1
|
Sinkjaer AW, Sloth AB, Andersen AO, Jensen M, Bakhshinejad B, Kjaer A. A comparative analysis of sequence composition in different lots of a phage display peptide library during amplification. Virol J 2025; 22:24. [PMID: 39893369 PMCID: PMC11786364 DOI: 10.1186/s12985-024-02600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/07/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND To develop efficient selection strategies and improve the discovery of promising ligands, it is highly desirable to analyze the sequence composition of naïve phage display libraries and monitor the evolution of their peptide content during successive rounds of amplification. In the current study, we performed a comparative analysis of the compositional features in different lots of the same naïve phage display library and monitored alterations in their peptide compositions during three rounds of amplification. METHODS We conducted three rounds of duplicate serial amplification of two different lots of the Ph.D.™-12 phage display library. DNA from the samples was subjected to Next-Generation Sequencing (NGS) using an Illumina platform. The NGS datasets underwent a variety of bioinformatic analyses using Python and MATLAB scripts. RESULTS We observed substantial heterogeneity in the sequence composition of the two lots indicated by differences in the enhanced percentage of wildtype clones, reduced diversity (number of unique sequences), and increased enrichment factors (EFs) during amplification as well as by observing no common sequence between lots and decreased number of common sequences between the naïve library and the consecutive rounds of amplification for each lot. We also found potential propagation-related target-unrelated peptides (TUPs) with the highest EFs in the two lots, which were displayed by the fastest-propagating phage clones. Furthermore, motif analysis of the most enriched subpopulation of amplified libraries led to the identification of some motifs hypothesized to contribute to the increased amplification rates of the respective phage clones. CONCLUSION Our results highlight tremendous heterogeneity in the peptide composition of different lots of the same type of naïve phage display library, and the divergent evolution of their compositional features during amplification rounds at the amino acid, peptide, and motif levels. Our findings can be instrumental for phage display researchers by bringing fundamental insights into the vast extent of non-uniformity between phage display libraries and by providing a clear picture of how these discrepancies can lead to different evolutionary fates for the peptide composition of phage pools, which can have profound impacts on the outcome of phage display selections through biopanning.
Collapse
Affiliation(s)
- Anders Wilgaard Sinkjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ane Beth Sloth
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Amanda Oester Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Malte Jensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Babak Bakhshinejad
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Copenhagen University Hospital-Rigshospitalet, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
2
|
Yau AWN, Chu SYC, Yap WH, Wong CL, Chia AYY, Tang YQ. Phage display screening in breast cancer: From peptide discovery to clinical applications. Life Sci 2024; 357:123077. [PMID: 39332485 DOI: 10.1016/j.lfs.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ashlyn Wen Ning Yau
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Sylvester Yee Chun Chu
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Wei Hsum Yap
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Chuan Loo Wong
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Yoke Yin Chia
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yin-Quan Tang
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
4
|
Sadraeian M, Maleki R, Moraghebi M, Bahrami A. Phage Display Technology in Biomarker Identification with Emphasis on Non-Cancerous Diseases. Molecules 2024; 29:3002. [PMID: 38998954 PMCID: PMC11243120 DOI: 10.3390/molecules29133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reza Maleki
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mahta Moraghebi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abasalt Bahrami
- Department of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Wahid B, Tiwana MS. Bacteriophage-based bioassays: an expected paradigm shift in microbial diagnostics. Future Microbiol 2024; 19:811-824. [PMID: 38900594 PMCID: PMC11290765 DOI: 10.2217/fmb-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 06/22/2024] Open
Abstract
Bacteriophages, as abundant and specific agents, hold significant promise as a solution to combat the growing threat of antimicrobial resistance. Their unique ability to selectively lyse bacterial cells without harming humans makes them a compelling alternative to traditional antibiotics and point-of-care diagnostics. The article reviews the current landscape of diagnostic technologies, identify gaps and highlight emerging possibilities demonstrates a comprehensive approach to advancing clinical diagnosis of microbial pathogens and covers an overview of existing phage-based bioassays. Overall, the provided data in this review effectively communicates the potential of bacteriophages in transforming therapeutic and diagnostic paradigms, offering a holistic perspective on the benefits and opportunities they present in combating microbial infections and enhancing public health.
Collapse
Affiliation(s)
- Braira Wahid
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton VIC Australia
| | | |
Collapse
|
6
|
Li Y, Li XM, Yang KD, Tong WH. Advancements in ovarian cancer immunodiagnostics and therapeutics via phage display technology. Front Immunol 2024; 15:1402862. [PMID: 38863706 PMCID: PMC11165035 DOI: 10.3389/fimmu.2024.1402862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.
Collapse
Affiliation(s)
- Yang Li
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Wei-hua Tong
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
8
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
9
|
Vaccarin C, Mapanao AK, Deberle LM, Becker AE, Borgna F, Marzaro G, Schibli R, Müller C. Design and Preclinical Evaluation of a Novel Prostate-Specific Membrane Antigen Radioligand Modified with a Transthyretin Binder. Cancers (Basel) 2024; 16:1262. [PMID: 38610940 PMCID: PMC11011029 DOI: 10.3390/cancers16071262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Transthyretin binders have previously been used to improve the pharmacokinetic properties of small-molecule drug conjugates and could, thus, be utilized for radiopharmaceuticals as an alternative to the widely explored "albumin binder concept". In this study, a novel PSMA ligand modified with a transthyretin-binding entity (TB-01) was synthesized and labeled with lutetium-177 to obtain [177Lu]Lu-PSMA-TB-01. A high and specific uptake of [177Lu]Lu-PSMA-TB-01 was found in PSMA-positive PC-3 PIP cells (69 ± 3% after 4 h incubation), while uptake in PSMA-negative PC-3 flu cells was negligible (<1%). In vitro binding studies showed a 174-fold stronger affinity of [177Lu]Lu-PSMA-TB-01 to transthyretin than to human serum albumin. Biodistribution studies in PC-3 PIP/flu tumor-bearing mice confirmed the enhanced blood retention of [177Lu]Lu-PSMA-TB-01 (16 ± 1% IA/g at 1 h p.i.), which translated to a high tumor uptake (69 ± 13% IA/g at 4 h p.i.) with only slow wash-out over time (31 ± 8% IA/g at 96 h p.i.), while accumulation in the PC-3 flu tumor and non-targeted normal tissue was reasonably low. Further optimization of the radioligand design would be necessary to fine-tune the biodistribution and enable its use for therapeutic purposes. This study was the first of this kind and could motivate the use of the "transthyretin binder concept" for the development of future radiopharmaceuticals.
Collapse
Affiliation(s)
- Christian Vaccarin
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.V.); (A.K.M.); (L.M.D.); (A.E.B.); (F.B.); (R.S.)
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.V.); (A.K.M.); (L.M.D.); (A.E.B.); (F.B.); (R.S.)
| | - Luisa M. Deberle
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.V.); (A.K.M.); (L.M.D.); (A.E.B.); (F.B.); (R.S.)
| | - Anna E. Becker
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.V.); (A.K.M.); (L.M.D.); (A.E.B.); (F.B.); (R.S.)
| | - Francesca Borgna
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.V.); (A.K.M.); (L.M.D.); (A.E.B.); (F.B.); (R.S.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy;
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.V.); (A.K.M.); (L.M.D.); (A.E.B.); (F.B.); (R.S.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland; (C.V.); (A.K.M.); (L.M.D.); (A.E.B.); (F.B.); (R.S.)
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Al Musaimi O. Peptide Therapeutics: Unveiling the Potential against Cancer-A Journey through 1989. Cancers (Basel) 2024; 16:1032. [PMID: 38473389 PMCID: PMC11326481 DOI: 10.3390/cancers16051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The United States Food and Drug Administration (FDA) has approved a plethora of peptide-based drugs as effective drugs in cancer therapy. Peptides possess high specificity, permeability, target engagement, and a tolerable safety profile. They exhibit selective binding with cell surface receptors and proteins, functioning as agonists or antagonists. They also serve as imaging agents for diagnostic applications or can serve a dual-purpose as both diagnostic and therapeutic (theragnostic) agents. Therefore, they have been exploited in various forms, including linkers, peptide conjugates, and payloads. In this review, the FDA-approved prostate-specific membrane antigen (PSMA) peptide antagonists, peptide receptor radionuclide therapy (PRRT), somatostatin analogs, antibody-drug conjugates (ADCs), gonadotropin-releasing hormone (GnRH) analogs, and other peptide-based anticancer drugs are analyzed in terms of their chemical structures and properties, therapeutic targets and mechanisms of action, development journey, administration routes, and side effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
12
|
Peng H, Chen IA. Preparation of Bioconjugates of Chimeric M13 Phage and Gold Nanorods. Methods Mol Biol 2024; 2793:131-141. [PMID: 38526728 PMCID: PMC11371271 DOI: 10.1007/978-1-0716-3798-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Phage-nanomaterial conjugates are functional bio-nanofibers with various applications. While phage display can select for phages with desired genetically encoded functions and properties, nanomaterials can endow the phages with additional features at nanoscale dimensions. Therefore, combining phages with nanotechnology can construct bioconjugates with unique characteristics. One strategy for filamentous phages is to adsorb nanoparticles onto the side wall, composed of pVIII subunits, through electrostatic interactions. However, a noncovalent approach may cause offloading if the environment changes, potentially causing side effects especially for in vivo applications. Therefore, building stable phage-bioconjugates is an important need. We previously reported the construction of chimeric M13 phage conjugated with gold nanorods, named "phanorods," without weakening the binding affinity to the bacterial host cells. Herein, we give a detailed protocol for preparing the chimeric M13 phage and covalently conjugating gold nanorods to the phage.
Collapse
Affiliation(s)
- Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Kumar A, Yadav A. Synthetic phage and its application in phage therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:61-89. [PMID: 37739560 DOI: 10.1016/bs.pmbts.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Synthetic phage analysis has been implemented in progressive various areas of biology, such as genetics, molecular biology, and synthetic biology. Many phage-derived technologies have been altered for developing gene circuits to program biological systems. Due to their extremely potent potency, phages also provide greater medical availability against bacterial agents and bacterial diagnostic agents. Its host specificity and our growing ability to manipulate, them further expand its possibility. New Phages also genetically redesign programmable biomaterials with highly tunable properties. Moreover, new phages are central to powerful directed evolution platforms. It is used to enhance existing biological, functions to create new phages. In other sites, the mining of antibiotics, and the emergence and dissemination of more than one type of drug-resistant microbe, a human health concerns. The major point in controlling and treating microbial infections. At present, genetic modifications and biochemical treatments are used to modify phages. Among these, genetic engineering involves the identification of defective proteins, modification of host bodies, recognized receptors, and disruption of bacterial phage resistance signaling gateways.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| | - Anuj Yadav
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
14
|
Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS. Generation of peptides using phage display technology for cancer diagnosis and molecular imaging. Mol Biol Rep 2023; 50:4653-4664. [PMID: 37014570 PMCID: PMC10072011 DOI: 10.1007/s11033-023-08380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
Collapse
Affiliation(s)
- Hai Shin Pung
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Woei Kean Ng
- Faculty of Medicine, AIMST University, Bedong, Kedah, 08100, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
15
|
Shi P, Cheng Z, Zhao K, Chen Y, Zhang A, Gan W, Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnology 2023; 21:103. [PMID: 36944946 PMCID: PMC10031984 DOI: 10.1186/s12951-023-01826-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Depth of Sequencing Plays a Determining Role in the Characterization of Phage Display Peptide Libraries by NGS. Int J Mol Sci 2023; 24:ijms24065396. [PMID: 36982469 PMCID: PMC10049078 DOI: 10.3390/ijms24065396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Next-generation sequencing (NGS) has raised a growing interest in phage display research. Sequencing depth is a pivotal parameter for using NGS. In the current study, we made a side-by-side comparison of two NGS platforms with different sequencing depths, denoted as lower-throughput (LTP) and higher-throughput (HTP). The capacity of these platforms for characterization of the composition, quality, and diversity of the unselected Ph.D.TM-12 Phage Display Peptide Library was investigated. Our results indicated that HTP sequencing detects a considerably higher number of unique sequences compared to the LTP platform, thus covering a broader diversity of the library. We found a larger percentage of singletons, a smaller percentage of repeated sequences, and a greater percentage of distinct sequences in the LTP datasets. These parameters suggest a higher library quality, resulting in potentially misleading information when using LTP sequencing for such assessment. Our observations showed that HTP reveals a broader distribution of peptide frequencies, thus revealing increased heterogeneity of the library by the HTP approach and offering a comparatively higher capacity for distinguishing peptides from each other. Our analyses suggested that LTP and HTP datasets show discrepancies in their peptide composition and position-specific distribution of amino acids within the library. Taken together, these findings lead us to the conclusion that a higher sequencing depth can yield more in-depth insights into the composition of the library and provide a more complete picture of the quality and diversity of phage display peptide libraries.
Collapse
|
17
|
Bisht D, Sajjanar BK, Saxena S, Kakodia B, Dighe V, Thakuria D, Kharayat NS, Chanu KV, Kumar S. Identification and characterization of phage display-selected peptides having affinity to Peste des petits ruminants virus. J Immunol Methods 2023; 515:113455. [PMID: 36893896 DOI: 10.1016/j.jim.2023.113455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Phage display is a well-established technique used for selecting novel ligands having affinity to a plethora of targets including proteins, viruses, whole bacterial and mammalian cells as well as lipid targets. In the present study, phage display technology was used to identify peptides having affinity to PPRV. The binding capacity of these peptides was characterized through various formats of ELISA using phage clones, linear and multiple antigenic peptides. The whole PPRV was used as an immobilized target in a surface biopanning process using a 12-mer phage display random peptide library. After five rounds of biopanning, forty colonies were picked and amplified followed by DNA isolation and amplification for sequencing. Sequencing suggested 12 different clones expressing different peptide sequence Phage-ELISA was performed using all 12 phage clones. Results indicated that four phage clones i.e., P4, P8, P9 and P12 had a specific binding activity to PPR virus. Linear peptides displayed by all 12 clones were synthesized using solid phase peptide synthesis and subjected to virus capture ELISA. No significant binding of the linear peptides with PPRV was evident which may be due to loss of conformation of linear peptide after coating. When the four selected phage clones displayed peptide sequences were synthesized in Multiple antigenic peptide (MAP) format and used in virus capture ELISA, the results indicated significant binding of PPRV to the MAPs. It may be due to increased avidity and/or better projection of binding residues in 4-armed MAPs as compared to linear peptides. MAP-peptides were also conjugated on gold nanoparticles (AuNPs). Visual colour change from wine red to purple was observed on addition of PPRV in MAP-conjugated AuNPs solution. This colour change may be attributable to the networking of PPRV with MAP -conjugated AuNPs resulting in aggregation of AuNPs. All these results supported the hypothesis that the phage display selected peptides were capable of binding to the PPRV. The potential of these peptides to develop novel diagnostic or therapeutic agents remains to be investigated.
Collapse
Affiliation(s)
- Deepika Bisht
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Nainital, Uttarakhand 263138, India.
| | - B K Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Bhuvna Kakodia
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Vikas Dighe
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Dimpal Thakuria
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand 263136, India.
| | - Nitish S Kharayat
- Temperate Animal Husbandry Division, ICAR-Indian Veterinary Research Institute, Mukteswar Campus, Nainital, Uttarakhand 263138, India.
| | | | - Satish Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
18
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
19
|
Comparative Evaluation of Reproducibility of Phage-Displayed Peptide Selections and NGS Data, through High-Fidelity Mapping of Massive Peptide Repertoires. Int J Mol Sci 2023; 24:ijms24021594. [PMID: 36675109 PMCID: PMC9862337 DOI: 10.3390/ijms24021594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 01/14/2023] Open
Abstract
Phage-displayed peptide selections generate complex repertoires of several hundred thousand peptides as revealed by next-generation sequencing (NGS). In repeated peptide selections, however, even in identical experimental in vitro conditions, only a very small number of common peptides are found. The repertoire complexities are evidence of the difficulty of distinguishing between effective selections of specific peptide binders to exposed targets and the potential high background noise. Such investigation is even more relevant when considering the plethora of in vivo expressed targets on cells, in organs or in the entire organism to define targeting peptide agents. In the present study, we compare the published NGS data of three peptide repertoires that were obtained by phage display under identical experimental in vitro conditions. By applying the recently developed tool PepSimili we evaluate the calculated similarities of the individual peptides from each of these three repertoires and perform their mappings on the human proteome. The peptide-to-peptide mappings reveal high similarities among the three repertoires, confirming the desired reproducibility of phage-displayed peptide selections.
Collapse
|
20
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
21
|
Sun R, Yu P, Zuo P, Villagrán D, Mathieu J, Alvarez PJJ. Biofilm Control in Flow-Through Systems Using Polyvalent Phages Delivered by Peptide-Modified M13 Coliphages with Enhanced Polysaccharide Affinity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17177-17187. [PMID: 36413403 DOI: 10.1021/acs.est.2c06561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eradication of biofilms that may harbor pathogens in water distribution systems is an elusive goal due to limited penetration of residual disinfectants. Here, we explore the use of engineered filamentous coliphage M13 for enhanced biofilm affinity and precise delivery of lytic polyvalent phages (i.e., broad-host-range phages lysing multiple host strains after infection). To promote biofilm attachment, we modified the M13 major coat protein (pVIII) by inserting a peptide sequence with high affinity for Pseudomonas aeruginosa (P. aeruginosa) extracellular polysaccharides (commonly present on the surface of biofilms in natural and engineered systems). Additionally, we engineered the M13 tail fiber protein (pIII) to contain a peptide sequence capable of binding a specific polyvalent lytic phage. The modified M13 had 102- and 5-fold higher affinity for P. aeruginosa-dominated mixed-species biofilms than wildtype M13 and unconjugated polyvalent phage, respectively. When applied to a simulated water distribution system, the resulting phage conjugates achieved targeted phage delivery to the biofilm and were more effective than polyvalent phages alone in reducing live bacterial biomass (84 vs 34%) and biofilm surface coverage (81 vs 22%). Biofilm regrowth was also mitigated as high phage concentrations induced residual bacteria to downregulate genes associated with quorum sensing and extracellular polymeric substance secretion. Overall, we demonstrate that engineered M13 can enable more accurate delivery of polyvalent phages to biofilms in flow-through systems for enhanced biofilm control.
Collapse
Affiliation(s)
- Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
22
|
Wei T, Li D, Zhang Y, Tang Y, Zhou H, Liu H, Li X. Thiophene-2,3-Dialdehyde Enables Chemoselective Cyclization on Unprotected Peptides, Proteins, and Phage Displayed Peptides. SMALL METHODS 2022; 6:e2201164. [PMID: 36156489 DOI: 10.1002/smtd.202201164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/1912] [Indexed: 06/16/2023]
Abstract
Ortho-phthalaldehyde has recently found wide potentials for protein bioconjugation and peptide cyclization. Herein, the second-generation dialdehyde-based peptide cyclization method is reported. The thiophene-2,3-dialdehyde (TDA) reacts specifically with the primary amine (from Lys side chain or peptide N-terminus) and thiol (from Cys side chain) within unprotected peptides to generate a highly stable thieno[2,3-c]pyrrole-bridged cyclic structure, while it does not react with primary amine alone. This reaction is carried out in the aqueous buffer and features tolerance of diverse functionalities, rapid and clean transformation, and operational simplicity. The features allow TDA to be used for protein stapling and phage displayed peptide cyclization.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| |
Collapse
|
23
|
Manivannan AC, Dhandapani R, Velmurugan P, Thangavelu S, Paramasivam R, Ragunathan L, Saravanan M. Phage in cancer treatment - Biology of therapeutic phage and screening of tumor targeting peptide. Expert Opin Drug Deliv 2022; 19:873-882. [PMID: 35748094 DOI: 10.1080/17425247.2022.2094363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION There is a constant drive to improve disease treatments. Much effort has been directed at identifying less immunogenic anti-cancer agents that produce fewer and less severe side effects. For more than a decade, bacteriophages have been discussed as an effective treatment for cancer with an exact mode of delivery. AREAS COVERED We review how bacteriophages are used in cancer treatment, the underlying therapeutic mechanisms, and the tumour attacking peptide screening process. The filamentous bacteriophages are an effective vehicle for delivering displayed peptides toward the tumour target. The peptide must be expressed at the appropriate coat protein, and the peptide must be effective enough to disrupt the complex cancer matrix. The present review also sheds light on the dynamic use of phage in cancer treatment, from detection and diagnostics to treatment. EXPERT OPINION Phage has a versatile role as a diagnostic and therapeutic tool. By acting as an appropriate recombinant drug, this phage has every potential to replace existing laborious, high capital investing therapies that may at many times result in failure or drastic side effects. One of the most significant challenges would be identifying tumour homing peptides. Although a few have been discovered, the most effective ones are yet to be determined. This therapeutic method plays a significant role in tumour therapy with high accuracy and efficiency, irrespective of the target location.
Collapse
Affiliation(s)
- Arun Chandra Manivannan
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ranjithkumar Dhandapani
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.,Chimertech Private Limited, Chennai- 600082, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research (BIHER), Chennai 600073, Tamil Nadu, India
| | - Sathiamoorthi Thangavelu
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ragul Paramasivam
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research (BIHER), Chennai 600073, Tamil Nadu, India
| | - Latha Ragunathan
- Department of Microbiology, Aarupadi Veedu Medical College, Puducherry 607402, India
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamilnadu, India
| |
Collapse
|
24
|
Yaghoubi A, Khazaei M, Ghazvini K, Hasanian SM, Avan A, Soleimanpour S. Bacterial Peptide and Bacteriocins in Treating Gynecological Cancers. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
26
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
27
|
Ji H, Yuan L, Jiang Y, Ye M, Liu Z, Xia X, Qin C, Jiang D, Gai Y, Lan X. Visualizing Cytokeratin-14 Levels in Basal-Like Breast Cancer via ImmunoSPECT Imaging. Mol Pharm 2022; 19:3542-3550. [PMID: 35285645 DOI: 10.1021/acs.molpharmaceut.2c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lujie Yuan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Min Ye
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Zhen Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Department of Nuclear Medicine, The People’s Hospital of Honghu, Honghu 433200, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
28
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
29
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 762] [Impact Index Per Article: 254.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
30
|
Cheng YW, Chuang YC, Huang SW, Liu CC, Wang JR. An auto-antibody identified from phenotypic directed screening platform shows host immunity against EV-A71 infection. J Biomed Sci 2022; 29:10. [PMID: 35130884 PMCID: PMC8822709 DOI: 10.1186/s12929-022-00794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background Enterovirus A71 (EV-A71) is a neurotropic virus which may cause severe neural complications, especially in infants and children. The clinical manifestations include hand-foot-and-mouth disease, herpangina, brainstem encephalitis, pulmonary edema, and other severe neurological diseases. Although there are some vaccines approved, the post-marketing surveillance is still unavailable. In addition, there is no antiviral drugs against EV-A71 available. Methods In this study, we identified a novel antibody that could inhibit viral growth through a human single chain variable fragment (scFv) library expressed in mammalian cells and panned by infection with lethal dose of EV-A71. Results We identified that the host protein α-enolase (ENO1) is the target of this scFv, and anti-ENO1 antibody was found to be more in mild cases than severe EV-A71 cases. Furthermore, we examined the antiviral activity in a mouse model. We found that the treatment of the identified 07-human IgG1 antibody increased the survival rate after virus challenge, and significantly decreased the viral RNA and the level of neural pathology in brain tissue. Conclusions Collectively, through a promising intracellular scFv library expression and screening system, we found a potential scFv/antibody which targets host protein ENO1 and can interfere with the infection of EV-A71. The results indicate that the usage and application of this antibody may offer a potential treatment against EV-A71 infection.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Leadgene Biomedical, Inc., Tainan, Taiwan
| | - Yung-Chun Chuang
- Leadgene Biomedical, Inc., Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan. .,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
31
|
Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103645. [PMID: 34914854 PMCID: PMC8811829 DOI: 10.1002/advs.202103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Bacteriophages, also known as phages, are specific antagonists against bacteria. T7 phage has drawn massive attention in precision medicine owing to its distinctive advantages, such as short replication cycle, ease in displaying peptides and proteins, high stability and cloning efficiency, facile manipulation, and convenient storage. By introducing foreign gene into phage DNA, T7 phage can present foreign peptides or proteins site-specifically on its capsid, enabling it to become a nanoparticle that can be genetically engineered to screen and display a peptide or protein capable of recognizing a specific target with high affinity. This review critically introduces the biomedical use of T7 phage, ranging from the detection of serological biomarkers and bacterial pathogens, recognition of cells or tissues with high affinity, design of gene vectors or vaccines, to targeted therapy of different challenging diseases (e.g., bacterial infection, cancer, neurodegenerative disease, inflammatory disease, and foot-mouth disease). It also discusses perspectives and challenges in exploring T7 phage, including the understanding of its interactions with human body, assembly into scaffolds for tissue regeneration, integration with genome editing, and theranostic use in clinics. As a genetically modifiable biological nanoparticle, T7 phage holds promise as biomedical imaging probes, therapeutic agents, drug and gene carriers, and detection tools.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yan Li
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
- Department of Chemistry and BiochemistryStephenson Life Science Research CenterInstitute for Biomedical Engineering, Science and TechnologyUniversity of Oklahoma101 Stephenson ParkwayNormanOklahoma73019‐5251USA
| |
Collapse
|
32
|
Peptide-based semiconducting polymer nanoparticles for osteosarcoma-targeted NIR-II fluorescence/NIR-I photoacoustic dual-model imaging and photothermal/photodynamic therapies. J Nanobiotechnology 2022; 20:44. [PMID: 35062957 PMCID: PMC8780402 DOI: 10.1186/s12951-022-01249-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The overall survival rate of osteosarcoma (OS) patients has not been improved for 30 years, and the diagnosis and treatment of OS is still a critical issue. To improve OS treatment and prognosis, novel kinds of theranostic modalities are required. Molecular optical imaging and phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), are promising strategies for cancer theranostics that exhibit high imaging sensitivity as well as favorable therapeutic efficacy with minimal side effect. In this study, semiconducting polymer nanoparticles (SPN-PT) for OS-targeted PTT/PDT are designed and prepared, using a semiconducting polymer (PCPDTBT), providing fluorescent emission in the second near-infrared window (NIR-II, 1000 - 1700 nm) and photoacoustic (PA) signal in the first near-infrared window (NIR-I, 650 - 900 nm), served as the photosensitizer, and a polyethylene glycolylated (PEGylated) peptide PT, providing targeting ability to OS.
Results
The results showed that SPN-PT nanoparticles significantly accelerated OS-specific cellular uptake and enhanced therapeutic efficiency of PTT and PDT effects in OS cell lines and xenograft mouse models. SPN-PT carried out significant anti-tumor activities against OS both in vitro and in vivo.
Conclusions
Peptide-based semiconducting polymer nanoparticles permit efficient NIR-II fluorescence/NIR-I PA dual-modal imaging and targeted PTT/PDT for OS.
Graphic Abstract
Collapse
|
33
|
Yang XQ, Bai LW, Chen Y, Lin YX, Xiang H, Xiang TT, Zhu SX, Zhou L, Li K, Lei X. Peptide probes with high affinity to target protein selection by phage display and characterization using biophysical approaches. NEW J CHEM 2022. [DOI: 10.1039/d2nj00621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, phage display was utilized to screen the affinity of peptides against dihydrofolate reductase and a positive peptide was obtained, and the verification of the affinity was tested by multiple in vitro biophysical methods.
Collapse
Affiliation(s)
- Xiao-Qin Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Li-Wen Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yu Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yue-Xiao Lin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Hua Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ting-Ting Xiang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Shuang-Xing Zhu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Li Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Kai Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
34
|
Huang DT, Fu HJ, Huang JJ, Luo L, Lei HT, Shen YD, Chen ZJ, Wang H, Xu ZL. Mimotope-Based Immunoassays for the Rapid Analysis of Mycotoxin: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11743-11752. [PMID: 34583509 DOI: 10.1021/acs.jafc.1c04169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycotoxins are toxic contaminants in foods and feeds that are naturally occurring and largely unavoidable. Determining their contents in these products is essential to protect humans from harm. Immunoassays of mycotoxins have been well-established because they are fast, sensitive, simple, and cost-effective. However, a major limitation of immunoassays is the requirement of toxic mycotoxins as competing antigens, standards, or competing tracers. Mimotopes are peptides or proteins that can specifically bind to antibodies and compete with analytes for binding sites by mimicking antigenic epitopes. They can be employed as substitutes for competing antigens, standards, or competing tracers to avoid use of mycotoxins. This review summarizes the production and functionalization of the two main kinds of mimotopes, mimic peptides and anti-idiotypic antibodies (Ab2), and their applications in rapid analysis of mycotoxins.
Collapse
Affiliation(s)
- Dan-Tong Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Jun Fu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Jia Huang
- Guangdong Food and Drug Vocational College, Guangzhou 510665, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
35
|
Ye M, Gai Y, Ji H, Jiang Y, Qiao P, Wang W, Zhang Y, Xia X, Lan X. A Novel Radioimmune 99mTc-Labeled Tracer for Imaging Sphingosine 1-Phosphate Receptor 1 in Tumor Xenografts: An In Vitro and In Vivo Study. Front Immunol 2021; 12:660842. [PMID: 34484174 PMCID: PMC8416251 DOI: 10.3389/fimmu.2021.660842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a phospholipid that regulates pleiotropic biological activities and exerts extracellular functions by binding to five specific G-protein-coupled receptors, S1P receptors (S1PR) 1-5. When activated by S1P, S1PR promote the proliferation and invasion of tumor cells by inducing the formation of new blood vessels. We developed and assessed a new monoclonal antibody imaging probe 99mTc-HYNIC-S1PR1mAb, to explore the feasibility of targeting the S1PR1 in vitro and in vivo. S1PR1mAb was prepared and followed by technetium-99m labeling with succinimidyl 6-hydraziniumnicotinate hydrochloride. Cell uptake and blocking studies were performed to investigate the binding specificity of 99mTc-HYNIC-S1PR1mAb in vitro. 99mTc-HYNIC-S1P1mAb was also tested in vivo in mice xenografted with SK-HEP-1 (high-expression of S1PR1) and MCF-7 (low-expression of S1PR1) using single-photon emission-computed tomography (SPECT). Ex vivo gamma counting of tissues from tumor-bearing mice was used to evaluate 99mTc-HYNIC-S1PR1mAb biodistribution. The biodistribution study results showed significantly higher uptake in SK-HEP-1 tumors than in MCF-7 tumors (P < 0.001). Reduced uptake of 99mTc-HYNIC-S1PR1mAb in SK-HEP-1 was observed in tumor-bearing nude mice pretreated with fingolimod, which binds competitively to the receptors, especially S1PR1. 99mTc-HYNIC-S1PR1mAb can be synthesized and specifically targeted to S1PR1 in vitro and in vivo, allowing S1PR1 expression assessment with SPECT imaging.
Collapse
Affiliation(s)
- Min Ye
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenxia Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
36
|
Wang J, Guo J, Zhao K, Ruan W, Li L, Ling J, Peng R, Zhang H, Yang C, Zhu Z. Auto-Panning: a highly integrated and automated biopanning platform for peptide screening. LAB ON A CHIP 2021; 21:2702-2710. [PMID: 34105587 DOI: 10.1039/d1lc00129a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biopanning, a common affinity selection approach in phage display, has evolved numerous ligands for diagnosis, imaging, delivery, and therapy applications. However, traditional biopanning has suffered from time-consuming processes, highly-repetitive procedures and labor-intensive manual operation. Herein, a highly integrated and automated biopanning platform (Auto-Panning) is proposed. Based on digital microfluidics (DMF), biopanning processes are integrated on a chip with highly reproducible, precise, automated liquid manipulation. Therefore, 3 rounds of Auto-Panning can be accomplished within 16 h, instead of nearly a week of complicated manual operations. Auto-Panning has been used to evolve a specific peptide against cancer biomarker EphA2 with excellent cellular penetrating ability and significant invasion suppression biofunction, successfully demonstrating the practicality of the platform. Overall, as an automated programmable molecular screening platform, Auto-Panning will further promote the discovery and applications of novel ligands.
Collapse
Affiliation(s)
- Junxia Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jingjing Guo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Kaifeng Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weidong Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Liang Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jiajun Ling
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ruixiao Peng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
37
|
Gibb B, Hyman P, Schneider CL. The Many Applications of Engineered Bacteriophages-An Overview. Pharmaceuticals (Basel) 2021; 14:ph14070634. [PMID: 34208847 PMCID: PMC8308837 DOI: 10.3390/ph14070634] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Since their independent discovery by Frederick Twort in 1915 and Felix d’Herelle in 1917, bacteriophages have captured the attention of scientists for more than a century. They are the most abundant organisms on the planet, often outnumbering their bacterial hosts by tenfold in a given environment, and they constitute a vast reservoir of unexplored genetic information. The increased prevalence of antibiotic resistant pathogens has renewed interest in the use of naturally obtained phages to combat bacterial infections, aka phage therapy. The development of tools to modify phages, genetically or chemically, combined with their structural flexibility, cargo capacity, ease of propagation, and overall safety in humans has opened the door to a myriad of applications. This review article will introduce readers to many of the varied and ingenious ways in which researchers are modifying phages to move them well beyond their innate ability to target and kill bacteria.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biological and Chemical Sciences, Theobald Science Center, Room 423, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
- Correspondence: (B.G.); (C.L.S.)
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, 401 College Ave., Ashland, OH 44805, USA;
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, 100 North East Ave., Waukesha, WI 53186, USA
- Correspondence: (B.G.); (C.L.S.)
| |
Collapse
|
38
|
Sheridan E, Vercellino S, Cursi L, Adumeau L, Behan JA, Dawson KA. Understanding intracellular nanoparticle trafficking fates through spatiotemporally resolved magnetic nanoparticle recovery. NANOSCALE ADVANCES 2021; 3:2397-2410. [PMID: 36134166 PMCID: PMC9419038 DOI: 10.1039/d0na01035a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/21/2021] [Indexed: 05/08/2023]
Abstract
The field of nanomedicine has the potential to be a game-changer in global health, with possible applications in prevention, diagnostics, and therapeutics. However, despite extensive research focus and funding, the forecasted explosion of novel nanomedicines is yet to materialize. We believe that clinical translation is ultimately hampered by a lack of understanding of how nanoparticles really interact with biological systems. When placed in a biological environment, nanoparticles adsorb a biomolecular layer that defines their biological identity. The challenge for bionanoscience is therefore to understand the evolution of the interactions of the nanoparticle-biomolecules complex as the nanoparticle is trafficked through the intracellular environment. However, to progress on this route, scientists face major challenges associated with isolation of specific intracellular compartments for analysis, complicated by the diversity of trafficking events happening simultaneously and the lack of synchronization between individual events. In this perspective article, we reflect on how magnetic nanoparticles can help to tackle some of these challenges as part of an overall workflow and act as a useful platform to investigate the bionano interactions within the cell that contribute to this nanoscale decision making. We discuss both established and emerging techniques for the magnetic extraction of nanoparticles and how they can potentially be used as tools to study the intracellular journey of nanomaterials inside the cell, and their potential to probe nanoscale decision-making events. We outline the inherent limitations of these techniques when investigating particular bio-nano interactions along with proposed strategies to improve both specificity and resolution. We conclude by describing how the integration of magnetic nanoparticle recovery with sophisticated analysis at the single-particle level could be applied to resolve key questions for this field in the future.
Collapse
Affiliation(s)
- Emily Sheridan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin Belfield Dublin 4 Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
39
|
Vargas-Sanchez K, Losada-Barragán M, Mogilevskaya M, Novoa-Herrán S, Medina Y, Buendía-Atencio C, Lorett-Velásquez V, Martínez-Bernal J, Gonzalez-Reyes RE, Ramírez D, Petry KG. Screening for Interacting Proteins with Peptide Biomarker of Blood-Brain Barrier Alteration under Inflammatory Conditions. Int J Mol Sci 2021; 22:ijms22094725. [PMID: 33946948 PMCID: PMC8124558 DOI: 10.3390/ijms22094725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by increased permeability of the blood-brain barrier (BBB) due to alterations in cellular and structural components of the neurovascular unit, particularly in association with neuroinflammation. A previous screening study of peptide ligands to identify molecular alterations of the BBB in neuroinflammation by phage-display, revealed that phage clone 88 presented specific binding affinity to endothelial cells under inflammatory conditions in vivo and in vitro. Here, we aimed to identify the possible target receptor of the peptide ligand 88 expressed under inflammatory conditions. A cross-link test between phage-peptide-88 with IL-1β-stimulated human hCMEC cells, followed by mass spectrometry analysis, was used to identify the target of peptide-88. We modeled the epitope-receptor molecular interaction between peptide-88 and its target by using docking simulations. Three proteins were selected as potential target candidates and tested in enzyme-linked immunosorbent assays with peptide-88: fibronectin, laminin subunit α5 and laminin subunit β-1. Among them, only laminin subunit β-1 presented measurable interaction with peptide-88. Peptide-88 showed specific interaction with laminin subunit β-1, highlighting its importance as a potential biomarker of the laminin changes that may occur at the BBB endothelial cells under pathological inflammation conditions.
Collapse
Affiliation(s)
- Karina Vargas-Sanchez
- Grupo de Neurociencia Translacional, Facultad de Medicina, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: ; Tel.: +57-13102405706
| | - Monica Losada-Barragán
- Grupo de Biología Celular y Funcional e Ingeniería de Moléculas, Departamento de Biología, Universidad Antonio Nariño, Bogotá 110231, Colombia; (M.L.-B.); (Y.M.)
| | - Maria Mogilevskaya
- Grupo de Investigación GINIC-HUS, Universidad ECCI, Bogotá 111311, Colombia;
| | - Susana Novoa-Herrán
- Grupo de Investigación en Hormonas (Hormone Research Laboratory), Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia; or
- Grupo de Fisiología Molecular, Subdirección de Investigación Científica y Tecnológica, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Yehidi Medina
- Grupo de Biología Celular y Funcional e Ingeniería de Moléculas, Departamento de Biología, Universidad Antonio Nariño, Bogotá 110231, Colombia; (M.L.-B.); (Y.M.)
| | - Cristian Buendía-Atencio
- Grupo de Investigación en Modelado y Computación Científica, Departamento de Química, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Vaneza Lorett-Velásquez
- Facultad de Medicina y Ciencias de la Salud, Universidad Militar Nueva Granada, Bogotá 110231, Colombia; (V.L.-V.); (J.M.-B.)
| | - Jessica Martínez-Bernal
- Facultad de Medicina y Ciencias de la Salud, Universidad Militar Nueva Granada, Bogotá 110231, Colombia; (V.L.-V.); (J.M.-B.)
| | - Rodrigo E. Gonzalez-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencia Neurovitae-UR, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia;
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, El llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Klaus G. Petry
- INSERM U1049 and U1029 Neuroinflammation and Angiogenesis Group, Bordeaux University, F33000 Bordeaux, France;
| |
Collapse
|
40
|
Liang CT, Roscow OMA, Zhang W. Recent developments in engineering protein-protein interactions using phage display. Protein Eng Des Sel 2021; 34:6297171. [PMID: 34117768 DOI: 10.1093/protein/gzab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/09/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.
Collapse
Affiliation(s)
- Chen T Liang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada
| | - Olivia M A Roscow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada.,CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, Ontario M5G1M1, Canada
| |
Collapse
|
41
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
42
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
43
|
Abbaszadeh F, Leylabadlo HE, Alinezhad F, Feizi H, Mobed A, Baghbanijavid S, Baghi HB. Bacteriophages: cancer diagnosis, treatment, and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:23-34. [DOI: 10.1007/s40005-020-00503-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
|
44
|
Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020; 27:587-595. [PMID: 32901205 PMCID: PMC7471523 DOI: 10.1007/s10989-020-10108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Phage display is an effective and powerful technique that provides a route to discovery unique peptides targeting to tumor cells. Specifically binding peptides are considered as the valuable target directing molecule fragments with potential efficiency to improve the current tumor clinic, and offer new approaches for tumor prevention, diagnosis and treatment. We focus on the recent advances in the isolation of tumor-targeting peptides by biopanning methods, with particular emphasis on molecular imaging, and pharmaceutical targeting therapy.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Zhan
- 518 Hospital of PLA, Xi'an, 710043 Shaanxi China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| |
Collapse
|
45
|
Yaghoubi A, Khazaei M, Jalili S, Hasanian SM, Avan A, Soleimanpour S, Cho WC. Bacteria as a double-action sword in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188388. [PMID: 32589907 DOI: 10.1016/j.bbcan.2020.188388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Bacteria have long been known as one of the primary causative agents of cancer, however, recent studies suggest that they can be used as a promising agent in cancer therapy. Because of the limitations that conventional treatment faces due to the specific pathophysiology and the tumor environment, there is a great need for the new anticancer therapeutic agents. Bacteriotherapy utilizes live, attenuated strains or toxins, peptides, bacteriocins of the bacteria in the treatment of cancer. Moreover, they are widely used as a vector for delivering genes, peptides, or drugs to the tumor target. Interestingly, it was found that their combination with the conventional therapeutic approaches may enhance the treatment outcome. In the genome editing era, it is feasible to develop a novel generation of therapeutic bacteria with fewer side effects and more efficacy for cancer therapy. Here we review the current knowledge on the dual role of bacteria in the development of cancer as well as cancer therapy.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Jalili
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
46
|
Su D, Gao L, Gao F, Zhang X, Gao X. Peptide and protein modified metal clusters for cancer diagnostics. Chem Sci 2020; 11:5614-5629. [PMID: 32874504 PMCID: PMC7444476 DOI: 10.1039/d0sc01201g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The biomedical features of metal clusters have been explored in tumor diagnostic applications in recent years. Peptide or protein protected metal clusters with low toxicity, ultra-small size and good biocompatibility are ideal bioanalytical tools, and exhibit better cancer diagnostic properties that have been attractive to oncologists. This perspective provides a rigorous but succinct overview of cancer diagnosis as a working concept for metal clusters by reporting the latest significant advances in the applications of metal clusters in tumor-related bioanalysis and diagnosis. The materials design principles, bioanalytical mechanisms and biomedical applications of metal clusters are described, and then the potential challenges and prospects of metal clusters in cancer diagnosis are discussed. A perspective addressing the role of metal clusters in this field is required to understand their effects and functions, as well as for the scientific community to further advance the development of metal clusters for broader diagnostic applications.
Collapse
Affiliation(s)
- Dongdong Su
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| | - Liang Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| | - Fuping Gao
- Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangchun Zhang
- Tea Research Institute , Chinese Academy of Agricultural Sciences , Hangzhou , 310008 , China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China .
| |
Collapse
|
47
|
Alshamat EA, Kweider M, Soukkarieh C, Zarkawi M, Khalaf HE, Abbady AQ. Phage-nanobody as molecular marker for the detection of Leishmania tropica. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Allott L, Aboagye EO. Chemistry Considerations for the Clinical Translation of Oncology PET Radiopharmaceuticals. Mol Pharm 2020; 17:2245-2259. [DOI: 10.1021/acs.molpharmaceut.0c00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Louis Allott
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
49
|
Soleimanpour S, Hasanian SM, Avan A, Yaghoubi A, Khazaei M. Bacteriotherapy in gastrointestinal cancer. Life Sci 2020; 254:117754. [PMID: 32389833 DOI: 10.1016/j.lfs.2020.117754] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023]
Abstract
The most prevalent gastrointestinal (GI) cancers include colorectal cancer, stomach cancer, and liver cancer, known as the most common causes of cancer-related death in both men and women populations in the world. Traditional therapeutic approaches, including surgery, radiotherapy, and chemotherapy have failed in the effective treatment of cancer. Therefore, there is an urgent need for finding new effective anticancer agents. The available evidence and also the promising results of using bacteria as the anticancer agents on numerous cancer cell lines have attracted the attention of scientists for the therapeutic role of bacteria in the field of cancer therapy. Moreover, several studies on the bacteriotherapy agents have used genetic engineering to overcome the challenges and enhance the efficacy with the least drawbacks. Numerous bacterial species that can specifically target and internalize into the tumor cells are used live, attenuated, or genetically as compared to selectively consider the hypoxic condition of tumor, which results in the tumor suppression. The present study is a comprehensive review of the current literature on the use of bacteria and their substances such as bacteriocins and toxins in the treatment of different types of gastrointestinal cancers.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Asar MC, Franco A, Soendergaard M. Phage Display Selection, Identification, and Characterization of Novel Pancreatic Cancer Targeting Peptides. Biomolecules 2020; 10:biom10050714. [PMID: 32380649 PMCID: PMC7277971 DOI: 10.3390/biom10050714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is characterized by a 5-year survival rate of 3%, in part due to inadequate detection methods. The small size of peptides offers advantages regarding molecular targeting. Thus, peptides may be used in detection of pancreatic cancer. Here, peptides that target pancreatic cancer cells were selected using phage display technology using a 15-mer fUSE5 library. Phage were pre-cleared against immortalized pancreatic cells (hTERT-HPNE), followed by selections against pancreatic cancer (Mia Paca-2) cells. Next-generation sequencing identified two peptides, MCA1 and MCA2, with a Log2 fold change (Mia Paca-2/ hTERT-HPNE) >1.5. Modified ELISA and fluorescent microscopy showed that both peptides bound significantly higher to Mia Paca-2 cells, and not to hTERT-HPNE, embryonic kidney (HEK 293), ovarian (SKOV-3) and prostate cancer (LNCaP) cell lines. Further characterization of MCA1 and MCA2 revealed EC50 values of 16.11 µM (95% CI [9.69, 26.31 µM]) and 97.01 µM (95% CI [58.64, 166.30 µM]), respectively. Based on these results, MCA1 was selected for further studies. A competitive dose response assay demonstrated specific binding and an IC50 value of 2.15 µM (95% CI [1.28, 3.62 µM]). Taken together, this study suggests that MCA1 may be used as a pancreatic cancer targeting ligand for detection of the disease.
Collapse
Affiliation(s)
- Mallika C. Asar
- Department of Chemistry, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA;
| | - April Franco
- Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA;
| | - Mette Soendergaard
- Department of Chemistry, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA;
- Correspondence: ; Tel.: +1-309-298-1714
| |
Collapse
|