1
|
Gong F, Zhang T, Zhao T, Qi A, Xu P, Huang Q, Li Y, Wang M, Xiao Y, Yang L, Ji Y, Wang W. Comparison of indoor and outdoor atmospheric organophosphorus flame retardants (OPFRs) from the petrochemical industrial area in North China: Occurrence, gas-PM 2.5 distribution, source appointment and health implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125529. [PMID: 39674254 DOI: 10.1016/j.envpol.2024.125529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The consumption of organophosphorus flame retardants (OPFRs) has surged significantly recent years since global banning of brominated flame retardants (BFRs). Industrial activity is an important source of OPFRs, however there are few studies on OPFRs contamination in the indoor and outdoor atmosphere of industrial areas. A study was conducted to analyze contamination of 15 OPFRs individuals in both indoor and outdoor air and PM2.5 of living and industrial sites of the petrochemical industrial area (outdoor and indoor sites of living area was LO and LI, outdoor and indoor sites of industrial area was IO and II). The average concentrations of OPFRs in PM2.5 of LO (16.40 ng/m3) and IO (17.83 ng/m3) were similar, while LI (60.46 ng/m3) was higher than that in II (33.43 ng/m3). The average concentrations of indoor OPFR in PM2.5 and air in summer were 4.10 and 2.22 times higher than those in winter, respectively. This seasonal concentration variation of OPFRs may attribute to the influence of temperature that accelerated the releasing of OPFRs from materials. Source apportionment results indicated that the indoor source (material emission) was the dominant contributor of indoor OPFRs in PM2.5 and air, and outdoor sources (industrial and traffic sources) had significant contribution to OPFRs in indoor and outdoor air and outdoor PM2.5. The gas-particle partitioning of OPFRs had not reached equilibrium state. The KOA absorption model has better fitting effect for OPFRs with logKOA > 10. The health risk of OPFRs for both adult and child was neglectable. While considering the high contribution of TCEP to carcinogenic risk, and high contribution of TCPP to none-carcinogenic risk, their health risk should be given special attention.
Collapse
Affiliation(s)
- Feijie Gong
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tianqi Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Qingdao Research Academy of Environmental Sciences, Qingdao, 266003, China
| | - Anan Qi
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Peng Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yifan Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Miao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Chen Z, Tian E, Jiang Y, Mo J. Global perspectives on indoor phthalates and alternative plasticizers: Occurrence and key transport parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136506. [PMID: 39577293 DOI: 10.1016/j.jhazmat.2024.136506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Phthalates and emerging alternative plasticizers have garnered significant attention due to their ubiquitous presence indoors and potential adverse health effects. However, the occurrences and key transport parameters of indoor alternative plasticizers have not been sufficiently summarized and analyzed, complicating exposure evaluation and pollution control efforts. This study addresses the gap by providing a comprehensive overview of the occurrence and key transport parameters of the most reported plasticizers, including 10 phthalates and 14 alternative plasticizers. The plasticizer content in source materials was found to range up to 27.6 wt%. An empirical formula was developed to predict the surface-adjacent gaseous plasticizer concentration (y0) of source materials, with values ranging from 0.015 to 64.7 μg/m3. Variations in plasticizer concentrations across source, gas, particle, and dust phases were thoroughly analyzed over both temporal and spatial dimensions from a global perspective, indicating significant differences between continents over time. A detailed investigation of phthalate regulations across continents suggests that the earlier enactment of phthalate bans in Europe is likely a key factor contributing to the most significant decrease in indoor phthalate concentrations. Furthermore, after systematically reviewing mass-transfer and partitioning theories, we developed empirical formulas to predict mass-transfer coefficients (hm) and partition coefficients (K) for both phthalates and alternative plasticizers. Notably, the hm and K parameters of the plasticizers were thoroughly calculated for typical indoor interfaces, including airborne particles, settled dust, and impermeable and permeable materials. Overall, this study advances the understanding of indoor plasticizers, facilitating health-risk assessment and the development of suitable control and monitoring technologies.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jinhan Mo
- Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Wu Y, Li H, Fan Y, Cohen Hubal EA, Little JC, Eichler CMA, Bi C, Song Z, Qiu S, Xu Y. Quantifying EDC Emissions from Consumer Products: A Novel Rapid Method and Its Application for Systematic Evaluation of Health Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22700-22713. [PMID: 39628321 DOI: 10.1021/acs.est.4c09466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widely used in consumer products and have been associated with adverse public health outcomes and significant economic costs. We developed a rapid chamber method for measuring EDC emissions from consumer products, significantly reducing the time to reach steady state from weeks or months to minutes or hours. Using this method, we quantified EDC emissions from a wide range of products, determined the emission-control parameters, and established their relationship with the EDC content (Wf) and physicochemical properties. By incorporating Wf data from consumer product databases and applying stochastic models, we systematically estimated emissions for 400 EDC-product combinations and assessed the associated exposure and disease burden for the U.S. population. Our results suggest that more than 60% of these combinations could result in carcinogenic disability-adjusted life years (DALYs) above the acceptable threshold. The overall disease burden caused by EDCs in consumer products can be substantial, with DALYs exceeding those associated with other pollutants, such as particulate matter, in a worst-case scenario. This study provides a valuable tool for prioritizing hazardous EDCs in consumer products, evaluating safer alternatives, and formulating effective intervention strategies, thereby supporting policymakers and manufacturers in making informed, sustainable decisions.
Collapse
Affiliation(s)
- Yili Wu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Hongwan Li
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Yujie Fan
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Elaine A Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27709, United States
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chenyang Bi
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Zidong Song
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Shuolin Qiu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Li Y, Zhang S, Guo Z, Wang L, Qiao L, Chen Y, Fan G, Sun C, Sun Y, Liu Y, Deng Q. An in-situ versatile screening method for identifying SVOC sources in indoor environments. ENVIRONMENT INTERNATIONAL 2024; 189:108794. [PMID: 38833876 DOI: 10.1016/j.envint.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Indoor semivolatile organic compounds (SVOCs) pose a substantial threat to human health. However, identifying the sources of these emissions has been challenging owing to the scarcity of convenient and practical on-site methodologies. Herein, a novel method for source screening was proposed using aluminum silicate sampling strips to adsorb SVOCs from the surface air of indoor materials. The adsorbed SVOC levels indicate the emission intensity of these materials into indoor environments. Additionally, compact sampling strips can be readily fixed to any vertical surface using a static sticker, facilitating the characterization of various materials in practical settings. Laboratory-simulated experiments demonstrated the capability of the proposed method to differentiate between source and non-source materials within a 10-cm distance in the same space. In practical scenarios, the primary emission sources identified via this method exhibited a consistent correlation with the contents of the corresponding materials obtained from the traditional solvent-extraction method. As the adsorbed SVOCs were directly transferred to a GC-MS through thermal desorption instead of the solvent-extraction procedure, the proposed method demonstrated several-fold improvements in analytical sensitivity and efficiency. Using this versatile screening technique, some emerging and important SVOC species were identified within specific indoor materials. Eliminating these sources has been demonstrated as an effective approach to mitigate SVOC pollution. Overall, the proposed method offers a powerful tool for managing indoor pollutants and safeguarding human health.
Collapse
Affiliation(s)
- Yatai Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Shihao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zichen Guo
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lixin Wang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lin Qiao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yu Chen
- School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Guangtao Fan
- School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexia Sun
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Qihong Deng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
5
|
Ofodile J, Alves MR, Liang Y, Franklin EB, Lunderberg DM, Ivey CE, Singer BC, Nazaroff WW, Goldstein AH. Characterizing PM 2.5 Emissions and Temporal Evolution of Organic Composition from Incense Burning in a California Residence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5047-5057. [PMID: 38437595 PMCID: PMC11976701 DOI: 10.1021/acs.est.3c08904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM2.5), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs). Speciated organic PM2.5 measurements were made using two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HR-ToF-MS) and semivolatile thermal desorption aerosol gas chromatography (SV-TAG). Organic PM2.5 EFs ranged from 7 to 31 mg g-1 for burned incense and were largely comprised of polar and oxygenated species, with high abundance of biomass-burning tracers such as levoglucosan. Differences in PM2.5 EFs and chemical profiles were observed in relation to the type of incense burned. Nine indoor SVOCs considered to originate from sources other than incense combustion were enhanced during incense events. Time-resolved concentrations of these SVOCs correlated well with PM2.5 mass (R2 > 0.75), suggesting that low-volatility SVOCs such as bis(2-ethylhexyl)phthalate and butyl benzyl phthalate partitioned to incense-generated PM2.5. Both direct emissions and enhanced partitioning of low-volatility indoor SVOCs to incense-generated PM2.5 can influence inhalation exposures during and after indoor incense use.
Collapse
Affiliation(s)
- Jennifer Ofodile
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michael R. Alves
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Yutong Liang
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Emily B. Franklin
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David M. Lunderberg
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Cesunica E. Ivey
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brett C. Singer
- Indoor
Environment Group, Energy Analysis and Environmental Impacts Division,
Building Technologies and Urban Systems Division, Energy Technologies
Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - William W Nazaroff
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Allen H. Goldstein
- Department
of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Chen X, Han W, Chen J, Xie H, Xie Q, Zhu M, Wang Z, Cui Y, Tang W. Composition and release rates of chemicals in inkjet fabrics determined by non-targeted screening and targeted analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123312. [PMID: 38199480 DOI: 10.1016/j.envpol.2024.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Unveiling composition and release rates of chemicals in chemical-intensive products (CIPs) such as inkjet fabrics that are applied extensively in advertising and publicizing industries, is of importance to sound management of chemicals. This study tentatively identified 212 compounds from 69 inkjet fabric samples using gas chromatograph coupled with quadrupole time-of-flight mass spectrometry (GC-QTOF-MS). Contents of six phthalate esters (PAEs) were quantified to range from 3.0 × 102 mg/kg to 3.1 × 105 mg/kg with GC-MS. Bis(2-ethylhexyl) phthalate was predominantly detected to average 96 g/kg. The inkjet fabrics collected from southern China contained fewer non-intentionally added substances (NIASs) than from northern China. Annual mass release rates (RM) of the 6 PAEs from inkjet fabrics to air were estimated to range from 1.4 × 10-2 kg/year to 2.8 × 104 kg/year in China in 2020, and the mean indoor RM was comparable with the outdoor one. Equilibrium partition coefficients of the compounds between the product and air, ambient temperature, and concentrations of chemicals in the product, are key factors leading to RM with the high variance. The findings indicate that contents of the NIASs in the CIPs should be minimized, and the refining concept should be adopted in design of the CIPs, so as to control the release of chemicals from the CIPs.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Wenjing Han
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yunhan Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Cummings BE, Lakey PSJ, Morrison GC, Shiraiwa M, Waring MS. Composition of indoor organic surface films in residences: simulating the influence of sources, partitioning, particle deposition, and air exchange. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:305-322. [PMID: 38108243 DOI: 10.1039/d3em00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Indoor surfaces are coated with organic films that modulate thermodynamic interactions between the surfaces and room air. Recently published models can simulate film formation and growth via gas-surface partitioning, but none have statistically investigated film composition. The Indoor Model of Aerosols, Gases, Emissions, and Surfaces (IMAGES) was used here to simulate ten years of nonreactive film growth upon impervious indoor surfaces within a Monte Carlo procedure representing a sub-set of North American residential buildings. Film composition was resolved into categories reflecting indoor aerosol (gas + particle phases) factors from three sources: outdoor-originating, indoor-emitted, and indoor-generated secondary organic material. In addition to gas-to-film partitioning, particle deposition was modeled as a vector for organics to enter films, and it was responsible for a majority of the film mass after ∼1000 days of growth for the median simulation and is likely the main source of LVOCs within films. Therefore, the organic aerosol factor possessing the most SVOCs contributes most strongly to the composition of early films, but as the film ages, films become more dominated by the factor with the highest particle concentration. Indoor-emitted organics (e.g. from cooking) often constituted at least a plurality of the simulated mass in developed films, but indoor environments are diverse enough that any major organic material source could be the majority contributor to film mass, depending on building characteristics and indoor activities. A sensitivity analysis suggests that rapid film growth is most likely in both newer, more air-tight homes and older homes near primary pollution sources.
Collapse
|
8
|
Chen Z, Gao Y, Xia F, Bi C, Mo J. Formation kinetics of SVOC organic films and their impact on child exposure in indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168970. [PMID: 38043806 DOI: 10.1016/j.scitotenv.2023.168970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
We conducted an SVOC mass transfer and child-exposure modeling analysis considering the combined sorption of multiple SVOCs containing DnBP, BBP, DEHP, DINP and DINCH in indoor environments. A mechanistic model was applied to describe the organic film formation, and a partition-coefficient-prediction model was originally developed for the realistic organic films. The characteristics of film formation on impermeable surfaces were examined based on three different assumptions: the widely-used constant Kns,im assumption, Koa assumption, and the proposed Kom assumption (predicted specifically for the realistic organic films in this study). After long-term SVOC sorption, the organic film reached increasing equilibrium gradually under constant Kns,im assumption. While under Koa and Kom assumption, organic films exhibited nearly linear increases on surfaces, the trends of which agreed well with field studies. However, the film thicknesses calculated under Kom assumption with larger film partition coefficients were approximately twice larger than those under Koa assumption. Meanwhile, Horizontal surfaces with higher deposition rates of particle-phase SVOCs exhibited larger velocities of film growth compared to vertical surfaces. Under the Kom assumption, exposures of hazardous SVOCs for a 3-year-old child increased by 87.5 %-198.7 % even with the weekly cleaning of indoor impermeable surfaces, carpet and cloth. This study is anticipated to provide valuable insights into the film-forming characteristics of multiple SVOCs and the accompanying significant health risks to human beings in indoor environments.
Collapse
Affiliation(s)
- Zhuo Chen
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Yilun Gao
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Fanxuan Xia
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Chenyang Bi
- Aerodyne Research Inc., Billerica, Massachusetts, 01821, USA
| | - Jinhan Mo
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China; State Key Laboratory of Subtropical Building and Urban Science, Guangzhou 510641, China.
| |
Collapse
|
9
|
Dwivedi S, Zehra F, Masih J, Gupta T, Lawrence A. Investigating the temporal dynamics of sub-micron particles and particle-bound transition metals in indoor air of a metropolitan city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:49. [PMID: 38227135 DOI: 10.1007/s10653-023-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
The present study portrays an association between particle-bound transition metals and children's health. The indoor air quality of the urban metropolitan city households was monitored for four PM sizes, namely PM1.0-2.5, PM0.50-1.0, PM0.25-0.50 and PM<0.25, in major seasons observed in the city; summer and winter. Further transition/heavy metals, viz. Cr, Cu, Fe, Mn, Ni, Pb and Zn, were analysed in PM1-2.5 samples. In order to evaluate the effect, health risk assessment was performed using mathematical and computational model for assessing dermal exposure and dose estimation (multiple path particle dosimetry model version3.0). The study principally targeted the children aged 2-15 years for the health risk assessment. According to the results, for the largest particle size i.e. PM1.0-2.5 the highest deposition was in the head region (49.1%) followed by pulmonary (43.6%) and tracheobronchial region (7.2%), whereas, for the smallest particle size i.e. PM<0.25 the highest deposition was obtained in the pulmonary region (73.0%) followed by the head (13.6%) and TB region (13.2%). Also, the most imperilled group of children with highest dose accumulation was found to be children aged 8-9 years for all particle sizes. Moreover, the dermal exposure dose as evaluated was found to be preeminent for Ni, Zn and Pb. Besides, seasonal variation gesticulated towards elevated concentrations in winter relative to the summer season. Altogether, the study will provide a conception to the researchers in the fields mounting season-specific guidelines and mitigation approaches. Conclusively, the study commends future work focussing on defining the effects of other chemical components on particles and associated transition metal composition along with proper extenuation of the same.
Collapse
Affiliation(s)
- Samridhi Dwivedi
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Farheen Zehra
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Jamson Masih
- Department of Chemistry, Wilson College, Mumbai, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
| | - Alfred Lawrence
- Department of Chemistry, Isabella Thoburn College, Lucknow, India.
| |
Collapse
|
10
|
Wang C, Eichler CMA, Bi C, Delmaar CJE, Xu Y, Little JC. A rapid micro chamber method to measure SVOC emission and transport model parameters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:818-831. [PMID: 36897109 DOI: 10.1039/d2em00507g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Assessing exposure to semivolatile organic compounds (SVOCs) that are emitted from consumer products and building materials in indoor environments is critical for reducing the associated health risks. Many modeling approaches have been developed for SVOC exposure assessment indoors, including the DustEx webtool. However, the applicability of these tools depends on the availability of model parameters such as the gas-phase concentration at equilibrium with the source material surface, y0, and the surface-air partition coefficient, Ks, both of which are typically determined in chamber experiments. In this study, we compared two types of chamber design, a macro chamber, which downscaled the dimensions of a room to a smaller size with roughly the same surface-to-volume ratio, and a micro chamber, which minimized the sink-to-source surface area ratio to shorten the time required to reach steady state. The results show that the two chambers with different sink-to-source surface area ratios yield comparable steady-state gas- and surface-phase concentrations for a range of plasticizers, while the micro chamber required significantly shorter times to reach steady state. Using y0 and Ks measured with the micro chamber, we conducted indoor exposure assessments for di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP) and di(2-ethylhexyl) terephthalate (DEHT) with the updated DustEx webtool. The predicted concentration profiles correspond well with existing measurements and demonstrate the direct applicability of chamber data in exposure assessments.
Collapse
Affiliation(s)
- Chunyi Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chenyang Bi
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Christiaan J E Delmaar
- National Institute for Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing, China
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Weng J, Yu H, Zhang H, Gao L, Qiao L, Ai Q, Liu Y, Liu Y, Xu M, Zhao B, Zheng M. Health Risks Posed by Dermal and Inhalation Exposure to High Concentrations of Chlorinated Paraffins Found in Soft Poly(vinyl chloride) Curtains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5580-5591. [PMID: 36976867 DOI: 10.1021/acs.est.2c07040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are used in many products, including soft poly(vinyl chloride) curtains, which are used in many indoor environments. Health hazards posed by CPs in curtains are poorly understood. Here, chamber tests and an indoor fugacity model were used to predict CP emissions from soft poly(vinyl chloride) curtains, and dermal uptake through direct contact was assessed using surface wipes. Short-chain and medium-chain CPs accounted for 30% by weight of the curtains. Evaporation drives CP migration, like for other semivolatile organic plasticizers, at room temperature. The CP emission rate to air was 7.09 ng/(cm2 h), and the estimated short-chain and medium-chain CP concentrations were 583 and 95.3 ng/m3 in indoor air 21.2 and 172 μg/g in dust, respectively. Curtains could be important indoor sources of CPs to dust and air. The calculated total daily CP intakes from air and dust were 165 ng/(kg day) for an adult and 514 ng/(kg day) for a toddler, and an assessment of dermal intake through direct contact indicated that touching just once could increase intake by 274 μg. The results indicated that curtains, which are common in houses, could pose considerable health risks through inhalation of and dermal contact with CPs.
Collapse
Affiliation(s)
- Jiyuan Weng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoran Yu
- Dalian Institute of Chemical Physics, Chinese Academy Of Sciences, Dalian 116023, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy Of Sciences, Dalian 116023, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Fan L, Wang L, Wang K, Liu F. Phthalates in glass window films are associated with dormitory characteristics, occupancy activities and habits, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32550-32559. [PMID: 36469278 DOI: 10.1007/s11356-022-24536-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Phthalates are environmental endocrine disruptors that enter the human body through a variety of pathways and harm human health. The study aimed to explore the associations between phthalate concentrations in glass window films with dormitory characteristics, occupancy activities and habits, and environmental factors, of university dormitories. We surveyed these associations and measured the indoor environmental parameters of 144 dormitories from 13 universities in Beijing. Based on the results, we further explored the factors affecting phthalate concentrations using multivariate logistic regression. The results showed that phthalate concentrations in glass window films were associated with dormitory type, duration of occupancy, daily ventilation duration, window cleaning frequency, indoor relative humidity, light intensity, temperature, and particulate matter (PM10) concentration. To date, there have only been a few studies on the factors that influence phthalate concentrations in glass window films; therefore, further study is needed. Our findings determined the influence of external factors on the different types of phthalates in window films, which helps understand indoor phthalate pollution and evaluate human exposure based on phthalate concentrations in glass window films.
Collapse
Affiliation(s)
- Liujia Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Kexin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fang Liu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
13
|
Kristensen K, Lunderberg DM, Liu Y, Misztal PK, Tian Y, Arata C, Nazaroff WW, Goldstein AH. Gas-Particle Partitioning of Semivolatile Organic Compounds in a Residence: Influence of Particles from Candles, Cooking, and Outdoors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3260-3269. [PMID: 36796310 DOI: 10.1021/acs.est.2c07172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Semivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs. In this study, we present time-resolved gas- and particle-phase distribution data for indoor SVOCs in a normally occupied residence using semivolatile thermal desorption aerosol gas chromatography. Although SVOCs in indoor air are found mostly in the gas phase, we show that indoor particles from cooking, candle use, and outdoor particle infiltration strongly affect the gas-particle phase distribution of specific indoor SVOCs. From gas- and particle-phase measurements of SVOCs spanning a range of chemical functionalities (alkanes, alcohols, alkanoic acids, and phthalates) and volatilities (vapor pressures from 10-13 to 10-4 atm), we find that the chemical composition of the airborne particles influences the partitioning of individual SVOC species. During candle burning, the enhanced partitioning of gas-phase SVOCs to indoor particles not only affects the particle composition but also enhances surface off-gassing, thereby increasing the total airborne concentration of specific SVOCs, including diethylhexyl phthalate.
Collapse
Affiliation(s)
- Kasper Kristensen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Now at Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - David M Lunderberg
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Department of Chemistry, University of California, Berkeley, 94720 California, United States
| | - Yingjun Liu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Now at BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Now at Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yilin Tian
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720 California, United States
| | - Caleb Arata
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720 California, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 94720 California, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, 94720 California, United States
| |
Collapse
|
14
|
Dodson R, Manz KE, Burks SR, Gairola R, Lee NF, Liu Y, Pennell KD, Walker ED, Braun JM. Does Using Corsi-Rosenthal Boxes to Mitigate COVID-19 Transmission Also Reduce Indoor Air Concentrations of PFAS and Phthalates? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:415-427. [PMID: 36562547 PMCID: PMC9876422 DOI: 10.1021/acs.est.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic brought new emphasis on indoor air quality. However, few studies have investigated the impact of air filtration, a COVID-mitigation approach, on indoor air concentrations of semivolatile organic compounds (SVOCs). Using a quasi-experimental design, we quantified the impact of a relatively low-cost "do-it-yourself" air filter (Corsi-Rosenthal Box; CR Box) on indoor air concentrations of 42 PFAS and 24 other SVOCs. We sampled air before (October-November 2021) and during (February-March 2022) deployment of CR Boxes in 17 rooms located in an occupied Providence, Rhode Island office building. We measured sound levels in rooms with CR Boxes operating and not operating. While CR Boxes were deployed, concentrations of seven PFAS (N-EtFOSE, N-EtFOSA, FBSA, PFBS, PFHxS, PFOS, PFNA) were 28-61% lower and concentrations of five phthalates (DMP, DEP, DiBP, BBzP, DCHP) were 29-62% lower. Concentrations of five PFAS and one phthalate increased 23-44% during the intervention period, but the 95% CI of most of these estimates included the null. Daytime sound levels increased 5.0 dB when CR Boxes were operating. These results indicate that CR Boxes reduced exposure to several lower-volatility phthalates and sulfonated PFAS previously reported to be found in office building materials and products, with potentially distracting increases in sound levels.
Collapse
Affiliation(s)
- Robin
E. Dodson
- Silent
Spring Institute, Newton, Massachusetts02460, United States
| | - Katherine E. Manz
- School
of Engineering, Brown University, Providence, Rhode Island02912, United States
| | - Shaunessey R. Burks
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Richa Gairola
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Nina F. Lee
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Yun Liu
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island02912, United States
| | - Erica D. Walker
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| | - Joseph M. Braun
- Department
of Epidemiology, Brown University, Providence, Rhode Island02912, United States
| |
Collapse
|
15
|
Chang CL, Chen HT, Chen CY, Chen EY, Lin KT, Jung CC. Gas-phase and PM 2.5-bound phthalates in nail salons: characteristics, exposure via inhalation, and influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6146-6158. [PMID: 35987852 DOI: 10.1007/s11356-022-22606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the characteristics of, exposure to, and factors influencing gas-phase and PM2.5-bound phthalates (PAEs) in nail salons. Data on both indoor and outdoor gas-phase and PM2.5-bound PAEs, carbon dioxide (CO2), temperature, and relative humidity were collected in nail salons. We also used questionnaires to survey building characteristics and occupants' behaviors. The average total gas-phase and PM2.5-bound PAE concentrations indoors were higher than those outdoors by 6 and 3 times, respectively. Diethyl phthalate, diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and di-(2-ethylhexyl) phthalate (DEHP) were the predominant compounds among both the gas-phase and PM2.5-bound PAEs in indoor air. The volume of the salon's space or the difference of indoor and outdoor CO2 concentrations (dCO2) was significantly associated with indoor PAE concentrations. The ratios of PM2.5-bound to gas-phase PAEs, especially high-molecular-weight PAEs, were positively associated with the dCO2 concentrations. Higher ratios of indoor to outdoor PM2.5-bound DiBP, DnBP, and DEHP concentrations were discovered when more clients visited each day. Building characteristics, ventilation conditions, and occupants' activities have influences on the gas-phase and particle-phase PAEs. The study identifies the characteristics of gas-phase and PM2.5-bound PAEs in nail salons and their influencing factors.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan City, Taiwan
| | - Hui-Tzu Chen
- Department of Cosmetology and Health Care, Min-Hwei Junior College of Health Care Management, Tainan City, Taiwan
| | - Chung-Yu Chen
- Department of Occupational Safety and Health, School of Safety and Health Science, Chang Jung Christian University, Tainan City, Taiwan
- Occupational Environment and Food Safety Research Center, Chang Jung Christian University, Tainan City, Taiwan
| | - En-Yu Chen
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan
| | - Kuan-Ting Lin
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan
| | - Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
16
|
Da Ros S, Gili A, Curran K. Equilibrium distribution of diethyl phthalate plasticiser in cellulose acetate-based materials: Modelling and parameter estimation of temperature and composition effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157700. [PMID: 35926618 DOI: 10.1016/j.scitotenv.2022.157700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Understanding the transport and fate of semi-volatile organic compounds (SVOCs) such as phthalates in indoor environments is fundamental for quantifying levels of human exposure and preventing adverse health effects. In this context, the partition coefficient of phthalates between indoor built materials and/or consumer goods and the surrounding atmosphere represents a key parameter for determining concentration distributions. Partition coefficients are also of fundamental importance for describing degradation phenomena associated with plasticiser loss from polymeric materials. However, this key parameter has only been determined for a limited number of systems and environmental conditions. Here, we assess the partitioning behaviour of the diethyl phthalate (DEP) plasticiser in cellulose acetate (CA)-based materials for the first time, determining the effects of temperature and plasticiser composition on equilibrium distributions at temperatures between 20 and 80 °C and using CA samples with DEP contents ranging from 6 to 22 wt%. Additionally, we propose a model to describe and quantify the effect of temperature and plasticiser composition, with model parameters being estimated using non-linear regression and measurements from 130 distinct experiments. Finally, we assess the suitability of our developed model to simulate the migration of DEP from CA-based materials.
Collapse
Affiliation(s)
- Simoní Da Ros
- UCL Institute for Sustainable Heritage, University College London, 14 Upper Woburn Place, London WC1H 0NN, United Kingdom.
| | - Argyro Gili
- UCL Institute for Sustainable Heritage, University College London, 14 Upper Woburn Place, London WC1H 0NN, United Kingdom
| | - Katherine Curran
- UCL Institute for Sustainable Heritage, University College London, 14 Upper Woburn Place, London WC1H 0NN, United Kingdom.
| |
Collapse
|
17
|
Modelling plasticiser loss inside closed environments. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Zhang Y, Liu M, Wu Y, Bai Y. Fractional diffusion model for emission and adsorption prediction of TXIB from wallpaper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81777-81788. [PMID: 35737265 DOI: 10.1007/s11356-022-21436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Mercury injection test shows that wallpaper is a porous building material with a complex fractal mass transfer channel. Therefore, fractional Fick's law is employed to investigate sub-diffusion of 2,2,4 trimethy1-1,3-pentanediol diisobutyrate (TXIB) from wallpaper. In view of the fact that a small amount of TXIB has been released from the wallpaper before the environmental chamber experiment, the non-uniform initial concentration is introduced. Based on fractional Fick's law, both fractional convective mass transfer equation and fractional mass balance equation have been firstly proposed. Combining the finite difference method and L1 algorithm, the fractional diffusion model is solved numerically. Numerical simulation results show that the present model matches well with the experimental data. Compared with the previous model based on Fick's law, the present model is in better agreement with experimental data of di-2-ethylhexyl phthalate (DEHP) released from polyvinyl chloride (PVC) flooring. The influence of key parameters on the concentration of TXIB is analyzed graphically. In addition, the absorption amount and absorption rate of TXIB on the environmental bulkhead are numerically simulated for the first time.
Collapse
Affiliation(s)
- Yan Zhang
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Mengqi Liu
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yongfa Wu
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yu Bai
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
19
|
Wang H, Xiong J, Wei W. Measurement methods and impact factors for the key parameters of VOC/SVOC emissions from materials in indoor and vehicular environments: A review. ENVIRONMENT INTERNATIONAL 2022; 168:107451. [PMID: 35963058 DOI: 10.1016/j.envint.2022.107451] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The emissions of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from indoor building and vehicle cabin materials can adversely affect human health. Many mechanistic models to predict the VOC/SVOC emission characteristics have been proposed. Nowadays, the main obstacle to accurate model prediction is the availability and reliability of the physical parameters used in the model, such as the initial emittable concentration, the diffusion coefficient, the partition coefficient, and the gas-phase SVOC concentration adjacent to the material surface. The purpose of this work is to review the existing methods for measuring the key parameters of VOCs/SVOCs from materials in both indoor and vehicular environments. The pros and cons of these methods are analyzed, and the available datasets found in the literature are summarized. Some methods can determine one single key parameter, while other methods can determine two or three key parameters simultaneously. The impacts of multiple factors (temperature, relative humidity, loading ratio, and air change rate) on VOC/SVOC emission behaviors are discussed. The existing measurement methods span very large spatial and time scales: the spatial scale varies from micro to macro dimensions; and the time scale in chamber tests varies from several hours to one month for VOCs, and may even span years for SVOCs. Based on the key parameters, a pre-assessment approach for indoor and vehicular air quality is introduced in this review. The approach uses the key parameters for different material combinations to pre-assess the VOC/SVOC concentrations or human exposure levels during the design stage of buildings or vehicles, which can assist designers to select appropriate materials and achieve effective source control.
Collapse
Affiliation(s)
- Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Observatory (OOAI), 77447 Champs-sur-Marne, France
| |
Collapse
|
20
|
Wu CC, Jiang YJ, Bao LJ, Zeng EY. Transfer of Frictional Contact Derived Phthalates from Pad Surface Enhances Dermal Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12999-13007. [PMID: 36069103 DOI: 10.1021/acs.est.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dermal exposure to chemicals derived from object surface contact is an important contributor to increased health risk. However, chemical transfer induced by mechanical friction between dermal and object surface has yet to be adequately addressed. To fill this knowledge gap, rubbing fabrics were used as surrogate skins to stimulate dermal mechanical friction with pad products with phthalates as target analytes. The results showed that the amounts of phthalates transferred increased linearly with contact burden (50-1000 g), contact duration (1-10 min), and sliding speed (3.0-9.0 cm s-1). The surface texture of surrogate skins dictated the accumulation of phthalates. Net/pocket micro-surface structures of rubbing fabrics induced a higher accumulation of phthalates than U-shape structures of fabrics with a similar surface roughness. Covering of the pad surface by a layer of textile was effective in minimizing the transfer of phthalates induced by mechanical motion. The estimated transfer efficiency of bis(2-ethylhexyl) ester (DEHP) derived from rubbing friction (0.005-0.05%) upon the pad surface over 8 h was greater than those for gas-phase emission (0.00002-0.0005% over 24 h) and sweat transfer (0.008-0.012% over 24 h). These results indicated that dermal frictional contact with the surface of pad products was an important exposure pathway.
Collapse
Affiliation(s)
- Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yu-Jie Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
21
|
Li Z, Zhang X, Wang B, Shen G, Zhang Q, Zhu Y. Indoor exposure to selected flame retardants and quantifying importance of environmental, human behavioral and physiological parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155422. [PMID: 35461943 DOI: 10.1016/j.scitotenv.2022.155422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Indoor exposure to organic flame retardants (FRs) has raised extensive concern due to associated adverse health effects. Indoor-exposure induced daily intakes of six widely used FRs individually ranged 0.002-611 ng/day and 0.02-463 ng/day, respectively, for adults and 2-6-year-old children; and resulting internal exposure levels ranged 0.1-159 and 2.1-4500 ng/g lipid, respectively. A proportion of 0.001-5.9% and 0.006-10.3% of individual FRs emitted into indoor air ultimately entered bodies of adults and children respectively. Tris(2-chloroisopropyl)phosphate dominated in emissions, whilst 2-ethylhexyl-2,3,4,5-tetrabromobenzoate dominated in human bodies. Hand-to-mouth contact was the most important exposure pathway for less volatile FRs including most brominated FRs, whilst inhalation was the predominant intake pathway of tris(2-chloroisopropyl)phosphate. Relative importance of 29 environmental, behavioral and physiological parameters was ranked to explore key drivers influencing exposure and accumulation of FRs in humans. Results suggested that frequent bathing and handwashing can reduce exposure effectively, especially for children. Bodyweight and lipid fraction were only positively related to internal accumulation and body-weight-normalized concentrations of compounds with low metabolic rates (half-lives ≥103 h) in humans. Our findings help control indoor exposure to FRs and are supportive of human exposome studies in the future.
Collapse
Affiliation(s)
- Zengwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West Montreal, Quebec H4B 1R6, Canada
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Environmental Protection Key Lab of Environmental Big Data and Intelligent Decision-making, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
22
|
Wei W, Little JC, Nicolas M, Ramalho O, Mandin C. Modeling Primary Emissions of Chemicals from Liquid Products Applied on Indoor Surfaces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10122. [PMID: 36011756 PMCID: PMC9407831 DOI: 10.3390/ijerph191610122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Liquid products applied on material surfaces and human skin, including many household cleaning products and personal care products, can lead to intermittent emissions of chemicals and peak concentrations in indoor air. The existing case-based models do not allow inter-comparison of different use scenarios and emission mechanisms. In this context, the present work developed a mechanistic model based on mass transfer theories, which allowed emissions into the air from the liquid product to be characterized. It also allowed for diffusion into the applied surface during product use and re-emission from the applied surface after the depletion of the liquid product. The model was validated using literature data on chemical emissions following floor cleaning and personal care product use. A sensitivity analysis of the model was then conducted. The percentage of the chemical mass emitted from the liquid to the air varied from 45% (applied on porous material) to 99% (applied on human skin), and the rest was absorbed into the applied material/skin. The peak gas-phase concentration, the time to reach the peak concentration, and the percentage of the liquid-to-air emission depended significantly on the chemical's octanol/gas and material/gas partition coefficients and the diffusion coefficient of the chemical in the applied material/skin.
Collapse
Affiliation(s)
- Wenjuan Wei
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), University of Paris-Est, CEDEX 2, 77447 Marne la Vallée, France
| | - John C. Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Mélanie Nicolas
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), University of Paris-Est, CEDEX 2, 77447 Marne la Vallée, France
| | - Olivier Ramalho
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), University of Paris-Est, CEDEX 2, 77447 Marne la Vallée, France
| | - Corinne Mandin
- Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), University of Paris-Est, CEDEX 2, 77447 Marne la Vallée, France
| |
Collapse
|
23
|
Li Y, He L, Xie D, Zhao A, Wang L, Kreisberg NM, Jayne J, Liu Y. Strong temperature influence and indiscernible ventilation effect on dynamics of some semivolatile organic compounds in the indoor air of an office. ENVIRONMENT INTERNATIONAL 2022; 165:107305. [PMID: 35635961 DOI: 10.1016/j.envint.2022.107305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Many manmade organic air pollutants are semivolatile and primarily used and exposed indoors. It remains unclear how indoor environmental parameters affect indoor air dynamics of semivolatile organic compounds (SVOCs) in real-world indoor conditions, which directly relates to human exposure. By making time-resolved SVOC measurements over multiple weeks in an office, we characterized the indoor air dynamics of six representative SVOCs which were mainly present in the gas phase and of indoor origins, and investigated the effects of the temperature and ventilation rate. The six species include di-isobutyl phthalate and di-n-butyl phthalate, as well as two n-alkanes and two siloxanes. Airborne concentrations of all six SVOCs responded strongly and quickly to changes in the indoor temperature. The temperature dependence of individual species can be well fitted in the form of the van't Hoff equation, and explained 65-86% of the observed variation in the logarithm-transformed concentrations. In contrast, increasing the ventilation rate by a factor of 3-5 for hours at a constant temperature had no discernible influence on the SVOC concentrations. Further kinetic modeling analysis suggests that the observed fast temperature response and indiscernible ventilation effect are both associated with SVOC sorption onto indoor surfaces, which dramatically slows the response of SVOC concentration to changes in the ventilation rate and speeds up the response to changes in the temperature. These results highlight the importance of sorption reservoirs on regulating indoor SVOC dynamics and also have important implications for controlling and assessing indoor air exposure to SVOCs.
Collapse
Affiliation(s)
- Yatai Li
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Longkun He
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Di Xie
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Anqi Zhao
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lixin Wang
- Beijing Key Laboratory of Heating, Gas Supply, Ventilation and Air Conditioning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | | | - John Jayne
- Aerodyne Research Inc., Billerica, MA 01821, United States
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Wang J, Xu Z, Yao J, Hu M, Sun Y, Dong C, Bu Z. Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children's Exposure Assessments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138011. [PMID: 35805676 PMCID: PMC9265414 DOI: 10.3390/ijerph19138011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Phthalates are typical chemical pollutants in kindergarten classrooms since numerous artificial products (e.g., polyvinyl chloride (PVC) floorings, soft polymers and plastic toys) that might contain phthalates are widely distributed in kindergarten classrooms. Although Chinese preschool children spend a considerable amount of their waking hours (>8 h/day) in kindergartens, phthalate exposure in such indoor environment has not been given much attention. In this study, the mass fractions of six phthalates in twenty-six artificial products (fifteen flat decoration materials and eleven plastic toys) commonly found in Chinese kindergarten classrooms were measured. Di-2-ethylhexyl phthalate (DEHP) was the most predominant compound in all materials. The emission characteristics of the DEHP from these materials were further investigated. The measured emission characteristics were used for predicting multi-phase DEHP concentrations in kindergarten classrooms by applying a mass transfer model. The modeled concentrations were comparable with those measured in the real environment, indicating that these products might be the major sources of DEHP in Chinese kindergarten classrooms. Preschool children’s exposure to DEHP was found to be 0.42 μg/kg/day in kindergartens under baseline conditions, accounting for 18% of the total exposure to DEHP in Chinese indoor environments.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Urban Construction, Hangzhou Polytechnic, Hangzhou 311402, China;
| | - Zefei Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Jingyu Yao
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Maochao Hu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Yuewen Sun
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
- College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (Z.X.); (J.Y.); (M.H.); (Y.S.); (C.D.)
- Correspondence:
| |
Collapse
|
25
|
Feng JJ, Sun XF, Zeng EY. Emissions of Liquid Crystal Monomers from Obsolete Smartphone Screens in Indoor Settings: Characteristics and Human Exposure Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8053-8060. [PMID: 35635183 DOI: 10.1021/acs.est.2c01094] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid crystal monomers (LCMs) have been found to accumulate in indoor environments, but the emission kinetics of LCMs from electronic devices are not well understood. Leakage from damaged liquid crystal displays may be an important mechanism for LCMs to enter the environment and become potential health hazards to humans. To address this issue, we conducted chamber experiments to characterize the emissions of LCMs from obsolete smartphone screens and estimated the doses of residential and occupational exposures to LCMs. The emission rates of the detected LCMs were in the ranges of 0.1-7 μg m-2 h-1 at 80 °C, 0.05-7 μg m-2 h-1 at 60 °C, and 0.002-0.2 μg m-2 h-1 at 25 °C. Liquid crystal monomers with large molecular weights and low volatilities tended to accumulate at screen surfaces and were re-emitted at elevated temperatures, leading to high emission rates of heavy LCMs upon thermal treatment. The estimated doses of residential and occupational exposures to individual LCMs were 0.0001-0.009 and 0.007-2 ng kg-1 d-1, respectively. As LCMs are potentially carcinogenic based on in silico assessments, LCMs emitted from obsolete smartphones in indoor settings may become human health hazards.
Collapse
Affiliation(s)
- Jing-Jing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiang-Fei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Wang H, Wang H, Zhang X, Xiong J, Liu X. Investigation on the Direct Transfer of SVOCs from Source to Settled Dust: Analytical Model and Key Parameter Determination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5489-5496. [PMID: 35442662 PMCID: PMC9229406 DOI: 10.1021/acs.est.1c08257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Settled dust is an important medium for semivolatile organic compound (SVOC) transport indoors. Understanding the mechanism of interaction between SVOCs and settled dust can greatly improve the exposure assessment. This study develops an analytical model to elucidate the mechanism of direct contact between SVOC sources and settled dust. The model incorporates the adsorption of SVOCs onto indoor surfaces, which was ignored in previous numerical models. Based on this model, a hybrid optimization method is applied to determine the key parameters of SVOC transport, i.e., the diffusion coefficient in the dust, the dust-air partition coefficient, and the chamber surface-air partition coefficient. Experiments of direct contact between SVOC source materials containing organophosphorus flame retardants (OPFRs) and settled dust were conducted in chambers. The key parameters were determined by performing curve fitting using data collected from the OPFR chamber tests and from the literature on phthalates. The reliability and robustness of the model and measurement method are demonstrated by the high fitting accuracy and sensitivity analysis. The obtained key parameters are more accurate than those from correlations in prior studies. Further analysis indicates that dust-air partition coefficient plays an important role and the adsorption effect on surfaces cannot be neglected for SVOC transport.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xuankai Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Corresponding author. Jianyin Xiong. Tel.: +86 1068914304; , Xiaoyu Liu. Tel.; 1 9195412459;
| | - Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
- Corresponding author. Jianyin Xiong. Tel.: +86 1068914304; , Xiaoyu Liu. Tel.; 1 9195412459;
| |
Collapse
|
27
|
Eichler CMA, Bi C, Wang C, Little JC. A modular mechanistic framework for estimating exposure to SVOCs: Next steps for modeling emission and partitioning of plasticizers and PFAS. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:356-365. [PMID: 35318457 DOI: 10.1038/s41370-022-00419-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Estimates of human exposure to semi-volatile organic compounds (SVOCs) such as phthalates, phthalate alternatives, and some per- and polyfluoroalkyl substances (PFAS) are required for the risk-based evaluation of chemicals. Recently, a modular mechanistic modeling framework to rapidly predict SVOC emission and partitioning in indoor environments has been presented, in which several mechanistically consistent source emission categories (SECs) were identified. However, not all SECs have well-developed emission models. In addition, data on model parameters are missing even for frequently studied SVOCs. These knowledge gaps impede the comprehensive prediction of the fate of SVOCs indoors. In this paper, sets of high-priority phthalates, phthalate alternatives, and PFAS were identified based on chemical occurrence indoors and additional selection criteria. These high-priority chemicals served as the basis for exploring model parameter availability for existing indoor SVOC emission and partitioning models. The results reveal that additional experimental and modeling work is needed to fully understand the behavior of SVOCs indoors and to predict exposures with greater confidence and lower uncertainty. Modeling approaches to fill some of the identified gaps are proposed. The prioritized sets of chemicals and proposed new modeling approaches will help guide future research. The inclusion of polar phases in the framework will further expand its applicability and scope. IMPACT STATEMENT: This paper compiles data on high-priority chemicals commonly found indoors and information on the availability of applicable models and model parameters to predict emission, partitioning, and subsequent exposure to these chemicals. Modeling approaches for a selection of the missing SECs (source emission categories) are proposed, to illustrate the path forward. The comprehensive data set helps inform researchers, exposure assessors, and policy makers to better understand the state of the science regarding modeling of indoor exposure to semi-volatile organic compounds (SVOCs) and per- and polyfluoroalkyl substances (PFAS).
Collapse
Affiliation(s)
- Clara M A Eichler
- Virginia Tech, Department of Civil and Environmental Engineering, Blacksburg, VA, USA.
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, Chapel Hill, NC, USA.
| | - Chenyang Bi
- Virginia Tech, Department of Civil and Environmental Engineering, Blacksburg, VA, USA
| | - Chunyi Wang
- Virginia Tech, Department of Civil and Environmental Engineering, Blacksburg, VA, USA
| | - John C Little
- Virginia Tech, Department of Civil and Environmental Engineering, Blacksburg, VA, USA
| |
Collapse
|
28
|
Salthammer T, Morrison GC. Temperature and indoor environments. INDOOR AIR 2022; 32:e13022. [PMID: 35622714 DOI: 10.1111/ina.13022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 06/15/2023]
Abstract
From the thermodynamic perspective, the term temperature is clearly defined for ideal physical systems: A unique temperature can be assigned to each black body via its radiation spectrum, and the temperature of an ideal gas is given by the velocity distribution of the molecules. While the indoor environment is not an ideal system, fundamental physical and chemical processes, such as diffusion, partitioning equilibria, and chemical reactions, are predictably temperature-dependent. For example, the logarithm of reaction rate and equilibria constants are proportional to the reciprocal of the absolute temperature. It is therefore possible to have non-linear, very steep changes in chemical phenomena over a relatively small temperature range. On the contrary, transport processes are more influenced by spatial temperature, momentum, and pressure gradients as well as by the density, porosity, and composition of indoor materials. Consequently, emergent phenomena, such as emission rates or dynamic air concentrations, can be the result of complex temperature-dependent relationships that require a more empirical approach. Indoor environmental conditions are further influenced by the thermal comfort needs of occupants. Not only do occupants have to create thermal conditions that serve to maintain their core body temperature, which is usually accomplished by wearing appropriate clothing, but also the surroundings must be adapted so that they feel comfortable. This includes the interaction of the living space with the ambient environment, which can vary greatly by region and season. Design of houses, apartments, commercial buildings, and schools is generally utility and comfort driven, requiring an appropriate energy balance, sometimes considering ventilation but rarely including the impact of temperature on indoor contaminant levels. In our article, we start with a review of fundamental thermodynamic variables and discuss their influence on typical indoor processes. Then, we describe the heat balance of people in their thermal environment. An extensive literature study is devoted to the thermal conditions in buildings, the temperature-dependent release of indoor pollutants from materials and their distribution in the various interior compartments as well as aspects of indoor chemistry. Finally, we assess the need to consider temperature holistically with regard to the changes to be expected as a result of global emergencies such as climate change.
Collapse
Affiliation(s)
- Tunga Salthammer
- Department of Material Analysis and Indoor Chemistry, Fraunhofer WKI, Braunschweig, Germany
| | - Glenn C Morrison
- Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Gilliam MA, van Cura D, Garner G, Seeley A, Sekol R. Empirical correlations for diffusivity and the partition coefficient for phthalates in PVC materials and modelling emissions of automotive sealants. CHEMOSPHERE 2022; 294:133638. [PMID: 35085611 DOI: 10.1016/j.chemosphere.2022.133638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Polyvinylchloride (PVC) based sealants commonly contain phthalate plasticizers that are emitted into the air over time. The low volatility classifies them as Semi-Volatile Organic Compounds (SVOCs). Empirical relationships are determined for estimation of the diffusion and solid/air partition coefficients for phthalates in PVC materials using data compiled from studies of phthalates in other PVC materials, such as vinyl flooring. The relationships are functions of vapor pressure of the compounds, which are determined from a Clausius-Clapeyron equation. A test chamber was constructed to continuously sample the air and measure the air concentration based on a Solid Phase MicroExtraction (SPME) method. The partition coefficient was tested with dioctyl terephthalate (DOTP) in a PVC-based sealant, in which the results fell within the reasonable error of the value predicted from the empirical relationship. The model is applied to outdoor and manufacturing scenarios to evaluate the effect of temperature and mass transfer coefficient.
Collapse
Affiliation(s)
- Mary A Gilliam
- Kettering University, Flint, MI, USA; General Motors Research & Development, Warren, MI, USA.
| | | | | | | | - Ryan Sekol
- General Motors Research & Development, Warren, MI, USA
| |
Collapse
|
30
|
Ngoc Do AT, Ha Y, Kang HJ, Kim JM, Kwon JH. Equilibrium leaching of selected ultraviolet stabilizers from plastic products. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128144. [PMID: 34979390 DOI: 10.1016/j.jhazmat.2021.128144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Despite the importance of (micro)plastics in the release of plastic additives, the leaching mechanism of organic plastic additives from various plastic materials is poorly understood. In this study, the equilibrium leaching of five highly hydrophobic ultraviolet (UV) stabilizers (UV326, UV327, UV328, UV329, and UV531) from three plastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polystyrene (PS)), was investigated employing acetonitrile-water cosolvent systems. Their extrapolated water solubilities were in the 0.15-0.54 μg L-1 range, limiting their transport as "dissolved" in water and (micro)plastics are likely those particulate carriers. The equilibrium leaching of UV stabilizers from plastics was better explained by the Flory-Huggins model incorporating the nonideal behavior caused by the size disparity between UV stabilizers and polymer materials and their compatibility. Specifically, leaching of UV stabilizers from LDPE showed a positive deviation from Raoult's law, whereas slight negative deviations were observed in PET and PS. In addition, the equilibrium concentration of the benzotriazoles in LDPE increased linearly with the volume fraction up to only 0.4%. These observations could be explained by the unfavorable interactions of UV stabilizers with polyethylene, indicating that polymer type should be also important when evaluating the fate of hydrophobic additives. Because equilibrium distribution of additives between (micro)plastics and water is crucial for evaluating the fate and transport of hydrophobic plastic additives, further studies on the leaching equilibrium of various additives from different plastic materials are necessary.
Collapse
Affiliation(s)
- Anh T Ngoc Do
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun-Joong Kang
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Knoell Korea, 37 Gukjegeumyung-ro 2-gil, Yeongdeungpo-gu, Seoul 07327, Republic of Korea
| | - Ju Min Kim
- Department of Energy Systems Research and Department of Chemical Engineering, Ajou University, 206 Worldcupro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
31
|
Chen Z, Wu Q, Xu Y, Mo J. Partitioning of airborne PAEs on indoor impermeable surfaces: A microscopic view of the sorption process. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127326. [PMID: 34597933 DOI: 10.1016/j.jhazmat.2021.127326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Organic films were widely found on indoor impermeable surfaces exposed to gaseous organic compounds, but few studies have addressed the film growth details on different indoor substrates. In this study, we observed the topography evolution of phthalic acid ester (PAE) organic films on three impermeable substrates: polished glass (G-P), mirror-polished stainless steel (SS-M) and drawn stainless steel (SS-D). PAE organic films were preferentially formed upon the flat surface with sparse inherent nano-peaks of substrate G-P and in valleys of substrate SS-M and SS-D. Surface uniformity of substrates and viscosity of PAE molecules were inferred as critical parameters determining the surface average adhesion forces. We obtained the partition coefficients of DEP, DnBP, BBP and DEHP on substrate G-P, SS-M and SS-D by fitting the initial monolayer adsorption process. Organic films continuously grew instead of reaching adsorption equilibrium after long-term PAE exposure, indicating that multilayer adsorption may occur. The organic film growth rates in saturated gas-phase PAE concentrations were quantified as about one-tenth of the results in previous studies where substrates were simultaneously exposed to multiple pollutants. To sum up, the results outline PAE adsorption details on impermeable materials and provide a reference for better estimation on PAE exposure assessment.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Qianying Wu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China.
| |
Collapse
|
32
|
Huang L, Fantke P, Ritscher A, Jolliet O. Chemicals of concern in building materials: A high-throughput screening. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127574. [PMID: 34799153 DOI: 10.1016/j.jhazmat.2021.127574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 05/24/2023]
Abstract
Chemicals used in building materials can be a major passive emission source indoors, associated with the deterioration of indoor environmental quality. This study aims to screen the various chemicals used in building materials for potential near-field human exposures and related health risks, identifying chemicals and products of concern to inform risk reduction efforts. We propose a mass balance-based and high-throughput suited model for predicting chemical emissions from building materials considering indoor sorption. Using this model, we performed a screening-level human exposure assessment for chemicals in building materials, starting from product chemical composition data reported in the Pharos Building Products Database for the USA. Health risks and MAximum chemical Contents from High-Throughput Screening (MACHTS) were determined, combining exposure estimates with toxicity information. Exposures were estimated for > 300 unique chemical-product combinations from the Pharos databases, of which 73% (25%) had non-cancer (cancer) toxicity data available. We identified 55 substances as chemicals of high concern, with actual chemical contents exceeding MACHTS by up to a factor 105, in particular diisocyanates and formaldehyde. This stresses the need for more refined investigations to select safer alternatives. This study serves as a suitable starting point for prioritizing chemicals/products and thus developing safer and more sustainable building materials.
Collapse
Affiliation(s)
- Lei Huang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Amélie Ritscher
- Individual Contractor, Economy Division, United Nations Environment Programme, 8-14 Avenue de la Paix, CH-1211 Geneva 10, Switzerland
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
33
|
Zhang X, Wang H, Xu B, Wang H, Wang Y, Yang T, Tan Y, Xiong J, Liu X. Predicting the emissions of VOCs/SVOCs in source and sink materials: Development of analytical model and determination of the key parameters. ENVIRONMENT INTERNATIONAL 2022; 160:107064. [PMID: 34968991 PMCID: PMC8951230 DOI: 10.1016/j.envint.2021.107064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
The emissions of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from indoor materials pose an adverse effect on people's health. In this study, a new analytical model was developed to simulate the emission behaviors for both VOCs and SVOCs under ventilated conditions. Based on this model, we further introduced a hybrid optimization method to accurately determine the key parameters in the model: the initial emittable concentration, the diffusion coefficient, the material/air partition coefficient, and the chamber surface/air partition coefficient (for SVOCs). Experiments for VOC emissions from solid wood furniture were performed to determine the key parameters. We also evaluated the hybrid optimization method with the data of flame retardant emissions from polyisocyanurate rigid foam and VOC emissions from a panel furniture in the literature. The correlation coefficients are high during the fitting process (R2 = 0.92-0.99), demonstrating effectiveness of this method. In addition, we observed that chemical properties could transfer from SVOC-type to VOC-type with the increase of temperature. The transition temperatures from SVOC-type to VOC-type for the emissions of tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCIPP) were determined to be about 45 ℃ and 35 ℃, respectively. The present study provides a unified modelling and methodology analysis for both VOCs and SVOCs, which should be very useful for source/sink characterization and control.
Collapse
Affiliation(s)
- Xuankai Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baoping Xu
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanzheng Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanda Tan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
34
|
Huang L, Qiao Y, Deng S, Wang X, Zhao W, Yue Y. Phthalates in house dust in Chinese urban residences: Concentrations, partition, origin and determinants. CHEMOSPHERE 2022; 286:131703. [PMID: 34352541 DOI: 10.1016/j.chemosphere.2021.131703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Exposure to phthalates poses adverse health impacts to human beings. In this study, we analyzed 7 phthalates in dust samples, which were collected with vacuum cleaner from 40 to 31 residences in Beijing in summer and winter, respectively. The major phthalates (median concentration in the summer and winter, respectively) were DiBP (55 and 40 ng/mg), DnBP (99 and 30 ng/mg) and DEHP (795 and 335 ng/mg). The concentrations were significantly influenced by season and residence time of house dust. The concentrations of phthalates in dust on plastic surfaces were highest, followed by those on wooden and fabric surfaces. The dust-air partition coefficients (Kd) were calculated: the median values were 0.13, 0.02 and 5.62 m3/mg in the summer and 0.06, 0.018 and 0.76 m3/mg in the winter for DiBP, DnBP and DEHP, respectively. A comparison with Kd* at equilibrium state suggested that partition between air and dust deviated from equilibrium state in both seasons. The results also revealed that dust-phthalates in the summer may completely originate from source materials via direct transfer and external physical process; while dust-phthalates in the winter may come from both air (via partition) and source material (via direct transfer and external physical process). The influence of temperature on dust-phthalate concentrations differed by season, owing to different origin of dust-phthalates in two seasons. Polar organic components in dust, which are products of reactions between O3 and unsaturated hydrocarbons in dust, likely played an important role in fate and transport of phthalates. The presence of them resulted in the significant associations between dust-phthalate concentrations and air humidity in the summer. Moreover, the impacts of indoor PM2.5 concentrations, traffic conditions surrounding residence, household lifestyle and number of occupants were also observed. The mechanisms behind those observations were discussed.
Collapse
Affiliation(s)
- Lihui Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China.
| | - Yaqi Qiao
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shunxi Deng
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Xiaoke Wang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Weiping Zhao
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China; School of Civil Engineering, Hefei University of Technology, Hefei, Anhui, 230001, China
| | - Yang Yue
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
35
|
Da Ros S, Curran K. Modelling and parameter estimation of diethyl phthalate partitioning behaviour on glass and aluminum surfaces. CHEMOSPHERE 2021; 285:131414. [PMID: 34265716 DOI: 10.1016/j.chemosphere.2021.131414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The knowledge of the partitioning behaviour of semi-volatile organic compounds (SVOCs), such as phthalates, between different materials and their surrounding air is of extreme importance for quantifying levels of human exposure to these compounds, which have been associated with adverse health effects. Phthalates' partitioning behaviour also represents a key property for modelling and assessing polymer degradation mechanisms associated with plasticiser loss. However, the characterisation of phthalates partitioning behaviour has been reported only for a limited number of compounds, mainly involving di-2-ethylhexyl phthalate (DEHP), di-isononyl phthalate (DINP) and di-isodecyl phtahalate (DIDP), while the characterisation of diethyl phthalate (DEP) partitioning has been overlooked. As one of the first plasticisers employed in the production of semi-synthetic plastics produced industrially in the late 19th and early 20th century, DEP plays an important role for understanding stability issues associated with historically significant artefacts in museum collections and archives. Here we show that the partitioning behaviour of DEP between borosilicate glass and aluminum surfaces and their surrounding air can be described by an exponential function of temperature, presenting a model to describe this relationship for the first time. Model parameters are estimated using nonlinear regression from experimental measurements acquired using 109 samples which have been equilibrated at different temperatures between 20 and 80 °C in sealed environments. Measured partition coefficients have been predicted accurately by our proposed model. The knowledge of DEP equilibrium distribution between adsorptive surfaces and neighbouring environments will be relevant for developing improved mathematical descriptions of degradation mechanisms related to plasticiser loss.
Collapse
Affiliation(s)
- Simoní Da Ros
- UCL Institute for Sustainable Heritage, University College London, 14 Upper Woburn Place, London, WC1H 0NN, United Kingdom.
| | - Katherine Curran
- UCL Institute for Sustainable Heritage, University College London, 14 Upper Woburn Place, London, WC1H 0NN, United Kingdom.
| |
Collapse
|
36
|
Bu Z, Hu M, Yuan F, Xu Y, Dong C, Zhang N, Mmereki D, Cao J, Zheng Y. Phthalates in Chinese vehicular environments: Source emissions, concentrations, and human exposure. INDOOR AIR 2021; 31:2118-2129. [PMID: 34288145 DOI: 10.1111/ina.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are typical air pollutants in vehicular environment since numerous synthetic materials that might contain phthalates are widely used to fabricate vehicle interiors (e.g., seat cushions, floor mats and dashboards). Hitherto, the importance of phthalate pollution in vehicular environment is not well-recognized because people spend only a small portion (around 8%) of their time in vehicles. In this study, the mass fractions of six phthalates in nine materials commonly used in Chinese vehicles (floor mats and seat cushions) were measured. Two phthalates, di-n-butyl phthalate (DnBP) and di-2-ethylhexyl phthalate (DEHP), were identified in most materials (the other phthalates were not detected). The emission characteristics of DnBP and DEHP from these materials were further investigated. The measured emission parameters were used as input for a mass-transfer model to estimate DnBP and DEHP concentrations in cabin air. Finally, the ratios between human exposures (via inhalation and dermal absorption from the gas phase) in vehicular environment and the total exposures in typical indoor environments (e.g., residences and offices) were estimated to be up to 110% and 20% for DnBP and DEHP, respectively. Based on these results, the vehicular environment might be a considerable site for human exposure to airborne phthalates.
Collapse
Affiliation(s)
- Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Maochao Hu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fangzhou Yuan
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yousheng Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nan Zhang
- Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Daniel Mmereki
- Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Youqu Zheng
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
37
|
Bai F, Ding H, Mu YT, Dai YJ, Zhang YP, Tao WQ. Three-dimensional non-isothermal numerical model for predicting semi-volatile organic compound transport process in a room. INDOOR AIR 2021; 31:2312-2328. [PMID: 33969921 DOI: 10.1111/ina.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
In this paper, a three-dimensional non-isothermal computational model for predicting indoor SVOC distribution is proposed, considering the effects of turbulence diffusion and suspended particles. The realizable k-ε model is introduced for turbulent flow simulation in a room. The Euler-Euler method is adopted to deal with the gas-particle two-phase flow coupled problem. Inertia slip velocity and irreversible first-order absorption boundary are employed for more accurate prediction of particle motion. The simulated curve of outlet gas-phase di-2-ethylhexyl phthalate (DEHP) concentration with emission time is verified by available experimental data. The emission process of DEHP in a 15 m2 room in Beijing during 100 days with or without air cleaner is simulated by the developed model considering air leak through window and door gaps. It is found that if the air cleaner keeps on all the time during 100 days the gas-phase DEHP concentration in the room will tend to be uniform, while the emission process is far from equilibrium without an air cleaner even the emission lasts 100 days. Results also suggest that floor heating, decrease of particle concentration, weaken of heat transfer, enhancement of mass transfer, and air infiltration in window gap contribute to decrease DEHP concentration.
Collapse
Affiliation(s)
- Fan Bai
- Key Laboratory of Thermo-Fluid Science & Engineering of MOE, Xi'an Jiaotong University, Xi'an, China
| | - Hao Ding
- Key Laboratory of Thermo-Fluid Science & Engineering of MOE, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Tong Mu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yan-Jun Dai
- Key Laboratory of Thermo-Fluid Science & Engineering of MOE, Xi'an Jiaotong University, Xi'an, China
| | - Yin-Ping Zhang
- Institute of Built Environment, Tsinghua University, Beijing, China
| | - Wen-Quan Tao
- Key Laboratory of Thermo-Fluid Science & Engineering of MOE, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Collins DB, Farmer DK. Unintended Consequences of Air Cleaning Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12172-12179. [PMID: 34464124 DOI: 10.1021/acs.est.1c02582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities. This perspective intends to highlight the perhaps unintended consequences of various air cleaning approaches via indoor air chemistry. Introduction of new chemical agents or reactive processes can initiate complex chemistry that results in the release of reactive intermediates and/or byproducts into the indoor environment. Since air cleaning systems are often continuously running to maximize their effectiveness and most people spend a vast majority of their time indoors, human exposure to both primary and secondary products from air cleaners may represent significant exposure risk. This Perspective highlights the need for further study of chemically reactive air cleaning and disinfection methods before broader adoption.
Collapse
Affiliation(s)
- Douglas B Collins
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
39
|
Kvasnicka J, Cohen Hubal EA, Rodgers TFM, Diamond ML. Textile Washing Conveys SVOCs from Indoors to Outdoors: Application and Evaluation of a Residential Multimedia Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12517-12527. [PMID: 34472344 PMCID: PMC9590288 DOI: 10.1021/acs.est.1c02674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Indoor environments have elevated concentrations of numerous semivolatile organic compounds (SVOCs). Textiles provide a large surface area for accumulating SVOCs, which can be transported to outdoors through washing. A multimedia model was developed to estimate advective transport rates (fluxes) of 14 SVOCs from indoors to outdoors by textile washing, ventilation, and dust removal/disposal. Most predicted concentrations were within 1 order of magnitude of measurements from a study of 26 Canadian homes. Median fluxes to outdoors [μg·(year·home)-1] spanned approximately 4 orders of magnitude across compounds, according to the variability in estimated aggregate emissions to indoor air. These fluxes ranged from 2 (2,4,4'-tribromodiphenyl ether, BDE-28) to 30 200 (diethyl phthalate, DEP) for textile washing, 12 (BDE-28) to 123 200 (DEP) for ventilation, and 0.1 (BDE-28) to 4200 (bis(2-ethylhexyl) phthalate, DEHP) for dust removal. Relative contributions of these pathways to the total flux to outdoors strongly depended on physical-chemical properties. Textile washing contributed 20% tris-(2-chloroisopropyl)phosphate (TCPP) to 62% tris(2-butoxyethyl)phosphate (TBOEP) on average. These results suggest that residential textile washing can be an important transport pathway to outdoors for SVOCs emitted to indoor air, with implications for human and ecological exposure. Interventions should try to balance the complex tradeoff of textile washing by minimizing exposures for both human occupants and aquatic ecosystems.
Collapse
Affiliation(s)
- Jacob Kvasnicka
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
| | - Elaine A. Cohen Hubal
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Durham, North Carolina, 27711, U.S.A
| | - Timothy F. M. Rodgers
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Miriam L. Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, Ontario, M5S 3E8, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
- Corresponding Author: Miriam L. Diamond, Department of Earth Sciences and School of the Environment, 22 Ursula Franklin Street, University of Toronto, Toronto, Ontario, Canada M5S 3B1, 1 (416) 978-1586,
| |
Collapse
|
40
|
Zhou X, Lian J, Cheng Y, Wang X. The gas/particle partitioning behavior of phthalate esters in indoor environment: Effects of temperature and humidity. ENVIRONMENTAL RESEARCH 2021; 194:110681. [PMID: 33428915 DOI: 10.1016/j.envres.2020.110681] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Phthalate esters (PAEs) are ubiquitous and among the most abundant semi-volatile organic compounds (SVOCs) in indoor environments. Due to their low saturated vapor pressure, SVOCs tend to adhere to indoor surfaces and particulate matters, which may result in higher total concentrations than occur in the gas phase alone. Thus, gas/particle partitioning of PAEs plays an important role in their indoor fates and health risks. However, the influence of indoor environmental parameters, including temperature and humidity, on the partitioning of PAEs between air and particles is rarely known. In this study, a novel experimental system was designed to investigate the effects of temperature and humidity on partitioning behavior between gas- and particle-phase PAEs. The chamber experiments were conducted at temperatures of 12.5 °C, 17.5 °C, 24.0 °C, 29.5 °C and 40.0 °C and moisture contents of 3.5 g/kg, 5.0 g/kg, 6.5 g/kg, 8.0 g/kg and 9.5 g/kg dry air. The results showed that higher temperatures led to stronger emission of phthalate esters from the PVC panel, which resulted in higher gas-phase concentrations of phthalate esters and particle-phase concentrations. In addition, temperature has a strong negative effect on the gas/particle partition coefficient (Kp), and an order of magnitude difference in Kp was observed between 12.5 and 40 °C. There are exponential decay laws between Kp and the absolute temperature. However, a smaller effect of humidity than of temperature on Kp was revealed, and no obvious law was found. Moreover, Kp of compounds with larger molecular weights are more obviously influenced by the variations in environmental factors. This study is of positive significance for reducing the health risks of PAEs by guiding the regulation of indoor environmental parameters.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Juanli Lian
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China; Vertiv Tech (Xi'an) Co., Ltd, Xi'an, Shaanxi, 710065, China
| | - Yan Cheng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
41
|
Bi C, Wang X, Li H, Li X, Xu Y. Direct Transfer of Phthalate and Alternative Plasticizers from Indoor Source Products to Dust: Laboratory Measurements and Predictive Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:341-351. [PMID: 33287540 DOI: 10.1021/acs.est.0c05131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phthalate and alternative plasticizers are semivolatile organic compounds (SVOCs) and among the most abundant indoor pollutants. Although ingestion of dust is one of the major exposure pathways to them, migration knowledge from source products to indoor dust is still limited. Systematic chamber measurements were conducted to investigate the direct transfer of these SVOCs between source products and dust in contact with the source. Substantial direct source-to-dust transfer of SVOCs was observed for all tests. The concentration of bis(2-ethylhexyl)phthalate in dust was 12 times higher than the pre-experimental level after only two days of source-dust contact. A mechanistic model was developed to predict the direct transfer process, and a reasonable agreement between model predictions and measurements was achieved. The octanol/air partition coefficient (Koa) of SVOCs, the emission parameter of the source product (y0), and the characteristics of the dust layer (i.e., porosity and thickness) control the transfer, affecting the SVOC concentration in dust, the kinetics of direct transfer, or both. Dust mass loading has a significant influence on the transfer, while relative humidity only has a limited effect. The findings suggest that minimizing the use of SVOC-containing products and house vacuuming are effective intervention strategies to reduce young children's exposure to SVOCs.
Collapse
Affiliation(s)
- Chenyang Bi
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1139, United States of America
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongwan Li
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1139, United States of America
| | - Xiaofeng Li
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Ying Xu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712-1139, United States of America
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Eichler CMA, Hubal EAC, Xu Y, Cao J, Bi C, Weschler CJ, Salthammer T, Morrison GC, Koivisto AJ, Zhang Y, Mandin C, Wei W, Blondeau P, Poppendieck D, Liu X, Delmaar CJE, Fantke P, Jolliet O, Shin HM, Diamond ML, Shiraiwa M, Zuend A, Hopke PK, von Goetz N, Kulmala M, Little JC. Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:25-43. [PMID: 33319994 PMCID: PMC7877794 DOI: 10.1021/acs.est.0c02329] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A critical review of the current state of knowledge of chemical emissions from indoor sources, partitioning among indoor compartments, and the ensuing indoor exposure leads to a proposal for a modular mechanistic framework for predicting human exposure to semivolatile organic compounds (SVOCs). Mechanistically consistent source emission categories include solid, soft, frequent contact, applied, sprayed, and high temperature sources. Environmental compartments are the gas phase, airborne particles, settled dust, indoor surfaces, and clothing. Identified research needs are the development of dynamic emission models for several of the source emission categories and of estimation strategies for critical model parameters. The modular structure of the framework facilitates subsequent inclusion of new knowledge, other chemical classes of indoor pollutants, and additional mechanistic processes relevant to human exposure indoors. The framework may serve as the foundation for developing an open-source community model to better support collaborative research and improve access for application by stakeholders. Combining exposure estimates derived using this framework with toxicity data for different end points and toxicokinetic mechanisms will accelerate chemical risk prioritization, advance effective chemical management decisions, and protect public health.
Collapse
Affiliation(s)
- Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elaine A Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chenyang Bi
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Tunga Salthammer
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig 38108, Germany
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Antti Joonas Koivisto
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki 00014, Finland
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), French Indoor Air Quality Observatory (OQAI), Champs sur Marne 77447, France
| | - Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), French Indoor Air Quality Observatory (OQAI), Champs sur Marne 77447, France
| | - Patrice Blondeau
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement - LaSIE, Université de La Rochelle, La Rochelle 77447, France
| | - Dustin Poppendieck
- Engineering Lab, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaoyu Liu
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Christiaan J E Delmaar
- National Institute for Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven 3720, The Netherlands
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A0B9, Canada
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York 13699-5708, United States
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | | - Markku Kulmala
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki 00014, Finland
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
43
|
Chen Z, Tian E, Mo J. Removal of gaseous DiBP and DnBP by ionizer-assisted filtration with an external electrostatic field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115591. [PMID: 33254646 DOI: 10.1016/j.envpol.2020.115591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/13/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Phthalic acid esters (PAEs) have been widely used in indoor applications and cause severe sicknesses. In this study, we developed an ionizer-assisted filtration method with an external electrostatic field to efficiently remove gaseous DiBP (Diisobutyl phthalate) and DnBP (Dibutyl phthalate). We used low-pressure drop polyurethane (PU) foams as substrate filters, and loaded fine activated carbon powder into PU foams as PU-C foams. The pressure drop of new filters ranged from 5.28 Pa to 14.3 Pa at the face velocity of 1 m/s. We investigated the influence of filter materials and electrostatic charging on the single-pass filtration efficiency of PAEs and net ozone production. The filtration efficiency of 30 ppi (pores per inch) filter increased from 15.4% (PU) to 29.3% (PU-C) for DiBP. Only pollutant pre-charging cannot enhance the filtration efficiency of PAEs. It may be because negative ions accumulate on the filter surface and cause electrostatic repulsive forces between the charged gaseous PAEs and filters, which lowers the electrostatic filtration efficiency. When charging the pollutants at -8.0 kV and the filter at +10.0 kV simultaneously, the filtration efficiency of 30 ppi PU-C filter increased from 29.3% to 45.5% for DiBP. However, the simultaneous charging on pollutants and filters did not improve the efficiency of 40 ppi PU-C filter. The reason may be that the specific resistance of 40 ppi PU-C filter was 6 times larger than that of 30 ppi PU-C filter, which leads to more negative ions accumulating on the filter surface. The tendency for the removal of DnBP is similar. The net ozone productions of all experiments were less than 0.38 mg/h. Overall, this study developed an ionizer-assisted filtration method with an external electrostatic field, which is based on inexpensive, low pressure drop coarse filters, and is efficient for the active control of gaseous PAEs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Building Science, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Enze Tian
- Department of Building Science, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China.
| |
Collapse
|
44
|
Yang T, Wang H, Zhang X, Xiong J, Huang S, Koutrakis P. Characterization of phthalates in sink and source materials: Measurement methods and the impact on exposure assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122689. [PMID: 32361130 DOI: 10.1016/j.jhazmat.2020.122689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The fate and transport of semi-volatile organic compounds (SVOCs) in residential environments is significantly influenced by emission and sorption processes, which can be characterized by three key parameters: the gas-phase SVOC concentration adjacent to the material surface (y0); the diffusion coefficient (Dm); and the partition coefficient (K). Accurate determination of these three key parameters is critical for investigating SVOC mass transfer principles, and for assessing human health risks. Based on the mass transfer process of phthalates in a ventilated chamber, a novel method is developed to simultaneously measure Dm and K (key sorption parameters) in sink materials. The Dm and K of four target phthalates in a common T-shirt (sink material) are determined, and compared with those reported in literature. Results demonstrate that the measured parameters are in good agreement with those previously reported (relative deviation < 20 %), validating the effectiveness of proposed method. In addition, this method can be applied to determine y0, a key parameter from source materials. Results indicate that y0 determined with this method is consistent with that measured by literature method. Finally, dermal exposure analysis is performed, showing that dermal uptake of target phthalates is greatly affected by clothes.
Collapse
Affiliation(s)
- Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haimei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xuankai Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shaodan Huang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, United States.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston 02115, United States
| |
Collapse
|
45
|
Huang L, Qiao Y, Deng S, Zhou M, Zhao W, Yue Y. Airborne phthalates in indoor environment: Partition state and influential built environmental conditions. CHEMOSPHERE 2020; 254:126782. [PMID: 32339798 DOI: 10.1016/j.chemosphere.2020.126782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Exposure to phthalates has recently become a major public health concern. The information of indoor airborne phthalates and their air-particle partition in real indoor environmental condition is still limited. In this study, the gas- and PM2.5-concentrations of 7 phthalates in 40 residences were concurrently measured in summer and winter. The major phthalates (median concentration in the summer and winter, respectively) in indoor air were DMP (2442.3 and 2403.4 ng/m3), DiBP (801.0 and 640.0 ng/m3) and DnBP (5173.2 and 1379.6 ng/m3), whereas the major phthalates in PM2.5 were DiBP (1055.1 and 585.9 ng/m3) and DnBP (1658.5 and 1517.0 ng/m3) and DEHP (215.1 and 344.9 ng/m3). Air-PM2.5 partition coefficients (Kp) of DiBP, DnBP and DEHP were calculated: the summer and winter median values (m3/μg) were 0.053 and 0.011 for DiBP, 0.010 and 0.004 for DnBP, 0.021 and 0.025 for DEHP, respectively. Air-PM2.5 partition of DiBP and DnBP approached equilibrium, while that of DEHP did not reach equilibrium in either season. The impacts of built environmental conditions on phthalate concentrations were characterized. Elevated temperature resulted in accumulation of airborne phthalates. Higher air humidity led to more water absorption of aerosols in summer, facilitated mass transfer of phthalates from air to PM2.5, and resulted in greater Kp of DiBP and DnBP in the summer. Any factors such as proximity to local traffic highway and indoor smoking activities, which can increase indoor PM2.5 concentrations, resulted in significantly higher airborne phthalate concentrations. Improving ventilation was not an effective measure to reduce indoor airborne phthalate concentrations.
Collapse
Affiliation(s)
- Lihui Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China.
| | - Yaqi Qiao
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shunxi Deng
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Meimei Zhou
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Weiping Zhao
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China; School of Civil Engineering, Hefei University of Technology, Hefei, Anhui, 230001, China
| | - Yang Yue
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Kvasnicka J, Cohen Hubal E, Ladan J, Zhang X, Diamond ML. Transient Multimedia Model for Investigating the Influence of Indoor Human Activities on Exposure to SVOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10772-10782. [PMID: 32786603 PMCID: PMC8637498 DOI: 10.1021/acs.est.0c03268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Empirical evidence suggests that human occupants indoors, through their presence and activities, can influence the dynamics of semivolatile organic compounds (SVOCs). To better understand these dynamics, a transient multimedia human exposure model was developed (Activity-Based Indoor Chemical Assessment Model (ABICAM)). This model parametrizes mass-balance equations as functions of time-dependent human activities. As a case study, ABICAM simulated exposures of an archetypal adult and toddler over 24 h to diethyl phthalate (DEP), butyl benzyl phthalate (BBzP), and di-2-ethylhexyl phthalate (DEHP) that span a wide range of gas-particle partitioning tendencies. Under baseline (no activities beyond respiration), the toddler's time-average internal doses were three to four times higher than the adult's, due to differences in physical human attributes (e.g., inhalation rate). When time-dependent activities were considered, interindividual (e.g., adult vs toddler) variability was accentuated by up to a factor of 3 for BBzP. Activities with the greatest influence on time-average internal dose were showering (-71% for BBzP), cooking (+27% for DEHP), and sleeping (-26% for DEHP). Overall, the results support the hypotheses that (1) transient indoor activities can give rise to intraindividual variability in estimated internal doses of SVOCs, and (2) interindividual variability in such exposure can result from differences in activity patterns and physical human attributes, according to a compound's physical-chemical properties.
Collapse
Affiliation(s)
- Jacob Kvasnicka
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Elaine Cohen Hubal
- Center for Public Health and Environmental Assessment, Environmental Protection Agency, Durham, North Carolina 27701, United States
| | - John Ladan
- Department of Physics, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Xianming Zhang
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| |
Collapse
|
47
|
Chen Z, Afshari A, Mo J. A method using porous media to deliver gas-phase phthalates rapidly and at a constant concentration: Effects of temperature and media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:113823. [PMID: 32443184 DOI: 10.1016/j.envpol.2019.113823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 06/11/2023]
Abstract
Phthalates are widely used as additives to consumer products. Many diseases have been shown to be related to the uptake of phthalates. To achieve equilibrium constant phthalate generation for mass transfer and exposure experiments, the present study developed a porous media based method using Teflon generators connected to the media with stainless steel connectors. Carbon sponges with the porosities of 20 ppi (pores per inch), 30 ppi, 40 ppi and honeycomb ceramics of 14 ppi were used as porous media fillers to evaluate the effect of temperature-controlled states, materials, and pore sizes on the generating performance of phthalates. The results showed that 30 ppi carbon sponge fillers at 25.0 ± 0.4 °C performed satisfactorily. DMP, DiBP and DEHP were used as examined phthalates and were generated at 12,800 ± 740 μg/m3, 330 ± 13 μg/m3 and 2.37 ± 0.15 μg/m3, respectively. The times to reach stable concentrations were 4.5 h, 18.5 h and 89.5 h, respectively. The reproducibility of DiBP and DEHP delivery deviated by less than 2.4%. Long-term generating experiments should be performed in the future. The porous media based method could stably deliver gaseous PAEs and tends to be widely used in the research of the adsorption of PAEs on surfaces (airborne particles, settled dust and indoor surfaces) and exposure experiments.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Alireza Afshari
- Danish Building Research Institute, Aalborg University, Copenhagen, Denmark
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China.
| |
Collapse
|
48
|
Lunderberg DM, Kristensen K, Tian Y, Arata C, Misztal PK, Liu Y, Kreisberg N, Katz EF, DeCarlo PF, Patel S, Vance ME, Nazaroff WW, Goldstein AH. Surface Emissions Modulate Indoor SVOC Concentrations through Volatility-Dependent Partitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6751-6760. [PMID: 32379430 DOI: 10.1021/acs.est.0c00966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Measurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature. Observed temperature dependencies were quantitatively similar to theoretical predictions that assumed a surface-air boundary layer with equilibrium partitioning maintained at the air-surface interface. Airborne concentrations of SVOCs with vapor pressures corresponding to C25 to C31 alkanes correlated with airborne particle mass concentration. For SVOCs with higher vapor pressures, which are expected to be predominantly gaseous, correlations with particle mass concentration were weak or nonexistent. During primary particle emission events, enhanced gas-phase emissions from condensed-phase reservoirs partitioned to airborne particles, contributing substantially to organic particulate matter. An emission event related to oven-usage was inferred to deposit siloxanes in condensed-phase reservoirs throughout the house, leading to the possibility of reemission during subsequent periods with high particle loading.
Collapse
Affiliation(s)
- David M Lunderberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Kasper Kristensen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Yilin Tian
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Caleb Arata
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Yingjun Liu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Nathan Kreisberg
- Aerosol Dynamics Inc., Berkeley, California 94710, United States
| | - Erin F Katz
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Peter F DeCarlo
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sameer Patel
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marina E Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Eichler CMA, Little JC. A framework to model exposure to per- and polyfluoroalkyl substances in indoor environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:500-511. [PMID: 32141451 DOI: 10.1039/c9em00556k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) include a wide range of halogenated chemicals, which have been used as water- and stain-resistant coatings for consumer products and industrial purposes. PFAS are persistent in the environment and several are bioaccumulative, and thus relevant for human and environmental health. Given their pervasiveness, we need to understand how we are exposed to PFAS, especially in indoor environments where many people spend most of their time. Research on indoor exposure to semivolatile organic compounds (SVOCs) has progressed rapidly in recent years. Because many PFAS can be considered SVOCs, much of what has been learned about SVOCs may be used to guide research on PFAS exposure in indoor environments. Here, we briefly review what has been done to assess indoor exposure to PFAS. Then, we propose a systematic indoor exposure framework for PFAS based on methods to estimate exposure to SVOCs. We illustrate how critical parameters such as partition coefficients for different media (particles, dust, surfaces, and clothing) for different types of PFAS could be measured, how these measurements can be used in exposure models for PFAS, and how fundamental, predictive relationships might be used to estimate necessary parameters for emerging compounds.
Collapse
Affiliation(s)
- Clara M A Eichler
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
50
|
Addington CK, Phillips KA, Isaacs KK. Estimation of the Emission Characteristics of SVOCs from Household Articles Using Group Contribution Methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:110-119. [PMID: 31822065 PMCID: PMC7346891 DOI: 10.1021/acs.est.9b06118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The risk to humans from chemicals in consumer products is a function of both hazard and exposure. There is an ongoing effort to quantify chemical exposure due to household articles such as furniture and building materials. Polymers and plastic materials make up a substantial portion of these articles, which may contain chemical additives such as plasticizers. When these additives are not bound to the polymer matrix, they are free to diffuse throughout it and leach or emit from the surface. We have implemented a methodology to predict plasticizer emission from polyvinyl chloride (PVC) products, based on group contribution methods that consider a free volume effect to estimate activity coefficients for chemicals in polymer-solvent solutions. Using the estimated activity coefficients, we calculate steady-state gas phase concentrations for plasticizers in equilibrium with the polymer surface (y0). The method uses only the structure of the chemical and polymer, the weight fraction, and physical-chemical properties, allowing rapid estimation of y0 at different weight fractions in PVC. Using the predicted y0 values and weight fraction data gleaned from public databases, we estimate plasticizer exposures associated with 72 PVC-containing articles using a high-throughput model. We also investigate potential exposures associated with plasticizer substitutions in these products.
Collapse
Affiliation(s)
- Cody K. Addington
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, United States
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Katherine A. Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Kristin K. Isaacs
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
- Corresponding Author: 109 T.W Alexander Dr., NC 27711, USA, , Phone: (919) 541-2785
| |
Collapse
|