1
|
Shao G, Dong J, Zhang W, Sun S, Li C, Li Y. In situ bioelectrochemical remediation of contaminated soil and groundwater: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126250. [PMID: 40228729 DOI: 10.1016/j.envpol.2025.126250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Contamination of the subsurface environment poses a serious hazard to the environment and human health. Recently, the bioelectrochemical system (BES) has drawn great attention in soil and groundwater remediation as it does not necessitate the addition of chemicals and exhibits minimal energy consumption to facilitate microbial degradation of pollutants. However, the complexity of the subsurface environment and the design parameters of the BES significantly affect the remediation performance and the current literature on BES primarily concentrates on its application in wastewater treatment, with a lack of summary of that in the subsurface environment. Therefore, the purpose of this review was to provide the current status, challenges, and outlooks of BES in situ treatment of pollutants from soil and groundwater. Firstly, the principles and efficacies of BES in treating the typical pollutants from the subsurface environment were discussed. Secondly, the factors that impact the BES treatment efficiencies, especially soil properties, the distinctive and pivotal factors for BES in situ application, were discussed specifically. Finally, the challenges and outlooks of BES for the in situ remediation of the contaminated soil and groundwater were addressed. BES is a green and sustainable in situ remediation technology and future advancements may necessitate the integration with complementary technologies and innovative system configurations to advance the practical implementation of BES.
Collapse
Affiliation(s)
- Guohao Shao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Weihong Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Sifan Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Chenlu Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Yan Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Wang X, Zhang Q, Liu Q, Xia W. Microbial response characteristics of integrated constructed wetland-microbial fuel cell systems to linear alkyl-benzene sulfonates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125871. [PMID: 40403661 DOI: 10.1016/j.jenvman.2025.125871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/12/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
Linear alkylbenzene sulfonates (LAS) are the most prevalent anionic surfactants utilized in detergents and cleaning products. This study took sodium dodecyl benzene sulfonate (SDBS) as target LAS, and preliminarily explored the effects of LAS on the microbiological characteristics of constructed wetland-microbial fuel cell (CW-MFC) systems. Results showed that, SDBS had no impact on the physical processes such as adsorption and sedimentation in CW-MFC but significantly affected the subsequent biodegradation process. SDBS stimulated the biosynthesis of extracellular polymeric substances within CW-MFC, with proteins showing a greater resistance to LAS toxicity than polysaccharides. SDBS enhanced the enzymatic activity of microorganisms in CW-MFC due to its amphiphilic nature and solubilization capabilities. However, beyond a critical concentration, SDBS can become toxic, leading to a decrease or even complete loss of microbial enzymatic activity. SDBS also increased microbial community diversity and the proliferation of SDBS-degrading bacteria on lava and MFC anodes, but this promoting effect diminished as SDBS concentrations rose. SDBS promoted the growth of electrochemically active bacteria (EAB) on MFC anodes more at low concentrations than at high ones. Certain genera, such as Pseudomonas, Desulfovibrio, and Geobacter, exhibited higher tolerance to SDBS compared to other EAB. The CW-MFC system harbored seven bacterial genera capable of degrading SDBS, including Geobacter, which could degrade alkyl chains through β/ω-oxidations, Aeromonas, Acinetobacter, Desulfovibrio and Hydrogenophaga, which could perform desulfonation, Zoogloea and Dechloromonas, which could perform benzene ring cleavage. Geobacter and Desulfovibrio played dual roles as both EAB and SDBS-degraders in CW-MFC.
Collapse
Affiliation(s)
- Xiaoou Wang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China.
| | - Qiudi Zhang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Qingyun Liu
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Weiyi Xia
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| |
Collapse
|
3
|
Wang R, Liu B, Yuan H, Li J, Chi Y, Zhai H, Chi Y, Huang Y, Yu H, Yuan T, Ji M. Enhancing the efficiency of P-SMFCs in degrading phenanthrene by modifying the anode with carbon nanomaterials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125874. [PMID: 39988251 DOI: 10.1016/j.envpol.2025.125874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
In plant-sediment microbial fuel cells (P-SMFCs), the anode serves as the primary site for biochemical reactions. In this study, different carbon nanomaterials (graphenes (GNs), carbon nanotubes (CNT), hydroxylated-carbon nanotubes (CNT-OH), and carboxylated-carbon nanotubes (CNT-COOH)) were used to modify the anode of the P-SMFCs to explore the enhancement of phenanthrene (Phe) degradation. The devices were operated for 131 days, CNT-COOH-modified P-SMFCs (P-CNT-COOH) exhibited a shorter start-up period and higher voltage during the stable operation stage. The voltage of P-CNT-COOH during the stationary phase was approximately 250 mV higher than that of the control device. The voltage and Phe removal of P-CNT-COOH were higher than those of CNT-COOH (without plants in the SMFC), which achieved 67.5% Phe removal, which was 1.25 times higher than the P-CNT, whereas CNT (without plants in the SMFC) showed higher performance than P-CNT. The anode modified with P-CNT-COOH became enriched with small-molecule volatile fatty acids (VFAs) (e.g., acetic acid) and degrading bacteria (e.g., Thiobacillus and Desulfobulbus) attributed to the higher hydrophilicity. The removal of Phe was positively correlated with dehydrogenase activity (DHAA).
Collapse
Affiliation(s)
- Ruiyao Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Hongying Yuan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yiyang Chi
- International School of Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yinghao Huang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Haobo Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Tengfei Yuan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Liu J, Yang S, Mehta N, Deng H, Jiang Y, Ma L, Wang H, Liu D. Alkane degradation coupled to Fe(III) reduction mediated by Gram-positive bacteria. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136898. [PMID: 39724707 DOI: 10.1016/j.jhazmat.2024.136898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria. In this study, two electroactive Gram-positive strains, Lysinibacillus spp. strains SL-6A and SL-12A, were isolated from oil-contaminated soils in the Shengli Oilfield, China. Our experiments demonstrated that these strains effectively degraded n-hexadecane (n-C16) through extracellular Fe(III) reduction. When ferric citrate was used as the electron acceptor, strains SL-6A and SL-12A degraded 94.2 % and 87.4 % of n-C16, respectively, within 72 hours. This process was further confirmed using Fe(III)-containing minerals. Surface-enhanced Raman spectroscopy, UV-vis spectroscopy, and cyclic voltammetry data collectively indicated that surface-associated c-type cytochromes (c-Cyts) were crucial for extracellular electron transfer (EET), facilitating Fe(III) reduction. In addition, our strains were capable of producing flavin mononucleotide (FMN), a well-known redox-active organic molecule involved in EET processes, particularly in the presence of Fe(III). Whole-genome sequencing confirmed the pathways for n-alkane degradation and the synthesis of c-Cyts and FMN in our strains. This research highlights the potential of electroactive Gram-positive bacteria in hydrocarbon degradation in contaminated soils.
Collapse
Affiliation(s)
- Jianan Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Shanshan Yang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Neha Mehta
- Department of Geosciences, Environment and Society, Université Libre de Bruxelles, Brussels, Belgium
| | - Haipeng Deng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yongguang Jiang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Liyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Deng Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| |
Collapse
|
5
|
Kirmizakis P, Cunningham M, Kumaresan D, Doherty R. Microbial fuel cells to monitor natural attenuation around groundwater plumes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2069-2084. [PMID: 39753844 PMCID: PMC11775044 DOI: 10.1007/s11356-024-35848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup. The amended electrodes were installed in pre-existing boreholes surrounding a groundwater plume near a former gasworks facility. Among all the MFC locations tested, the MFC at the plume fringe exhibited the highest electrical response and displayed significant variations in the differential abundance of key bacterial and archaeal taxa between the anode and cathode electrodes. The other MFC configurations in the plume center and uncontaminated groundwater showed little to no electrical response, suggesting minimal microbial activity. This straightforward approach enables informed decision-making regarding effectively monitoring, enhancing, or designing degradation strategies for groundwater plumes. It offers a valuable tool for understanding and managing contaminant degradation in such environments.
Collapse
Affiliation(s)
- Panagiotis Kirmizakis
- Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mark Cunningham
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Deepak Kumaresan
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Rory Doherty
- School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.
| |
Collapse
|
6
|
Li Y, Zhang L, Wang J, Xu S, Zhang Z, Guan Y. Activation of persulfate by a layered double oxide supported sulfidated nano zero-valent iron for efficient degradation of 2,2',4,4'-tetrabromodiphenyl ether in soil. ENVIRONMENT INTERNATIONAL 2024; 194:109098. [PMID: 39579442 DOI: 10.1016/j.envint.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
The nano zero-valent iron (nZVI) activated persulfate (PS) is recognized as a promising approach to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in the soil at electronic waste sites. However, all the reported studies were performed in liquids, gaps in the real behaviour and microbial contribution to the degradation of BDE-47 in soil media need to be urgently filled. The removal efficiency of BDE-47 is low using traditional nZVI as activator because of its aggregation and corrosion. Herein, we designed a novel layered double oxide supported sulfidated nano zero-valent iron (S-nZVI@LDO) composite and explored the performance of S-nZVI@LDO/PS to remediate BDE-47 contaminated soil. The results showed that S-nZVI@LDO has excellent stability and superior reduction capability. It could couple PS to achieve a rapid and efficient degradation of BDE-47, and the removal efficiency reached 92.31 % (5 mg/kg) within 6 h, which was much higher than that of n-ZVI/PS (53.38 %) or S-nZVI/PS (75.69 %). The kinetic constant of BDE-47 degradation by S-nZVI@LDO/PS was 23.6 and 3.7 times higher than that by single S-nZVI@LDO and nZVI/PS, respectively. It is attributable to the efficient production of SO4•-, •OH, O2•-, and 1O2 in the system, in which SO4•- and •OH dominated. The bioinformatic analysis demonstrate that soil remediation by S-nZVI@LDO/PS significantly enriched aromatic compounds-degrading bacteria and increased the abundance of hydrocarbon degradation functions. Microbial degradation may play important roles in the BDE-47 degradation and soil quality recovery. The identification of degradation pathways suggests that BDE-47 was degraded to very low-toxic products based on GHS toxicity prediction through a series process of debromination, hydroxylation, cleavage central oxygen, and ring opening, or even completely mineralized. The findings may provide significant implications for the in-situ clean-up of brominated flame retardants in contaminated soil using S-nZVI@LDO/PS Fenton-like system.
Collapse
Affiliation(s)
- Yibing Li
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lixun Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jing Wang
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Shan Xu
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Zhengfang Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
7
|
Martirosyan V, Stavi I, Doniger T, Applebaum I, Sherman C, Levi M, Steinberger Y. Fungal community dynamics in a hyper-arid ecosystem after 7 and 47 years of petroleum contamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1212. [PMID: 39556259 DOI: 10.1007/s10661-024-13387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
This study investigates the impact of crude oil contamination on the fungal community dynamics in the Evrona Nature Reserve, situated in Israel's hyper-arid Arava Valley. The reserve experienced petroleum-hydrocarbon-spill pollution at two neighboring sites in 1975 and 2014. The initial contamination was left untreated, providing a unique opportunity to compare its effects to those of the second contamination event. In 2022, soil samples were collected from both contaminated areas and nearby clean (control) sites, 47 and 7 years after the spills. The taxonomic diversity of fungal community and functional guilds, as well as various properties of the soil, were analyzed. We focused on three functional groups within fungal communities: saprotrophs, symbiotrophs, and pathotrophs. The results revealed a significant decrease in number of fungal species in the contaminated samples over time. Consequently, prolonged effect of crude oil-contaminated soils can facilitate the development of a distinct fungal community, which has adapted to the conditions of oil contamination. This study aims to elucidate the dynamics of fungal communities in oil-contaminated soils, contributing to a better understanding of their behavior and adaptation in such environments.
Collapse
Affiliation(s)
| | - Ilan Stavi
- Dead Sea and Arava Science Center, Yotvata, Israel.
| | - Tirza Doniger
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Itaii Applebaum
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Chen Sherman
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - May Levi
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Yosef Steinberger
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
8
|
Jiang J, Du L, Si B, Kawale HD, Wang Z, Summers S, Lopez-Ruiz JA, Li S, Zhang Y, Ren ZJ. Pilot microbial electrolysis cell closes the hydrogen loop for hydrothermal wet waste conversion to jet fuel. WATER RESEARCH 2024; 268:122644. [PMID: 39461212 DOI: 10.1016/j.watres.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The global shift toward net-zero emissions necessitates resource recovery from wet waste. In this study, we demonstrate the first feasibility of combining pilot-scale microbial electrolytic cells (MECs) with hydrothermal liquefaction (HTL) for simultaneous post-hydrothermal liquefaction wastewater (PHW) treatment and efficient hydrogen (H₂) production to meet biocrude upgrading requirements. Long-term single reactor operation revealed that fixed anode potential enabled rapid startup, and low catholyte pH and high salinity were effective in suppression of cathodic methanogenesis and acetogenesis - resulting in high current density of 16.6 A m-2 and 9.3 A m-2 when feeding synthetic wastewater and PHW respectively. Additionally, the anode biofilm exhibited spatial variations in response to local environmental conditions. Onsite parallel or serial operations of multiple MECs showed good performance using actual PHW with a record-high H2 production rate of 0.5 L LR day-1 for MEC over 10 liters scale, and the optimal chemical oxygen demand (COD)-to-H2 yield reached 0.127 kg-H2 per kg-COD, supporting a self-sufficient, closed-loop upgrade to jet fuel.
Collapse
Affiliation(s)
- Jinyue Jiang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Lin Du
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Buchun Si
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Harshal D Kawale
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zixin Wang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sabrina Summers
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Juan A Lopez-Ruiz
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Shuyun Li
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
10
|
Wang J, Chen M, Zhang J, Sun X, Li N, Wang X. Dynamic membrane filtration accelerates electroactive biofilms in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100375. [PMID: 38283869 PMCID: PMC10821169 DOI: 10.1016/j.ese.2023.100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Bioelectrochemical systems (BES) have emerged as a dual-function technology for treating wastewater and recovering energy. A vital element of BES is the rapid formation and maintenance of electroactive biofilms (EABs). Previous attempts to accelerate EAB formation and improve electroactivities focused on enhancing the bacterial adhesion process while neglecting the rate-limiting step of the bacterial transport process. Here, we introduce membrane filtration into BES, establishing a dynamic membrane filtration system that enhances overall performance. We observed that optimal membrane flux considerably reduced the startup time for EAB formation. Specifically, EABs established under a 25 L m-2 h-1 flux (EAB25 LMH) had a formation time of 43.8 ± 1.3 h, notably faster than the 51.4 ± 1.6 h in the static state (EAB0 LMH). Additionally, EAB25 LMH exhibited a significant increase in maximum current density, approximately 2.2 times higher than EAB0 LMH. Pearson correlation analysis indicated a positive relationship between current densities and biomass quantities and an inverse correlation with startup time. Microbial analysis revealed two critical findings: (i) variations in maximum current densities across different filtration conditions were associated with redox-active substances and biomass accumulation, and (ii) the incorporation of a filtration process in EAB formation enhanced the proportion of viable cells and encouraged a more diverse range of electroactive bacteria. Moreover, the novel electroactive membrane demonstrated sustained current production and effective solid-liquid separation during prolonged operation, indicating its potential as a viable alternative in membrane-based systems. This approach not only provides a new operational model for BES but also holds promise for expanding its application in future wastewater treatment solutions.
Collapse
Affiliation(s)
- Jinning Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jiayao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xinyi Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
11
|
Qi X, Gao X, Wang X, Xu P. Harnessing Pseudomonas putida in bioelectrochemical systems. Trends Biotechnol 2024; 42:877-894. [PMID: 38184440 DOI: 10.1016/j.tibtech.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
Bioelectrochemical systems (BESs), a group of promising integrated systems that combine the advantages of biotechnology and electrochemical techniques, offer new opportunities to address environmental and energy challenges. Exoelectrogens capable of extracellular electron transfer (EET) are the critical factor enabling electrocatalytic activity in BESs. Pseudomonas putida, an aerobe widely used in environmental bioremediation, the biosynthesis of valuable chemicals, and energy bioproduction, has attracted much attention due to its unique application potential in BESs. This review provides a comprehensive understanding of the working principles, key factors, and applications of BESs using P. putida as the exoelectrogen. The challenges and perspectives for the development of BESs with P. putida as the exoelectrogen are also proposed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xinyu Gao
- College of Arts and Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
12
|
Feng K, Lu Y, Zhou W, Xu Z, Ye J, Zhang S, Chen J, Zhao J. Metagenomics revealing biomolecular insights into the enhanced toluene removal and electricity generation in PANI@CNT bioanode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172402. [PMID: 38608888 DOI: 10.1016/j.scitotenv.2024.172402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Microbial fuel cells (MFCs) have significant potential for environmental remediation and energy recycling directly from refractory aromatic hydrocarbons. To boost the capacities of toluene removal and the electricity production in MFCs, this study constructed a polyaniline@carbon nanotube (PANI@CNT) bioanode with a three-dimensional framework structure. Compared with the control bioanode based on graphite sheet, the PANI@CNT bioanode increased the output voltage and toluene degradation kinetics by 2.27-fold and 1.40-fold to 0.399 V and 0.60 h-1, respectively. Metagenomic analysis revealed that the PANI@CNT bioanode promoted the selective enrichment of Pseudomonas, with the dual functions of degrading toluene and generating exogenous electrons. Additionally, compelling genomic evidence elucidating the relationship between functional genes and microorganisms was found. It was interesting that the genes derived from Pseudomonas related to extracellular electron transfer, tricarboxylic acid cycle, and toluene degradation were upregulated due to the existence of PANI@CNT. This study provided biomolecular insights into key genes and related microorganisms that effectively facilitated the organic pollutant degradation and energy recovery in MFCs, offering a novel alternative for high-performance bioanode.
Collapse
Affiliation(s)
- Ke Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weikang Zhou
- Zhejiang Engineering Survey and Design Institute Group Co., Ltd., Ningbo 315012, China
| | - Zijiong Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
Yang S, Wang K, Yu X, Xu Y, Ye H, Bai M, Zhao L, Sun Y, Li X, Li Y. Fulvic acid more facilitated the soil electron transfer than humic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134080. [PMID: 38522204 DOI: 10.1016/j.jhazmat.2024.134080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.
Collapse
Affiliation(s)
- Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Zou JJ, Dai C, Hu J, Tong WK, Gao MT, Zhang Y, Leong KH, Fu R, Zhou L. A novel mycelial pellet applied to remove polycyclic aromatic hydrocarbons: High adsorption performance & its mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171201. [PMID: 38417506 DOI: 10.1016/j.scitotenv.2024.171201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.
Collapse
Affiliation(s)
- Jia Jie Zou
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Wang Kai Tong
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
15
|
Wei Z, Wei Y, Liu Y, Niu S, Xu Y, Park JH, Wang JJ. Biochar-based materials as remediation strategy in petroleum hydrocarbon-contaminated soil and water: Performances, mechanisms, and environmental impact. J Environ Sci (China) 2024; 138:350-372. [PMID: 38135402 DOI: 10.1016/j.jes.2023.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 12/24/2023]
Abstract
Petroleum contamination is considered as a major risk to the health of humans and environment. Biochars as low-cost and eco-friendly carbon materials, have been widely used for the removal of petroleum hydrocarbon in the environment. The purpose of this paper is to review the performance, mechanisms, and potential environmental toxicity of biochar, modified biochar and its integration use with other materials in petroleum contaminated soil and water. Specifically, the use of biochar in oil-contaminated water and soil as well as the factors that could influence the removal ability of biochar were systematically evaluated. In addition, the modification and integrated use of biochar for improving the removal efficiency were summarized from the aspects of sorption, biodegradation, chemical degradation, and reusability. Moreover, the functional impacts and associated ecotoxicity of pristine and modified biochars in various environments were demonstrated. Finally, some shortcoming of current approaches, and future research needs were provided for the future direction and challenges of modified biochar research. Overall, this paper gain insight into biochar application in petroleum remediation from the perspectives of performance enhancement and environmental sustainability.
Collapse
Affiliation(s)
- Zhuo Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China; School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA
| | - Yi Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yang Liu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Shuai Niu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Yaxi Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Jong-Hwan Park
- Department of Life Resources Industry, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, South Korea
| | - Jim J Wang
- School of Plant, Environment & Soil Sciences, Louisiana State University AgCenter. Baton Rouge, LA 70803, USA.
| |
Collapse
|
16
|
Curiel-Alegre S, Khan AHA, Rad C, Velasco-Arroyo B, Rumbo C, Rivilla R, Durán D, Redondo-Nieto M, Borràs E, Molognoni D, Martín-Castellote S, Juez B, Barros R. Bioaugmentation and vermicompost facilitated the hydrocarbon bioremediation: scaling up from lab to field for petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32916-8. [PMID: 38517632 DOI: 10.1007/s11356-024-32916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.
Collapse
Affiliation(s)
- Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Rafael Rivilla
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - David Durán
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Eduard Borràs
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | - Daniele Molognoni
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | | | - Blanca Juez
- ACCIONA, C/ Valportillo II, 8. 28108, Madrid, Alcobendas, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain.
| |
Collapse
|
17
|
Rushimisha IE, Li X, Han T, Chen X, Abdoul Magid ASI, Sun Y, Li Y. Application of biochar on soil bioelectrochemical remediation: behind roles, progress, and potential. Crit Rev Biotechnol 2024; 44:120-138. [PMID: 36137569 DOI: 10.1080/07388551.2022.2119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Bioelectrochemical systems (BESs) that combine electrochemistry with biological methods have gained attention in the remediation of polluted environments, including wastewater, sludge, sediments, and soils. The most attractive advantage of BESs is that the solid electrode is used as an inexhaustible electron acceptor or donor, and biocurrent directly converted from organics can afford the reaction energy of contaminant breakdown, crossing the internal energy barrier of endothermic degradation, which achieves a continuous biodegradation process without the simultaneous use of exogenetic chemicals and bioelectricity recovery. However, soil BESs are hindered by expensive electrode materials, difficult pollutant and electron transfer, low microbial competitive activity, and biocompatibility in contamination remediation. Fortunately, introducing biochar into soil BESs could reveal a high potential in addressing these BES inadequacies. The characteristics of biochar, e.g., conductivity, transferability, high specific surface area, high porosity, large functional groups, and biocompatibility, can improve the performance of soil BESs. In fact, biochar not only carries electrons but also transfers nutrients, pollutants, and even bacteria by facilitating transmission in the bioelectric field of BESs. Consequently, the abilities of biochar make for better functionality of BESs. This review collates information on the roles, application, and progress of biochar in soil BESs, and future prospects are given. It is beneficial for environmental researchers and engineers to extend BES application in environmental remediation and to assist the progress of carbon sequestration and emission reduction based on the inertia of biochar and the blocking of electron flow to form methane.
Collapse
Affiliation(s)
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Tianjin, China
| | - Ting Han
- Agro-Environmental Protection Institute, Tianjin, China
| | - Xiaodong Chen
- Agro-Environmental Protection Institute, Tianjin, China
| | | | - Yan Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Kumari S, Rajput VD, Sushkova S, Minkina T. Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9451-9467. [PMID: 35962926 DOI: 10.1007/s10653-022-01356-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Worldwide industrialization and other human activities have led to a frightening stage of release of hazardous, highly persistent, toxic, insoluble, strongly adsorbed to the soil and high molecular weight ubiquitous polycyclic aromatic hydrocarbons (PAHs) in soils and sediments. The various conventional remediation methods are being used to remediate PAHs with certain drawbacks. Time taking process, high expenditure, excessive quantities of sludge generation, and various chemical requirements do not only make these methods outdated but produce yet much resistant and toxic intermediate metabolites. These disadvantages may be overcome by using a microbial electrochemical system (MES), a booming technology in the field of bioremediation. MES is a green remediation approach that is regulated by electrochemically active microorganisms at the electrode in the system. The key advantage of the system over the conventional methods is it does not involve any additional chemicals, takes less time, and generates minimal sludge or waste during the remediation of PAHs in soils. However, a comprehensive review of the MES towards bioremediation of PAHs adsorbed in soil and sediment is still lacking. Therefore, the present review intended to summarize the recent information on PAHs bioremediation, application, risks, benefits, and challenges based on sediment microbial fuel cell and microbial fuel cell to remediate mount-up industrial sludge, soil, and sediment rich in PAHs. Additionally, bio-electrochemically active microbes, mechanisms, and future perspectives of MES have been discussed.
Collapse
Affiliation(s)
- Smita Kumari
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
| | | | | | | |
Collapse
|
19
|
Zhao X, Qin X, Jing X, Wang T, Qiao Q, Li X, Yan P, Li Y. Key genes of electron transfer, the nitrogen cycle and tetracycline removal in bioelectrochemical systems. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:174. [PMID: 37974273 PMCID: PMC10652473 DOI: 10.1186/s13068-023-02430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Soil microbial fuel cells (MFCs) can remove antibiotics and antibiotic resistance genes (ARGs) simultaneously, but their removal mechanism is unclear. In this study, metagenomic analysis was employed to reveal the functional genes involved in degradation, electron transfer and the nitrogen cycle in the soil MFC. RESULTS The results showed that the soil MFC effectively removed tetracycline in the overlapping area of the cathode and anode, which was 64% higher than that of the control. The ARGs abundance increased by 14% after tetracycline was added (54% of the amplified ARGs belonged to efflux pump genes), while the abundance decreased by 17% in the soil MFC. Five potential degraders of tetracycline were identified, especially the species Phenylobacterium zucineum, which could secrete the 4-hydroxyacetophenone monooxygenase encoded by EC 1.14.13.84 to catalyse deacylation or decarboxylation. Bacillus, Geobacter, Anaerolinea, Gemmatirosa kalamazoonesis and Steroidobacter denitrificans since ubiquinone reductase (encoded by EC 1.6.5.3), succinate dehydrogenase (EC 1.3.5.1), Coenzyme Q-cytochrome c reductase (EC 1.10.2.2), cytochrome-c oxidase (EC 1.9.3.1) and electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1) served as complexes I, II, III, IV and ubiquinone, respectively, to accelerate electron transfer. Additionally, nitrogen metabolism-related gene abundance increased by 16% to support the microbial efficacy in the soil MFC, and especially EC 1.7.5.1, and coding the mutual conversion between nitrite and nitrate was obviously improved. CONCLUSIONS The soil MFC promoted functional bacterial growth, increased functional gene abundance (including nitrogen cycling, electron transfer, and biodegradation), and facilitated antibiotic and ARG removal. Therefore, soil MFCs have expansive prospects in the remediation of antibiotic-contaminated soil. This study provides insight into the biodegradation mechanism at the gene level in soil bioelectrochemical remediation.
Collapse
Affiliation(s)
- Xiaodong Zhao
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci, 030619, People's Republic of China
| | - Xiaorui Qin
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci, 030619, People's Republic of China
| | - Xiuqing Jing
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci, 030619, People's Republic of China
| | - Teng Wang
- Department of Life Science, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Qingqing Qiao
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci, 030619, People's Republic of China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, People's Republic of China.
| | - Pingmei Yan
- College of Biological Sciences and Technology, Taiyuan Normal University, Yuci, 030619, People's Republic of China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
20
|
Li F, Li J, Tong M, Xi K, Guo S. Effect of electric fields strength on soil factors and microorganisms during electro-bioremediation of benzo[a]pyrene-contaminated soil. CHEMOSPHERE 2023; 341:139845. [PMID: 37634583 DOI: 10.1016/j.chemosphere.2023.139845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Electro-bioremediation is a promising technology for remediating soils contaminated with polycyclic aromatic hydrocarbons (PAHs). However, the resulting electrokinetic effects and electrochemical reactions may inevitably cause changes in soil factors and microorganism, thereby reducing the remediation efficiency. To avoid negative effect of electric field on soil and microbes and maximize microbial degradability, it is necessary to select a suitable electric field. In this study, artificial benzo [a]pyrene (BaP)-contaminated soil was selected as the object of remediation. Changes in soil factors and microorganisms were investigated under the voltage of 1.0, 2.0, and 2.5 V cm-1 using chemical analysis, real-time PCR, and high-throughput sequencing. The results revealed noticeable changes in soil factors (pH, moisture, electrical conductivity [EC], and BaP concentration) and microbes (PAHs ring-hydroxylating dioxygenase [PAHs-RHDα] gene and bacterial community) after the application of electric field. The degree of change was related to the electric field strength, with a suitable strength being more conducive to BaP removal. At 70 d, the highest mean extent of BaP removal and PAHs-RHDα gene copies were observed in EK2.0 + BIO, reaching 3.37 and 109.62 times those in BIO, respectively, indicating that the voltage of 2.0 V cm-1 was the most suitable for soil microbial growth and metabolism. Changes in soil factors caused by electric fields can affect microbial activity and community composition. Redundancy analysis revealed that soil pH and moisture had the most significant effects on microbial community composition (P < 0.05). The purpose of this study was to determine the appropriate electric field that could be used for electro-bioremediation of PAH-contaminated soil by evaluating the effects of electric fields on soil factors and microbial communities. This study also provides a reference for efficiency enhancement and successful application of electro-bioremediation of soil contaminated with PAHs.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
21
|
Nandy A, Farkas D, Pepió-Tárrega B, Martinez-Crespiera S, Borràs E, Avignone-Rossa C, Di Lorenzo M. Influence of carbon-based cathodes on biofilm composition and electrochemical performance in soil microbial fuel cells. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100276. [PMID: 37206316 PMCID: PMC10189395 DOI: 10.1016/j.ese.2023.100276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Increasing energy demands and environmental pollution concerns press for sustainable and environmentally friendly technologies. Soil microbial fuel cell (SMFC) technology has great potential for carbon-neutral bioenergy generation and self-powered electrochemical bioremediation. In this study, an in-depth assessment on the effect of several carbon-based cathode materials on the electrochemical performance of SMFCs is provided for the first time. An innovative carbon nanofibers electrode doped with Fe (CNFFe) is used as cathode material in membrane-less SMFCs, and the performance of the resulting device is compared with SMFCs implementing either Pt-doped carbon cloth (PtC), carbon cloth, or graphite felt (GF) as the cathode. Electrochemical analyses are integrated with microbial analyses to assess the impact on both electrogenesis and microbial composition of the anodic and cathodic biofilm. The results show that CNFFe and PtC generate very stable performances, with a peak power density (with respect to the cathode geometric area) of 25.5 and 30.4 mW m-2, respectively. The best electrochemical performance was obtained with GF, with a peak power density of 87.3 mW m-2. Taxonomic profiling of the microbial communities revealed differences between anodic and cathodic communities. The anodes were predominantly enriched with Geobacter and Pseudomonas species, while cathodic communities were dominated by hydrogen-producing and hydrogenotrophic bacteria, indicating H2 cycling as a possible electron transfer mechanism. The presence of nitrate-reducing bacteria, combined with the results of cyclic voltammograms, suggests microbial nitrate reduction occurred on GF cathodes. The results of this study can contribute to the development of effective SMFC design strategies for field implementation.
Collapse
Affiliation(s)
- Arpita Nandy
- Department of Chemical Engineering and Centre for Biosensors, Bioelectronics & Biodevices (C3Bio), University of Bath, Claverton Down, BA2 7AY, UK
| | - Daniel Farkas
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Belén Pepió-Tárrega
- LEITAT Technological Center, C/ de la Innovació, 2, 08225, Terrassa, Barcelona, Spain
| | | | - Eduard Borràs
- LEITAT Technological Center, C/ de la Innovació, 2, 08225, Terrassa, Barcelona, Spain
| | | | - Mirella Di Lorenzo
- Department of Chemical Engineering and Centre for Biosensors, Bioelectronics & Biodevices (C3Bio), University of Bath, Claverton Down, BA2 7AY, UK
- Corresponding author.
| |
Collapse
|
22
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
23
|
Lee YY, Lee SY, Cho KS. Long-term comparison of the performance of biostimulation and phytoextraction in soil contaminated with diesel and heavy metals. CHEMOSPHERE 2023:139332. [PMID: 37364638 DOI: 10.1016/j.chemosphere.2023.139332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The long-term remediation performance under the natural conditions is required to establish the appropriate remediation strategy for contaminated soil. The objective of this study was to compare the long-term remediation efficiency of biostimulation and phytoextraction in contaminated soil containing petroleum hydrocarbons (PHs) and heavy metals. Two types of contaminated soil (soil contaminated with diesel only and co-contaminated with diesel and heavy metals) were prepared. For the biostimulation treatments, the soil was amended with compost, whereas maize, a representative phytoremediation plant, was cultivated for the phytoextraction treatments. There was no significant difference in remediation performance of biostimulation and phytoextraction in the diesel-contaminated soil, in which the maximum total petroleum hydrocarbon (TPH) removability was 94-96% (p < 0.05). However, phytoextraction exhibited the higher removability for TPH and heavy metals than biostimulation in the co-contaminated soil. There was no considerable change in the TPH removal in biostimulation (16-25%), while phytoextraction showed a 75% of TPH removal rate in the co-contaminated soil. Additionally, no significant changes were observed in heavy metals concentration of biostimulation, whereas the removability of heavy metals was 33-63% in phytoextraction. Meanwhile, maize, which is a suitable plant for phytoextraction, showed a translocation factor (translocating efficiency from roots to shoots) value of >1. Correlation analysis revealed that soil properties (pH, water content, and organic content) negatively correlated with pollutants removal. Additionally, the soil bacterial communities were changed over the investigated period, and the types of pollutants exerted a significant influence on the bacterial community dynamics. This study performed a pilot-scale comparison of two types of biological remediation technologies under natural environmental conditions and provided information on changes in the bacterial community structures. This study can be useful for establishing appropriate biological remediation methods to restore soil contaminated with PHs and heavy metals.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
24
|
Zhang X, Liu Y, Zhou Q, Bai Y, Li R, Li T, Li J, Alessi DS, Konhauser KO. Exogenous Electroactive Microbes Regulate Soil Geochemical Properties and Microbial Communities by Enhancing the Reduction and Transformation of Fe(III) Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7743-7752. [PMID: 37171176 DOI: 10.1021/acs.est.3c00407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Electroactive microbes can conduct extracellular electron transfer and have the potential to be applied as a bioresource to regulate soil geochemical properties and microbial communities. In this study, we incubated Fe-limited and Fe-enriched farmland soil together with electroactive microbes for 30 days; both soils were incubated with electroactive microbes and a common iron mineral, ferrihydrite. Our results indicated that the exogenous electroactive microbes decreased soil pH, total organic carbon (TOC), and total nitrogen (TN) but increased soil conductivity and promoted Fe(III) reduction. The addition of electroactive microbes also changed the soil microbial community from Firmicutes-dominated to Proteobacteria-dominated. Moreover, the total number of detected microbial species in the soil decreased from over 700 to less than 500. Importantly, the coexistence of N-transforming bacteria, Fe(III)-reducing bacteria and methanogens was also observed with the addition of electroactive microbes in Fe-rich soil, indicating the accelerated interspecies electron transfer of functional microflora.
Collapse
Affiliation(s)
- Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuxia Liu
- State Key Laboratory of Petroleum Pollution Control, State Key Laboratory of Heavy Oil Processing, Department of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102200, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuge Bai
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jintian Li
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| |
Collapse
|
25
|
Li J, Lin F, Yu H, Tong X, Cheng Z, Yan B, Song Y, Chen G, Hou L, Crittenden JC. Biochar-Assisted Catalytic Pyrolysis of Oily Sludge to Attain Harmless Disposal and Residue Utilization for Soil Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7063-7073. [PMID: 37018050 DOI: 10.1021/acs.est.2c09099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pyrolysis of oily sludge (OS) is a feasible technology to match the principle of reduction and recycling; however, it is difficult to confirm the feasible environmental destination and meet the corresponding requirements. Therefore, an integrated strategy of biochar-assisted catalytic pyrolysis (BCP) of OS and residue utilization for soil reclamation is investigated in this study. During the catalytic pyrolysis process, biochar as a catalyst intensifies the removal of recalcitrant petroleum hydrocarbons at the expense of liquid product yield. Concurrently, biochar as an adsorbent can inhibit the release of micromolecular gaseous pollutants (e.g. HCN, H2S, and HCl) and stabilize heavy metals. Due to the assistance of biochar, pyrolysis reactions of OS are more likely to occur and require a lower temperature to achieve the same situation. During the soil reclamation process, the obtained residue as a soil amendment can not only provide a carbon source and mineral nutrients but can also improve the abundance and diversity of microbial communities. Thus, it facilitates the plant germination and the secondary removal of petroleum hydrocarbons. The integrated strategy of BCP of OS and residue utilization for soil reclamation is a promising management strategy, which is expected to realize the coordinated and benign disposal of more than one waste.
Collapse
Affiliation(s)
- Jiantao Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, P. R. China
| | - Li'an Hou
- Xi'an High-Tech Institute, Xi'an 710025, P. R. China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Hou Z, Zhou Q, Mo F, Kang W, Ouyang S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161402. [PMID: 36638996 DOI: 10.1016/j.scitotenv.2023.161402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
27
|
Shen Y, Ji Y, Wang W, Gao T, Li H, Xiao M. Temporal effect of phytoremediation on the bacterial community in petroleum-contaminated soil. HUMAN AND ECOLOGICAL RISK ASSESSMENT: AN INTERNATIONAL JOURNAL 2023; 29:427-448. [DOI: 10.1080/10807039.2022.2102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 03/06/2025]
Affiliation(s)
- Yuanyuan Shen
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Yu Ji
- School of Water and Environment, Chang’an University, Xi’an, China
| | - Wenke Wang
- School of Water and Environment, Chang’an University, Xi’an, China
| | - Tianpeng Gao
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Haijuan Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Mingyan Xiao
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| |
Collapse
|
28
|
Yang G, Xu H, Luo Y, Hei S, Song G, Huang X. Novel electro-assisted micro-aerobic cathode biological technology induces oxidative demethylation of N, N-dimethylformamide for efficient ammonification of refractory membrane-making wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130001. [PMID: 36152543 DOI: 10.1016/j.jhazmat.2022.130001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Recalcitrant and toxicological membrane-making wastewater displays negative impacts on environment, and this is difficult to treat efficiently using conventional hydrolytic acidification. In this study, a novel electro-assisted biological reactor with micro-aerobic cathode (EABR-MAC) was developed to improve the biodegradation and ammonification of N, N-dimethylformamide (DMF) in membrane-making wastewater, and the metabolic mechanism using metagenomic sequencing as comprehensively illustrated. The results showed that EABR-MAC significantly improved the ammonification of refractory organonitrogen and promoted DMF oxidative degradation by driving the electron transferred to the cathode. Additionally, the inhibition rates of oxygen uptake rate and nitrification in EABR-MAC were both lower under different cathode aeration frequency conditions. Microbial community analysis indicated that the functional fermentation bacteria and exoelectrogens, which were correlated with COD removal, ammonification, and detoxification, were significantly enriched upon electrostimulation, and the positive biological connections increased to form highly connected communities instead of competition. The functional genes revealed that EABR-MAC forcefully intervened with the metabolic pathway, so that DMF converted to formamide and ammonia by oxidative demethylation and formamide hydrolysis. The results of this study provide a promising strategy for efficient conversion of organonitrogen into ammonia nitrogen, and offer a new insight into the effects of electrostimulation on microbial metabolism.
Collapse
Affiliation(s)
- Guang Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yudong Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangqing Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Wang H, Chai G, Zhang Y, Wang D, Wang Z, Meng H, Jiang C, Dong W, Li J, Lin Y, Li H. Copper removal from wastewater and electricity generation using dual-chamber microbial fuel cells with shrimp shell as the substrate. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Li C, Hao L, Xu M, Nuermaimaiti N, He H, Cao J, Fang F, Liu J. Revealing the microbial mechanism of Fe 0 and MnO 2 mediated microbial fuel cell-anaerobic digestion coupling system and its energy flow distribution. CHEMOSPHERE 2022; 308:136597. [PMID: 36167208 DOI: 10.1016/j.chemosphere.2022.136597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Microbial fuel cell-anaerobic digestion (MFC-AD) is a new sludge treatment technology with multi-path energy recovery. In this study, Fe0 and MnO2 with gradient concentration were added to investigate its effects on the sludge reduction, electrochemical performance, extracellular polymeric substances (EPS) of sludge, microbial community, electron distribution and energy flow of the MFC-AD system. Results showed that the highest sludge reduction 59% (49%), was obtained at 10 g/L Fe0 (5 g/L MnO2) adding and its total energy recovery efficiency increased by 100% (71%) compare to the control. Different Fe0 and MnO2 concentrations lead to different microbial mechanisms: at 10 g/L Fe0 or 5 g/L MnO2, it prefers to promote extracellular electrons transfer, favoring the Geobacter, Shewanella and Acinetobacter enrichment, while at 5 g/L Fe0 or 0.5 g/L MnO2 it plays a more important role in substrate metabolism of anaerobic digestion, with Clostridium, Roseomonas lacus, and Methylocystis enriched. Correspondingly, the electron quantity distribution from biomass to recovered energy ends (Current, CH4 and VFAs), was influenced by Fe0 and MnO2 concentration, indicating the controllability of the energy flow.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Nuershalati Nuermaimaiti
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanyue He
- Jiangsu Yuzhi River Basin Management Technology Research Institute, Nanjing, 210000, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jingliang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, PR China.
| |
Collapse
|
31
|
Han T, Wang K, Rushimisha IE, Ye H, Sun Y, Zhao L, Weng L, Li Y, Li X. Influence of biocurrent self-generated by indigenous microorganisms on soil quality. CHEMOSPHERE 2022; 307:135864. [PMID: 35948105 DOI: 10.1016/j.chemosphere.2022.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The redox process driven by anaerobic respiration is a link between matter conversion and energy exchange in soil biogeochemistry. Microbial extracellular electron transfer forming biocurrents is a force in element cycling and community living in soil. However, the effect of indigenous microorganisms generating biocurrents on soil quality is unclear. We found that soil biocurrent showed little adverse influence on soil pH, cation exchange capacity, and available nitrogen, phosphorus and potassium and deblocked sequestered organic matter (29%). In addition, the bioelectric field derived from biocurrent obviously forced the migration of mineral elements, which was a supplement to the theory of water-salt transport, providing a new perspective on element transport. Moreover, the soil biocurrent directly regulated the availability of Ca and Fe (increase of 7-fold), indicating that electron transfer plays an important role in weathering and mineralization and thus pedogenesis. From a microbial ecology point of view, the soil bacterial richness and diversity were perfectly restored to their original state when the biocurrent stopped; including bacterial functions; although a temporary enrichment of certain species was observed. The above results provide new insights into the interactions between electron transfer and soil quality and confirm the safety of soil bioelectrochemical technology.
Collapse
Affiliation(s)
- Ting Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Iranzi Emile Rushimisha
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| |
Collapse
|
32
|
Ambaye TG, Formicola F, Sbaffoni S, Franzetti A, Vaccari M. Insights into rhamnolipid amendment towards enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil. CHEMOSPHERE 2022; 307:136126. [PMID: 36028128 DOI: 10.1016/j.chemosphere.2022.136126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution by hydrophobic hydrocarbons is increasing, notably nowadays due to a large amount of industrial activity. Microbial electrochemical technologies (MET) are promising bio-based systems which can oxidize hydrophobic hydrocarbon pollutants and produce bioelectricity simultaneously. However, MET faces some issues in terms of soil remediation, including low mass transfer, limited electro-activity of anodes as electron acceptors, low bioavailability of hydrocarbons, and the limited activity of beneficial bacteria and inefficient electron transport. This study aims to investigate the role of the addition of rhamnolipid as an analyte solution to the MET to enhance the efficacy and concurrently solve the abovementioned issues. In this regard, a novel long chain of RL was produced by using low-cost carbon winery waste through non-pathogenic Burkholderia thailandensis E264 strains. Different doses of RL were tested, including 10, 50, and 100 mg/L. A maximum enhancement in the oxidation of hydrophobic hydrocarbons was found to be up to 72.5%, while the current density reached 9.5 Am-2 for the MET reactor having a dose of 100 mg/L. The biosurfactants induced a unique microbial enrichment associated with Geobacter, Desulfovibrio, Klebsiella, and Comamona on the anode surface, as well as Pseudomonas, Acinetobacter, and Franconibacter in soil MET, indicating the occurrence of a metabolic pathway in microbes working with the anode and soil bioelectrochemical remediation system. According to cyclic voltammetry analysis, redox peaks appeared, showing a minor shift in redox MET-biosurfactant compared to the bare MET system. Furthermore, the phytotoxicity of polluted soil to L. sativum seeds after and before MET remediation shows a decrease in phytotoxicity of 77.5% and 5% for MET-biosurfactant system and MET only, respectively. With MET as a tool, this study confirmed for the first time that novel long-chain RL produced from non-Pseudomonas bacteria could remarkably facilitate the degradation of petroleum hydrocarbon via extracellular electron transfer, which provides novel insights to understand the mechanisms of RL regulating petroleum hydrocarbon degradation.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| | - Francesca Formicola
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Silvia Sbaffoni
- ENEA, Sustainability Department, Resource Valorisation Lab, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Andrea Franzetti
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Mentore Vaccari
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy
| |
Collapse
|
33
|
He Y, Zhou Q, Mo F, Li T, Liu J. Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119344. [PMID: 35483484 DOI: 10.1016/j.envpol.2022.119344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
As typical pollutants, petroleum hydrocarbons that are widely present in various environmental media such as soil, water, sediments, and air, seriously endanger living organisms and human health. In the meantime, as a green environmental technology that integrates pollutant removal and resource recovery, bioelectrochemical systems (BESs) have been extensively applied to the removal of petroleum hydrocarbons from the environment. This review introduces working principles of BESs, following which it discusses the different reactor structures, application progresses, and key optimization factors when treating water, sewage sludges, sediments, and soil. Furthermore, bibliometrics was first used in this field to analyze the evolution of knowledge structure and forecast future hot topics. The research focus has shifted from the early generation of bioelectric energy to exploring mechanisms of soil remediation and microbial metabolisms, which will be closely integrated in the future. Finally, the future prospects of this field are proposed. This review focuses on the research status of bioelectrochemical degradation of petroleum hydrocarbons and provides a scientific reference for subsequent research.
Collapse
Affiliation(s)
- Yuqing He
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tian Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianv Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Zhang L, Yi M, Lu P. Effects of pyrene on the structure and metabolic function of soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119301. [PMID: 35429592 DOI: 10.1016/j.envpol.2022.119301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The widely detected pyrene (PYR) is prone to accumulate and pose risks to the soil ecosystem. In this study, an aerobic closed microcosm was constructed to assess the effects of PYR at the environmental concentration (12.09 mg kg-1) on the structure, interactions, and metabolism of carbon sources of soil microbial communities. The results found that half-life of PYR was 37 d and its aerobic biodegradation was mainly implemented by both Gram-negative and Gram-positive bacteria as revealed by the quantitative results. High-throughput sequencing based on 16 S rRNA and ITS genes showed that PYR exposure interfered more significantly with the diversity and abundance of the bacterial community than that of the fungal community. For bacteria, rare species were sensitive to PYR, while Gemmatimonadota, Gaiellales, and Planococcaceae involved in organic pollutants detoxification and degradation were tolerant of PYR stress. Co-occurrence network analysis demonstrated that PYR enhanced the intraspecific cooperation within the bacterial community and altered the patterns of trophic interaction in the fungal community. Furthermore, the keystone taxa and their topological roles were altered, potentially inducing functionality changes. Function annotation suggested PYR inhibited the nitrogen fixation and ammonia oxidation processes but stimulated methylotrophy and methanol oxidation, especially on day 7. For the metabolism, microbial communities accelerated the metabolism of nitrogenous carbon sources (e.g. amine) to meet the physiological needs under PYR stress. This study clarifies the impacts of PYR on the structure, metabolism, and potential N and C cycling functions of soil microbial communities, deepening the knowledge of the environmental risks of PYR.
Collapse
Affiliation(s)
- Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Meiling Yi
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China; Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
35
|
Apul OG, Arrowsmith S, Hall CA, Miranda EM, Alam F, Dahlen P, Sra K, Kamath R, McMillen SJ, Sihota N, Westerhoff P, Krajmalnik-Brown R, Delgado AG. Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128770. [PMID: 35364529 DOI: 10.1016/j.jhazmat.2022.128770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Field-weathered crude oil-containing soils have a residual concentration of hydrocarbons with complex chemical structure, low solubility, and high viscosity, often poorly amenable to microbial degradation. Hydrogen peroxide (H2O2)-based oxidation can generate oxygenated compounds that are smaller and/or more soluble and thus increase petroleum hydrocarbon biodegradability. In this study, we assessed the efficacy of H2O2-based oxidation under unsaturated soil conditions to promote biodegradation in a field-contaminated and weathered soil containing high concentrations of total petroleum hydrocarbons (25200 mg TPH kg-1) and total organic carbon (80900 mg TOC kg-1). Microcosms amended with three doses of 48 g H2O2 kg-1 soil (unactivated or Fe2+-activated) or 24 g sodium percarbonate kg-1 soil and nutrients did not show substantial TPH changes during the experiment. However, 7.6-41.8% of the TOC concentration was removed. Furthermore, production of DOC was enhanced and highest in the microcosms with oxidants, with approximately 20-40-fold DOC increase by the end of incubation. In the absence of oxidants, biostimulation led to > 50% TPH removal in 42 days. Oxidants limited TPH biodegradation by diminishing the viable concentration of microorganisms, altering the composition of the soil microbial communities, and/or creating inhibitory conditions in soil. Study's findings underscore the importance of soil characteristics and petroleum hydrocarbon properties and inform on potential limitations of combined H2O2 oxidation and biodegradation in weathered soils.
Collapse
Affiliation(s)
- Onur G Apul
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Sarah Arrowsmith
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Caitlyn A Hall
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, AZ, USA
| | - Evelyn M Miranda
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Fabiha Alam
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Dahlen
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Kanwartej Sra
- Chevron Technical Center (a Chevron USA Inc. division), Houston, TX, USA
| | - Roopa Kamath
- Chevron Technical Center (a Chevron USA Inc. division), Houston, TX, USA
| | - Sara J McMillen
- Chevron Technical Center (a Chevron USA Inc. division), San Ramon, CA, USA
| | - Natasha Sihota
- Chevron Technical Center (a Chevron USA Inc. division), San Ramon, CA, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
36
|
Xia X, Stewart DI, Cheng L, Liu Y, Wang Y, Ding A. Variation of bacterial community and alkane monooxygenase gene abundance in diesel n-alkane contaminated subsurface environment under seasonal water table fluctuation. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104017. [PMID: 35523047 DOI: 10.1016/j.jconhyd.2022.104017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/26/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
n-Alkanes, the main component of diesel fuel, are common light non-aqueous phase liquids (LNAPLs) that threaten ecological security. The subsurface from vadose zone, through fluctuating zone, to saturated zone, is a critical multi-interface earth layer which significantly affects the biodegradation processes of n-alkanes. A pilot-scale diesel contaminated aquifer column experiment has been undertaken to investigate the variations of bacterial community and alkane monooxygenase (alkB) gene abundance in these zones due to water-table fluctuations. The n-alkanes formed a layer immediately above the water table, and when this was raised, they were carried upwards through the fluctuating zone into the vadose zone. Water content and n-alkanes component C10-C12 are main factors influencing bacterial community variation in the vadose zone, while C10-C12 is a key driving factor shaping bacterial community in the fluctuating zone. The most abundant bacterial phyla at all three zones were Proteobacteria, Firmicutes and Actinobacteria, but moisture-niche selection determined their relative abundance. The intermittent wetting cycle resulted in higher abundance of Proteobacteria, and lower abundance of Actinobacteria in the vadose and fluctuating zones in comparison to the control column with a static water-table. The abundances of the alkB gene variants were relatively uniform in different zones, probably because the bacterial populations harboring alkB gene are habituated to biogenic n-alkanes rather than responding to diesel fuel contamination. The variation in the bacterial populations with height due to moisture-niche selection had very little effect on the alkB gene abundance, possibly because numerous species in both phyla (Proteobacteria and Actinobacteria) carry an alkB gene variant. Nevertheless, the drop in the water table caused a short-term spike in alkB gene abundance in the saturated zone, which is most likely associated with transport of solutes or colloids from the fluctuating zone to bacteria species in the saturated zone, so a fluctuating water table could potentially increase n-alkane biodegradation function.
Collapse
Affiliation(s)
- Xuefeng Xia
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | | | - Lirong Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yueqiao Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yingying Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
37
|
Huang R, Li Y, Li F, Yin X, Li R, Wu Z, Liang X, Li Z. Phosphate fertilizers facilitated the Cd contaminated soil remediation by sepiolite: Cd mobilization, plant toxicity, and soil microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113388. [PMID: 35272193 DOI: 10.1016/j.ecoenv.2022.113388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In-situ immobilization does not remove Cd from the contaminated soil. It is vital to investigate the effects of fertilizers on soil Cd mobility during remediation with amendments. In the current study, a pot experiment was conducted to investigate the effects of calcium magnesium phosphate (CMP) and calcium superphosphate (SSP) on the remediation of Cd-contaminated soil by sepiolite. We mainly focused on changes in soil Cd immobilization, plant toxicity, and soil microbial communities after applying two phosphates during Cd-contaminated soil remediation by sepiolite. The results demonstrated that sepiolite decreased Cd concentration in brown rice, straw, and roots by 32.66%, 38.89%, and 30.94%, respectively. During soil remediation by sepiolite, the Cd concentrations of brown rice and straw were not affected by CMP or SSP, except for the treatment with sepiolite plus high-dose CMP. Sepiolite significantly decreased HCl-extractable Cd and DTPA-extractable Cd by 32.21% and 10.50%, respectively. During soil remediation by sepiolite, the HCl-extractable and DTPA-extractable Cd further decreased with CMP or SSP. The decreasing amplitude with CMP was 40.57-72.60% and 7.05-14.53%, and that of SSP was 37.68-59.66% and 20.71-25.07%, respectively. The superoxide dismutase, peroxidase, catalase activities, and malondialdehyde concentration in rice roots decreased inordinately with the addition of sepiolite, CMP, and SSP, indicating that the application of sepiolite, CMP, or SSP alleviated Cd-induced rice root stress and protected rice roots from Cd toxicity. Alpha diversity estimators (including the Chao, ACE, and Shannon indices) indicated that sepiolite, CMP, or SSP applications had no adverse effects on soil bacterial richness and diversity. Hierarchical clustering analysis revealed that the two phosphate fertilizers and sepiolite were the main factors affecting changes in the bacterial communities structure. Redundancy analysis revealed that soil pH, Eh, and soil-extractable Cd were critical factors affecting the structure of the bacterial communities.
Collapse
Affiliation(s)
- Rong Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, PR China; Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Yanqiong Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Feng Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Department of Chemistry and Life Science, Xiangnan University, Chenzhou, Hunan Province 423000, PR China
| | - Xiuling Yin
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Ran Li
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Zhimin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, PR China
| | - Xuefeng Liang
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
38
|
Li B, Xu D, Feng L, Liu Y, Zhang L. Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118771. [PMID: 35007677 DOI: 10.1016/j.envpol.2021.118771] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Energy resource scarcity and sediment pollution perniciousness have become enormous challenges, to which research has been focused on energy recovery and recycle technologies to solve both above problems. The organic matter stored in anoxic sediments of freshwater ecosystem represents a tremendous potential energy source. The system of aquatic plant coupled with sediment microbial fuel cell (AP-SMFC) has attracted much attention as a more feasible, economical and eco-friendly way to remediate sediment and surface water and generate electricity. However, the research on AP-SMFC has only been carried out in the last decade, and relevant studies have not been well summarized. In this review, the advances and prospects on AP-SMFC were systematically introduced. Firstly, the annual publication counts and keywords co-occurrence cluster of AP-SMFC were identified and visualized by resorting to the CiteSpace software, and the result showed that the research on AP-SMFC increased significantly in the last decade on the whole and will continue to increase. The bibliometric results provided valuable references and information on potential research directions for future studies. And then, the research progress and reaction mechanism of AP-SMFC were systematically described. Thirdly, the performance of AP-SMFC, including nutrients removal, organic contaminants removal, and electricity generation, was systematically summarized. AP-SMFC can enhance the removal of pollutants and electricity generation compared with SMFC without AP, and is considered to be an ideal technology for pollutants removal and resource recovery. Finally, the current challenges and future perspectives were summarized and prospected. Therefore, the review could serve as a guide for the new entrants to the field and further development of AP-SMFC application.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Dandan Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
39
|
De La Fuente MJ, Gallardo-Bustos C, De la Iglesia R, Vargas IT. Microbial Electrochemical Technologies for Sustainable Nitrogen Removal in Marine and Coastal Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2411. [PMID: 35206599 PMCID: PMC8875524 DOI: 10.3390/ijerph19042411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
For many years, the world's coastal marine ecosystems have received industrial waste with high nitrogen concentrations, generating the eutrophication of these ecosystems. Different physicochemical-biological technologies have been developed to remove the nitrogen present in wastewater. However, conventional technologies have high operating costs and excessive production of brines or sludge which compromise the sustainability of the treatment. Microbial electrochemical technologies (METs) have begun to gain attention due to their cost-efficiency in removing nitrogen and organic matter using the metabolic capacity of microorganisms. This article combines a critical review of the environmental problems associated with the discharge of the excess nitrogen and the biological processes involved in its biogeochemical cycle; with a comparative analysis of conventional treatment technologies and METs especially designed for nitrogen removal. Finally, current METs limitations and perspectives as a sustainable nitrogen treatment alternative and efficient microbial enrichment techniques are included.
Collapse
Affiliation(s)
- María José De La Fuente
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
| | - Carlos Gallardo-Bustos
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 7820436, Chile
| | - Rodrigo De la Iglesia
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Ignacio T. Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 7820436, Chile
| |
Collapse
|
40
|
Yu H, Huang L, Zhang G, Zhou P. Physiological metabolism of electrochemically active bacteria directed by combined acetate and Cd(II) in single-chamber microbial electrolysis cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127538. [PMID: 34736191 DOI: 10.1016/j.jhazmat.2021.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
It is of great interest to explore physiological metabolism of electrochemically active bacteria (EAB) for combined organics and heavy metals in single-chamber microbial electrolysis cells (MECs). Four pure culture EAB varying degrees responded to the combined acetate (1.0-5.0 g/L) and Cd(II) (20-150 mg/L) at different initial concentrations in the single-chamber MECs, shown as significant relevance of Cd(II) removal (2.57-7.35 mg/L/h) and H2 production (0-0.0011 m3/m3/h) instead of acetate removal (73-130 mg/L/h), to these EAB species at initial Cd(II) below 120 mg/L and initial acetate below 3.0 g/L. A high initial acetate (5.0 g/L) compensated the Cd(II) inhibition and broadened the removal of Cd(II) to 150 mg/L. These EAB physiologically released variable amounts of extracellular polymeric substances with a compositional diversity in response to the changes of initial Cd(II) and circuital current whereas the activities of typical intracellular enzymes were more apparently altered by the initial Cd(II) than the circuital current. These results provide experimental validation of the presence, the metabolic plasticity and the physiological response of these EAB directed by the changes of initial Cd(II) and acetate concentrations in the single-chamber MECs, deepening our understanding of EAB physiological coping strategies in metallurgical microbial electro-ecological cycles.
Collapse
Affiliation(s)
- Haihang Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
41
|
Wyszkowski M, Wyszkowska J, Kordala N, Borowik A. Applicability of Ash Wastes for Reducing Trace Element Content in Zea mays L. Grown in Eco-Diesel Contaminated Soil. Molecules 2022; 27:molecules27030897. [PMID: 35164161 PMCID: PMC8839069 DOI: 10.3390/molecules27030897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Among the large group of xenobiotics released into the environment, petroleum derivatives are particularly dangerous, especially given continuing industrial development and the rising demand for fuel. As increasing amounts of fly ash and sewage sludge are released, it becomes necessary to explore new methods of reusing these types of waste as reclamation agents or nutrient sources. The present study examined how soil contamination with Eco-Diesel oil (0; 10; 20 cm3 kg−1 soil) affected the trace-element content in the aerial parts of maize. Coal and sludge ashes were used as reclamation agents. Our study revealed that diesel oil strongly affected the trace-element content in the aerial parts of maize. In the non-amended group, Eco-Diesel oil contamination led to higher accumulation of the trace elements in maize (with the exception of Pb and Ni), with Cu and Mn content increasing the most. The ashes incorporated into the soil performed inconsistently as a reclamation agent. Overall, the amendment reduced Mn and Fe in the aerial parts of maize while increasing average Cd and Cu levels. No significant effect was noted for the other elements.
Collapse
Affiliation(s)
- Mirosław Wyszkowski
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland;
- Correspondence:
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Łódzki 3 Sq., 10-727 Olsztyn, Poland; (J.W.); (A.B.)
| | - Natalia Kordala
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland;
| | - Agata Borowik
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Łódzki 3 Sq., 10-727 Olsztyn, Poland; (J.W.); (A.B.)
| |
Collapse
|
42
|
Cai X, Luo X, Yuan Y, Li J, Yu Z, Zhou S. Stimulation of phenanthrene and biphenyl degradation by biochar-conducted long distance electron transfer in soil bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149124. [PMID: 34303229 DOI: 10.1016/j.scitotenv.2021.149124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The bioelectrochemical degradation of organic pollutants has attracted considerable attention owing to its remarkable sustainability and low cost. However, the application of bioelectrochemical system (BES) for the degradation of pollutants in soils is hindered by limitations in the effective distance in the soil matrix. In this study, a biochar-amended BES was constructed to evaluate the degradation of organic pollutants. This system was expected to extend the electron transfer distance via conductive biochar in soils. The results showed that biochar pyrolyzed at 900 °C facilitated the degradation of phenanthrene (PHE) and biphenyl (BP) in the soil BES (SBES), reaching 86.4%-95.1% and 88.8%-95.3% in 27 days, respectively. The effective distance of SBESs was estimated to be 154-271 cm away from the electrode, which increased 1.9-3 fold after the addition of biochar. Microbial community and functional gene analysis confirmed that biochar enriched functional degrading bacteria. These findings demonstrate that the promotion of long-distance electron transfer and the formation of soil conductive networks can be achieved by biochar amendment. Thus, this study provides a basis for the effective degradation of for persistent organic pollutants in petroleum-contaminated soils using bioelectrochemical strategy.
Collapse
Affiliation(s)
- Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Luo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
43
|
Kim JW, Hong YK, Kim HS, Oh EJ, Park YH, Kim SC. Metagenomic Analysis for Evaluating Change in Bacterial Diversity in TPH-Contaminated Soil after Soil Remediation. TOXICS 2021; 9:toxics9120319. [PMID: 34941754 PMCID: PMC8708857 DOI: 10.3390/toxics9120319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Soil washing and landfarming processes are widely used to remediate total petroleum hydrocarbon (TPH)-contaminated soil, but the impact of these processes on soil bacteria is not well understood. Four different states of soil (uncontaminated soil (control), TPH-contaminated soil (CS), after soil washing (SW), and landfarming (LF)) were collected from a soil remediation facility to investigate the impact of TPH and soil remediation processes on soil bacterial populations by metagenomic analysis. Results showed that TPH contamination reduced the operational taxonomic unit (OTU) number and alpha diversity of soil bacteria. Compared to SW and LF remediation techniques, LF increased more bacterial richness and diversity than SW, indicating that LF is a more effective technique for TPH remediation in terms of microbial recovery. Among different bacterial species, Proteobacteria were the most abundant in all soil groups followed by Actinobacteria, Acidobacteria, and Firmicutes. For each soil group, the distribution pattern of the Proteobacteria class was different. The most abundant classed were Alphaproteobacteria (16.56%) in uncontaminated soils, Deltaproteobacteria (34%) in TPH-contaminated soils, Betaproteobacteria (24%) in soil washing, and Gammaproteobacteria (24%) in landfarming, respectively. TPH-degrading bacteria were detected from soil washing (23%) and TPH-contaminated soils (21%) and decreased to 12% in landfarming soil. These results suggest that soil pollution can change the diversity of microbial groups and different remediation techniques have varied effective ranges for recovering bacterial communities and diversity. In conclusion, the landfarming process of TPH remediation is more advantageous than soil washing from the perspective of bacterial ecology.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
| | - Young-Kyu Hong
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
| | - Hyuck-Soo Kim
- Department of Biological Environment, Kangwon National University, Chuncheon 24341, Korea;
| | - Eun-Ji Oh
- Korea Environment Institute, Sejong 30147, Korea;
| | - Yong-Ha Park
- Korea Environment Institute, Sejong 30147, Korea;
- Correspondence: (Y.-H.P.); (S.-C.K.)
| | - Sung-Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Korea; (J.-W.K.); (Y.-K.H.)
- Correspondence: (Y.-H.P.); (S.-C.K.)
| |
Collapse
|
44
|
Liang Y, Zhai H, Wang R, Guo Y, Ji M. Effects of water flow on performance of soil microbial fuel cells: Electricity generation, benzo[a]pyrene removal, microbial community and molecular ecological networks. ENVIRONMENTAL RESEARCH 2021; 202:111658. [PMID: 34252434 DOI: 10.1016/j.envres.2021.111658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Soil microbial fuel cells with water flow (W-SMFCs) as a driven force of substrate transport were constructed. Electricity generation, benzo[a]pyrene (BaP) removal, microbial communities and microbial molecular ecological networks were compared between W-SMFCs and their control reactors (without water flow, C-SMFCs) in 240 days of operation. The W-SMFCs started up faster than C-SMFCs (37 days vs. 50 days) and output higher startup voltage (148.45 mV vs. 111.90 mV). The water flow caused higher removal efficiency of BaP at sites >1 cm from the anode (S > 1 cm) than at sites <1 cm from the anode (S < 1 cm) in W-SMFCs, whereas in C-SMFCs, the removal efficiency of BaP at S< 1 cm was higher than that at S> 1 cm. The removal efficiency of BaP at S> 1 cm in W-SMFCs was up to 1.7 times higher than that at S> 1 cm in C-SMFCs on the 91st day. After 240 days of operation, the biodegradation efficiency of absolute BaP amount was 45.95% in W-SMFCs, being 20% higher than that in C-SMFCs (38.17%). Moreover, the water flow caused highly tight interaction among the microbial species, which could be beneficial to BaP biodegradation. Conclusively, the water flow in soil was very beneficial for startup and biodegradation of BaP in SMFCs.
Collapse
Affiliation(s)
- Yinxiu Liang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Rumeng Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yujing Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
45
|
Zhang X, Li R, Song J, Ren Y, Luo X, Li Y, Li X, Li T, Wang X, Zhou Q. Combined phyto-microbial-electrochemical system enhanced the removal of petroleum hydrocarbons from soil: A profundity remediation strategy. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126592. [PMID: 34265647 DOI: 10.1016/j.jhazmat.2021.126592] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The soil contaminated by petroleum hydrocarbons has been a global environmental problem and its remediation is urgent. A combined phyto-microbial-electrochemical system (PMES) was constructed to repair the oil-contaminated soil in this study. During the 42-day operation time, a total petroleum hydrocarbons (TPHs) of 18.0 ± 3.0% were removed from PMES, which increased by 414% compared with the control group (CK1). The supervision of physicochemical properties of pore water in soil exhibited an enhanced microbial consumption of the total organic carbon (TOC) and N source under the applied potential with the generation of bio-current. The microbial succession indicated that the Dietzia, Georgenia and Malbranchea possibly participated in the degradation and current output in PMES. And a collaborative network of potential degrading microorganisms including unclassified norank_f__JG30-KF-CM45 (in Chloroflexi), Dietzia and Malbranchea was discovered in PMES. While the functional communities of microorganism were re-enriched with the reconstructed interactions in the system which was started with the sterilized soil (S+MEC). The superiority of TPHs degradation in S+MEC compared to P + CK2 (removing the electrochemical effect relative to CK1) revealed the key role of external potential in regulating the degradation microflora. The study provided a strategy of the potential regulated phyto-microbial interaction for the removal of TPHs.
Collapse
Affiliation(s)
- Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jintong Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuanyuan Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xi Luo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
46
|
Chandrasekhar K, Velvizhi G, Venkata Mohan S. Bio-electrocatalytic remediation of hydrocarbons contaminated soil with integrated natural attenuation and chemical oxidant. CHEMOSPHERE 2021; 280:130649. [PMID: 33975233 DOI: 10.1016/j.chemosphere.2021.130649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The present study aimed to assess the possibility of integrating natural attenuation (NA) and chemical oxidation (O) with the bio-electrocatalytic remediation (BET) process to remediate petroleum hydrocarbons contaminated soil. Six different reactors were operated, wherein in the first reactor was a NA system, and the second condition to the NA was supplemented with a chemical oxidant (NAO). These systems were compared with BET systems which were differentiated based on the position and distance between the electrodes. The study was performed by considering NA as a common condition in all the six different reactors viz., NA, NAO, NA + BET with 0.5 cm space amid electrodes (BETH-0.5), NAO + BET with 0.5 cm space amid electrodes (BETOH-0.5), NAO + BET with 1.0 cm space amid electrodes (BETOH-1.0), and NAO + BET with vertical electrodes at 1.0 cm distance (BETOV-1.0). The highest total petroleum hydrocarbons (TPH) degradation efficiency was observed with BETOH-0.5 (67 ± 0.8%) followed by BETOH-1.0 (62 ± 0.6%), BETH-0.5 (60%), BETOV-1.0 (56 ± 0.5%), NAO (46.6%), and NA (27.7%). In NA, the indigenous microorganisms remediate the organic contaminants. In the NAO system, KMnO4 actively breakdown the carbon-carbon double bond functional group. Further, in BETOH-0.5, an anodophilic bacteria enriched around the electrode reported enhanced treatment efficiency along with a maximum of 260 mV (1.65 mA). BET systems integrated with chemical oxidation processes were much more effective in the TPH removal process than an individual process. The BET method adopted here thus provides a good opportunity for bio-electrocatalytic remediation of TPH and resource recovery in the form of bioelectricity.
Collapse
Affiliation(s)
- K Chandrasekhar
- Bioengineering and Environmental Sciences Lab (BEES), Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - G Velvizhi
- Bioengineering and Environmental Sciences Lab (BEES), Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; CO(2) Research and Green Technologies Centre, VIT, Vellore, 632014, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab (BEES), Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| |
Collapse
|
47
|
Huang Y, He Z, Xu L, Yang B, Hou Y, Lei L, Li Z. Alternating current enhanced bioremediation of petroleum hydrocarbon-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47562-47573. [PMID: 33895947 DOI: 10.1007/s11356-021-13942-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In this work, bioremediation was applied with sinusoidal alternating current (AC) electric fields to remove petroleum hydrocarbon (TPH) for soil remediation. Applying AC electric field with bioremediation (AC+BIO) could efficiently remove 31.6% of the TPH in 21 days, much faster than that in the BIO only system (13.7%) and AC only system (5.5%). When the operation time extended to 119 days, the AC+BIO system could remove 73.3% of the TPH. Applying AC electric field (20-200 V/m) could maintain the soil pH at neutral, superior to the direct current electric field. The maximum difference between soil temperature and the room temperature was 1.9 °C in the AC (50 V/m) +BIO system. The effects of AC voltage gradient (20-200 V/m) on the microorganisms and TPH degradation efficiency by AC+BIO were investigated, and the optimized AC voltage gradient was assessed as 50 V/m for lab-scale experiments. The microbial community structures in the BIO and AC+BIO systems were compared. Although Pseudomonas was the dominant species, Firmicutes became more abundant in the AC+BIO system than the BIO system, indicating their adaptive capacity to the stress of the AC electric field. Real petroleum-contaminated soil was used as a reaction matrix to evaluate the performance of AC+BIO in the field. The initial current density was about 0.2 mA/cm2, voltage gradient was about 20 V/m, and the average TPH degradation rate was 8.1 μg/gdry soil per day. This study provided insights and fundamental supports for the applications of AC+BIO to treat petroleum-polluted soils.
Collapse
Affiliation(s)
- Ying Huang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Zhongwei He
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Polytechnic Institute, Zhejiang University, Hangzhou, 310015, China
| | - Lili Xu
- Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310027, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China.
| |
Collapse
|
48
|
Aleman-Gama E, Cornejo-Martell AJ, Ortega-Martínez A, Kamaraj SK, Juárez K, Silva-Martínez S, Alvarez-Gallegos A. Oil-contaminated sediment amended with chitin enhances power production by minimizing the sediment microbial fuel cell internal resistance. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Shi K, Liang B, Guo Q, Zhao Y, Sharif HMA, Li Z, Chen E, Wang A. Accelerated bioremediation of a complexly contaminated river sediment through ZVI-electrode combined stimulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125392. [PMID: 33609875 DOI: 10.1016/j.jhazmat.2021.125392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Complexly contaminated river sediment caused by reducible and oxidizable organic pollutants is a growing global concern due to the adverse influence on ecosystem safety and planetary health. How to strengthen indigenous microbial metabolic activity to enhance biodegradation and mineralization efficiency of refractory composite pollutants is critical but poorly understood in environmental biotechnology. Here, a synergetic biostimulation coupling electrode with zero-valent iron (ZVI) was investigated for the bioremediation of river sediments contaminated by 2,4,6-tribromophenol (TBP, reducible pollutant) and hydrocarbons (oxidizable pollutants). The bioremediation efficiency of ZVI based biostimulation coupling electrode against TBP debromination and hydrocarbons degradation were 1.1-3 times higher than the electrode used solely, which was attributed to the shape of distinctive microbial communities and the enrichment of potential dehalogenators (like Desulfovibrio, Desulfomicrobium etc.). The sediment microbial communities were significantly positively correlated with the enhanced degradation efficiencies of TBP and hydrocarbons (P < 0.05). Moreover, the coupled system predominately increased positive microbial interactions in the ecological networks. The possible mutual relationship between microbes i.e., Thiobacillus (iron-oxidizing bacteria) and Desulfovibrio (dehalogenator) as well as Pseudomonas (electroactive bacteria) and Clostridium (hydrocarbons degraders) were revealed. This study proposed a promising approach for efficient bioremediation of complexly contaminated river sediments.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Qiu Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - E Chen
- The Environmental Monitoring Center of Gansu Province, Lanzhou 730020, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
50
|
Liang Y, Ji M, Zhai H, Zhao J. Organic matter composition, BaP biodegradation and microbial communities at sites near and far from the bioanode in a soil microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144919. [PMID: 33578157 DOI: 10.1016/j.scitotenv.2020.144919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Bioanodes in a soil microbial fuel cell (SMFC) can serve as sustainable electron acceptors in microbial metabolism processes; thus, SMFCs are considered a promising in situ bioremediation technology. Most related studies have focused on the removal efficiency of contaminants. Relatively few efforts have been made to comprehensively investigate the organic matter composition and biodegradation metabolites of organic contaminants and microbial communities at various distances from the bioanode. In this study, the level and composition of dissolved organic matter (DOM), biodegradation metabolites of benzo[a]pyrene (BaP), and microbial communities at two sites with different distances (S1cm and S11cm) to the bioanode were investigated in an SMFC. The consumption efficiency of dissolved organic carbon (RDOC) and removal efficiency of BaP (RBaP) at S1cm were slightly higher than those at S11cm after 100 days (RDOC 47.82 ± 5.77% at S1cm and 44.98 ± 10.76% at S11cm; RBaP 72.52 ± 1.88% at S1cm and 68.50 ± 4.34% at S11cm). More fulvic acid-like components and more low-molecular-weight metabolites (indicating a higher biodegradation degree) of BaP were generated at S1cm than at S11cm. The microbial community structures were similar at the two sites. Electroactive bacteria (EAB) and some polycyclic aromatic hydrocarbon degraders were both enriched at the bioanode. Energy metabolism at the bioanode could be upregulated to generate more adenosine triphosphate (ATP). In conclusion, the bioanode could modulate the metabolic pathways in the adjacent soil by strengthening the contact between the EAB and BaP degraders, and providing more ATP to the BaP degraders.
Collapse
Affiliation(s)
- Yinxiu Liang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Jun Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|