In vivo and in vitro, BMSCs were treated with EMD, scanning electron microscopy, and Alizarin Red staining were used to detect the changes in the osteogenic ability of BMSCs, and the proliferation ability of BMSCs was evaluated by CCK8. In addition, by adding xav939, a typical inhibitor of Wnt/β-catenin signaling pathway, the regulatory function of Wnt/β-catenin signaling was clarified. The results showed that EMD promote cell proliferation and 25 μg/ml EMD had the most significant effect. Cells inducing osteogenesis for 2 and 3 even 4 weeks, the cell staining is deeper in EMD treated group than that of the control (P < 0.05) by alizarin Red staining, suggesting more mineralization of BMSCs. In vivo implanting the titanium plate wrapped with 25 μg/ml EMD treated-BMSC film into nude mice for 8 weeks, more nodules were formed on the surface of the titanium plate than that the control (P < 0.05). HE showed that there is a little blue-violet immature bone-like tissue block. Besides, the expression of RUNX Family Transcription Factor 2 (Runx2), Osterix, Osteocalcin (OCN), collagen I (COLI), alkaline phosphatase (ALP) and β-catenin were inhibited in xav939 group (P < 0.05); Inversely, all were activated in EMD group (P < 0.05). In conclusion, EMD promoted the proliferation and osteogenic differentiation of BMSCs. EMD's function on BMSCs might be associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Ying Li
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Qian Xia
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - MaoHua Meng
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhaoYang Ye
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhengLong Tang
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HongChao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 550002, People's Republic of China
| | - Xin Chen
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HeLin Chen
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Xiao Zeng
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Yi Luo
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Qiang Dong
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| |
Collapse
|
47
|
Chen Q, Xia C, Shi B, Chen C, Yang C, Mao G, Shi F. Extracorporeal Shock Wave Combined with Teriparatide-Loaded Hydrogel Injection Promotes Segmental Bone Defects Healing in Osteoporosis. Tissue Eng Regen Med 2021; 18:1021-1033. [PMID: 34427911 DOI: 10.1007/s13770-021-00381-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Osteoporosis is a systemic bone disease characterized by decreased bone density and deterioration of bone microstructure, leading to an increased probability of fragility fractures. Once segmental bone defect occurs, it is easy to cause delayed union and nonunion. METHODS The aim of this study is to investigate the efficacy of extracorporeal shock wave (ESW) and teriparatide-loaded hydrogel (T-Gel) combined strategy on the cell activity and differentiation of osteoporosis derived bone marrow mesenchymal stem cells (OP-BMSCs) in vitro and bone regeneration in osteoporotic segmental bone defects in vivo. RESULTS In vitro, the strategy of combining ESW and T-Gel significantly enhanced OP-BMSCs proliferation, survival, migration, and osteogenic differentiation by up-regulating the alkaline phosphatase activity, mineralization, and expression of runt-related transcription factor-2, type I collagen, osteocalcin, and osteopontin. In the segmental bone defect models of osteoporotic rabbits, Micro-CT evaluation and histological observation demonstrated this ESW-combined with T-Gel injection significantly induced bone healing by enhancing the osteogenic activity of the local microenvironment in osteoporotic defects. CONCLUSION In conclusion, ESW-combined with T-Gel injection could regulate the poor osteogenic microenvironment in osteoporotic defects and show potential for enhancing fragility fractures healing.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Binbin Shi
- Department of Orthopedic Surgery, Tongxiang First People's Hospital, Tongxiang, 314500, People's Republic of China
| | - Chuyong Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Chen Yang
- Department of Orthopedic Surgery, No 1 People's Hospital of AkeSu, AkeSu, 843000, Xinjiang, People's Republic of China
| | - Guangfeng Mao
- Department of Orthopedic Surgery, The Third People Hospital of Zhuji, Shaoxing, 310014, People's Republic of China
| | - Fangfang Shi
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
48
|
Vahabzadeh S, Robertson S, Bose S. Beta-phase Stabilization and Increased Osteogenic Differentiation of Stem Cells by Solid-State Synthesized Magnesium Tricalcium Phosphate. JOURNAL OF MATERIALS RESEARCH 2021; 36:3041-3049. [PMID: 35757291 PMCID: PMC9231631 DOI: 10.1557/s43578-021-00311-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 06/15/2023]
Abstract
In this study, magnesium and strontium-doped β-tricalcium phosphates were synthesized to understand dopant impact on substrate chemistry and morphology, and proliferation and osteogenic differentiation of mesenchymal stem cells. Under solid-state synthesis, magnesium doping stabilized the β-phase in tricalcium phosphate, with 22% less α-phase content than control. Strontium doping increased α-phase formation by 17%, and also resulted in greater surface porosity, leading to greater crystal precipitation in vitro. Magnesium also significantly enhanced the proliferation of stem cells (P < 0.05) and differentiation into osteoblasts with increased alkaline phosphatase production (P < 0.05) at all time points. These results indicated that magnesium stabilizes β-tricalcium phosphate in vitro and enhanced early and late-time-point osteoconduction and osteoinduction of mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | - Susmita Bose
- Corresponding author , Phone: (509) 335-7461, Fax: (509) 335-4662
| |
Collapse
|
49
|
Bandyopadhyay A, Traxel KD, Bose S. Nature-inspired materials and structures using 3D Printing. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 145:100609. [PMID: 33986582 PMCID: PMC8112572 DOI: 10.1016/j.mser.2021.100609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emulating the unique combination of structural, compositional, and functional gradation in natural materials is exceptionally challenging. Many natural structures have proved too complex or expensive to imitate using traditional processing techniques despite recent advances. Recent innovations within the field of additive manufacturing (AM) or 3D Printing (3DP) have shown the ability to create structures that have variations in material composition, structure, and performance, providing a new design-for-manufacturing platform for the imitation of natural materials. AM or 3DP techniques are capable of manufacturing structures that have significantly improved properties and functionality over what could be traditionally-produced, giving manufacturers an edge in their ability to realize components for highly-specialized applications in different industries. To this end, the present work reviews fundamental advances in the use of naturally-inspired design enabled through 3DP / AM, how these techniques can be further exploited to reach new application areas, and the challenges that lie ahead for widespread implementation. An example of how these techniques can be applied towards a total hip arthroplasty application is provided to spur further innovation in this area.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Kellen D. Traxel
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
50
|
Samirah, Budiatin AS, Mahyudin F, Khotib J. Fabrication and characterization of bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked by glutaraldehyde for bone regeneration. J Basic Clin Physiol Pharmacol 2021; 32:555-560. [PMID: 34214349 DOI: 10.1515/jbcpp-2020-0422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Alendronate are widely used in the treatment of bone disorders characterized by inhibit osteoclast-mediated bone resorption such as Paget's disease, fibrous dysplasia, myeloma, bone metastases and osteoporosis. In recent studies alendronate improves proliferation and differentiation of osteoblasts, thereby facilitating for bone regeneration. The disadvantages of this class are their poor bioavailability and side effects on oral and intravenous application such as stomach irritation and osteonecrosis in jaw. Thus, local treatment of alendronate is needed in order to achieve high concentration of drug. Bovine hydroxyapatite-gelatin scaffold with alendronate was studied. Glutaraldehyde was used as cross-linking agent, increase the characteristics of this scaffold. The objectives of this study were to manufacture and characterize alendronate scaffold using bovine hydroxyapatite-gelatin and crosslinked by glutaraldehyde. METHODS Preparation of cross-linked bovine hydroxyapatite-gelatin and alendronate scaffold with different concentration of glutaraldehyde (0.00, 0.50, 0.75, and 1.00%). The scaffolds were characterized for compressive strength, porosity, density, swelling ratio, in vitro degradation, and cytotoxicity (the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, shorted as MTT assay). RESULTS Bovine hydroxyapatite-gelatin-alendronate scaffold cross-linked with glutaraldehyde showed lower density than without glutaraldehyde. As glutaraldehyde concentration increased, porosity also increased. Eventually, it reduced compressive strength. Swelling ratio and in vitro degradation was negatively dependent on glutaraldehyde concentration. In addition, the scaffold has a good safety by MTT assay. CONCLUSIONS Bovine hydroxyapatite-gelatin-alendronate scaffold was fabricated with various concentrations of glutaraldehyde. The presence of glutaraldehyde on bovine hydroxyapatite-gelatin-alendronate is safe and suitable candidate scaffold for bone regeneration.
Collapse
Affiliation(s)
- Samirah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic and Traumatology, Faculty of Medicines, Airlangga University, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|