1
|
Zhang P, Yan H, Liang Z, Zhang P, Li XH, Yuan XZ, Yu G, Wang W, Cai C. Synthesis of Fucoidan-Biomimetic Glycopolymers with Flexible Skeletons for Enhanced Anti-Herpes Virus Efficacy. ACS NANO 2025. [PMID: 40243454 DOI: 10.1021/acsnano.4c15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Synthetic glycopolymers can be designed to mimic the structure and biological function of natural polysaccharides, offering a wide range of potential applications in the pharmaceutical and medicine. Nevertheless, amphiphilic synthetic glycopolymers commonly form biologically inert nanomicelle structures in aqueous solutions through spontaneous self-assembly. Envisioning that preventing self-assembly is pivotal to the full realization of the biological activities of the glycopolymers, we design and prepare a class of norbornene-derived hydrophilic glycopolymers containing sulfated fucose amenable to skeleton modification through ring-opening metathesis polymerization (ROMP). The skeleton of the fucoidan glycopolymers was chemically modified with hydrogen reduction, dihydroxylation, and oxidation following subsequent sulfation. We conducted physicochemical property characterization of the skeleton-modified glycopolymers to demonstrate that the hydrophilic glycopolymers have a more flexible structure compared to conventional polymers, and the sulfated fucoidan glycopolymers form a non-assembly morphology similar to the natural polysaccharides. Furthermore, the non-assembly glycopolymers exhibit significantly enhanced anti-HSV-1 activities. Our findings underscore the significance of the rational design of polymer skeletons in the development of structural and functional mimics of natural polysaccharides.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhihe Liang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao-Hua Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong Universit, Qingdao 266237, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong Universit, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| |
Collapse
|
2
|
Friedrich LM, Lindhorst TK. Orthogonal photoswitching of heterobivalent azobenzene glycoclusters: the effect of glycoligand orientation in bacterial adhesion. Beilstein J Org Chem 2025; 21:736-748. [PMID: 40231321 PMCID: PMC11995721 DOI: 10.3762/bjoc.21.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Carbohydrate recognition is fundamental to a plethora of cellular processes and hence the elucidation of the structural determinants of the recognition process is a prerequisite for understanding and manipulating carbohydrate-protein interactions, such as in the inhibition of carbohydrate-specific bacterial adhesion. For receptor binding, glycoligands have to be properly oriented in three-dimensional space and additionally, secondary interactions exerted by multivalent glycoligands have an effect on affinity. A recently introduced orthogonally photoswitchable heterobivalent azobenzene Glc/Man glycocluster was utilized to examine these aspects of carbohydrate recognition in a bacterial adhesion-inhibition assay. The measured results were systematically contextualized employing new reference compounds such as the respective homobivalent Man/Man glycocluster. An in-depth study comprising the analysis of the photochromic properties and the potential as inhibitors of bacterial adhesion of the synthetic glycophotoswitches in their different isomeric states led to new insights into the role of ligand orientation in carbohydrate recognition. The experimental results were underpinned by molecular modeling.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, 24118 Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3–4, 24118 Kiel, Germany
| |
Collapse
|
3
|
Suri J, Gilmour R. Expediting Glycospace Exploration: Therapeutic Glycans via Automated Synthesis. Angew Chem Int Ed Engl 2025; 64:e202422766. [PMID: 39936247 PMCID: PMC11933530 DOI: 10.1002/anie.202422766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Glycans regulate a vast spectrum of disease-related processes, yet effectively leveraging these important mediators in a therapeutic context remains a frontier in contemporary medicine. Unlike many other classes of clinically important biopolymers, carbohydrates derive from discrete biosynthetic pathways and are not produced directly from genes. The conspicuous absence of a biological blueprint to achieve amplification creates a persistent challenge in obtaining well-defined glycostructures for therapeutic translation. Isolating purified sugars from biological sources is not without challenge, rendering synthetic organic chemistry the nexus of this advancing field. Chemical synthesis has proven to be an unfaltering pillar in the production of complex glycans, but laborious syntheses coupled with purification challenges frequently introduce reproducibility issues. In an effort to reconcile these preparative challenges with the societal importance of glycans, automated glycan synthesis was conceptualised at the start of the 21st century. This rapidly expanding, multifaceted field of scientific endeavor has effectively merged synthetic chemistry with technology and engineering to expedite the precision synthesis of target glycans. This minireview describes the structural diversity and function of glycans generated by automated glycan synthesis platforms over the last five years. The translational impact of these advances is discussed together with current limitations and future directions.
Collapse
Affiliation(s)
- James Suri
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| | - Ryan Gilmour
- Institute for Organic ChemistryUniversity of MünsterCorrensstraße 3648149MünsterGermany
- Cells in Motion (CiM) Interfaculty CenterRöntgenstraße 16D-48149MünsterGermany
| |
Collapse
|
4
|
Yang L, Sha Y, Wei Y, Yin L, Zhong Z, Meng F. Inflammation-targeted vesicles for co-delivery of methotrexate and TNF-α siRNA to alleviate collagen-induced arthritis. Acta Biomater 2025; 195:338-349. [PMID: 39921182 DOI: 10.1016/j.actbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that has a complex pathogenesis and remains tough to treat. The clinical treatments with e.g. methotrexate (MTX) and TNF-α antibodies show fractional responses and lessen the symptoms only to a certain extent. Here, we developed inflammation-targeted vesicles codelivering methotrexate and TNF-α small interfering RNA (siTNFα) (ITV-MT) for effective ablation of collagen-induced arthritis (CIA) in mice. ITV-MT with tetra-mannose ligand and high loading of MTX (17.1 wt%) and siTNFα (9.0 wt%) displayed a small and uniform size (53 nm) and augmented uptake by inflammatory macrophages leading to superior regulation of macrophage phenotype from M1 to M2 in vitro compared to monotherapies. The intravenous injection of ITV-MT revealed clearly enhanced accretion in the inflamed joints. Interestingly, ITV-MT effectively repolarized M1 macrophages to M2 type, markedly reduced proinflammatory cytokine levels, and significantly attenuated symptoms including joint swelling, arthritis scores and bone damage in the CIA mouse models, by concurrently downregulating both adenosine and TNF-α pathways. This study highlights inflammation-targeted vesicles codelivering methotrexate and TNFα siRNA as a potential strategy to improved RA treatment. STATEMENT OF SIGNIFICANCE: Rheumatoid arthritis (RA) is regarded as an incurable disease, often referred to as an "incurable cancer". Current therapies, such as methotrexate (MTX) and anti-TNFα monoclonal antibodies, exhibit limited efficacy and severe adverse effects. The distinct physiochemical properties of MTX and siTNFα hinder their codelivery to RA joints and inflammatory cells. Here, we engineered inflammation-targeted vesicles (ITV-MT) for the codelivery of MTX and siTNFα to enhance therapeutic outcomes. Our findings reveal that ITV-MT significantly improves the drug uptake by macrophages, facilitating repolarization from M1 to M2 phenotypes. In CIA models, ITV-MT effectively downregulated proinflammatory cytokines while upregulating anti-inflammatory cytokines in RA joints, inhibited inflammatory cell infiltration in the synovium and protected against bone erosion. This study highlights that inflammation-targeted co-delivery of small molecular anti-RA agents and RNAi therapeutics may offer a compelling alternative to existing RA treatments, representing a promising strategy for RA treatment.
Collapse
Affiliation(s)
- Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Siebold K, Chikunova E, Lorz N, Jordan C, Gossert AD, Gilmour R. Fluoro-Fucosylation Enables the Interrogation of the Le a-LecB Interaction by BioNMR Spectroscopy. Angew Chem Int Ed Engl 2025; 64:e202423782. [PMID: 39902623 DOI: 10.1002/anie.202423782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Fucosylation patterns in cell-surface glycans are essential mediators of recognition and signalling. Aberrations in these signatures serve as vital diagnostic markers of disease progression, and so understanding fucose-protein interactions at the molecular level is crucial. Molecular editing of l-fucose (Fuc) at C2 with fluorine provides a platform to reconcile the ubiquity of fucosylation with the paucity of strategies to interrogate site-specific interactions. Through judicious introduction of a pseudo-equatorial fluorine [C(sp3)-F] adjacent to the anomeric position, β-selective fucosylation can be achieved with a range of diverse acceptors (>50 : 1): the selectivity of this process can be inverted through changes in the donor scaffold. Reaction development was driven by the desire to construct a fluorinated analogue of Lewis antigen a (F-Lea), in which fluorine replaces a key OH group at C2. Lea is a ligand for Lectin B (LecB) in the pathogen Pseudomonas aeruginosa and thus delineating the importance of key interactions in this complex has ramifications for drug discovery. Independent syntheses of Lea and F-Lea, and systematic bioNMR analyses with both glycans has unequivocally established the essential role of O2 of fucose in the Lea-LecB complex.
Collapse
Affiliation(s)
- Kathrin Siebold
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Elena Chikunova
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Lorz
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Christina Jordan
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
6
|
Tholen MME, Riera R, Izquierdo-Lozano C, Albertazzi L. Multiplexed Lectin-PAINT super-resolution microscopy enables cell glycotyping. Commun Biol 2025; 8:267. [PMID: 39979385 PMCID: PMC11842763 DOI: 10.1038/s42003-025-07626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Glycosylation profoundly influences cellular function, yet deciphering its intricate patterns remains a formidable challenge. Current techniques often compromise sensitivity, multiplexing, or the ability to capture in-situ cell-to-cell variations. To address these limitations, we introduce 'Lectin-PAINT,' a super-resolution imaging method enabling multiplexed live-cell visualization of the cellular glycocalyx at the single-cell and single-molecule levels. Lectin-PAINT leverages the reversible binding of lectins to specific carbohydrate families to perform point accumulation in nanoscale topography (PAINT), enabling the identification, mapping, and tracking of carbohydrates with a resolution beyond the diffraction limit. Our technique harnesses a tailored lectin library, spanning key carbohydrate recognition, offering insights into their abundance, affinity, and mobility. Through 8-color super-resolution imaging, we extract more than 350 glycosylation parameters with single-cell resolution, creating a cell's 'glycotype' or glycan fingerprint. We showcase the power of this approach by glycotyping and categorizing a diverse set of cancer cell types, shedding light on the heterogeneity and variability of the glycocalyx in cancer. In the future, this research will contribute to the more fundamental understanding of changes in the glycocalyx due to disease.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Roger Riera
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands.
| |
Collapse
|
7
|
Beshr G, Sikandar A, Gläser J, Fares M, Sommer R, Wagner S, Köhnke J, Titz A. A fucose-binding superlectin from Enterobacter cloacae with high Lewis and ABO blood group antigen specificity. J Biol Chem 2025; 301:108151. [PMID: 39743000 PMCID: PMC11875179 DOI: 10.1016/j.jbc.2024.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new anti-infectives. To find new potential targets for anti-infectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species. Here, we recombinantly produced and biophysically characterized a homolog that comprises one LecA domain and one additional, novel protein domain. This protein was termed Enterobacter cloacae lectin A (EclA) and found to bind l-fucose. Glycan array analysis revealed a high specificity for the LewisA antigen and the type II H-antigen (blood group O) for EclA, while related antigens LewisX, Y, and B, as well as blood group A or B were not bound. We developed a competitive binding assay to quantify blood group antigen-binding specificity in solution. Finally, the crystal structure of EclA could be solved in complex with methyl α-l-selenofucoside. It revealed the unexpected binding of the carbohydrate ligand to the second domain, which comprises a novel fold that dimerizes via strand-swapping resulting in an intertwined beta sheet.
Collapse
Affiliation(s)
- Ghamdan Beshr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, Saarbrücken, Germany
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Julia Gläser
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig
| | - Mario Fares
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, Saarbrücken, Germany
| | - Roman Sommer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, Saarbrücken, Germany
| | - Stefanie Wagner
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig
| | - Jesko Köhnke
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Hannover, Germany.
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
8
|
Tomabechi Y, Oda Y, Yamamoto K, Yamanoi T. Transglycosylation behavior of Mucor hiemalis endo-β-N-acetylglucosaminidase to β-cyclodextrin derivatives with multivalent glucose moieties for synthesizing cyclodextrin-based oligosaccharide clusters. Carbohydr Res 2025; 548:109352. [PMID: 39705743 DOI: 10.1016/j.carres.2024.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024]
Abstract
We investigated the transglycosylation reaction of two types of oligosaccharide acceptors, i.e., β-cyclodextrin (CD) derivatives 1 and 2 conjugated with multiple glucose (Glc) units, catalyzed by endo-β-N-acetyl-glucosaminidase from Mucor hiemalis (Endo-M) using the oligosaccharide donor sialoglycopeptide (SGP). The acceptor specificity of the enzyme transglycosylation of 1 and 2 having seven Glc moieties within small nanoscale spatial regions on the β-CDs was investigated on the basis of the effect of the molar ratios of SGP to acceptors 1 or 2 with different spatial configurations on the transglycosylation behavior. The formation of the corresponding CD-based oligosaccharide clusters from Endo-M was also evaluated.
Collapse
Affiliation(s)
- Yusuke Tomabechi
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Kenji Yamamoto
- Wakayama University, Center for Innovative and Joint Research, 930, Sakaedani, Wakayama, 640-8510, Japan
| | - Takashi Yamanoi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
9
|
Faltinek L, Melicher F, Kelemen V, Mező E, Borbás A, Wimmerová M. Bispecific Thio-Linked Disaccharides as Inhibitors of Pseudomonas Aeruginosa Lectins LecA (PA-IL) and LecB (PA-IIL): Dual-Targeting Strategy. Chemistry 2025; 31:e202403546. [PMID: 39535852 PMCID: PMC11753388 DOI: 10.1002/chem.202403546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic human pathogen, particularly associated with cystic fibrosis. Among its virulence factors are the LecA and LecB lectins. Both lectins play an important role in the adhesion to the host cells and display cytotoxic activity. In this study, we successfully synthesized hardly hydrolysable carbohydrate ligands targeting these pathogenic lectins, including two bispecific glycans. The interactions between LecA/LecB lectins and synthetic glycans were evaluated using hemagglutination (yeast agglutination) inhibition assays, comparing their efficacy with corresponding monosaccharides. Additionally, the binding affinities of bispecific glycans were assessed using isothermal titration calorimetry (ITC). Structural insight into the lectin-ligand interaction was obtained by determining the crystal structures of LecA/LecB lectins in complex with one of the bispecific ligands using X ray crystallography. This comprehensive investigation into the inhibitory potential of synthetic glycosides against P. aeruginosa lectins sheds light on their potential application in antimicrobial therapy.
Collapse
Affiliation(s)
- Lukáš Faltinek
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Filip Melicher
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Viktor Kelemen
- HUN-REN-UD Pharmamodul Research GroupEgyetem tér 14032DebrecenHungary
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Erika Mező
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| |
Collapse
|
10
|
Sarao SK, Sandhu AK, Hanson RL, Govil T, Brözel VS. Bradyrhizobium diazoefficiens cultures display phenotypic heterogeneity. ISME COMMUNICATIONS 2025; 5:ycaf054. [PMID: 40235686 PMCID: PMC11996625 DOI: 10.1093/ismeco/ycaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025]
Abstract
Bacteria growing in liquid culture are assumed to be homogenous in phenotype. Characterization of individual cells shows that some clonal cultures contain more than one phenotype. Bacteria appear to employ bet hedging where various phenotypes help the species survive in diverse niches in soil and rhizosphere environments. We asked whether the agriculturally significant bacterium Bradyrhizobium diazoefficiens USDA 110, which fixes nitrogen with soybean plants, displays phenotypic heterogeneity when grown under laboratory conditions. We observed differential binding of sugar-specific lectins in isogenic populations, revealing differential surface properties. We employed Percoll™ density gradient centrifugation to separate clonal populations of exponential and stationary phase B. diazoefficiens into four fractions and characterized their phenotype by proteomics. Specific phenotypes were then characterized in detail. Fractions varied by cell size, polyhydroxyalkanoate content, lectin binding profile, growth rate, cellular adenosine triphosphate, chemotaxis, and respiration activity. Phenotypes were not heritable because the specific buoyant densities of fractions equilibrated within 10 generations. We propose that heterogeneity helps slow growing B. diazoefficiens proliferate and maintain populations in the different environments in soil and the rhizosphere.
Collapse
Affiliation(s)
- Sukhvir K Sarao
- Department of Biology and Microbiology, South Dakota State University, 1224 Medary Avenue, Brookings, SD 57007, United States
| | - Armaan K Sandhu
- Department of Biology and Microbiology, South Dakota State University, 1224 Medary Avenue, Brookings, SD 57007, United States
| | - Ryan L Hanson
- Department of Biology and Microbiology, South Dakota State University, 1224 Medary Avenue, Brookings, SD 57007, United States
| | - Tanvi Govil
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota Mines, 501 E St Joseph Street, Rapid City, SD 57701, United States
| | - Volker S Brözel
- Department of Biology and Microbiology, South Dakota State University, 1224 Medary Avenue, Brookings, SD 57007, United States
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria 0004, South Africa
| |
Collapse
|
11
|
Tang JH, Luo M, Tsao W, Waters EA, Parigi G, Luchinat C, Meade TJ. MR Imaging Reveals Dynamic Aggregation of Multivalent Glycoconjugates in Aqueous Solution. Inorg Chem 2024; 63:24662-24671. [PMID: 39680369 DOI: 10.1021/acs.inorgchem.4c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glycoconjugates forming from the conjugation of carbohydrates to other biomolecules, such as proteins, lipids, or other carbohydrates, are essential components of mammalian cells and are involved in numerous biological processes. Due to the capability of sugars to form multiple hydrogen bonds, many synthetic glycoconjugates are desirable biocompatible platforms for imaging, diagnostics, drugs, and supramolecular self-assemblies. Herein, we present a multimeric galactose functionalized paramagnetic gadolinium (Gd(III)) chelate that displays spontaneous dynamic aggregation in aqueous conditions. The dynamic aggregation of the Gd(III) complex was shown by the concentration-dependent magnetic resonance (MR) relaxation measurements, nuclear magnetic resonance dispersion (NMRD) analysis, and dynamic light scattering (DLS). Notably, these data showed a nonlinear relationship between magnetic resonance relaxation rate and concentrations (0.03-1.35 mM), and a large DLS hydrodynamic radius was observed in the high-concentration solutions. MR phantom images were acquired to visualize real-time dynamic aggregation behaviors in aqueous solutions. The in situ visualization of the dynamic self-assembling process of multivalent glycoconjugates has rarely been reported.
Collapse
Affiliation(s)
- Jian-Hong Tang
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Minrui Luo
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Wilhelmina Tsao
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily Alexandria Waters
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Leslie K, Jolliffe KA, Müllner M, New EJ, Turnbull WB, Fascione MA, Friman VP, Mahon CS. A Glycopolymer Sensor Array That Differentiates Lectins and Bacteria. Biomacromolecules 2024; 25:7466-7474. [PMID: 39424344 PMCID: PMC11558668 DOI: 10.1021/acs.biomac.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Identification of bacterial lectins offers an attractive route to the development of new diagnostics, but the design of specific sensors is complicated by the low selectivity of carbohydrate-lectin interactions. Here we describe a glycopolymer-based sensor array which can identify a selection of lectins with similar carbohydrate recognition preferences through a pattern-based approach. Receptors were generated using a polymer scaffold functionalized with an environmentally sensitive fluorophore, along with simple carbohydrate motifs. Exposure to lectins induced changes in the emission profiles of the receptors, enabling the discrimination of analytes using linear discriminant analysis. The resultant algorithm was used for lectin identification across a range of concentrations and within complex mixtures of proteins. The sensor array was shown to discriminate different strains of pathogenic bacteria, demonstrating its potential application as a rapid diagnostic tool to characterize bacterial infections and identify bacterial virulence factors such as production of adhesins and antibiotic resistance.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
- School of
Chemistry University of Sydney, Sydney, NSW 2006, Australia
| | - Katrina A. Jolliffe
- School of
Chemistry University of Sydney, Sydney, NSW 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano
Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Markus Müllner
- School of
Chemistry University of Sydney, Sydney, NSW 2006, Australia
- Key Centre
for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano
Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- School of
Chemistry University of Sydney, Sydney, NSW 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano
Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - W. Bruce Turnbull
- School of
Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Martin A. Fascione
- Department
of Chemistry and York Structural Biology Laboratory, University of York, York YO10 5DD, U.K.
| | - Ville-Petri Friman
- Department
of Biology, University of York, York YO10 5DD, U.K.
- Department
of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
- Viikki
Biocenter, University of Helsinki, POB 56, Helsinki FI-00014, Finland
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
- School of
Chemistry University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Ito T, Ohoka N, Aoyama M, Nishikaze T, Misawa T, Inoue T, Ishii-Watabe A, Demizu Y. Strategic design of GalNAc-helical peptide ligands for efficient liver targeting. Chem Sci 2024; 15:d4sc05606j. [PMID: 39464603 PMCID: PMC11506524 DOI: 10.1039/d4sc05606j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
There is a growing need for liver-selective drug delivery systems (DDS) in the treatment and diagnosis of liver diseases. The asialoglycoprotein receptor, a trimeric protein specifically expressed in the liver, is a key target for DDS. We hypothesized that peptides with reduced main-chain flexibility and strategically positioned N-acetylgalactosamine (GalNAc) moieties could enhance liver selectivity and uptake efficiency. The helical peptides designed in this study demonstrated superior uptake efficiency and liver selectivity compared with the conventional triantennary GalNAc DDS. These peptides also showed potential in protein delivery. Furthermore, we explored their application in lysosome-targeting chimeras (LYTACs), gaining valuable insights into the requirements for effective LYTAC functionality. This study not only highlights the potential of helical peptides as liver-selective DDS ligands, but also opens avenues for their use in various therapeutic and diagnostic applications, making significant strides in the targeted treatment of liver diseases.
Collapse
Affiliation(s)
- Takahito Ito
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan
| | - Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation 1 Nishinokyo Kuwabara-cho, Nakagyo-ku Kyoto 604-8511 Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki-ku Kawasaki Kanagawa 210-9501 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26 Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita 700-8530 Japan
| |
Collapse
|
14
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
15
|
Xue M, Tan L, Zhang S, Wang JN, Mi X, Si W, Qiao Y, Lao Z, Meng X, Yang Y. Chemoenzymatic synthesis of sialyl-α2,3-lactoside-functionalized BSA conjugate inhibits influenza infection. Eur J Med Chem 2024; 276:116633. [PMID: 38968785 DOI: 10.1016/j.ejmech.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Influenza remains a global public health threat, and the development of new antivirals is crucial to combat emerging drug-resistant influenza strains. In this study, we report the synthesis and evaluation of a sialyl lactosyl (TS)-bovine serum albumin (BSA) conjugate as a potential multivalent inhibitor of the influenza virus. The key trisaccharide component, TS, was efficiently prepared via a chemoenzymatic approach, followed by conjugation to dibenzocyclooctyne-modified BSA via a strain-promoted azide-alkyne cycloaddition reaction. Biophysical and biochemical assays, including surface plasmon resonance, isothermal titration calorimetry, hemagglutination inhibition, and neuraminidase inhibition, demonstrated the strong binding affinity of TS-BSA to the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus as well as intact virion particles. Notably, TS-BSA exhibited potent inhibitory activity against viral entry and release, preventing cytopathic effects in cell culture. This multivalent presentation strategy highlights the potential of glycocluster-based antivirals for combating influenza and other drug-resistant viral strains.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Lintongqing Tan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuai Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Weixue Si
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Ying Qiao
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
16
|
Friedrich LM, Hartke B, Lindhorst TK. Advancing Optoglycomics: Two Orthogonal Azobenzene Glycoside Antennas in One Glycocluster-Synthesis, Switching Cycles, Kinetics and Molecular Dynamics. Chemistry 2024; 30:e202402125. [PMID: 39037782 DOI: 10.1002/chem.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Carbohydrate recognition is essential for numerous biological processes and is governed by various factors within the supramolecular environment of the cell. Photoswitchable glycoconjugates have proven as valuable tools for the investigation and modulation of carbohydrate recognition as they allow to control the relative orientation of sugar ligands by light. In order to advance the possibilities of such an "optoglycomics" approach for the glycosciences, we have synthesized a biantennary glycocluster in which two glycoazobenzene antennas are conjugated to the 3- and 6-position of a scaffold glycoside. Orthogonal isomerization of the photoswitchable units was made possible by the different conjugation of the azobenzene moieties via an oxygen and a sulfur atom, respectively, and the ortho-fluorination of one of the azobenzene units. This design enabled a switching cycle comprising the EE, EZ and the ZZ isomer. This is the first example of an orthogonally photoswitchable glycocluster. The full analysis of its photochromic properties included the investigation of the isolated glycoazobenzene antennas allowing the comparison of the intra- versus the intermolecular orthogonal photoswitching. The kinetics of the thermal relaxation were analyzed in detail. A molecular dynamics study shows that indeed, the relative orientation of the glycoantennas and the distances between the terminal sugar ligands significantly vary depending on the isomeric state, as intended.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christiana Albertina University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| |
Collapse
|
17
|
Jin W, Nagao M, Kumon Y, Matsumoto H, Hoshino Y, Miura Y. Effects of Cyclic Glycopolymers Molecular Mobility on their Interactions with Lectins. Chempluschem 2024; 89:e202400136. [PMID: 38535777 DOI: 10.1002/cplu.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 08/22/2024]
Abstract
Cyclic polymers, which are found in the field of biopolymers, exhibit unique physical properties such as suppressed molecular mobility. Considering thermodynamics, the suppressed molecular mobility of cyclic polymers is expected to prevent unfavorable entropy loss in molecular interactions. In this study, we synthesized cyclic glycopolymers carrying galactose units and investigated the effects of their molecular mobility on the interactions with a lectin (peanut agglutinin). The synthesized cyclic glycopolymers exhibited delayed elution time on size exclusion chromatography and a short spin-spin relaxation time, indicating typical characteristics of cyclic polymers, including smaller hydrodynamic size and suppressed molecular mobility. The hemagglutination inhibition assay revealed that the cyclic glycopolymers exhibited weakened interactions with peanut agglutinin compared to the linear counterparts, attributable to the suppressed molecular mobility. Although the results are contrary to our expectations, the impact of polymer topology on molecular recognition remains intriguing, particularly in the context of protein repellent activity in the biomedical field.
Collapse
Affiliation(s)
- Wenkang Jin
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yusuke Kumon
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
18
|
Krömer M, Poštová Slavětínská L, Hocek M. Glyco-DNA: Enzymatic Synthesis of Base-Modified and Hypermodified DNA Displaying up to Four Different Monosaccharide Units in the Major Groove. Chemistry 2024; 30:e202402318. [PMID: 38896019 DOI: 10.1002/chem.202402318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
19
|
Ning X, Budhadev D, Pollastri S, Nehlmeier I, Kempf A, Manfield I, Turnbull WB, Pöhlmann S, Bernardi A, Li X, Guo Y, Zhou D. Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties. JACS AU 2024; 4:3295-3309. [PMID: 39211605 PMCID: PMC11350578 DOI: 10.1021/jacsau.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (e.g, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (e.g., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (e.g., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM K ds, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-Gx-psDiMan binding is enthalpy-driven, with a standard binding ΔH 0 of ∼ -95 kJ mol-1, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with Gx-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single Gx-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that Gx-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC50 values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established Gx-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.
Collapse
Affiliation(s)
- Xinyu Ning
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Pollastri
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Iain Manfield
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, University of
Göttingen, 37073 Göttingen, Germany
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Xin Li
- Building
One, Granta Centre, G ranta Park, Sphere
Fluidics Ltd, Great Abington, Cambridge CB21 6AL, United Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
20
|
Miura A, Manabe Y, Suzuki KGN, Shomura H, Okamura S, Shirakawa A, Yano K, Miyake S, Mayusumi K, Lin CC, Morimoto K, Ishitobi J, Nakase I, Arai K, Kobayashi S, Ishikawa U, Kanoh H, Miyoshi E, Yamaji T, Kabayama K, Fukase K. De Novo Glycan Display on Cell Surfaces Using HaloTag: Visualizing the Effect of the Galectin Lattice on the Lateral Diffusion and Extracellular Vesicle Loading of Glycosylated Membrane Proteins. J Am Chem Soc 2024; 146:22193-22207. [PMID: 38963258 DOI: 10.1021/jacs.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.
Collapse
Affiliation(s)
- Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroki Shomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Soichiro Okamura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koki Mayusumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenta Morimoto
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jojiro Ishitobi
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenta Arai
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Ushio Ishikawa
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Xue M, Deng A, Wang JN, Mi X, Lao Z, Yang Y. A Zanamivir-protein conjugate mimicking mucin for trapping influenza virion particles and inhibiting neuraminidase activity. Int J Biol Macromol 2024; 275:133564. [PMID: 38955298 DOI: 10.1016/j.ijbiomac.2024.133564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ang Deng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
22
|
Sumohan Pillai A, Achraf Ben Njima M, Ayadi Y, Cattiaux L, Ladram A, Piesse C, Baptiste B, Gallard JF, Mallet JM, Bouchemal K. Cyclodextrin-based supramolecular nanogels decorated with mannose for short peptide encapsulation. Int J Pharm 2024; 660:124379. [PMID: 38925235 DOI: 10.1016/j.ijpharm.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Nanogels are aqueous dispersions of hydrogel particles formed by physically or chemically cross-linked polymer networks of nanoscale size. Herein, we devised a straightforward technique to fabricate a novel class of physically cross-linked nanogels via a self-assembly process in water involving α-cyclodextrin and a mannose molecule that was hydrophobically modified using an alkyl chain. The alkyl chain-modified mannose was synthesized in five steps, starting with D-mannose. Subsequently, nanogels were formed by subjecting α-cyclodextrin and the hydrophobically modified mannose to magnetic stirring in water. By adjusting the mole ratio between the hydrophobically modified mannose and α-cyclodextrin, nanogels with an average 100-150 nm diameter were obtained. Physicochemical and structural analyses by 1H NMR and X-ray diffraction unveiled a supramolecular and hierarchical mechanism underlying the creation of these nanogels. The proposed mechanism of nanogel formation involves two distinct steps: initial interaction of hydrophobically modified mannose with α-cyclodextrin resulting in the formation of inclusion complexes, followed by supramolecular interactions among these complexes, ultimately leading to nanogel formation after 72 h of stirring. We demonstrated the nanogels' ability to encapsulate a short peptide ([p-tBuF2, R5]SHf) as a water-soluble drug model. This discovery holds promise for potentially utilizing these nanogels in drug delivery applications.
Collapse
Affiliation(s)
- Archana Sumohan Pillai
- Département de Chimie, École Normale Supérieure-PSL University Paris, France; Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | | | - Yasmine Ayadi
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Laurent Cattiaux
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Plateforme d'Ingénierie des Protéines-Service de Synthèse Peptidique, F-75252 Paris, France
| | - Benoit Baptiste
- Sorbonne Université, CNRS, UMR 7590, IMPMC, IRD, MNHN, F-75252 Paris, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif-sur-Yvette, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Jean-Maurice Mallet
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
23
|
Wang G, Chen A, Aryal P, Bietsch J. Synthetic approaches of carbohydrate based self-assembling systems. Org Biomol Chem 2024; 22:5470-5510. [PMID: 38904076 DOI: 10.1039/d4ob00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
24
|
George A, Jayaraman N. Carbohydrate-Functionalized Anthracene Carboximides as Multivalent Ligands and Bio-Imaging Agents. Chemistry 2024; 30:e202400941. [PMID: 38700909 DOI: 10.1002/chem.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λabs/λem=445/525 nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC50) till concentrations of 50 μM with HeLa and HepG2 cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.
Collapse
Affiliation(s)
- Anne George
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
25
|
Nagao M, Hoshino Y, Miura Y. Quantification of thermodynamic effects of carbohydrate multivalency on avidity using synthetic discrete glycooligomers. Chem Commun (Camb) 2024; 60:7021-7024. [PMID: 38895769 DOI: 10.1039/d4cc02409e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A quantitative understanding of thermodynamic effects of avidity in biomolecular interactions is important. Herein, we synthesized discrete glycooligomers and evaluated their interactions with a model protein using isothermal titration calorimetry. The dimeric glycooligomer exhibited higher binding constants compared to the glycomonomer, attributed to the reduced conformational entropy loss through local presentation of multiple carbohydrate units. Conversely, divalent glycoligands with polyethylene glycol linkers, aiming for multivalent binding, showed enhanced interactions through increased enthalpy. These findings emphasize the importance of distinguishing between the "local avidity" and the "multipoint avidity".
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
26
|
He X, Zhao L, Tian Y, Li R, Chu Q, Gu Z, Zheng M, Wang Y, Li S, Jiang H, Jiang Y, Wen L, Wang D, Cheng X. Highly accurate carbohydrate-binding site prediction with DeepGlycanSite. Nat Commun 2024; 15:5163. [PMID: 38886381 PMCID: PMC11183243 DOI: 10.1038/s41467-024-49516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
As the most abundant organic substances in nature, carbohydrates are essential for life. Understanding how carbohydrates regulate proteins in the physiological and pathological processes presents opportunities to address crucial biological problems and develop new therapeutics. However, the diversity and complexity of carbohydrates pose a challenge in experimentally identifying the sites where carbohydrates bind to and act on proteins. Here, we introduce a deep learning model, DeepGlycanSite, capable of accurately predicting carbohydrate-binding sites on a given protein structure. Incorporating geometric and evolutionary features of proteins into a deep equivariant graph neural network with the transformer architecture, DeepGlycanSite remarkably outperforms previous state-of-the-art methods and effectively predicts binding sites for diverse carbohydrates. Integrating with a mutagenesis study, DeepGlycanSite reveals the guanosine-5'-diphosphate-sugar-recognition site of an important G-protein coupled receptor. These findings demonstrate DeepGlycanSite is invaluable for carbohydrate-binding site prediction and could provide insights into molecular mechanisms underlying carbohydrate-regulation of therapeutically important proteins.
Collapse
Affiliation(s)
- Xinheng He
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lifen Zhao
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yinping Tian
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rui Li
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinyu Chu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Zhiyong Gu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Yusong Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Shaoning Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
- Lingang Laboratory, Shanghai, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Liuqing Wen
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | | | - Xi Cheng
- State Key Laboratory of Drug Research and State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China.
| |
Collapse
|
27
|
Zhong M, Huang QJ, Bao YB, Wang JN, Mi X, Chang H, Yang Y. An oleanic acid decorated gold nanorod for highly efficient inhibition of hemagglutinin and visible rapid detection of the influenza virus. Eur J Med Chem 2024; 272:116469. [PMID: 38704939 DOI: 10.1016/j.ejmech.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Accurate diagnosis and effective antiviral treatments are urgently needed for the prevention and control of flu caused by influenza viruses. In this study, a novel oleanic acid (OA) functionalized gold nanorod OA-AuNP was prepared through a convenient ligand-exchange reaction. As hemagglutinin (HA) on the viral surface binds strongly to the multiple OA molecules on the surface of the nanoparticle, the prepared OA-AuNP was found to exhibit potent antiviral activity against a wide range of influenza A virus strains. Furthermore, the change in color resulting from the specific binding between HA and OA and the resultant aggregation of the OA-AuNP can be visually observed or measured by UV-vis spectra with a detection limit of 2 and 0.18 hemagglutination units (HAU), respectively, which is comparable to the commercially available influenza colloid gold rapid diagnostic kits. These findings demonstrate the potential of the OA-AuNP for the development of novel multivalent antiviral conjugates and the diagnosis of influenza virus.
Collapse
Affiliation(s)
- Ming Zhong
- Shaoguan University, Shaoguan, Guangdong Province, 512005, China
| | - Qian-Jiong Huang
- Shaoguan University, Shaoguan, Guangdong Province, 512005, China
| | - Yan-Bin Bao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Hao Chang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
28
|
Kurfiřt M, Hamala V, Beránek J, Červenková Šťastná L, Červený J, Dračínský M, Bernášková J, Spiwok V, Bosáková Z, Bojarová P, Karban J. Synthesis and unexpected binding of monofluorinated N,N'-diacetylchitobiose and LacdiNAc to wheat germ agglutinin. Bioorg Chem 2024; 147:107395. [PMID: 38705105 DOI: 10.1016/j.bioorg.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Fluorination of carbohydrate ligands of lectins is a useful approach to examine their binding profile, improve their metabolic stability and lipophilicity, and convert them into 19F NMR-active probes. However, monofluorination of monovalent carbohydrate ligands often leads to a decreased or completely lost affinity. By chemical glycosylation, we synthesized the full series of methyl β-glycosides of N,N'-diacetylchitobiose (GlcNAcβ(1-4)GlcNAcβ1-OMe) and LacdiNAc (GalNAcβ(1-4)GlcNAcβ1-OMe) systematically monofluorinated at all hydroxyl positions. A competitive enzyme-linked lectin assay revealed that the fluorination at the 6'-position of chitobioside resulted in an unprecedented increase in affinity to wheat germ agglutinin (WGA) by one order of magnitude. For the first time, we have characterized the binding profile of a previously underexplored WGA ligand LacdiNAc. Surprisingly, 4'-fluoro-LacdiNAc bound WGA even stronger than unmodified LacdiNAc. These observations were interpreted using molecular dynamic calculations along with STD and transferred NOESY NMR techniques, which gave evidence for the strengthening of CH/π interactions after deoxyfluorination of the side chain of the non-reducing GlcNAc. These results highlight the potential of fluorinated glycomimetics as high-affinity ligands of lectins and 19F NMR-active probes.
Collapse
Affiliation(s)
- Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic; University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Jan Beránek
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| | - Jakub Červený
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Praha 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-128 43 Praha 2, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, CZ-160 00 Praha 6, Czech Republic
| | - Jana Bernášková
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic
| | - Vojtěch Spiwok
- University of Chemistry and Technology, Technická 5, CZ-166 28 Praha 6, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-128 43 Praha 2, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Praha 4, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 1/135, CZ-165 00 Praha 6, Czech Republic.
| |
Collapse
|
29
|
Tricomi J, Aoun M, Xu B, Holmdahl R, Richichi B. Stereoselective Synthesis of the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc Trisaccharide: a new Ligand for DCAR and Mincle C-Type Lectin Receptors. Chembiochem 2024; 25:e202400026. [PMID: 38506247 DOI: 10.1002/cbic.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
In this work, we have discovered that the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| | - Mike Aoun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Bingze Xu
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Rikard Holmdahl
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| |
Collapse
|
30
|
Piemontese E, Herfort A, Perevedentseva Y, Möller HM, Seitz O. Multiphosphorylation-Dependent Recognition of Anti-pS2 Antibodies against RNA Polymerase II C-Terminal Domain Revealed by Chemical Synthesis. J Am Chem Soc 2024; 146:12074-12086. [PMID: 38639141 PMCID: PMC11066871 DOI: 10.1021/jacs.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Phosphorylation is a major constituent of the CTD code, which describes the set of post-translational modifications on 52 repeats of a YSPTSPS consensus heptad that orchestrates the binding of regulatory proteins to the C-terminal domain (CTD) of RNA polymerase II. Phospho-specific antibodies are used to detect CTD phosphorylation patterns. However, their recognition repertoire is underexplored due to limitations in the synthesis of long multiphosphorylated peptides. Herein, we describe the development of a synthesis strategy that provides access to multiphosphorylated CTD peptides in high purity without HPLC purification for immobilization onto microtiter plates. Native chemical ligation was used to assemble 12 heptad repeats in various phosphoforms. The synthesis of >60 CTD peptides, 48-90 amino acids in length and containing up to 6 phosphosites, enabled a detailed and rapid analysis of the binding characteristics of different anti-pSer2 antibodies. The three antibodies tested showed positional selectivity with marked differences in the affinity of the antibodies for pSer2-containing peptides. Furthermore, the length of the phosphopeptides allowed a systematic analysis of the multivalent chelate-type interactions. The absence of multivalency-induced binding enhancements is probably due to the high flexibility of the CTD scaffold. The effect of clustered phosphorylation proved to be more complex. Recognition of pSer2 by anti-pSer2-antibodies can be prevented and, perhaps surprisingly, enhanced by the phosphorylation of "bystander" amino acids in the vicinity. The results have relevance for functional analysis of the CTD in cell biological experiments.
Collapse
Affiliation(s)
- Emanuele Piemontese
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Alina Herfort
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Yulia Perevedentseva
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Heiko M. Möller
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Oliver Seitz
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
31
|
Chance DL, Wang W, Waters JK, Mawhinney TP. Insights on Pseudomonas aeruginosa Carbohydrate Binding from Profiles of Cystic Fibrosis Isolates Using Multivalent Fluorescent Glycopolymers Bearing Pendant Monosaccharides. Microorganisms 2024; 12:801. [PMID: 38674745 PMCID: PMC11051836 DOI: 10.3390/microorganisms12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin glycoconjugates. Blocking carbohydrate-mediated host-pathogen and intra-biofilm interactions critical to the initiation and perpetuation of colonization offer promise as anti-infective treatment strategies. To inform anti-adhesion therapies, we profiled the monosaccharide binding of P. aeruginosa from CF and non-CF sources, and assessed whether specific bacterial phenotypic characteristics affected carbohydrate-binding patterns. Focusing at the cellular level, microscopic and spectrofluorometric tools permitted the solution-phase analysis of P. aeruginosa binding to a panel of fluorescent glycopolymers possessing distinct pendant monosaccharides. All P. aeruginosa demonstrated significant binding to glycopolymers specific for α-D-galactose, β-D-N-acetylgalactosamine, and β-D-galactose-3-sulfate. In each culture, a small subpopulation accounted for the binding. The carbohydrate anomeric configuration and sulfate ester presence markedly influenced binding. While this opportunistic pathogen from CF hosts presented with various colony morphologies and physiological activities, no phenotypic, physiological, or structural feature predicted enhanced or diminished monosaccharide binding. Important to anti-adhesive therapeutic strategies, these findings suggest that, regardless of phenotype or clinical source, P. aeruginosa maintain a small subpopulation that may readily associate with specific configurations of specific monosaccharides. This report provides insights into whole-cell P. aeruginosa carbohydrate-binding profiles and into the context within which successful anti-adhesive and/or anti-virulence anti-infective agents for CF must contend.
Collapse
Affiliation(s)
- Deborah L. Chance
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Wei Wang
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - James K. Waters
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| | - Thomas P. Mawhinney
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
32
|
Wang GY, Yan DX, Rong RX, Shi BY, Lin GJ, Yin F, Wei WT, Li XL, Wang KR. Amphiphilic α-Peptoid-deoxynojirimycin Conjugate-based Multivalent Glycosidase Inhibitor for Hypoglycemic Effect and Fluorescence Imaging. J Med Chem 2024; 67:5945-5956. [PMID: 38504504 DOI: 10.1021/acs.jmedchem.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Multivalent glycosidase inhibitors based on 1-deoxynojirimycin derivatives against α-glucosidases have been rapidly developed. Nonetheless, the mechanism based on self-assembled multivalent glucosidase inhibitors in living systems needs to be further studied. It remains to be determined whether the self-assembly possesses sufficient stability to endure transit through the small intestine and subsequently bind to the glycosidases located therein. In this paper, two amphiphilic compounds, 1-deoxynojirimycin and α-peptoid conjugates (LP-4DNJ-3C and LP-4DNJ-6C), were designed. Their self-assembling behaviors, multivalent α-glucosidase inhibition effect, and fluorescence imaging on living organs were studied. LP-4DNJ-6C exhibited better multivalent α-glucosidase inhibition activities in vitro. Moreover, the self-assembly of LP-4DNJ-6C could effectively form a complex with Nile red. The complex showed fluorescence quenching effect upon binding with α-glucosidases and exhibited potent fluorescence imaging in the small intestine. This result suggests that a multivalent hypoglycemic effect achieved through self-assembly in the intestine is a viable approach, enabling the rational design of multivalent hypoglycemic drugs.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
- College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan Key Laboratory of Organic Small Molecule Materials, Handan University, Handan 056005, P. R. China
| | - Dong-Xiao Yan
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Rui-Xue Rong
- Department of Immunology, School of Basic Medical Science, Hebei University, Baoding 071002, P. R. China
| | - Bing-Ye Shi
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002, P. R. China
| | - Gao-Juan Lin
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Fangqian Yin
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
- College of Chemical Engineering & Material, Hebei Key Laboratory of Heterocyclic Compounds, Handan Key Laboratory of Organic Small Molecule Materials, Handan University, Handan 056005, P. R. China
| | - Wen-Tong Wei
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Xiao-Liu Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
33
|
Liang Y, Schettini R, Kern N, Manciocchi L, Izzo I, Spichty M, Bodlenner A, Compain P. Deconstructing Best-in-Class Neoglycoclusters as a Tool for Dissecting Key Multivalent Processes in Glycosidase Inhibition. Chemistry 2024; 30:e202304126. [PMID: 38221894 DOI: 10.1002/chem.202304126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Multivalency represents an appealing option to modulate selectivity in enzyme inhibition and transform moderate glycosidase inhibitors into highly potent ones. The rational design of multivalent inhibitors is however challenging because global affinity enhancement relies on several interconnected local mechanistic events, whose relative impact is unknown. So far, the largest multivalent effects ever reported for a non-polymeric glycosidase inhibitor have been obtained with cyclopeptoid-based inhibitors of Jack bean α-mannosidase (JBα-man). Here, we report a structure-activity relationship (SAR) study based on the top-down deconstruction of best-in-class multivalent inhibitors. This approach provides a valuable tool to understand the complex interdependent mechanisms underpinning the inhibitory multivalent effect. Combining SAR experiments, binding stoichiometry assessments, thermodynamic modelling and atomistic simulations allowed us to establish the significant contribution of statistical rebinding mechanisms and the importance of several key parameters, including inhitope accessibility, topological restrictions, and electrostatic interactions. Our findings indicate that strong chelate-binding, resulting from the formation of a cross-linked complex between a multivalent inhibitor and two dimeric JBα-man molecules, is not a sufficient condition to reach high levels of affinity enhancements. The deconstruction approach thus offers unique opportunities to better understand multivalent binding and provides important guidelines for the design of potent and selective multiheaded inhibitors.
Collapse
Affiliation(s)
- Yan Liang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Rosaria Schettini
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di, Salerno, 84084, Fisciano (Salerno), Italy
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Luca Manciocchi
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042)-IRJBD, 3 bis rue Alfred Werner, 68057, Mulhouse Cedex, France
| | - Irene Izzo
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di, Salerno, 84084, Fisciano (Salerno), Italy
| | - Martin Spichty
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042)-IRJBD, 3 bis rue Alfred Werner, 68057, Mulhouse Cedex, France
| | - Anne Bodlenner
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), University of Strasbourg|University of Haute-Alsace|CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67087, Strasbourg, France)
| |
Collapse
|
34
|
Mohammed AF, Othman SA, Abou-Ghadir OF, Kotb AA, Mostafa YA, El-Mokhtar MA, Abdu-Allah HHM. Design, synthesis, biological evaluation and docking study of some new aryl and heteroaryl thiomannosides as FimH antagonists. Bioorg Chem 2024; 145:107258. [PMID: 38447463 DOI: 10.1016/j.bioorg.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.
Collapse
Affiliation(s)
- Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed A Kotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
35
|
Nagao M, Masuda T, Takai M, Miura Y. Preparation of cellular membrane-mimicking glycopolymer interfaces by a solvent-assisted method on QCM-D sensor chips and their molecular recognition. J Mater Chem B 2024; 12:1782-1787. [PMID: 38314931 DOI: 10.1039/d3tb02663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Carbohydrate-based membranes that show molecular recognition ability are interesting mimics of biointerfaces. Herein, we prepared glycopolymer membranes on QCM-D sensor chips using a solvent-assisted method and investigated their interactions with a target lectin. The membrane containing the glycopolymer with a random arrangement of the carbohydrate units adsorbed more lectin than that containing the glycopolymer with an organized block of carbohydrate units.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tsukuru Masuda
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
36
|
Parija I, Yadav S, Jayaraman N. Con A lectin binding by synthetic bivalent arabinomannan tri- and pentasaccharides reveals connectivity-dependent functional valencies. Carbohydr Res 2024; 536:109050. [PMID: 38335804 DOI: 10.1016/j.carres.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Lectin Con A, with specificity to interact with α-d-mannopyranoside, achieves tight binding affinity with the aid of optimal multivalent ligand valencies, distances and orientations between the ligands. A series of synthetic arabinomannans, possessing arabinan core and mannan at the non-reducing ends, is studied to assess the above constraints involved with lectin binding in this report. Trisaccharides, with (1 → 2)(1 → 3), (1 → 2)(1 → 5) and (1 → 3)(1 → 5) glycosidic bond connectivities, and a pentasaccharide with mannopyranosides at the non-reducing ends are synthesized. The binding affinities of the mannose bivalent ligands are studied with tetrameric Con A lectin by isothermal titration calorimetry (ITC). Among the derivatives, trisaccharide with (1 → 2)(1 → 3) glycosidic bond connectivity and the pentasaccharide undergo lectin interaction, clearly fulfilling the bivalent structural and functional valencies. Remaining oligosaccharides exhibit only a functional monovalency, defying the bivalent structural valency. The trisaccharide fulfilling the structural and functional valencies represent the smallest bivalent ligand, undergoing the lectin interaction in a trans-mode.
Collapse
Affiliation(s)
- Ipsita Parija
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
37
|
Vázquez‐Arias A, Vázquez‐Iglesias L, Pérez‐Juste I, Pérez‐Juste J, Pastoriza‐Santos I, Bodelon G. Bacterial surface display of human lectins in Escherichia coli. Microb Biotechnol 2024; 17:e14409. [PMID: 38380565 PMCID: PMC10884992 DOI: 10.1111/1751-7915.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
Lectin-glycan interactions sustain fundamental biological processes involved in development and disease. Owing to their unique sugar-binding properties, lectins have great potential in glycobiology and biomedicine. However, their relatively low affinities and broad specificities pose a significant challenge when used as analytical reagents. New approaches for expression and engineering of lectins are in demand to overcome current limitations. Herein, we report the application of bacterial display for the expression of human galectin-3 and mannose-binding lectin in Escherichia coli. The analysis of the cell surface expression and binding activity of the surface-displayed lectins, including point and deletion mutants, in combination with molecular dynamics simulation, demonstrate the robustness and suitability of this approach. Furthermore, the display of functional mannose-binding lectin in the bacterial surface proved the feasibility of this method for disulfide bond-containing lectins. This work establishes for the first time bacterial display as an efficient means for the expression and engineering of human lectins, thereby increasing the available toolbox for glycobiology research.
Collapse
Affiliation(s)
- Alba Vázquez‐Arias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - Lorena Vázquez‐Iglesias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | | | - Jorge Pérez‐Juste
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Isabel Pastoriza‐Santos
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Gustavo Bodelon
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Biología Funcional y Ciencias de la SaludUniversidade de VigoVigoSpain
| |
Collapse
|
38
|
Merchán A, Ramírez-López P, Martínez C, Suárez JR, Perona A, Hernáiz MJ. Exploring Rigid and Flexible Scaffolds to Develop Potent Glucuronic Acid Glycodendrimers for Dengue Virus Inhibition. Bioconjug Chem 2024; 35:34-42. [PMID: 37964742 PMCID: PMC10797590 DOI: 10.1021/acs.bioconjchem.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Multivalent glycodendrimers are valuable tools for studying carbohydrate-protein interactions, and their scaffolds represent important components to increase specificity and affinity. Previous work by our group described the preparation of a tetravalent glucuronic acid rigid dendron that binds with good affinity to the dengue virus envelope protein (KD = 22 μM). Herein, the chemical synthesis and binding analysis of three new sets of rigid, semirigid, and flexible glucuronic acid-based dendrimers bearing different levels of multivalency and their interactions with the dengue virus envelope protein are described. The different oligoalkynyl scaffolds were coupled to glucuronic acid azides by a copper-catalyzed azide-alkyne cycloaddition reaction through optimized synthetic strategies to afford the desired glycodendrimers with good yields. Surface plasmon resonance studies have demonstrated that glycodendrimers 12b and 12c, with flexible scaffolds, give the best binding interactions with the dengue virus envelope protein (12b: KD = 0.487 μM and 12c: KD = 0.624 μM). Their binding constant values were 45 and 35 times higher than the one obtained in previous studies with a rigid tetravalent glucuronic acid dendron (KD = 22 μM), respectively. Molecular modeling studies were carried out in order to understand the difference in behavior observed for 12b and 12c. This work reports an efficient glycodendrimer chemical synthesis process that provides an appropriate scaffold that offers an easy and versatile strategy to find new active compounds against the dengue virus.
Collapse
Affiliation(s)
- Alejandro Merchán
- Departamento de Química
en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid, C.P. 28040, España
| | - Pedro Ramírez-López
- Departamento de Química
en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid, C.P. 28040, España
| | - Carlos Martínez
- Departamento de Química
en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid, C.P. 28040, España
| | - José Ramón Suárez
- Departamento de Química
en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid, C.P. 28040, España
| | - Almudena Perona
- Departamento de Química
en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid, C.P. 28040, España
| | - María J. Hernáiz
- Departamento de Química
en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plz. Ramón y Cajal s/n, Madrid, C.P. 28040, España
| |
Collapse
|
39
|
Zarei S, Motard M, Cecioni S. Stable Amide Activation of N-Acetylated Glycosamines for the Synthesis of Fused Polycyclic Glycomimetics. Org Lett 2024; 26:204-209. [PMID: 38166160 DOI: 10.1021/acs.orglett.3c03803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
N-Acetylation of carbohydrates is an underexplored target for chemoselective derivatization and generation of glycomimetic scaffolds. Through mild amide activation, we report that N-acetimidoyl heterocycles are stable in neutral or basic conditions yet are excellent leaving groups through acid catalysis. While this specific reactivity could prove broadly useful in amide activation strategies, stably activated N-acetylated sugars can also be diversified using libraries of hydrazides. We optimized an acid-catalyzed one-pot sequence that includes nucleophilic displacement, cyclodehydration, and intramolecular glycosylation to ultimately deliver pyranosides fused to morpholines or piperazines. This strategy of stable activation followed by acid-triggered reaction sequences exemplifies the efficient assembly of 3D-rich fused glycomimetic libraries.
Collapse
Affiliation(s)
- Samaneh Zarei
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Mélina Motard
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Samy Cecioni
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
40
|
Traverssi MG, Manzano VE, Varela O, Colomer JP. Synthesis of N-glycosyl amides: conformational analysis and evaluation as inhibitors of β-galactosidase from E. coli. RSC Adv 2024; 14:2659-2672. [PMID: 38229710 PMCID: PMC10790283 DOI: 10.1039/d3ra07763b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
The synthesis of N-glycosyl amides typically involves the use of glycosyl amines as direct precursors, resulting in low yields due to hydrolysis and the loss of stereocontrol through anomerization processes. In this study, a sequential synthesis of N-glycosyl amides is proposed, employing glycosyl amines as intermediates obtained from glycosyl azides. Derivatives with gluco, galacto, or xylo configurations were synthesized. Hexose derivatives were obtained under stereocontrol to give only the β anomer, while the xylo derivatives provided a mixture of α and β anomers. Conformational analysis revealed that all β anomers adopted the 4C1 conformation, while α anomers were found in the 1C4 chair as the major conformer. After de-O-acetylation, the derivatives containing a galactose unit were evaluated as inhibitors of β-galactosidase from E. coli and were found to be moderate inhibitors.
Collapse
Affiliation(s)
- Miqueas G Traverssi
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNC Argentina
| | - Verónica E Manzano
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UBA Argentina
| | - Oscar Varela
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UBA Argentina
| | - Juan P Colomer
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina
- Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNC Argentina
| |
Collapse
|
41
|
Herrera-González I, González-Cuesta M, Thépaut M, Laigre E, Goyard D, Rojo J, García Fernández JM, Fieschi F, Renaudet O, Nieto PM, Ortiz Mellet C. High-Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC-SIGN and Langerin. Chemistry 2024; 30:e202303041. [PMID: 37828571 DOI: 10.1002/chem.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
- Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
| | - Eugénie Laigre
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - David Goyard
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olivier Renaudet
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Pedro M Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| |
Collapse
|
42
|
Chand Daskhan G, Ton Tran HT, Cairo CW. Convergent synthesis of a hexadecavalent heterobifunctional ABO blood group glycoconjugate. Carbohydr Res 2024; 535:108988. [PMID: 38048747 DOI: 10.1016/j.carres.2023.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Naturally occurring glycans are often found in a multivalent presentation. Cell surface receptors that recognize these displays may form clusters, which can lead to signalling or endocytosis. One of the challenges in generating synthetic displays of multivalent carbohydrates is providing high valency as well as access to heterofunctional conjugates to allow attachment of multiple antigens or payloads. We designed a strategy based on a set of bifunctional linkers to generate a heterobifunctional multivalent display of two carbohydrate antigens to bind BCR and CD22 with four and twelve antigen copies, respectively. We confirmed that the conjugates were able to engage both CD22 and BCR on cells by observing receptor clustering. The strategy is modular and would allow for alternative carbohydrate antigens to be attached bearing amine and alkyne groups and should be of interest for the development of immunomodulators and vaccines.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
43
|
Buco F, Matassini C, Vanni C, Clemente F, Paoli P, Carozzini C, Beni A, Cardona F, Goti A, Moya SE, Ortore MG, Andreozzi P, Morrone A, Marradi M. Gold nanoparticles decorated with monosaccharides and sulfated ligands as potential modulators of the lysosomal enzyme N-acetylgalactosamine-6-sulfatase (GALNS). Org Biomol Chem 2023; 21:9362-9371. [PMID: 37975191 DOI: 10.1039/d3ob01466e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
N-Acetylgalactosamine-6-sulfatase (GALNS) is an enzyme whose deficiency is related to the lysosomal storage disease Morquio A. For the development of effective therapeutic approaches against this disease, the design of suitable enzyme enhancers (i.e. pharmacological chaperones) is fundamental. The natural substrates of GALNS are the glycosaminoglycans keratan sulfate and chondroitin 6-sulfate, which mainly display repeating units of sulfated carbohydrates. With a biomimetic approach, gold nanoparticles (AuNPs) decorated with simple monosaccharides, sulfated ligands (homoligand AuNPs), or both monosaccharides and sulfated ligands (mixed-ligand AuNPs) were designed here as multivalent inhibitors of GALNS. Among the homoligand AuNPs, the most effective inhibitors of GALNS activity are the β-D-galactoside-coated AuNPs. In the case of mixed-ligand AuNPs, β-D-galactosides/sulfated ligands do not show better inhibition than the β-D-galactoside-coated AuNPs. However, a synergistic effect is observed for α-D-mannosides in a mixed-ligand coating with sulfated ligands that reduced IC50 by one order of magnitude with respect to the homoligand α-D-mannoside-coated AuNPs. SAXS experiments corroborated the association of GALNS with β-D-galactoside AuNPs. These AuNPs are able to restore the enzyme activity by almost 2-fold after thermal denaturation, indicating a potential chaperoning activity towards GALNS. This information could be exploited for future development of nanomedicines for Morquio A. The recent implications of GALNS in cancer and neuropathic pain make these kinds of multivalent bionanomaterials of great interest towards multiple therapies.
Collapse
Affiliation(s)
- Francesca Buco
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Camilla Matassini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Costanza Vanni
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Francesca Clemente
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Cosimo Carozzini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Alice Beni
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Francesca Cardona
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Andrea Goti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Sergio Enrique Moya
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia-San Sebastián 20014, Spain
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona, I-60130, Italy
| | - Patrizia Andreozzi
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Meyer Children's Hospital, IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 13, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
44
|
Al-Mughaid H, Jaradat Y, Khazaaleh M, Al-Taani I. Click chemistry inspired facile one-pot synthesis of mannosyl triazoles and their hemagglutination inhibitory properties: The effect of alkyl chain spacer length between the triazole and phthalimide moieties in the aglycone backbone. Carbohydr Res 2023; 534:108965. [PMID: 37852130 DOI: 10.1016/j.carres.2023.108965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
An efficient one-pot synthesis of a new series of mannosyl triazoles has been achieved through CuAAC reaction where the alkyl chain spacer between the phthalimide moiety and the triazole ring in the aglycone backbone is varied from one methylene to six methylene units. The target compounds were evaluated in terms of their inhibitory potency against FimH using hemagglutination inhibition (HAI) assay. It was found that the length of four methylene units was the optimum for the fitting/binding of the compound to FimH as exemplified by compound 11 (HAI = 1.9 μM), which was approximately 200 times more potent than the reference ligand 1(HAI = 385 μM). The successful implementation of one-pot protocol with building blocks 1-7 and the architecture of ligand 11 will be the subject of our future work for developing more potent FimH inhibitors.
Collapse
Affiliation(s)
- Hussein Al-Mughaid
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| | - Younis Jaradat
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Maha Khazaaleh
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Ibrahim Al-Taani
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
45
|
Zhong Y, Xu L, Yang C, Xu L, Wang G, Guo Y, Cheng S, Tian X, Wang C, Xie R, Wang X, Ding L, Ju H. Site-selected in situ polymerization for living cell surface engineering. Nat Commun 2023; 14:7285. [PMID: 37949881 PMCID: PMC10638357 DOI: 10.1038/s41467-023-43161-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The construction of polymer-based mimicry on cell surface to manipulate cell behaviors and functions offers promising prospects in the field of biotechnology and cell therapy. However, precise control of polymer grafting sites is essential to successful implementation of biomimicry and functional modulation, which has been overlooked by most current research. Herein, we report a biological site-selected, in situ controlled radical polymerization platform for living cell surface engineering. The method utilizes metabolic labeling techniques to confine the growth sites of polymers and designs a Fenton-RAFT polymerization technique with cytocompatibility. Polymers grown at different sites (glycans, proteins, lipids) have different membrane retention time and exhibit differential effects on the recognition behaviors of cellular glycans. Of particular importance is the achievement of in situ copolymerization of glycomonomers on the outermost natural glycan sites of cell membrane, building a biomimetic glycocalyx with distinct recognition properties.
Collapse
Affiliation(s)
- Yihong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijia Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Le Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuna Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songtao Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changjiang Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
46
|
Nagao M, Matsumoto H, Miura Y. Design of Glycopolymers for Controlling the Interactions with Lectins. Chem Asian J 2023; 18:e202300643. [PMID: 37622191 DOI: 10.1002/asia.202300643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Carbohydrates are involved in life activities through the interactions with their corresponding proteins (lectins). Pathogen infection and the regulation of cell activity are controlled by the binding between lectins and glycoconjugates on cell surfaces. A deeper understanding of the interactions of glycoconjugates has led to the development of therapeutic and preventive methods for infectious diseases. Glycopolymer is one of the classes of the materials present multiple carbohydrates. The properties of glycopolymers can be tuned through the molecular design of the polymer structures. This review focuses on research over the past decade on the design of glycopolymers with the aim of developing inhibitors against pathogens and manipulator of cellular functions.
Collapse
Affiliation(s)
- Masanori Nagao
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| | - Hikaru Matsumoto
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| | - Yoshiko Miura
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| |
Collapse
|
47
|
Li Y, Liu HY, Yang MJ, Liu D, Song JQ, Lao Z, Chen Y, Yang Y. Preparation of eicosavalent triazolylsialoside-conjugated human serum albumin as a dual hemagglutinin/neuraminidase inhibitor and virion adsorbent for the prevention of influenza infection. Carbohydr Res 2023; 532:108918. [PMID: 37586142 DOI: 10.1016/j.carres.2023.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
A triazolylsialoside-human serum albumin conjugate was prepared as a multivalent hemagglutinin and neuraminidase inhibitor using a di-(N-succinimidyl) adipate strategy. Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) indicated that five tetravalent sialyl galactosides were grafted onto the protein backbone resulting in an eicosavalent triazolylsialoside-protein complex. Compared with monomeric sialic acid, molecular interaction studies showed that the synthetic pseudo-glycoprotein bound tightly not only to hemagglutinin (HA)/neuraminidase (NA) but also to mutated drug-resistant NA on the surface of the influenza virus with a dissociation constant (KD) in the 1 μM range, attributed to the cluster effect. Moreover, this glycoconjugate exhibited potent antiviral activity against a broad spectrum of virus strains and showed no cytotoxicity towards Human Umbilical Vein Endothelial Cells (HUVECs) and Madin-Darby canine kidney (MDCK) cells at high concentrations. Further mechanistic studies demonstrated this multivalent sialyl conjugate showed strong capture and trapping of influenza virions, thus disrupting the ability of the influenza virus to infect host cells. This research lays the experimental foundation for the development of new antiviral agents based on multivalent sialic acid-protein conjugates.
Collapse
Affiliation(s)
- Yang Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Han-Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Ming-Jiang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Dong Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Qi Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Zhiqi Lao
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Yue Chen
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
48
|
Garg P, Priyadarshi N, Ambule MD, Kaur G, Kaul S, Gupta R, Sagar P, Bajaj G, Yadav B, Rishi V, Goyal B, Srivastava AK, Singhal NK. Multiepitope glycan based laser assisted fluorescent nanocomposite with dual functionality for sensing and ablation of Pseudomonas aeruginosa. NANOSCALE 2023; 15:15179-15195. [PMID: 37548288 DOI: 10.1039/d3nr02983b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection is becoming a severe health hazard and needs early diagnosis with high specificity. However, the non-specific binding of a biosensor is a challenge to the current bacterial detection system. For the first time, we chemically synthesized a galactose tripod (GT) as a P. aeruginosa-specific ligand. We conjugated GT to a photothermally active fluorescent nanocomposite (Au@SiO2-TCPP). P. aeruginosa can be detected using Au@SiO2-TCPP-GT, and additionally ablated as well using synergistic photothermal and photodynamic therapy. Molecular dynamics and simulation studies suggested better binding of GT (binding energy = -6.6 kcal mol-1) with P. aeruginosa lectin than that of galactose monopod (GM) (binding energy = -5.9 kcal mol-1). Furthermore, a binding study was extended to target P. aeruginosa, which has a galactose-binding carbohydrate recognition domain receptor. The colorimetric assay confirmed a limit of detection (LOD) of 104 CFU mL-1. We also looked into the photosensitizing property of Au@SiO2-TCPP-GT, which is stimulated by laser light (630 nm) and causes photoablation of bacteria by the formation of singlet oxygen in the surrounding media. The cytocompatibility of Au@SiO2-TCPP-GT was confirmed using cytotoxicity assays on mammalian cell lines. Moreover, Au@SiO2-TCPP-GT also showed non-hemolytic activity. Considering the toxicity analysis and efficacy of the synthesized glycan nanocomposites, these can be utilized for the treatment of P. aeruginosa-infected wounds. Furthermore, the current glycan nanocomposites can be used for bacterial detection and ablation of P. aeruginosa in contaminated food and water samples as well.
Collapse
Affiliation(s)
- Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| | - Mayur D Ambule
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Gurmeet Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| | - Sunaina Kaul
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ritika Gupta
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| | - Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Binduma Yadav
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
- Regional Center for Biotechnology (RCB), Faridabad, 121001, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| | - Ajay Kumar Srivastava
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
49
|
Ji H, Yang X, Zhou H, Cui F, Zhou Q. Rapid Evaluation of Antibacterial Carbohydrates on a Microfluidic Chip Integrated with the Impedimetric Neoglycoprotein Biosensor. BIOSENSORS 2023; 13:887. [PMID: 37754121 PMCID: PMC10526297 DOI: 10.3390/bios13090887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The colonization of some bacteria to their host cell is mediated by selective adhesion between adhesin and glycan. The evaluation of antiadhesive carbohydrates in vitro has great significance in discovering new antibacterial drugs. In this paper, a microfluidic chip integrated with impedimetric neoglycoprotein biosensors was developed to evaluate the antibacterial effect of carbohydrates. Mannosylated bovine serum albumin (Man-BSA) was taken as the neoglycoprotein and immobilized on the microelectrode-modified gold nanoparticles (Au NPs) to form a bionic glycoprotein nanosensing surface (Man-BSA/Au NPs). Salmonella typhimurium (S. typhimurium) was selected as a bacteria model owing to its selective adhesion to the mannose. Electrochemical impedance spectroscopy (EIS) was used to characterize the adhesion capacity of S. typhimurium to the Man-BSA/Au NPs and evaluate the antiadhesive efficacy of nine different carbohydrates. It was illustrated that the 4-methoxyphenyl-α-D-pyran mannoside (Phenyl-Man) and mannan peptide (Mannatide) showed excellent antiadhesive efficacy, with IC50 values of 0.086 mM and 0.094 mM, respectively. The microfluidic device developed in this study can be tested in multiple channels. Compared with traditional methods for evaluating the antibacterial drug in vitro, it has the advantages of being fast, convenient, and cost-effective.
Collapse
Affiliation(s)
| | | | | | - Feiyun Cui
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.J.); (X.Y.); (H.Z.)
| | - Qin Zhou
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (H.J.); (X.Y.); (H.Z.)
| |
Collapse
|
50
|
Palmioli A, Moretti L, Vezzoni CA, Legnani L, Sperandeo P, Baldini L, Sansone F, Airoldi C, Casnati A. Multivalent calix[4]arene-based mannosylated dendrons as new FimH ligands and inhibitors. Bioorg Chem 2023; 138:106613. [PMID: 37224739 DOI: 10.1016/j.bioorg.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
We report the synthesis and biological characterization of a novel class of multivalent glycoconjugates as hit compounds for the design of new antiadhesive therapies against urogenital tract infections (UTIs) caused by uropathogenic E. coli strains (UPEC). The first step of UTIs is the molecular recognition of high mannose N-glycan expressed on the surface of urothelial cells by the bacterial lectin FimH, allowing the pathogen adhesion required for mammalian cell invasion. The inhibition of FimH-mediated interactions is thus a validated strategy for the treatment of UTIs. To this purpose, we designed and synthesized d-mannose multivalent dendrons supported on a calixarene core introducing a significant structural change from a previously described family of dendrimers bearing the same dendrons units on a flexible pentaerythritol scaffold core. The new molecular architecture increased the inhibitory potency against FimH-mediated adhesion processes by about 16 times, as assessed by yeast agglutination assay. Moreover, the direct molecular interaction of the new compounds with FimH protein was assessed by on-cell NMR experiments acquired in the presence of UPEC cells.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Luca Moretti
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Carlo Alberto Vezzoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Laura Legnani
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Laura Baldini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| |
Collapse
|