1
|
Liu Y, Wang Y, Hao C, Li Y, Lou H, Hong Q, Dong H, Zhu H, Lai B, Liu Y, Li J. Pathogenic bacteria and antibiotic resistance genes in hospital indoor bioaerosols: pollution characteristics, interrelation analysis, and inhalation risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126243. [PMID: 40222613 DOI: 10.1016/j.envpol.2025.126243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hospitals are high risk areas for the spread of diseases, with indoor bioaerosols containing a variety of pathogens. Inhalation of these pathogens may cause severe nosocomial infections in patients and medical staff. A comprehensive investigation was conducted during the influenza A outbreak to explore the distribution and pathogenic risk of airborne pathogens and antibiotic resistance genes (ARGs) across different hospital departments. It was revealed that airborne bacterial concentrations ranged from 118 to 259 CFU/m3, and the main aerosol particle size was 4.7-5.8 μm (27.7 %). The proportion of bioaerosols smaller than 2.5 μm was highest in the respiratory waiting area (59.3 %). The dominant pathogens detected in hospital air were Bacillus, Staphylococcus, Pseudomonas and Micrococcus. The absolute abundance of ARGs/mobile genetic elements (MGEs) ranged from 0.55 to 479.44 copies/m3, peaking in the respiratory ward air. TetL-02, lnuA-01, intI1, ermB, and qacEdelta1-02 were the top five ARGs/MGEs in hospital air. Moreover, doctors inhaled higher doses of ARGs/MGEs in inpatient wards than outpatient waiting areas. Network analysis identified Pseudomonas, Micrococcus, Microbacterium, and Enterobacter as potential ARGs reservoirs. The Bugbase result showed the presence of potentially pathogenic pathogens in the bioaerosols at all sampling sites. The quantitative microbiological risk assessment results further showed that airborne Staphylococcus could pose an infection risk to medical staff. It was determined that the use of masks was effective in reducing this risk to an acceptable level. This study will provide a scientific basis for comprehensively understanding the characteristics and potential risks of hospital bioaerosols during the outbreak of respiratory infectious diseases.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Changfu Hao
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yan Li
- Center for Medical Experiment, The Second Clinical Medical School of Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, PR China.
| | - Hao Lou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Qing Hong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Hao Dong
- School of Medicine, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Haoran Zhu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Bisheng Lai
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yifan Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Jinlong Li
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Pérez-Reche FJ. Impact of heterogeneity on infection probability: Insights from single-hit dose-response models. Math Biosci 2025; 385:109447. [PMID: 40288748 DOI: 10.1016/j.mbs.2025.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
The process of infection of a host is complex, influenced by factors such as microbial variation within and between hosts as well as differences in dose across hosts. This study uses dose-response and within-host microbial infection models to delve into the impact of these factors on infection probability. It is rigorously demonstrated that within-host heterogeneity in microbial infectivity enhances the probability of infection. The effect of infectivity and dose variation between hosts is studied in terms of the expected value of the probability of infection. General analytical findings, derived under the assumption of small infectivity, reveal that both types of heterogeneity reduce the expected infection probability. Interestingly, this trend appears consistent across specific dose-response models, suggesting a limited role for the small infectivity condition. Additionally, the vital dynamics behind heterogeneous infectivity are investigated with a within-host microbial growth model which enhances the biological significance of single-hit dose-response models. Testing these mathematical predictions inspire new and challenging laboratory experiments that could deepen our understanding of infections.
Collapse
Affiliation(s)
- Francisco J Pérez-Reche
- School For Natural and Computing Sciences, SUPA, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom.
| |
Collapse
|
3
|
Wan WD, Ma JX, Lai TN, Yan YT, Ali W, Hu Z, Li X, Tang ZR, Wang CY, Yan C. Quantitative microbial risk assessment for on-site employees in a wastewater treatment plant and implicated surrounding residents exposed to S. aureus bioaerosols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125892. [PMID: 39984017 DOI: 10.1016/j.envpol.2025.125892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Wastewater treatment plants (WWTPs) have increased dramatically in number due to rapid urbanization. However, these facilities release significant amounts of potentially hazardous airborne microorganisms, including Staphylococcus aureus bioaerosol, which poses health risks to employees and nearby residents. Therefore, this study estimated the direct exposure risks of bioaerosols in WWTPs using a quantitative microbial risk assessment (QMRA) framework evaluated through sensitivity analysis methods. The results showed that the sludge yard had the highest mean bioaerosol concentration but the lowest aerosolization ratio. The disease health risk burden values followed a descending order: residential area > office > sludge yard > inverted umbrella aeration tank > microporous aeration tank > control room. Meanwhile, the risk values were shrunken by 14.1-17.3 times when personal protective equipment (PPE) was used. Sensitivity analysis for individual and multifarious contributions showed that the removal fraction achieved by using PPE was consistently the most influential parameter, followed by aerosol ingestion rate or exposure concentration. This suggests that isolation strips, such as green belts, between the WWTP and residential area is alternative effective measures for residents and wearing masks is essential measure for on-site employees. Furthermore, the multifarious contribution analysis showed that stepwise risk mitigation approaches were equally effective as one-step solutions, as indicated by their identical sensitivity coefficient rankings. This indicates that, when resources for mitigating risk are limited, taking a stepwise approach to risk reduction can be equally effective as allocating all resources at once. This study can advance the understanding of the characteristics and health risks of WWTP bioaerosol emissions and supplement the multifarious contributions of the sensitivity analysis implemented in the QMRA model, which contributes to public wellness development. The findings of this study will help in the optimization of control strategies for local wastewater utilities and implicated surrounding residents.
Collapse
Affiliation(s)
- Wei-di Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jia-Xin Ma
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan 430040, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yong-Tang Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zhen Hu
- Wuhan Huzhenyu Environmental Technology Co., Ltd. No.1 Building, Innovation Valley of South Taizi Lake, Economic Development Zone, Wuhan, 430000, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Zhe-Ren Tang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China
| | - Cheng-Yun Wang
- PowerChina Guiyang Engineering Corp. Ltd., Guiyang 550081, PR China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Heida A, Hamilton MT, Gambino J, Sanderson K, Schoen ME, Jahne MA, Garland J, Ramirez L, Quon H, Lopatkin AJ, Hamilton KA. Population Ecology-Quantitative Microbial Risk Assessment (QMRA) Model for Antibiotic-Resistant and Susceptible E. coli in Recreational Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4266-4281. [PMID: 40008406 DOI: 10.1021/acs.est.4c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Understanding and predicting the role of waterborne environments in transmitting antimicrobial-resistant (AMR) infections are critical for public health. A population ecology-quantitative microbial risk assessment (QMRA) model is proposed to evaluate urinary tract infection (UTI) development due to recreational waterborne exposures to Escherichia coli (E. coli) and antibiotic-resistant extended-spectrum β-lactamase-producing (ESBL) E. coli. The horizontal gene transfer (HGT) mechanism of conjugation and other evolutionary factors were modeled separately in the environment and the gut. Persistence/dilution dominated HGT in the environment; however, HGT highly impacted predicted ESBL populations in the body. Predicted disability life year (DALY) risks from exposure to ESBL E. coli at concentrations consistent with US recreational water criteria were less than the 10-6 pppy benchmark value but greater than the susceptible E. coli DALY risks associated with a UTI health outcome. However, the prevailing susceptible dose-response relationship may underestimate ESBL risk if HGT rates in vivo approach those reported in vitro. A sensitivity analysis demonstrated that DALY values, E. coli/ESBL concentrations, and exposure parameters were influential on predicted risks. The model is a preliminary tool to begin the expansion of the QMRA paradigm to explore the impacts of evolutionary changes in AMR risk assessment.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
| | - Mark T Hamilton
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, United States
- New England Research and Development Center, Microsoft, 1 Memorial Drive, Cambridge, Massachusetts 02139, United States
| | - Julia Gambino
- Duke University, Durham, North Carolina 27708, United States
| | | | - Mary E Schoen
- Soller Environmental, 3022 King St. Berkeley, California 94703, United States
| | - Michael A Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Jr. Dr., Cincinnati, Ohio 45268, United States
| | - Jay Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Jr. Dr., Cincinnati, Ohio 45268, United States
| | - Lucia Ramirez
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
| | - Hunter Quon
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, New York 14627, United States
- Department of Microbiology and Immunology, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, New York 14627, United States
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, Arizona 85281, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
5
|
Jahan N, Johnson D, Owings CG, Picard CJ, Capone D. Blow Flies Pose a Public Health Hazard near Urban Combined Sewer Overflows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3906-3914. [PMID: 39988832 DOI: 10.1021/acs.est.4c14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Over 700 municipalities in the United States have combined sewer systems. Following rainfall events, flows to wastewater treatment plants (WWTPs) may exceed capacity, resulting in billions of gallons of wastewater being discharged annually. In Indianapolis, Indiana, precipitation events of ≥6 mm result in up to 90 sewage overflow events annually. As blow flies visit organic wastes that include fecal material, we hypothesized that flies act as vectors of enteric pathogens present in wastewater from overflow events. Blow flies were collected over a 2 year period at six urban parks in Indianapolis, located varying distances from the nearest overflow location. Fly gut DNA was extracted from 997 flies, followed by human fecal source tracking via mitochondrial DNA sequencing. Sixty-eight blow flies collected near an overflow point underwent qPCR screening for 23 enteric pathogen gene markers. Compared to flies caught within 1 km of the nearest combined sewer overflow, flies caught further away were associated with a 68% reduction (RR = 0.32) in the risk of detecting human mitochondrial DNA. A majority of flies (53%, 36/68) tested positive for ≥1 enteric pathogen-associated gene. These results indicate that blow flies near combined sewer overflows can carry enteric pathogens associated with sewage and pose a public health hazard.
Collapse
Affiliation(s)
- Nuzrath Jahan
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana 47408, United States
| | - Daniel Johnson
- Department of Geography, Indiana University-Indianapolis, Indianapolis, Indiana 46202, United States
| | - Charity G Owings
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana 46202, United States
| | - Christine J Picard
- Department of Biology, Indiana University-Indianapolis, Indianapolis, Indiana 46202, United States
| | - Drew Capone
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
6
|
Jackson TM. Kinetics, thresholds, and a comparison of mechanisms underlying systemic infection by Listeria monocytogenes. J Theor Biol 2025; 599:112009. [PMID: 39643030 DOI: 10.1016/j.jtbi.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Studies on the system-scale pathogenesis of Listeria monocytogenes infection have classically focused on its ability to colonize in the intestines following an exposure event. However, despite this, many of the most dangerous complications arising from L. monocytogenes infection are observed days, weeks, or months after exposure, resulting indirectly from bacteria escaping this intestinal colonization hub and invading other organs. Over time, findings of various individual phenomena observed during systemic infection have accumulated, including a shift away from the principal route of intestinal dissemination, delays in bacterial colonization of the central nervous system, differing bacterial flux rates across organs, and multi-stability of bacterial population levels. To further our quantitative understanding of foodborne bacterial infection dynamics, a compartmental model of systemic infection that synthesizes these findings is proposed. Under parameterization to infection in BALB/c mice, the model is used to show a substantial decrease in bacterial populations resulting from dissemination through the mesenteric lymph nodes, as compared to the portal vein, when controlling for the number of bacteria passing through each route. Due to the compartmental nature of this model, we anticipate that this result may be paralleled in other microbes which make use of these pathways to escape the intestinal environment. Additionally, we predict thresholds for intestinal dissemination along each of these routes, which must be surpassed to induce systemic infection, and describe how these thresholds change over time. Supplementarily, logistic curves are fitted to synthetic data as a means of robustly quantifying the dose-response relationship beyond the intestinal barrier.
Collapse
Affiliation(s)
- Tristen M Jackson
- Department of Mathematics, Florida State University, Tallahassee, 32301, FL, United States of America.
| |
Collapse
|
7
|
Sear RP. Estimating the population-level effects of nonpharmaceutical interventions when transmission rates of COVID-19 vary by orders of magnitude from one contact to another. Phys Rev E 2024; 110:064302. [PMID: 39916240 DOI: 10.1103/physreve.110.064302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 05/07/2025]
Abstract
Statistical physicists have long studied systems where the variable of interest spans many orders of magnitude, the classic example is the relaxation times of glassy materials, which are often found to follow power laws. A power-law dependence has been found for the probability of transmission of COVID-19, as a function of length of time a susceptible person is in contact with an infected person. This is in data from the United Kingdom's COVID-19 app. The amount of virus in infected people spans many orders of magnitude. Inspired by this, I assume that the power-law behavior found in COVID-19 transmission is due to the effective transmission rate varying over orders of magnitude from one contact to another. I then use a model from statistical physics to estimate that if a population all wear FFP2/N95 masks, this reduces the effective reproduction number for COVID-19 transmission by a factor of approximately nine.
Collapse
Affiliation(s)
- Richard P Sear
- University of Surrey, School of Mathematics and Physics, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
8
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
9
|
Hu YN, Wan WD, Wu JT, Lai TN, Ali W, He SS, Liu S, Li X, Tang ZR, Wang CY, Yan C. Bioaerosols emission from source facilities in a wastewater treatment plant: Critical exposure time and sensitivity analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124611. [PMID: 39053806 DOI: 10.1016/j.envpol.2024.124611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Overexposure of sewage workers to bioaerosol released from wastewater treatment plants (WWTPs) can cause serious infections, but practical method for controlling their health risk is lacking. In this study, reverse quantitative microbial risk assessment was used to estimate the daily critical exposure time (CET) of sewage workers exposing to Staphylococcus aureus bioaerosol emitted by three emission sources facilities in a WWTP based on either U.S. EPA or WHO benchmark, and sensitivity analysis was conducted to analyze the influence of various parameters on the outcomes of CET. The results showed that the CET of females was always 1.12-1.29 times that of males. In addition, the CET after wearing face masks was 28.28-52.37 times as long as before. The working time can be determined based on the CET results of male workers wearing face masks exposed to the inverted-umbrella aeration tank (14.73-550.98 min for U.S. EPA benchmark and 55.07-1972.24 min for WHO benchmark). In each scenario, the variable parameter exposure concentration (ec) always showed the most influence on the CET results. After wearing the face masks, the removal fraction by employing face masks also had a significant effect on the results, only second to ec. Therefore, the wearing of face mask is the most convenient and effective measure to prolong the CET. Furthermore, practical methods to reducing bioaerosol concentration in WWTPs exposure are also necessary to extend CET and safeguard worker health. This study enriches the application range of reverse quantitative microbial risk assessment framework and provides theoretical support for stakeholders to establish reasonable working time threshold guidelines, and practical method and novel perspective to protect the on-site health risks of sewage workers exposing to various facilities.
Collapse
Affiliation(s)
- Yi-Ning Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Wei-di Wan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Jun-Ting Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan, 430010, PR China
| | - Sai Liu
- CITIC Treated Water Into River Engineering Investment Co., Ltd., Wuhan, 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang, 443002, PR China
| | - Zhe-Ren Tang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China
| | - Cheng-Yun Wang
- PowerChina Guiyang Engineering Corp. Ltd., Guizhou, 550081, PR China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
10
|
Heida A, Maal-Bared R, Veillette M, Duchaine C, Reynolds KA, Ashraf A, Ogunseye OO, Jung Y, Shulman L, Ikner L, Betancourt W, Hamilton KA, Wilson AM. Quantitative microbial risk assessment (QMRA) tool for modelling pathogen infection risk to wastewater treatment plant workers. WATER RESEARCH 2024; 260:121858. [PMID: 38936269 PMCID: PMC11657630 DOI: 10.1016/j.watres.2024.121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Wastewater treatment plants (WWTPs) provide vital services to the public by removing contaminants from wastewater prior to environmental discharge or reuse for beneficial purposes. WWTP workers occupationally exposed to wastewater can be at risk of respiratory or gastrointestinal diseases. The study objectives were to: (1) quantify pathogens and pathogen indicators in wastewater aerosols near different WWTP processes/unit operations, (2) develop a QMRA model for multi-pathogen and multi-exposure pathway risks, and (3) create a web-based application to perform and communicate risk calculations for wastewater workers. Case studies for seven different WWTP job tasks were performed investigating infection risk across nine different enteric and respiratory pathogens. It was observed that the ingestion risk among job tasks was highest for "walking the WWTP," which involved exposure from splashing, bioaerosols, and hand-to-mouth contact from touching contaminated surfaces. There was also a notable difference in exposure risk during peak (5:00am-9:00am) and non-peak hours (9:00am- 5:00am), with risks during the peak flow hours of the early morning assumed to be 5 times greater than non-peak hours. N95 respirator usage reduced median respiratory risks by 77 %. The developed tool performs multiple QMRA calculations to estimate WWTP workers' infection risks from accidental ingestion or inhalation of wastewater from multiple pathogens and exposure scenarios, which can inform risk management strategies to protect occupational health. However, more data are needed to reduce uncertainty in model estimates, including comparative data for pathogen concentrations in wastewater during peak and non-peak hours. QMRA tools will increase accessibility of risk models for utilization in decision-making.
Collapse
Affiliation(s)
- Ashley Heida
- School for Engineering of Matter, Transport and Energy, Arizona State University, 502 E Tyler Mall, Tempe, AZ 85287, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Marc Veillette
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Caroline Duchaine
- Department of biochemistry, microbiology and bioinformatics, Université Laval, Canada Research Chair on Bioaerosols, Quebec City, Canada
| | - Kelly A Reynolds
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Ahamed Ashraf
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Olusola O Ogunseye
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yoonhee Jung
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Lester Shulman
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Luisa Ikner
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Walter Betancourt
- Department of Environmental Science, College of Agricultre, Life & Environmental Sciences, University of Arizona, Tucson, AZ, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda M Wilson
- Department of Community, Environment, & Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Jang CS, Liu CC. Integrating quantitative microbiological risk assessment and disability-adjusted life years to evaluate the effects of urbanization on health risks for river recreationists. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172667. [PMID: 38677423 DOI: 10.1016/j.scitotenv.2024.172667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Urban rivers provide an excellent opportunity for water recreation. This study probabilistically assessed health risks associated with water recreation in urban rivers in the Bitan Scenic Area, Taiwan, by employing quantitative microbial risk assessment and disability-adjusted life years (DALYs). Moreover, the effects of urbanization on the health risks of river recreation induced by waterborne pathogenic Escherichia coli (E. coli) were investigated. First, data on river E. coli levels were collected in both the Bitan Scenic Area and the upstream river section, and model parameters were obtained through a questionnaire administered to river recreationists. Monte Carlo simulation was then employed to address parameter uncertainty. Finally, DALYs were calculated to quantify the cumulative effects in terms of potential life lost and years lived with disability. The results indicated that the 90 % confidence intervals for the disease burden (DB) were 0.2-74.1 × 10-6, 0.01-94.0 × 10-6, and 0.3-128.9 × 10-6 DALY per person per year (pppy) for canoeing, swimming, and fishing, respectively, in the Bitan Scenic Area. Furthermore, urbanization near the Bitan Scenic Area approximately doubled the DB risks to river recreationists in upstream rural areas. At the 95th percentile, the DB risks exceeded the tolerances recommended by the World Health Organization (1 × 10-6) or U.S. Environmental Protection Agency (1 × 10-4). The findings suggest that the simultaneous implementation of effluent sewer systems and best management practices can reduce health risks to river recreationists by at least half, reducing the DALY levels below 1 × 10-4 or even 1 × 10-5 pppy.
Collapse
Affiliation(s)
- Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Taoyuan City 338, Taiwan.
| | - Chu-Chih Liu
- Department of Leisure and Recreation Management, Kainan University, Taoyuan City 338, Taiwan
| |
Collapse
|
12
|
Jones ADG. Microbial Risk Assessment. HUMAN AND ECOLOGICAL RISK ASSESSMENT 2024:779-832. [DOI: 10.1002/9781119742975.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Liu CC, Jang CS. Seasonal assessment of risks to canoeists' health in a Taiwanese recreational river. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:774-784. [PMID: 37496459 DOI: 10.1111/risa.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Canoeing is the most favorite recreational activity in several Taiwanese rivers. However, river water frequently contains elevated levels of pathogenic Escherichia coli, which has adverse effects on human health. This study adopted a quantitative microbial risk assessment to analyze seasonal risks to canoeists' health in the Dongshan River, Taiwan. First, river E. coli concentrations were statistically analyzed to determine the seasonal distributions. The exposure duration (ED) was determined by field observations. To propagate the parametric uncertainty, Monte Carlo simulation was employed to model the probability distributions of seasonal pathogenic E. coli levels, ingestion rates, and ED for athletes. Finally, the beta-Poisson dose-response model was implemented to determine seasonal health risks for canoeists. The study results indicated that the health risks in infection probability ranged from 0.5 × 10-3 to 8.8 × 10-3 illnesses/person/day for tourists and 1.2 × 10-3 to 7.7 × 10-3 illnesses/person/day for athletes. The health risks in the Lizejian Bridge area for tourists exceeded an acceptable level suggested by the U.S. Environmental Protection Agency, 8 × 10-3 illnesses/person/day, in spring for an ED of 2 h/day, and the health risks for tourists and athletes approached this level in spring and winter for an ED exceeding or equaling 1.5 h/day. According to sensitivity analysis, the geometric standard deviation of river E. coli levels was the most sensitive parameter affecting seasonal risks to canoeists' health. To protect canoeists' health, effluent sewer systems, best management practices, and total maximum daily loads should be promptly implemented in this watershed.
Collapse
Affiliation(s)
- Chu-Chih Liu
- Department of Leisure and Recreation Management, Kainan University, Taoyuan City, Taiwan
| | - Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Taoyuan City, Taiwan
| |
Collapse
|
14
|
Kahn D, Chen W, Linden Y, Corbeil KA, Lowry S, Higham CA, Mendez KS, Burch P, DiFondi T, Verhougstraete M, De Roos AJ, Haas CN, Gerba C, Hamilton KA. A microbial risk assessor's guide to Valley Fever (Coccidioides spp.): Case study and review of risk factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170141. [PMID: 38242485 PMCID: PMC10923130 DOI: 10.1016/j.scitotenv.2024.170141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Valley Fever is a respiratory disease caused by inhalation of arthroconidia, a type of spore produced by fungi within the genus Coccidioides spp. which are found in dry, hot ecosystems of the Western Hemisphere. A quantitative microbial risk assessment (QMRA) for the disease has not yet been performed due to a lack of dose-response models and a scarcity of quantitative occurrence data from environmental samples. A literature review was performed to gather data on experimental animal dosing studies, environmental occurrence, human disease outbreaks, and meteorological associations. As a result, a risk framework is presented with information for parameterizing QMRA models for Coccidioides spp., with eight new dose-response models proposed. A probabilistic QMRA was conducted for a Southwestern US agricultural case study, evaluating eight scenarios related to farming occupational exposures. Median daily workday risks for developing severe Valley Fever ranged from 2.53 × 10-7 (planting by hand while wearing an N95 facemask) to 1.33 × 10-3 (machine harvesting while not wearing a facemask). The literature review and QMRA synthesis confirmed that exposure to aerosolized arthroconidia has the potential to result in high attack rates but highlighted that the mechanistic relationships between environmental conditions and disease remain poorly understood. Recommendations for Valley Fever risk assessment research needs in order to reduce disease risks are discussed, including interventions for farmers.
Collapse
Affiliation(s)
- David Kahn
- Department of Civil Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - William Chen
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yarrow Linden
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karalee A Corbeil
- Department of Water Management and Hydrological Science, Texas A&M University, College Station, TX 79016, USA
| | - Sarah Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ciara A Higham
- Leeds Institute for Fluid Dynamics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Karla S Mendez
- The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX 77030, USA
| | - Paige Burch
- Seaford High School, 1575 Seamans Neck Rd, Seaford, NY 11783, USA
| | - Taylor DiFondi
- Seaford High School, 1575 Seamans Neck Rd, Seaford, NY 11783, USA
| | - Marc Verhougstraete
- University of Arizona, Mel and Enid Zuckerman College of Public Health, 1295 N. Marton Ave., Tucson, AZ 85724, USA
| | - Anneclaire J De Roos
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA
| | - Charles N Haas
- Department of Civil Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Charles Gerba
- University of Arizona, Mel and Enid Zuckerman College of Public Health, 1295 N. Marton Ave., Tucson, AZ 85724, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
15
|
Yan C, Wan WD, Wang RN, Lai TN, Ali W, He SS, Liu S, Li X, Nasir ZA, Coulon F. Quantitative health risk assessment of microbial hazards from water sources for community and self-supply drinking water systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133324. [PMID: 38150760 DOI: 10.1016/j.jhazmat.2023.133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In low and medium income countries (LMIC) drinking water sources (wells and boreholes) often contain a high number of pathogenic microorganisms, that can pose significant human and environmental health risks. In this study, a quantitative microbial risk assessment approach based on existing literature was conducted to evaluate and compare the quantitative health risks associated with different age groups using various drinking water supply systems. Results showed that both community-supply and self-supply modes exhibit similar levels of risk. However, the self-supply water source consistently showed higher risks compared to the community-supply one. Borehole water was found to be a more suitable option than well water, consistently showing between 5 and 8 lower health risks for E. coli and fecal coliform levels, respectively. The sensitivity analysis further showed the importance of prioritizing the reduction of E. coli concentration in well water and fecal coliform concentration in borehole water. This study offers a fresh perception on quantifying the impact of exposure concentration and age groups, shedding light on how they affect environmental health risks. These findings provide valuable insights for stakeholders involved in the management and protection of water sources.
Collapse
Affiliation(s)
- Cheng Yan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Wei-di Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Rui-Ning Wang
- Jiangsu Yancheng Port Holding Group Co., LTD., Yancheng 320900, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, PR China
| | - Sai Liu
- CITIC Treated Water into River Engineering Investment Co., Ltd., Wuhan 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
16
|
Su Y, Gao R, Huang F, Liang B, Guo J, Fan L, Wang A, Gao SH. Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120331. [PMID: 38368808 DOI: 10.1016/j.jenvman.2024.120331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.
Collapse
Affiliation(s)
- Yiyi Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Rafiee M, Hosseini SA, Gholami-Borujeni F, Hesami Arani M, Niknejad H. Health risk assessment of swimming beaches microbial contamination: a case study - Mahmoudabad, Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:355-366. [PMID: 36446029 DOI: 10.1080/09603123.2022.2149711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Waterborne organisms in marine water generally originate from untreated wastewater discharged into the sea. The presence of numerous leisure beaches in Mahmoudabad city, Iran, annually attracts thousands of tourists from all over the country to participate in recreational swimming activities. This study probabilistically characterized the health risks associated with recreational swimming engendered by waterborne pathogens, such as intestinal enterococci and Escherichia coli (E. coli) at 15 sampling points along the beaches of the study using quantitative microbial risk assessment (QMRA). The mean annual infection risk of E. coli in children and adults was 0.424 and 0.229, respectively. The respective risk in terms of enterococci was 0.999 and 0.997, which were higher than the level recommended by the WHO and EPA. The results show that the risk of infection for children was higher than adults. Related authorities have to consider measures to improve environmental quality to protect tourists' and residents' well-being.
Collapse
Affiliation(s)
- Mohammad Rafiee
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Arman Hosseini
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fathollah Gholami-Borujeni
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Hesami Arani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Niknejad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Environmental Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Yan C, Hu YN, Gui ZC, Lai TN, Ali W, Wan NH, He SS, Liu S, Li X, Jin TX, Nasir ZA, Alcega SG, Coulon F. Quantitative SARS-CoV-2 exposure assessment for workers in wastewater treatment plants using Monte-Carlo simulation. WATER RESEARCH 2024; 248:120845. [PMID: 37976948 DOI: 10.1016/j.watres.2023.120845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Several studies on COVID-19 pandemic have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originating from human stool are detected in raw sewage for several days, leading to potential health risks for workers due to the production of bioaerosols and droplets during wastewater treatment process. In this study, data of SARS-CoV-2 concentrations in wastewater were gathered from literatures, and a quantitative microbial risk assessment with Monte Carlo simulation was used to estimate the daily probability of infection risk through exposure to viable infectious viral airborne particles of the workers during four seasons and under six environmental conditions. Inhalation of bioaerosols and direct ingestion of wastewater droplets were selected as exposure pathways. Spearman rank correlation coefficients were used for sensitivity analysis to identify the variables with the greatest influence on the infection risk probability. It was found that the daily probability of infection risk decreased with temperature (T) and relative humidity (RH) increase. The probability of direct droplet ingestion exposure pathway was higher than that of the bioaerosol inhalation pathway. The sensitivity analysis indicated that the most sensitive variable for both exposure pathways was the concentration of SARS-CoV-2 in stool. So, appropriate aeration systems, covering facilities, and effective ventilation are suggested to implement in wastewater treatment plants (WWTPs) to reduce emission concentration. Further to this, the exposure time (t) had a larger variance contribution than T and RH for the bioaerosol inhalation pathway. Implementing measures such as adding more work shifts, mandating personal protective equipment for all workers, and implementing coverage for treatment processes can significantly reduce the risk of infection among workers at WWTPs. These measures are particularly effective during environmental conditions with low temperatures and humidity levels.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| | - Yi-Ning Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zi-Cheng Gui
- CCDI (Suzhou) exploration and design consultant Co., Ltd., Suzhou 215123, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Nian-Hong Wan
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Sai Liu
- CITIC Treated Water into River Engineering Investment Co., Ltd., Wuhan 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Ting-Xu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, PR China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
19
|
Carruthers J, Finnie T. Using mixture density networks to emulate a stochastic within-host model of Francisella tularensis infection. PLoS Comput Biol 2023; 19:e1011266. [PMID: 38117811 PMCID: PMC10766174 DOI: 10.1371/journal.pcbi.1011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
For stochastic models with large numbers of states, analytical techniques are often impractical, and simulations time-consuming and computationally demanding. This limitation can hinder the practical implementation of such models. In this study, we demonstrate how neural networks can be used to develop emulators for two outputs of a stochastic within-host model of Francisella tularensis infection: the dose-dependent probability of illness and the incubation period. Once the emulators are constructed, we employ Markov Chain Monte Carlo sampling methods to parameterize the within-host model using records of human infection. This inference is only possible through the use of a mixture density network to emulate the incubation period, providing accurate approximations of the corresponding probability distribution. Notably, these estimates improve upon previous approaches that relied on bacterial counts from the lungs of macaques. Our findings reveal a 50% infectious dose of approximately 10 colony-forming units and we estimate that the incubation period can last for up to 11 days following low dose exposure.
Collapse
Affiliation(s)
- Jonathan Carruthers
- Data, Analytics and Surveillance; UK Health Security Agency, Porton Down, United Kingdom
| | - Thomas Finnie
- Data, Analytics and Surveillance; UK Health Security Agency, Porton Down, United Kingdom
| |
Collapse
|
20
|
De Bock T, Jacxsens L, Maes F, Van Meerhaeghe S, Reygaerts M, Uyttendaele M. Microbiological profiling and knowledge of food preservation technology to support guidance on a neutropenic diet for immunocompromised patients. Front Microbiol 2023; 14:1136887. [PMID: 37303781 PMCID: PMC10248020 DOI: 10.3389/fmicb.2023.1136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
The current society consists of an increasing number of people vulnerable to infections. For certain people with severe immunodeficiency, a neutropenic or low-microbial diet is being prescribed, which substitutes high-risk foods that are more likely to contain human (opportunistic) pathogens with lower-risk alternatives. These neutropenic dietary guidelines are typically set up from a clinical and nutritional perspective, rather than from a food processing and food preservation perspective. In this study, the current guidelines in use by the Ghent University Hospital were evaluated based on the current knowledge of food processing and preservation technologies and the scientific evidence on microbiological quality, safety, and hygiene of processed foods. Three criteria are identified to be important: (1) the microbial contamination level and composition; (2) the potential presence of established foodborne pathogens such as Salmonella spp. (to which a zero-tolerance policy is recommended); and (3) an increased vigilance for L. monocytogenes as an opportunistic foodborne pathogen with a high mortality rate in immunocompromised individuals (to which a zero-tolerance policy should apply). A combination of these three criteria was used as a framework for the evaluation of the suitability of foodstuffs to be included in a low-microbial diet. Differences in processing technologies, initial contamination of products, etc., however, lead to a high degree of variability in microbial contamination and make it difficult to unambiguously accept or reject a certain type of foodstuff without prior knowledge of the ingredients and the processing and preservation technologies applied during manufacturing and subsequent storage conditions. A restricted screening on a selection of (minimally processed) plant-based foodstuffs on the retail market in Flanders, Belgium supported decision-making on the inclusion of these food types in a low-microbial diet. Still, when determining the suitability of a foodstuff to be included in a low-microbial diet, not only the microbiological status but also nutritional and sensorial properties should be assessed, which requires multidisciplinary communication and collaboration.
Collapse
Affiliation(s)
- Thomas De Bock
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Liesbeth Jacxsens
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Femke Maes
- Center for Pediatric Haemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Svenya Van Meerhaeghe
- Center for Pediatric Haemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Marina Reygaerts
- Center for Thoracic Oncology, Ghent University Hospital, Ghent, Belgium
| | - Mieke Uyttendaele
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Capone D, Bivins A, Brown J. Producing ratio measures of effect with quantitative microbial risk assessment. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023. [PMID: 35689350 DOI: 10.17605/osf.io/jwzy9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Estimating the risk of infections or other outcomes incident to pathogen exposure is a primary goal of quantitative microbial risk assessment (QMRA). Such estimates are useful to predict population-level risks, to evaluate exposures based on normative or tolerable risk guidelines, and to interpret the likely public health relevance of microbial measurements in environmental media. To evaluate alternative control measures (interventions), ratio estimates of effect (e.g., odds and risk ratios) are needed that are more broadly interpretable in the health sciences and consistent with convention in epidemiology. In this paper, we propose a general method for estimating widely used ratio measures of effect derived from stochastic QMRA approaches, including the generation of appropriate confidence intervals. Such QMRA-derived ratios can be used as a basis for evaluating interventions via hypothesis testing and for inclusion in systematic reviews and meta-analyses in a form consistent with risk estimation approaches commonly used in epidemiology.
Collapse
Affiliation(s)
- Drew Capone
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Capone D, Bivins A, Brown J. Producing ratio measures of effect with quantitative microbial risk assessment. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:917-927. [PMID: 35689350 PMCID: PMC9734285 DOI: 10.1111/risa.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/06/2023]
Abstract
Estimating the risk of infections or other outcomes incident to pathogen exposure is a primary goal of quantitative microbial risk assessment (QMRA). Such estimates are useful to predict population-level risks, to evaluate exposures based on normative or tolerable risk guidelines, and to interpret the likely public health relevance of microbial measurements in environmental media. To evaluate alternative control measures (interventions), ratio estimates of effect (e.g., odds and risk ratios) are needed that are more broadly interpretable in the health sciences and consistent with convention in epidemiology. In this paper, we propose a general method for estimating widely used ratio measures of effect derived from stochastic QMRA approaches, including the generation of appropriate confidence intervals. Such QMRA-derived ratios can be used as a basis for evaluating interventions via hypothesis testing and for inclusion in systematic reviews and meta-analyses in a form consistent with risk estimation approaches commonly used in epidemiology.
Collapse
Affiliation(s)
- Drew Capone
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aaron Bivins
- Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joe Brown
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Hooshmandi M, Mazaheri Tehrani A, Habibi Mohraz M, Leili M, Assari MJ. Evaluation of Seasonal Variation on the Health Risks Using the Quantitative Microbial Risk Assessment Approach in a Wastewater Treatment Plant in Hamadan, Iran. J Res Health Sci 2023; 23:e00576. [PMID: 37571947 PMCID: PMC10422144 DOI: 10.34172/jrhs.2023.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Wastewater treatment plants (WWTPs) are a source of airborne bacterial contamination that can pose health risks to staff. The aim of this study was to evaluate seasonal variations in the health risks of exposure to Staphylococcus aureus bioaerosols using the quantitative microbial risk assessment (QMRA) approach in a WWTP in Hamadan, Iran. STUDY DESIGN This was a descriptive cross-sectional study. METHODS This study determined the emission concentrations of S. aureus bioaerosols in summer and winter. Then, the health risks of three exposure scenarios (the worker, field engineer, and laboratory technician) were evaluated using the QMRA approach. The bioaerosol samples were collected every 12 days in both summer and winter of 2021 with a nutrient agar using a single-stage cascade impactor (Quick Take 30, SKC Inc.) in both outdoor and indoor environments. RESULTS The results demonstrated that in both seasons, S. aureus bioaerosol concentrations in outdoor and indoor environments were below the standard established by the American Conference of Governmental Industrial Hygienists (500 CFU/m3 ). While in summer, the annual infection risks and the disease burden for the three exposure scenarios in both outdoor and indoor environments were higher than the United States Environmental Protection Agency (≤10-4 pppy) and the World Health Organization (WHO) (≤10-6 DALYs pppy-1) benchmarks, respectively. CONCLUSION The findings provided high health risks for staff in the three exposure scenarios of an indoor environment, which should not be ignored, as well as emphasizing the use of the QMRA approach to estimate health risks caused by occupational exposure to bioaerosols and taking executive measures to protect staff working in the WWTPs.
Collapse
Affiliation(s)
- Melika Hooshmandi
- Department of Occupational Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashraf Mazaheri Tehrani
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Habibi Mohraz
- Center of Excellence for Occupational Health Engineering, Occupational Health and Safety Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mostafa Leili
- Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad javad Assari
- Center of Excellence for Occupational Health Engineering, Occupational Health and Safety Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Steffen HC, Smith K, van Deventer C, Weiskerger C, Bosch C, Brandão J, Wolfaardt G, Botha A. Health risk posed by direct ingestion of yeasts from polluted river water. WATER RESEARCH 2023; 231:119599. [PMID: 36645944 DOI: 10.1016/j.watres.2023.119599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
River water is an essential human resource that may be contaminated with hazardous microorganisms. However, the risk of yeast infection through river water exposure is unclear because it is highly dependant on individual susceptibility and has therefore not been well-studied, to date. To evaluate this undefined risk, we analysed the fungal communities in less polluted (LP) and highly polluted (HP) river water, as determined using principal coordinate analysis of pollution indicators. We enumerated culturable yeasts using a thermally selective isolation procedure (37 °C) and thus promoted the growth of potentially opportunistic species. Yeast species identified as clinically relevant were then tested for antifungal resistance. In addition, we propose a quantitative microbial risk assessment (QMRA) framework to quantitatively assess the potential risk of yeast infection. Our results indicated that pollution levels significantly altered fungal communities (p = 0.007) and that genera representing opportunistic and pathogenic members were significantly more abundant in HP waters (p = 0.038). Additionally, the yeast species Candida glabrata and Clavispora lusitaniae positively correlated with other pollution indicators, demonstrating the species' indicator potential. Our QMRA results further indicate that higher risk of infection is associated with increased water pollution levels (considering both physicochemical and bacterial indicators). Furthermore, yeast species with higher pathogenic potential present an increased risk of infection despite lower observed concentrations in the river water. Interestingly, the bloom of Meyerozyma guilliermondii during the wet season suggests that other environmental factors, such as dissolved oxygen levels and water turbulence, might affect growth characteristics of yeasts in river water, which consequently affects the distribution of annual infection risks. The presence of antifungal resistant yeasts, observed in this study, could further contribute to variation in risk distribution. Research on the ecophysiology of yeasts in these environments is therefore necessary to ameliorate the uncertainty and sensitivity of the proposed QMRA model. In addition to the vital knowledge on opportunistic and pathogenic yeast occurrence in river water and their observed association with pollution, this study provides valuable methods and insights to initiate future QMRAs of yeast infections.
Collapse
Affiliation(s)
- Heidi Christa Steffen
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Katrin Smith
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Corné van Deventer
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Chelsea Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Caylin Bosch
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - João Brandão
- Department of Environmental Health, National Institute of Health Doctor Ricardo Jorge, Av. Padre Cruz, Lisbon 1649-016, Portugal; Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Gideon Wolfaardt
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Alfred Botha
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa.
| |
Collapse
|
25
|
Yan C, Zhao XY, Luo X, An DZ, Zhu H, Li M, Ai XJ, Ali W. Quantitative microbial risk assessment with nasal/oral breathing pattern for S. aureus bioaerosol emission from aeration tanks and residual sludge storage yard in a wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21252-21262. [PMID: 36269474 DOI: 10.1007/s11356-022-23621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
A large number of pathogenic bioaerosols are generated during the treatment process of wastewater treatment plants (WWTPs), and they can pose potential risks to human health. Therefore, this study systematically analyzed the emission characteristics of Staphylococcus aureus bioaerosols released from an inverted umbrella aeration tank, a microporous aeration tank, and a residual sludge storage yard in a WWTP, and quantitatively evaluated the health risks of four kinds of exposed populations with nasal/oral breathing patterns under optimistic and conservative estimations. The results displayed that the bioaerosol concentration in inverted umbrella aeration tank was higher than that in microporous aeration tank and residual sludge storage yard. Aerosolization ratio in residual sludge storage yard was an order of magnitude lower than that in aeration tanks. Sludge workers were at higher health risks than the other three exposed populations. The health risks of nasal breathers (infection risk: 1.62 × 10-5-2.56 × 10-3 pppy; disease burden: 4.24 × 10-8-6.72 × 10-6 DALYs pppy) were 0.61-0.63 times higher than those of oral breathers (infection risk: 9.95 × 10-6-1.59 × 10-3 pppy; disease burden: 2.61 × 10-8-4.18 × 10-6 DALYs pppy). For female field engineers using oral breathing, laboratory technicians, and researchers without personal protective equipment (PPE), infection risk and disease burden had the opposite results, which indicated that satisfying one certain benchmark did not mean absolute safety. In addition, health risks of exposed populations were reduced by an order of magnitude after wearing PPE. This study can provide a reliable theoretical basis for the risk prevention of bioaerosols and supply data support for the strategies of health risk control perspectives for local sewage utilities.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Xiao-Yan Zhao
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xi Luo
- Yangtze Ecology and Environment Co., Ltd., Wuhan, 430062, People's Republic of China
| | - Dong-Zi An
- China Construction Eco-Environmental Group Co., Ltd., Beijing, 100037, People's Republic of China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd., Wuhan, 430040, People's Republic of China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd., Wuhan, 430040, People's Republic of China
| | - Xiao-Jun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd., Wuhan, 430040, People's Republic of China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
26
|
Capone D, Adriano Z, Cumming O, Irish SR, Knee J, Nala R, Brown J. Urban Onsite Sanitation Upgrades and Synanthropic Flies in Maputo, Mozambique: Effects on Enteric Pathogen Infection Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:549-560. [PMID: 36516327 PMCID: PMC9835884 DOI: 10.1021/acs.est.2c06864] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Synanthropic filth flies transport enteric pathogens from feces to food, which upon consumption poses an infection risk. We evaluated the effect of an onsite sanitation intervention─including fly control measures─in Maputo, Mozambique, on the risk of infection from consuming fly-contaminated food. After enumerating flies at intervention and control sites, we cultured fecal indicator bacteria, quantified gene copies for 22 enteric pathogens via reverse transcription quantitative polymerase chain reaction (RT-qPCR), and developed quantitative microbial risk assessment (QMRA) models to estimate annual risks of infection attributable to fly-contaminated foods. We found that the intervention reduced fly counts at latrine entrances by 69% (aRR = 0.31, [0.13, 0.75]) but not at food preparation areas (aRR = 0.92, [0.33, 2.6]). Half of (23/46) of individual flies were positive for culturable Escherichia coli, and we detected ≥1 pathogen gene from 45% (79/176) of flies, including enteropathogenic E. coli (37/176), adenovirus (25/176), Giardia spp. (13/176), and Trichuris trichiura (12/176). We detected ≥1 pathogen gene from half the flies caught in control (54%, 30/56) and intervention compounds (50%, 17/34) at baseline, which decreased 12 months post-intervention to 43% (23/53) at control compounds and 27% (9/33) for intervention compounds. These data indicate flies as a potentially important mechanical vector for enteric pathogen transmission in this setting. The intervention may have reduced the risk of fly-mediated enteric infection for some pathogens, but infrequent detection resulted in wide confidence intervals; we observed no apparent difference in infection risk between groups in a pooled estimate of all pathogens assessed (aRR = 0.84, [0.61, 1.2]). The infection risks posed by flies suggest that the design of sanitation systems and service delivery should include fly control measures to prevent enteric pathogen transmission.
Collapse
Affiliation(s)
- Drew Capone
- Department
of Environmental and Occupational Health, School of Public Health, Indiana University, 2719 E 10th St, Bloomington, Indiana47401, United States
| | - Zaida Adriano
- WE
Consult ltd, 177 Rua
Tomas Ribeiro, Maputo1102, Mozambique
| | - Oliver Cumming
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, United
Kingdom
| | - Seth R. Irish
- Epidemiology
and Public Health Department, Swiss Tropical
and Public Health Institute, Kreuzstrasse 2, Allschwil4123, Switzerland
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, LondonWC1E 7HT, United
Kingdom
| | - Rassul Nala
- Ministério
da Saúde, Instituto Nacional de Saúde
Maputo, Maputo1102, Mozambique
| | - Joe Brown
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina27599, United States
| |
Collapse
|
27
|
Zhao XY, An DZ, Liu ML, Ma JX, Ali W, Zhu H, Li M, Ai XJ, Nasir ZA, Alcega SG, Coulon F, Yan C. Bioaerosols emission characteristics from wastewater treatment aeration tanks and associated health risk exposure assessment during autumn and winter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158106. [PMID: 35987237 DOI: 10.1016/j.scitotenv.2022.158106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Aeration tanks from activated sludge wastewater treatment plants (WWTPs) can release a large amount of bioaerosols that can pose health risks. However, risk characterization of bioaerosols emissions form wastewater treatment plants is currently not systematically carried out and still in its infancy. Therefore, this study investigated emission characteristic of two indicator model bioaerosols Staphylococcus aureus and Escherichia coli, emitted from aeration tanks of a municipal WWTP. Monte Carlo simulation was then used to quantitatively assess microbial risk posed by different aeration modes under optimistic and conservative estimates. Further to this, two different exposure scenarios were considered during 3 days sampling campaign in autumn and winter. Results showed that the bioaerosol concentration from microporous aeration tank (20-262 CFU m-3) was one order of magnitude lower than rotating disc aeration tank. Average aerosolization rate was 7.5 times higher with mechanical aeration mode. Health risks of exposed populations were 0.4 and 9.6 times higher in winter than in autumn for E. coli and S. aureus bioaerosol, respectively. Health risks of staff members were 10 times higher than academic visitors. Interesting results were observed for academic visitors without personal protective equipment (PPE) respectively exposed to S. aureus and E. coli bioaerosol in autumn and winter: while the derived infection risk met the United States Environmental Protection Agency (U.S. EPA) benchmark under optimistic estimation, the disease risk burden was over the World Health Organization (WHO) benchmark under conservative estimation. These revealed that only satisfying one of the two benchmarks didn't mean absolute acceptable health risk. This study could facilitate the development of better understanding of bioaerosol quantitative assessment of risk characterizations and corresponding appropriate risk control strategies for wastewater utilities.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China
| | - Dong-Zi An
- China Construction Eco-Environmental Group Co., Ltd., Beijing 100037, PR China
| | - Man-Li Liu
- Department of Hydraulic Engineering, Hubei Water Resources Technical College, Wuhan 430202, PR China
| | - Jia-Xin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Xiao-Jun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
28
|
Ma J, An D, Cui B, Liu M, Zhu H, Li M, Ai X, Ali W, Yan C. What are the disease burden and its sensitivity analysis of workers exposing to Staphylococcus aureus bioaerosol during warm and cold periods in a wastewater treatment plant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82938-82947. [PMID: 35754082 PMCID: PMC9243853 DOI: 10.1007/s11356-022-21447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Biological treatment in wastewater treatment plants releases high amounts of pathogenic bioaerosols. Quantitative microbial risk assessment is a framework commonly used for quantitative risk estimation for occupational exposure scenarios. However, the quantitative contributions of health-risk-estimate inputted parameters remain ambiguous. Therefore, this research aimed to study the disease burden of workers exposed to Staphylococcus aureus bioaerosol during warm and cold periods and strictly quantify the contributions of the inputted parameters by sensitivity analysis on the basis of Monte Carlo simulation. Results showed that the disease health risk burden of workers in the warm period was 1.15-6.11 times higher than that of workers in the cold period. The disease health risk burden of workers without personal protective equipment was 23.83-36.55 times higher than that of workers with personal protective equipment. Sensitivity analysis showed that exposure concentration and aerosol ingestion rate were the first and second predominant factors, respectively; the sensitivity partitioning coefficient of the former was 1.17-1.35 times the value of the latter. In addition, no remarkable differences were revealed in the sensitivity percentage ratio between warm and cold periods. The findings could contribute to the mitigation measures for the management of public health risks.
Collapse
Affiliation(s)
- Jiaxin Ma
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Dongzi An
- China Construction Eco-Environmental Group Co., Ltd, Beijing, 100037, People's Republic of China
| | - Beibei Cui
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Manli Liu
- Department of Hydraulic Engineering, HuBei Water Resources Technical College, Wuhan, 430202, People's Republic of China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan, 430040, People's Republic of China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan, 430040, People's Republic of China
| | - Xiaojun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan, 430040, People's Republic of China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
29
|
Pasalari H, Akbari H, Ataei-Pirkooh A, Adibzadeh A, Akbari H. Assessment of rotavirus and norovirus emitted from water spray park: QMRA, diseases burden and sensitivity analysis. Heliyon 2022; 8:e10957. [PMID: 36254289 PMCID: PMC9568861 DOI: 10.1016/j.heliyon.2022.e10957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A quantitative model on exposure to pathogenic viruses in air of recreational area and their corresponding health effects is necessary to provide mitigation actions in content of emergency response plans (ERP). Here, the health risk associated with exposure to two pathogenic viruses of concern: Rotavirus (RoV) and Norovirus (NoV) in air of water spray park were estimated using a quantitative microbial risk assessment (QMRA) model. To this end, real-time Reverse Transcriptase polymerase chain reaction (real-time RT-PCR) was employed to measure the concentration levels of RoV and NoV over a twelve-month period. The probability of infection, illness and diseases burden of gastrointestinal illness (GI) caused by RoV and NoV for both workers and visitors were estimated using QMRA and Monto-Carlo simulation technique. The annual mean concentration for RoV and NoV in sampling air of water spray park were 20and 1754, respectively. The %95 confidence interval (CI) calculated annual DALY indicator for RoV (Workers: 2.62 × 10-4-2.62 × 10-1, Visitors: 1.50 × 10-5-2.42 × 10-1) and NoV (Workers: 5.54 × 10-3-2.53 × 10-1; Visitors: 5.18 × 10-4-2.54 × 10-1) were significantly higher the recommended values by WHO and US EPA (10-6-10-4 DALY pppy). According to sensitivity analysis, exposure dose and disease burden per case (DBPC) were found as the most influencing factors on disease burden as a consequences of exposure to RoV and NoV, respectively. The comprehensive information on DALY and QMRA can aid authorities involved in risk assessment and recreational actions to adopt proper approach and mitigation actions to minimize the health risk.
Collapse
Affiliation(s)
- Hasan Pasalari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Jang CS. Aquifer vulnerability assessment for fecal coliform bacteria using multi-threshold logistic regression. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:800. [PMID: 36115886 DOI: 10.1007/s10661-022-10481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Assessing aquifer vulnerability is crucial for preventing groundwater pollution. In this study, aquifer vulnerability to fecal coliform (FC) pollution was assessed using auxiliary environmental data in the Pingtung Plain, Taiwan. Moreover, key environmental factors inducing different fecal pollution levels were determined. First, 23 explanatory variables on land uses, population density, livestock and poultry densities, sanitary condition, antecedent precipitation, groundwater quality, aquifer characteristics, and subsurface hydrology were obtained using geographic information systems in 2014. As dependent variables, groundwater FCs were also simultaneously obtained. Then, multi-threshold logistic regression (LR) was adopted to model aquifer vulnerability assessment after cross validation. The thresholds of aquifer vulnerability causing risks of incidental ingestion were analyzed by risk assessment. Risks to human health were acceptable for a low-level threshold and exceeded the acceptable level for medium- and high-level thresholds when residents incidentally ingested FC-polluted groundwater. Finally, key environmental factors inducing low, medium, and high levels of groundwater FC pollution were characterized. The key environmental factors for the LR with low- and medium-level thresholds were sand and gravel soil textures of unsaturated aquifers and antecedent 3-day cumulative precipitation, and those for the LR with high-level thresholds were chicken farming, urban land use, and ratio of tap water use. Thus, the multi-threshold LR indicated that environmental factors must be ranked for assessing aquifer vulnerability.
Collapse
Affiliation(s)
- Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Taoyuan City, 338, Taiwan.
| |
Collapse
|
31
|
Gui ZC, Li X, Liu ML, Peng ZD, Yan C, Nasir ZA, Alcega SG, Coulon F. Seasonal variation of quantitative microbial risk assessment for three airborne enteric bacteria from wastewater treatment plant emissions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113689. [PMID: 35636240 DOI: 10.1016/j.ecoenv.2022.113689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Airborne E. coli, fecal coliform, and Enterococcus are all related to sewage worker's syndrome and therefore used as target enteric bioaerosols about researches in wastewater treatment plants (WWTPs). However, most of the studies are often inadequately carried out because they lack systematic studies reports bioaerosols emission characteristics and health risk assessments for these three enteric bacteria during seasonal variation. Therefore, quantitative microbial risk assessment based on Monte Carlo simulation was utilized in this research to assess the seasonal variations of health risks of the three enteric bioaerosols among exposure populations (academic visitors, field engineers, and office staffs) in a WWTP equipped with rotating-disc and microporous aeration modes. The results show that the concentrations of the three airborne bacteria from the rotating-disc aeration mode were 2-7 times higher than the microporous aeration mode. Field engineers had health risks 1.5 times higher than academic visitors due to higher exposure frequency. Health risks of airborne Enterococcus in summer were up to 3 times higher than those in spring and winter. Similarly, health risks associated to E. coli aerosol exposure were 0.3 times higher in summer compared to spring. In contrast, health risks associated with fecal coliform aerosol were between 2 and 19 times lower in summer compared to spring and winter seasons. Data further suggest that wearing of N95 mask could minimize health risks by 1-2 orders of magnitude. This research shed light on seasonal variation of health risks associated with bioaerosol emission from wastewater utilities.
Collapse
Affiliation(s)
- Zi-Cheng Gui
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, People's Republic of China
| | - Man-Li Liu
- Department of Hydraulic Engineering, Hubei Water Resource Technical College, Wuhan 430202, People's Republic of China
| | - Zhang-di Peng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
32
|
Gulumbe BH, Bazata AY, Bagwai MA. Campylobacter Species, Microbiological Source Tracking and Risk Assessment of Bacterial pathogens. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i2.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Campylobacter species continue to remain critical pathogens of public health interest. They are responsible for approximately 500 million cases of gastroenteritis per year worldwide. Infection occurs through the consumption of contaminated food and water. Microbial risk assessment and source tracking are crucial epidemiological strategies to monitor the outbreak of campylobacteriosis effectively. Various methods have been proposed for microbial source tracking and risk assessment, most of which rely on conventional microbiological techniques such as detecting fecal indicator organisms and other novel microbial source tracking methods, including library-dependent microbial source tracking and library-independent source tracking approaches. However, both the traditional and novel methods have their setbacks. For example, while the conventional techniques are associated with a poor correlation between indicator organism and pathogen presence, on the other hand, it is impractical to interpret qPCR-generated markers to establish the exact human health risks even though it can give information regarding the potential source and relative human risk. Therefore, this article provides up-to-date information on campylobacteriosis, various approaches for source attribution, and risk assessment of bacterial pathogens, including next-generation sequencing approaches such as shotgun metagenomics, which effectively answer the questions of potential pathogens are there and in what quantities.
Collapse
|
33
|
Miller D, King M, Nally J, Drodge JR, Reeves GI, Bate AM, Cooper H, Dalrymple U, Hall I, López‐García M, Parker ST, Noakes CJ. Modeling the factors that influence exposure to SARS-CoV-2 on a subway train carriage. INDOOR AIR 2022; 32:e12976. [PMID: 35133673 PMCID: PMC9111599 DOI: 10.1111/ina.12976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 05/25/2023]
Abstract
We propose the Transmission of Virus in Carriages (TVC) model, a computational model which simulates the potential exposure to SARS-CoV-2 for passengers traveling in a subway rail system train. This model considers exposure through three different routes: fomites via contact with contaminated surfaces; close-range exposure, which accounts for aerosol and droplet transmission within 2 m of the infectious source; and airborne exposure via small aerosols which does not rely on being within 2 m distance from the infectious source. Simulations are based on typical subway parameters and the aim of the study is to consider the relative effect of environmental and behavioral factors including prevalence of the virus in the population, number of people traveling, ventilation rate, and mask wearing as well as the effect of model assumptions such as emission rates. Results simulate generally low exposures in most of the scenarios considered, especially under low virus prevalence. Social distancing through reduced loading and high mask-wearing adherence is predicted to have a noticeable effect on reducing exposure through all routes. The highest predicted doses happen through close-range exposure, while the fomite route cannot be neglected; exposure through both routes relies on infrequent events involving relatively few individuals. Simulated exposure through the airborne route is more homogeneous across passengers, but is generally lower due to the typically short duration of the trips, mask wearing, and the high ventilation rate within the carriage. The infection risk resulting from exposure is challenging to estimate as it will be influenced by factors such as virus variant and vaccination rates.
Collapse
Affiliation(s)
- Daniel Miller
- Defence Science and Technology LaboratorySalisburyUK
| | | | - James Nally
- Defence Science and Technology LaboratorySalisburyUK
| | | | | | | | - Henry Cooper
- Defence Science and Technology LaboratorySalisburyUK
| | | | - Ian Hall
- Department of MathematicsUniversity of ManchesterManchesterUK
| | | | | | | |
Collapse
|
34
|
Wang RN, Li X, Yan C. Seasonal fluctuation of aerosolization ratio of bioaerosols and quantitative microbial risk assessment in a wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68615-68632. [PMID: 34273075 DOI: 10.1007/s11356-021-15462-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) play a vital role in public health because it can emit a large quantity of bioaerosols. Exposure to bioaerosols from WWTPs is a potential health risk to WWTP workers and surrounding residents. In this study, the seasonal fluctuation of aerosolization ratios of several bioaerosols and quantitative health risks of the WWTP workers and the surrounding residents exposed to total coliform, fecal coliform, and enterococcal bioaerosols were analyzed. Results showed that the aerosolization ratio of airborne bacteria was higher in the cold seasons and lower in the warm seasons, whereas the aerosolization ratio of airborne fungi was the highest in summer. The aerosolization ratio of airborne fungi was evidently higher than that of other bioaerosols. Moreover, the aerosolization ratio under the inverted umbrella aerator mode was generally higher than that under the microporous aerator mode. For each exposure scenario, the health risks of males were generally 7.2-26.7% higher than those of females. The health risks of the exposure population exposed to total coliform and enterococcal bioaerosols were generally higher in warm seasons, whereas those of the population exposed to fecal coliform bioaerosol were the highest in winter. Additionally, the health risks of exposure population without masks under the imprudent/conservative estimate all exceeded the benchmarks. However, when equipped with masks, all the exposure populations' health risks decreased 1-2 orders of magnitude and approached acceptable levels. This research methodically provides new scientific data on the aerosolization ratio of microorganism bioaerosols in a WWTP and promotes the comprehension of their quantitative health risks under imprudent/conservative estimates.
Collapse
Affiliation(s)
- Rui-Ning Wang
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang, 443002, People's Republic of China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
35
|
Stadnytskyi V, Anfinrud P, Bax A. Breathing, speaking, coughing or sneezing: What drives transmission of SARS-CoV-2? J Intern Med 2021; 290:1010-1027. [PMID: 34105202 PMCID: PMC8242678 DOI: 10.1111/joim.13326] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The SARS-CoV-2 virus is highly contagious, as demonstrated by numerous well-documented superspreading events. The infection commonly starts in the upper respiratory tract (URT) but can migrate to the lower respiratory tract (LRT) and other organs, often with severe consequences. Whereas LRT infection can lead to shedding of virus via breath and cough droplets, URT infection enables shedding via abundant speech droplets. Their viral load can be high in carriers with mild or no symptoms, an observation linked to the abundance of SARS-CoV-2-susceptible cells in the oral cavity epithelium. Expelled droplets rapidly lose water through evaporation, with the smaller ones transforming into long-lived aerosol. Although the largest speech droplets can carry more virions, they are few in number, fall to the ground rapidly and therefore play a relatively minor role in transmission. Of more concern is small speech aerosol, which can descend deep into the LRT and cause severe disease. However, since their total volume is small, the amount of virus they carry is low. Nevertheless, in closed environments with inadequate ventilation, they can accumulate, which elevates the risk of direct LRT infection. Of most concern is the large fraction of speech aerosol that is intermediate-sized because it remains suspended in air for minutes and can be transported over considerable distances by convective air currents. The abundance of this speech-generated aerosol, combined with its high viral load in pre- and asymptomatic individuals, strongly implicates airborne transmission of SARS-CoV-2 through speech as the primary contributor to its rapid spread.
Collapse
Affiliation(s)
- V Stadnytskyi
- From the, Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - P Anfinrud
- From the, Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - A Bax
- From the, Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Ranjbaran M, Carciofi BAM, Datta AK. Engineering modeling frameworks for microbial food safety at various scales. Compr Rev Food Sci Food Saf 2021; 20:4213-4249. [PMID: 34486219 DOI: 10.1111/1541-4337.12818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/25/2021] [Indexed: 11/27/2022]
Abstract
The landscape of mathematical model-based understanding of microbial food safety is wide and deep, covering interdisciplinary fields of food science, microbiology, physics, and engineering. With rapidly growing interest in such model-based approaches that increasingly include more fundamental mechanisms of microbial processes, there is a need to build a general framework that steers this evolutionary process by synthesizing literature spread over many disciplines. The framework proposed here shows four interconnected, complementary levels of microbial food processes covering sub-cellular scale, microbial population scale, food scale, and human population scale (risk). A continuum of completely mechanistic to completely empirical models, widely-used and emerging, are integrated into the framework; well-known predictive microbiology modeling being a part of this spectrum. The framework emphasizes fundamentals-based approaches that should get enriched over time, such as the basic building blocks of microbial population scale processes (attachment, migration, growth, death/inactivation and communication) and of food processes (e.g., heat and moisture transfer). A spectrum of models are included, for example, microbial population modeling covers traditional predictive microbiology models to individual-based models and cellular automata. The models are shown in sufficient quantitative detail to make obvious their coupling, or their integration over various levels. Guidelines to combine sub-processes over various spatial and time scales into a complete interdisciplinary and multiphysics model (i.e., a system) are provided, covering microbial growth/inactivation/transport and physical processes such as fluid flow and heat transfer. As food safety becomes increasingly predictive at various scales, this synthesis should provide its roadmap. This big picture and framework should be futuristic in driving novel research and educational approaches.
Collapse
Affiliation(s)
- Mohsen Ranjbaran
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Bruno A M Carciofi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ashim K Datta
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
37
|
Spinelli MA, Glidden DV, Gennatas ED, Bielecki M, Beyrer C, Rutherford G, Chambers H, Goosby E, Gandhi M. Importance of non-pharmaceutical interventions in lowering the viral inoculum to reduce susceptibility to infection by SARS-CoV-2 and potentially disease severity. THE LANCET. INFECTIOUS DISEASES 2021; 21:e296-e301. [PMID: 33631099 PMCID: PMC7906703 DOI: 10.1016/s1473-3099(20)30982-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Adherence to non-pharmaceutical interventions to prevent the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been highly variable across settings, particularly in the USA. In this Personal View, we review data supporting the importance of the viral inoculum (the dose of viral particles from an infected source over time) in increasing the probability of infection in respiratory, gastrointestinal, and sexually transmitted viral infections in humans. We also review the available evidence linking the relationship of the viral inoculum to disease severity. Non-pharmaceutical interventions might reduce the susceptibility to SARS-CoV-2 infection by reducing the viral inoculum when there is exposure to an infectious source. Data from physical sciences research suggest that masks protect the wearer by filtering virus from external sources, and others by reducing expulsion of virus by the wearer. Social distancing, handwashing, and improved ventilation also reduce the exposure amount of viral particles from an infectious source. Maintaining and increasing non-pharmaceutical interventions can help to quell SARS-CoV-2 as we enter the second year of the pandemic. Finally, we argue that even as safe and effective vaccines are being rolled out, non-pharmaceutical interventions will continue to play an essential role in suppressing SARS-CoV-2 transmission until equitable and widespread vaccine administration has been completed.
Collapse
Affiliation(s)
- Matthew A Spinelli
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Efstathios D Gennatas
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Michel Bielecki
- Swiss Armed Forces, Medical Services, Ittigen, Switzerland; Travel Clinic, Institute for Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Chris Beyrer
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - George Rutherford
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Henry Chambers
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Eric Goosby
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Yan C, Leng YL, Wu JT. Quantitative microbial risk assessment for occupational health of temporary entrants and staffs equipped with various grade PPE and exposed to microbial bioaerosols in two WWTPs. Int Arch Occup Environ Health 2021; 94:1327-1343. [PMID: 33721095 PMCID: PMC7957280 DOI: 10.1007/s00420-021-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 12/07/2022]
Abstract
PURPOSE This study was to evaluate the occupational health risks of infection from Gram-negative bacteria and Staphylococcus aureus bioaerosols to temporary entrants and staffs equipped with various grade personal protection equipment (PPE) related to wastewater treatment plants (WWTPs). METHODS This study determined the emission concentrations of Gram-negative bacteria and Staphylococcus aureus bioaerosols from two WWTPs under various aeration modes. Then, a strict quantitative microbial risk assessment (QMRA) was performed on several exposure scenarios associated with occupational health risks of temporary entrants (researchers, visitors, and inspectors) and staffs (field engineer and laboratory technician). RESULTS Although the bioaerosol concentrations were generally regarded as safe according to existing standards, these bioaerosols' health risks were still unacceptable. The microbial bioaerosols posed considerable infection health risks in WWTPs. These risks were generally above the WHO and US EPA benchmarks. The health risks of females were always smaller than those of male of grown-up age group. Staffs that had been exposed to bioaerosols for a long time were found to have higher health risks compared with temporary entrants. In addition, field engineers equipped with PPE rendered low health risks, thus revealing that wearing PPE could effectively reduce the occupational health risks. CONCLUSION This study provided novel data and enriched the knowledge of microbial bioaerosol emission's health risks from various aeration modes in WWTPs. Management decisions could be executed by authorities on the basis of the results of QMRA for field engineers equipped with PPE to reduce the related occupational health risks.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Ya-Li Leng
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Jun-Ting Wu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
39
|
Snedden CE, Makanani SK, Schwartz ST, Gamble A, Blakey RV, Borremans B, Helman SK, Espericueta L, Valencia A, Endo A, Alfaro ME, Lloyd-Smith JO. SARS-CoV-2: Cross-scale Insights from Ecology and Evolution. Trends Microbiol 2021; 29:593-605. [PMID: 33893024 PMCID: PMC7997387 DOI: 10.1016/j.tim.2021.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.
Collapse
Affiliation(s)
- Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Sara K Makanani
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Shawn T Schwartz
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Rachel V Blakey
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA; La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, La Kretz Hall, Los Angeles, CA, USA
| | - Benny Borremans
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA; I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium; Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Sarah K Helman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Luisa Espericueta
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Alondra Valencia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Andrew Endo
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Chen YH, Yan C, Yang YF, Ma JX. Quantitative microbial risk assessment and sensitivity analysis for workers exposed to pathogenic bacterial bioaerosols under various aeration modes in two wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142615. [PMID: 33038813 PMCID: PMC7527313 DOI: 10.1016/j.scitotenv.2020.142615] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 04/14/2023]
Abstract
Wastewater treatment plants (WWTPs) could emit a large amount of bioaerosols containing pathogenic bacteria. Assessing the health risks of exposure to these bioaerosols by using quantitative microbial risk assessment (QMRA) is important to protect workers in WWTPs. However, the relative impacts of the stochastic input variables on the health risks determined in QMRA remain vague. Hence, this study performed a Monte Carlo simulation-based QMRA case study for workers exposing to S. aureus or E. coli bioaerosols and a sensitivity analysis in two WWTPs with various aeration modes. Results showed that when workers equipped without personal protective equipment (PPE) were exposed to S. aureus or E. coli bioaerosol in the two WWTPs, the annual probability of infection considerably exceeded the U.S. EPA benchmark (≤10E-4 pppy), and the disease burden did not satisfy the WHO benchmark (≤10E-6 DALYs pppy) (except exposure to E. coli bioaerosol for disease health risk burden). Nevertheless, the use of PPE effectively reduced the annual infection health risk to an acceptable level and converted the disease health risk burden to a highly acceptable level. Referring to the sensitivity analysis, the contribution of mechanical aeration modes to the variability of the health risks was absolutely dominated in the WWTPs. On the aeration mode that showed high exposure concentration, the three input exposure parameters (exposure time, aerosol ingestion rate, and breathing rate) had a great impact on health risks. The health risks were also prone to being highly influenced by the various choices of the dose-response model and related parameters. Current research systematically delivered new data and a novel perspective on the sensitivity analysis of QMRA. Then, management decisions could be executed by authorities on the basis of the results of this sensitivity analysis to reduce related occupational health risks of workers in WWTPs.
Collapse
Affiliation(s)
- Yan-Huan Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Ya-Fei Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jia-Xin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
41
|
Capone D, Bivins A, Knee J, Cumming O, Nalá R, Brown J. Quantitative Microbial Risk Assessment of Pediatric Infections Attributable to Ingestion of Fecally Contaminated Domestic Soils in Low-Income Urban Maputo, Mozambique. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1941-1952. [PMID: 33472364 PMCID: PMC7860170 DOI: 10.1021/acs.est.0c06972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
Rigorous studies of water, sanitation, and hygiene interventions in low- and middle-income countries (LMICs) suggest that children are exposed to enteric pathogens via multiple interacting pathways, including soil ingestion. In 30 compounds (household clusters) in low-income urban Maputo, Mozambique, we cultured Escherichia coli and quantified gene targets from soils (E. coli: ybbW, Shigella/enteroinvasive E. coli (EIEC): ipaH, Giardia duodenalis: β-giardin) using droplet digital PCR at three compound locations (latrine entrance, solid waste area, dishwashing area). We found that 88% of samples were positive for culturable E. coli (mean = 3.2 log10 CFUs per gram of dry soil), 100% for molecular E. coli (mean = 5.9 log10 gene copies per gram of dry soil), 44% for ipaH (mean = 2.5 log10), and 41% for β-giardin (mean = 2.1 log10). Performing stochastic quantitative microbial risk assessment using soil ingestion parameters from an LMIC setting for children 12-23 months old, we estimated that the median annual infection risk by G. duodenalis was 7100-fold (71% annual infection risk) and by Shigella/EIEC was 4000-fold (40% annual infection risk) greater than the EPA's standard for drinking water. Compounds in Maputo, and similar settings, require contact and source control strategies to reduce the ingestion of contaminated soil and achieve acceptable levels of risk.
Collapse
Affiliation(s)
- Drew Capone
- Civil
and Environmental Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron Bivins
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Oliver Cumming
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Rassul Nalá
- Ministério
da Saúde, Instituto Nacional de Saúde Maputo, Maputo 1100, Mozambique
| | - Joe Brown
- Civil
and Environmental Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
42
|
Yan C, Wang RN, Zhao XY. Emission characteristics of bioaerosol and quantitative microbiological risk assessment for equipping individuals with various personal protective equipment in a WWTP. CHEMOSPHERE 2021; 265:129117. [PMID: 33272663 DOI: 10.1016/j.chemosphere.2020.129117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are a nonnegligible source of bioaerosols that can pose health risks to workers and nearby residents. Thus, this study systematically investigated the emission characteristics of the size distribution and concentration of Staphylococcus aureus bioaerosol in a WWTP. Then, the research focused on the quantitative microbiological risk assessment (QMRA) of workers and nearby residents for equipping them with various grades personal protective equipment (PPE). Results showed that the peak proportion of the size distributions of bioaerosol particles in the three sources all obtained a size range between 3.3 and 4.7 μm. In the residential building, the peak proportion was larger (>7.0 μm). Referring to the three sources, the average bioaerosol concentrations were in the following sequence: inverted umbrella aerator tank > residual sludge storage yard > microporous aerator tank. The health risks of residents were generally 1-2 orders of magnitude higher than the other two exposure scenarios and were clearly beyond the benchmarks. Meanwhile, the health risks of the field engineer were usually lower than those of the staff at the residual sludge storage yard. In general, equipping workers and residents with PPE could at least decrease the health risks by one order of magnitude, and higher-grade PPE could appropriately promote the reduction of health risks. This research systematically delivered a series of novel data about the emission characteristics of Staphylococcus aureus bioaerosol in a WWTP. It advanced the understanding of the quantitative health risks of equipping individuals with various PPE.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Rui-Ning Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiao-Yan Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
43
|
Yan C, Gui ZC, Wu JT. Quantitative microbial risk assessment of bioaerosols in a wastewater treatment plant by using two aeration modes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8140-8150. [PMID: 33051848 DOI: 10.1007/s11356-020-11180-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nonnegligible emission of bioaerosols usually occurs during aeration of wastewater in aerator tanks in wastewater treatment plants (WWTPs). Literature had shown that the respiratory and intestinal diseases of workers at WWTPs are related to bioaerosols. Thus, quantitative microbial risk assessment (QMRA) based on Monte Carlo simulation was utilized in this research to assess the health risks of Gram-negative bacteria bioaerosol (GNBB) and Staphylococcus aureus bioaerosol (SAB) among academic visitors and staffs. Results showed that the concentrations of GNBB and SAB in the inverted umbrella aeration mode were consistently higher than those in the microporous aeration mode under all six size distribution ranges of the Anderson six-stage impactor. Thus, GNBB and SAB can be highly threatening to the weasand and first bronchus (or alveoli and third bronchus) for the exposure populations. The health risks (annual probability of infection (Py) and disease burden (DB)) of males were constantly higher than those of females for each certain exposure scenario. The health risks of staffs were higher than those of academic visitors when assessed by Monte Carlo simulation. The wearing of mask is an effective measure to minimize health risks through reducing the bioaerosol concentration intake. Especially, for the academic visitors and staffs exposed to GNBB, all their DB failed to meet the World Health Organization DB benchmark under various credible intervals when they were without a mask on. In a word, the results of health risk assessment in this research can be utilized as an educational tool and policy basis to facilitate the implementation of efficacious prevention measures to protect the public health from bioaerosol health threats in WWTPs.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Zi-Cheng Gui
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Jun-Ting Wu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
44
|
Tyagi N, Kumar A. Evaluation of recreational risks due to exposure of antibiotic-resistance bacteria from environmental water: A proposed framework. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111626. [PMID: 33243622 DOI: 10.1016/j.jenvman.2020.111626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
This research provides a framework for the human health risk assessment due to exposure of AR (antibiotic resistance) E. coli from recreational water (swimming activity). Literature-based epidemiological studies were used for f-value formulation (i.e., AR E. coli/total number of E. coli isolates) and the theoretical calculation of AR and non-AR E. coli concentrations. Risk was estimated using calculated values by considering four different dose-response (D-R) scenarios with known characteristics due to current lack of availability of D-R for AR bacteria. f-values ranged between 0.14 and 0.59 and the order of calculated theoretical values of maximum AR E. coli are as follows: ampicillin or amoxicillin (38 CFU/dip) > co-trimoxazole (19 CFU/dip) ~ tetracycline (18 CFU/dip) > ceftriaxone or cefotaxime or ceftazidime (10 CFU/dip) ~ ciprofloxacin or ofloxacin (9 CFU/dip). The risk of infection was considerably high for theoretical calculated concentration values regardless of the chosen D-R model (annual risk of infection (95th percentile) = 1, Spearman's rank correlation coefficient = -0.06 to 0.94), under the conditions studied. Further, AR levels of human gastrointestinal-tract were determined using literature-reported data in stool samples and indicated that the resistance level was very high in healthy human (range: 3.7 × 107-8.4 × 107 CFU/g of wet lumen content). The maximum allowable concentration values for AR E. coli and non-ARB (0.0075 CFU/dip and 2.56 CFU/dip) were found to be smaller than the USEPA recreational water quality guidelines (≤126 CFU/100 mL), which can help the USEPA and other regulatory bodies in revisiting the current guidelines. So based on the noted results, we can conclude that the maintenance of inventory of actual measured concentration of ARB in the recreational water sites is needed to prevent unwanted complication related to the treatment of infectious sustained by resistant microbes.
Collapse
Affiliation(s)
- Neha Tyagi
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
45
|
Sorinolu AJ, Tyagi N, Kumar A, Munir M. Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. CHEMOSPHERE 2021; 265:129032. [PMID: 33293048 DOI: 10.1016/j.chemosphere.2020.129032] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The reuse of treated wastewater (TWW) and sewage sludge are considered as solutions to the limited water resource and sludge disposal issues, respectively. The associated environmental and human health risks need to be analyzed to assess whether they are safe solutions or not. This paper discusses issues that relate to the accumulation of antibiotics and antibiotic resistance (AR) determinants in agricultural lands and crops, following TWW irrigation and biosolid amendment. Exposure assessment and dose-response assessment are the two important aspects of risk assessment discussed in this paper. Finally, research gaps in current knowledge that are relevant to a comprehensive and quantitative AR risk assessment were identified which includes: 1.) Studies on soil conditions that increase the frequency of horizontal gene transfer (HGT) between native soil resistome and pathogenic microbes in biosolids and TWW 2.) Holistic studies that examine the accumulation or dissipation of antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from the irrigation/biosolids application stage to crop consumption stage 3.) The influences of soil environmental conditions (e.g. salinity, nutrients) on the fate of ARB and ARGs in soil and translocation in edible plants 4.) The development of dose-response models that explicitly incorporate the potential for ARGs transfer between microbes when quantifying the risks of infection due to ARB.
Collapse
Affiliation(s)
- Adeola Julian Sorinolu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, United States
| | - Neha Tyagi
- Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Mariya Munir
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, United States.
| |
Collapse
|
46
|
Hurd T. COVID-19: Analytics of contagion on inhomogeneous random social networks. Infect Dis Model 2020; 6:75-90. [PMID: 33313455 PMCID: PMC7711301 DOI: 10.1016/j.idm.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/08/2022] Open
Abstract
Motivated by the need for robust models of the Covid-19 epidemic that adequately reflect the extreme heterogeneity of humans and society, this paper presents a novel framework that treats a population of N individuals as an inhomogeneous random social network (IRSN). The nodes of the network represent individuals of different types and the edges represent significant social relationships. An epidemic is pictured as a contagion process that develops day by day, triggered by a seed infection introduced into the population on day 0. Individuals' social behaviour and health status are assumed to vary randomly within each type, with probability distributions that vary with their type. A formulation and analysis is given for a SEIR (susceptible-exposed-infective-removed) network contagion model, considered as an agent based model, which focusses on the number of people of each type in each compartment each day. The main result is an analytical formula valid in the large N limit for the stochastic state of the system on day t in terms of the initial conditions. The formula involves only one-dimensional integration. The model can be implemented numerically for any number of types by a deterministic algorithm that efficiently incorporates the discrete Fourier transform. While the paper focusses on fundamental properties rather than far ranging applications, a concluding discussion addresses a number of domains, notably public awareness, infectious disease research and public health policy, where the IRSN framework may provide unique insights.
Collapse
Affiliation(s)
- T.R. Hurd
- Mathematics & Statistics, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
47
|
Wu F, Rodricks JV. Forty Years of Food Safety Risk Assessment: A History and Analysis. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:2218-2230. [PMID: 33135225 DOI: 10.1111/risa.13624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Before the founding of the Society for Risk Analysis (SRA) in 1980, food safety in the United States had long been a concern, but there was a lack of systematic methods to assess food-related risks. In 1906, the U.S. Congress passed, and President Roosevelt signed, the Pure Food and Drug Act and the Meat Inspection Act to regulate food safety at the federal level. This Act followed the publication of multiple reports of food contamination, culminating in Upton Sinclair's novel The Jungle, which highlighted food and worker abuses in the meatpacking industry. Later in the 20th century, important developments in agricultural and food technology greatly increased food production. But chemical exposures from agricultural and other practices resulted in major amendments to federal food laws, including the Delaney Clause, aimed specifically at cancer-causing chemicals. Later in the 20th century, when quantitative risk assessment methods were given greater scientific status in a seminal National Research Council report, food safety risk assessment became more systematized. Additionally, in these last 40 years, food safety research has resulted in increased understanding of a range of health effects from foodborne chemicals, and technological developments have improved U.S. food safety from farm to fork by offering new ways to manage risks. We discuss the history of food safety and the role risk analysis has played in its evolution, starting from over a century ago, but focusing on the last 40 years. While we focus on chemical risk assessment in the U.S., we also discuss microbial risk assessment and international food safety.
Collapse
Affiliation(s)
- Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
48
|
Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, Haramoto E, Rose JB. SARS-CoV-2 in wastewater: State of the knowledge and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139076. [PMID: 32758929 PMCID: PMC7191289 DOI: 10.1016/j.scitotenv.2020.139076] [Citation(s) in RCA: 520] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 04/13/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a Public Health Emergency of International Concern, which was officially declared by the World Health Organization. SARS-CoV-2 is a member of the family Coronaviridae that consists of a group of enveloped viruses with single-stranded RNA genome, which cause diseases ranging from common colds to acute respiratory distress syndrome. Although the major transmission routes of SARS-CoV-2 are inhalation of aerosol/droplet and person-to-person contact, currently available evidence indicates that the viral RNA is present in wastewater, suggesting the need to better understand wastewater as potential sources of epidemiological data and human health risks. Here, we review the current knowledge related to the potential of wastewater surveillance to understand the epidemiology of COVID-19, methodologies for the detection and quantification of SARS-CoV-2 in wastewater, and information relevant for human health risk assessment of SARS-CoV-2. There has been growing evidence of gastrointestinal symptoms caused by SARS-CoV-2 infections and the presence of viral RNA not only in feces of infected individuals but also in wastewater. One of the major challenges in SARS-CoV-2 detection/quantification in wastewater samples is the lack of an optimized and standardized protocol. Currently available data are also limited for conducting a quantitative microbial risk assessment (QMRA) for SARS-CoV-2 exposure pathways. However, modeling-based approaches have a potential role to play in reducing the impact of the ongoing COVID-19 outbreak. Furthermore, QMRA parameters obtained from previous studies on relevant respiratory viruses help to inform risk assessments of SARS-CoV-2. Our understanding on the potential role of wastewater in SARS-CoV-2 transmission is largely limited by knowledge gaps in its occurrence, persistence, and removal in wastewater. There is an urgent need for further research to establish methodologies for wastewater surveillance and understand the implications of the presence of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kyle Bibby
- Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno, 35-39, I-56123 Pisa, Italy
| | - Charles P Gerba
- Department of Environmental Science and Water & Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Haas CN. Quantitative Microbial Risk Assessment and Molecular Biology: Paths to Integration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8539-8546. [PMID: 32539352 DOI: 10.1021/acs.est.0c00664] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Quantitative microbial risk assessment (QMRA) has now been in use for over 35 years and has formed the basis for developing criteria for ensuring public health related to water, food, and remediation, to name a few areas. The initial data for QMRA (both in exposure assessment and in dose response assessment) came from measurements using assays for viability, such as plate counts, plaque assays, or animal infectivity. With the increasing use of molecular methods for the measurement of microorganisms in the environment, it has become important to assess how to use such data to estimate infectious disease risks. The limitations to the use of such data and needs to resolve the limitations will be addressed.
Collapse
Affiliation(s)
- Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Chen SK, Jang CS, Chang CP. Employing indicator-based geostatistics and quantitative microbial risk analysis to assess the health risks of groundwater use for household demands on the Pingtung Plain, Taiwan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2007-2021. [PMID: 31722053 DOI: 10.1007/s10653-019-00468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Because of the limited surface water on the Pingtung Plain, Taiwan, the plain's residents frequently extract groundwater to meet their daily household water demands. The residents may experience gastrointestinal infections due to incidental ingestion of groundwater with fecal pollution. This study used indicator kriging (IK) and quantitative microbial risk analysis (QMRA) to assess the health risks of using groundwater for household cleaning and horticultural irrigation on the Pingtung Plain. First, IK was employed to determine the conditional cumulative distribution function (CCDF) of groundwater Escherichia coli (E. coli). Nonparametric Monte Carlo simulation based on established CCDF was then adopted to characterize the distributions and uncertainty of groundwater E. coli. Finally, QMRA was employed to determine health risks of groundwater use for household cleaning and horticultural irrigation, and the 95th percentiles of the risk distributions were calculated to obtain a representative risk. The study results indicated that the health risks of groundwater use ranged from 3.95 × 10-5 to 2.49 × 10-2 infections/user/year and exceeded the acceptable level, 1 × 10-4 infections/user/year, in most of the aquifers. Accordingly, residents of this plain should not directly extract groundwater for use in daily life.
Collapse
Affiliation(s)
- Shih-Kai Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan
| | - Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Luzhu, Taoyuan, 338, Taiwan.
| | - Chun-Pei Chang
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan
| |
Collapse
|