1
|
Xu S, Hu Y, Zhang Y, Xu J, Huang Q, Li J, Wang M. Synergistic Surface Reconstruction and Defect Passivation via Guanidine Sulfonate for High-Efficiency Perovskite Photovoltaics. J Phys Chem Lett 2025:5221-5227. [PMID: 40380924 DOI: 10.1021/acs.jpclett.5c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Perovskite films have long suffered from various defects located at grain boundaries and surfaces (GBS), especially residual lead iodide (PbI2), which can seriously impair the photoelectric conversion efficiency (PCE) and long-term stability of the corresponding photovoltaic devices. Herein, guanidine sulfamate (GSM), with desired -NH2, S═O, and Gua+ functional groups, is introduced to the perovskite surface by a post-treatment process to achieve high-quality films with fewer defects. It was found that -NH2 and S═O in GSM contribute to the passivation of various defects in perovskites and suppress non-radiative recombination, thus improving the interfacial carrier transport efficiency. Meanwhile, the guanidine (Gua+) cations promote grain fusion during post-treatment to achieve large-sized grains and effectively reduce residual PbI2 content. Moreover, the optimized perovskite films also exhibited better energy level alignment and surface hydrophobicity. Consequently, the champion PCE of the optimized perovskite solar cells (PSCs) was increased from 21.69 to 23.85% at the appropriate GMS post-treatment concentration, along with a significant improvement in storage stability and light stability.
Collapse
Affiliation(s)
- Shuai Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226001, China
| | - Yanqiang Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226001, China
| | - Yiqiong Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiapei Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226001, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226001, China
- School of Physical Science and Technology, Nantong University, Nantong, Jiangsu 226019, China
- School of Physics, University College Cork, Cork T12 K8AF, Ireland
| | - Minmin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
2
|
Liao JB, Tang XM, Zhang L, Wu J, Tong CJ. Strain Engineering of Two-Dimensional Hybrid Perovskites with Band Edge Modulation and Charge Separation. J Phys Chem Lett 2025; 16:4401-4409. [PMID: 40273340 DOI: 10.1021/acs.jpclett.5c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Strain engineering in two-dimensional (2D) perovskites has been widely explored in recent years. In this study, first-principles and nonadiabatic molecular dynamics simulations reveal that biaxial strain (exceeding 6%) introduces an abnormal transition of the conduction band minimum (CBM) from inorganic to organic contributions in 2D Dion-Jacobson perovskite (3AMPY)PbI4 (3AMPY, 3-(aminomethyl)pyridinium). Further research demonstrates that such CBM transitions under tensile and compressive strain are primarily attributed to the competition between the inorganic Pb-I interaction and organic-inorganic hydrogen bonding interaction. The CBM reconfiguration effectively promotes charge separation, which shortens the quantum coherence time and suppresses nonadiabatic coupling, so that it enhances the charge carrier lifetime, particularly under 6% tensile strain. The findings highlight a novel strain-engineering strategy for optimizing band edge modulation and charge transport in 2D perovskites, providing valuable insights for the design of high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Jin-Bo Liao
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- International Institute for Materials Innovation, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Xi-Meng Tang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Long Zhang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Jian Wu
- International Institute for Materials Innovation, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Chuan-Jia Tong
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Wu H, Wu J, Zhang Z, Guan X, Wang L, Deng LL, Li G, Abate A, Li M. Tailored Lattice-Matched Carbazole Self-Assembled Molecule for Efficient and Stable Perovskite Solar Cells. J Am Chem Soc 2025; 147:8004-8011. [PMID: 39966170 DOI: 10.1021/jacs.5c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Self-assembled monolayer molecules have been widely employed as interfacial transport materials in inverted perovskite solar cells (PSCs), demonstrating high efficiency and improved device stability. However, self-assembling monolayer (SAM) molecules often suffer from aggregation and weak interactions with the perovskite layer, resulting in inefficient charge transfer and significant energy losses, ultimately limiting the power conversion efficiency and long-term stability of perovskite solar cells. In this work, we developed a series of novel skeleton-matching carbazole isomer SAMs based on the following key design principles: (1) introducing a benzene ring structure to distort the molecular skeleton of the SAM, thereby preventing aggregation and achieving a uniform distribution on fluorine-doped tin oxide (FTO) substrates; (2) strategically incorporating methoxy groups onto the benzene ring at different positions (ortho, meta, and para). These functional groups not only increase anchoring points with the perovskite layer but also fine-tune the molecular dipole moment. Among the SAMs, m-PhPACz exhibits the most favorable properties, with a maximum dipole moment of 2.4 D and an O-O distance that aligns excellently with the diagonal lead ions in the adjacent perovskite lattice, thereby enhancing SAM-perovskite interactions, facilitating efficient charge extraction, and improving interfacial stability. As a result, the new SAM-based PSCs achieved an impressive power conversion efficiency of 26.2%, with 12.9% improvement. Moreover, the devices demonstrated outstanding photothermal stability, retaining 96% of their initial PCE after 1000 h at 85 °C and maintaining 90% of their initial PCE after 300 h of UV-light exposure.
Collapse
Affiliation(s)
- Hongzhuo Wu
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Jiaxin Wu
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Zuhong Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Xiaoyu Guan
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Luyao Wang
- State Key Lab for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005 China
| | - Lin-Long Deng
- State Key Lab for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005 China
| | - Guixiang Li
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015 Switzerland
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Meng Li
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Dong T, Liao J, Li H, Li J, Li H, Li Z, Tan L, Chen X, Zhang W. Performance Optimization of Perovskite Solar Cells via Fluorinated Carbonyl Additives. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12291-12298. [PMID: 39960162 DOI: 10.1021/acsami.4c21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology due to their long carrier diffusion lengths, tunable bandgaps, and high light absorption coefficients. However, instability remains a significant barrier to their commercialization. In this study, we introduce two carbonyl small molecule additives with varying fluorine atom counts: 4,5-difluoro-phthalic anhydride (2FPA) and tetrafluorophthalic anhydride (4FPA). The fluorine atoms and carbonyl groups interact to passivate defects in the perovskite structure. The strong interaction between 4FPA and the perovskite facilitates slow crystal growth and effective defect passivation, significantly suppressing nonradiative recombination and enhancing carrier transport efficiency. Consequently, the power conversion efficiency (PCE) of PSCs incorporating 4FPA has improved from 21.49 to 23.21%. Additionally, the fluorine atoms in the additive interact with FA+ in the perovskite to form strong hydrogen bonds and coordinate bonds with Pb2+, thereby enhancing device stability. In unencapsulated conditions, after approximately 1000 h in ambient air with 50 to 60% humidity, the 4FPA device retains 87% of its initial efficiency.
Collapse
Affiliation(s)
- Tianhe Dong
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jing Liao
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Haijin Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- IMD-3 Photovoltaics, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Jiashun Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Hongyu Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Ze Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Li Tan
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xu Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Wenfeng Zhang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
5
|
Xie Z, Duan Y, Cheng M, Li Y, Liu Z, Li H, Chen Y, Zang Z, Liu S, Peng Q. High-Efficiency Perovskite Solar Cells Enabled by Guanylation Reaction for Removing MACl Residual and In-Situ Forming 2D Perovskite. Angew Chem Int Ed Engl 2025; 64:e202419070. [PMID: 39639433 DOI: 10.1002/anie.202419070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The thermodynamical deprotonation of methylammonium chloride (MACl) has several detrimental influences on the quality of formamidinium (FA+)-based perovskite, which limits both efficiency and stability of inverted perovskite solar cells (IPSCs). Herein, a new additive strategy was developed by introducing methyl carbamimidothioate hydroiodide (MCH) into perovskite precursor, where guanylation reaction occurred between MCH and MACl to form a new intermediate of methyl-substituted guanidine (MSG). MSG could then bond with undercoordinated Pb2+ to in situ form a two-dimensional (2D) perovskite, which would promote the growth and crystallization of three-dimensional (3D) perovskite with higher crystallinity, lower defect-states density and superior stability. Finally, the MCH-treated IPSC with a small area (0.09 cm2) achieved an impressive power conversation efficiency (PCE) of 26.81 % (certified as 26.02 %), which is one of the highest PCEs reported to date. The large area MCH-treated device (1.00 cm2) also obtained a high PCE of 24.36 %. Moreover, the unencapsulated and MCH-treated device exhibited excellent operational stability, maintaining 91.95 % and 97.06 % of their initial efficiencies after aging in air and a nitrogen-filled atmosphere at 85 °C for 1200 h. The encapsulated MCH-treated devices retained 94.25 % of its initial efficiency after continuously tracking at the maximum power-point for 1200 h in air.
Collapse
Affiliation(s)
- Zhuang Xie
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Minghui Cheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing, 400044, P. R. China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
6
|
Tang XM, Ou Q, Wang ZY, Shi XR, Tong CJ, Long M. Positional Isomerism of Aromatic Heterocyclic Spacer Cations in Two-Dimensional Dion-Jacobson Hybrid Perovskites. J Phys Chem Lett 2024; 15:9575-9584. [PMID: 39269336 DOI: 10.1021/acs.jpclett.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ligand engineering of aromatic heterocyclic cations in two-dimensional (2D) Dion-Jacobson (DJ) perovskites has been widely explored in recent years. In this study, how the positional isomers of aromatic heterocyclic cations tune the lattice of 2D perovskites, thereby influencing the transport and recombination dynamics of charge carriers, has been investigated through nonadiabatic molecular dynamics simulations. We demonstrate that the meta-substituted 3-(aminomethyl)pyridinium (3AMPY) cations greatly reduce the strength of electron-vibration coupling since the strong hydrogen-bonding network introduced by the changes in the arrangement of spacer cations significantly suppresses the structural thermal fluctuations. Compared to the para-substituted 4-(aminomethyl)pyridinium (4AMPY) cation, using the asymmetric 3AMPY as a spacer cation can achieve improved in-plane transport performance, enhanced thermal stability, and suppressed charge carrier recombination through weakening electron-vibration interactions. Our results explain the observed lifetime difference between the two types of DJ-phase perovskites in experiments and provide new guidance for optimizing the performance of perovskite devices.
Collapse
Affiliation(s)
- Xi-Meng Tang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Qian Ou
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Zhong-Yuan Wang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xue-Rui Shi
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Chuan-Jia Tong
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Mengqiu Long
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
7
|
Wang J, Nie G, Huang W, Guo Y, Li Y, Yang Z, Chen Y, Ding K, Yang Y, Wang W, Kuang LM, Yang K, Tang D, Zhai Y. Reconstruction and Solidification of Dion-Jacobson Perovskite Top and Buried Interfaces for Efficient and Stable Solar Cells. NANO LETTERS 2024; 24:11873-11881. [PMID: 39225707 DOI: 10.1021/acs.nanolett.4c03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Quasi-two-dimensional (Q-2D) perovskites show great potential in the field of photonic and optoelectronic device applications. However, defects and local lattice dislocation still limit performance and stability improvement by nonradiative recombination, unpreferred phase distribution, and unbonded amines. Here, a low-temperature synergistic strategy for both reconstructing and solidifying the perovskite top and buried interface is developed. By post-treating the 1,4-phenylenedimethanammonium (PDMA) based (PDMA)MA4Pb5I16 films with cesium acetate (CsAc) before thermal annealing, a condensation reaction between R-COO- and -NH2 and ion exchange between Cs+ and MA+ occur. It converts the unbonded amines to amides and passivates uncoordinated Pb2+. Meanwhile, it adjusts film composition and improves the phase distribution without changing the out-of-plane grain orientation. Consequently, performance of 18.1% and much-enhanced stability (e.g., stability for photo-oxygen increased over 10 times, light-thermal for T90 over 4 times, and reverse bias over 3 times) of (PDMA)MA4Pb5I16 perovskite solar cells are demonstrated.
Collapse
Affiliation(s)
- Jifei Wang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Guozheng Nie
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wenjin Huang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Yuanyuan Guo
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Ying Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Zhangqiang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Chen
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Kang Ding
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weike Wang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Le-Man Kuang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Kaike Yang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Dongsheng Tang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Chen YC, Wu KC, Lin JC, Singh A, Chen YD, Chen HA, Wang DY. Discovery of a Thermodynamic-Control Two-Dimensional Cs 6Pb 5I 16 Perovskite with a Unique Green Emission Color via Dynamic Structural Transformation. J Phys Chem Lett 2024; 15:9311-9318. [PMID: 39235329 DOI: 10.1021/acs.jpclett.4c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
New perovskite materials of two-dimensional (2D) all-inorganic Ruddlesden-Popper (RP) perovskite Cs6Pb5I16 nanosheets were successfully obtained from the structural transformation of 2D PR-phase Cs7Pb6I19 nanosheets. The 2D RP-phase Cs6Pb5I16 perovskite nanosheets exhibited unique green emission with an emission wavelength of ∼500 nm. The crystal structure of the 2D RP-phase Cs6Pb5I16 perovskite nanosheets was determined by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy, and atomic force microscopy. The time-dependent photoluminescence measurements and XRD spectra were used to observe the optical and structure transformations from 2D Cs7Pb6I19 (n = 6) to 2D Cs6Pb5I16 (n = 5) perovskites. The in situ XRD measurements confirmed that γ-phase CsPbI3 was released during the structural transformation. Moreover, temperature-dependent in situ XRD measurements were employed to examine the kinetic energy involved in the structural transformation from the n = 6 form to the n = 5 form. Specifically, an intermediate structure from n = 6 to n = 5 was also identified. Most importantly, 2D Cs6Pb5I16 (n = 5) was more structurally thermodynamically stable than 2D Cs7Pb6I19 (n = 6). This study provides an essential route for the discovery of new types of perovskite structures during structural transformation.
Collapse
Affiliation(s)
- Yi-Chia Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuan-Chang Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Jou-Chun Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Anupriya Singh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Dian Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Hsin-An Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
9
|
Wu G, Zhang R, Wang H, Ma K, Xia J, Lv W, Xing G, Chen R. Rational Strategies to Improve the Efficiency of 2D Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405470. [PMID: 39021268 DOI: 10.1002/adma.202405470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Indexed: 07/20/2024]
Abstract
In the quest for durable photovoltaic devices, 2D halide perovskites have emerged as a focus of extensive research. However, the reduced dimension in structure is accompanied by inferior optical-electrical properties, such as widened band gap, enhanced exciton binding energy, and obstructed charge transport. As a result, the efficiency of 2D perovskite solar cells (PSCs) lags significantly behind their 3D counterparts. To overcome these constraints, extensive investigations into materials and processing techniques are pursued rigorously to augment the efficiency of 2D PSCs. Herein, The cutting-edge delve into developments in 2D PSCs, with a focus on chemical and material engineering, as well as their structure and photovoltaic properties. The review starts with an introduction of the crystal structure, followed by the key evaluation criteria of 2D PSCs. Then, the strategies around solution chemical engineering, processing technique, and interface optimization, to simultaneously boost efficiency and stability are systematically discussed. Finally, the challenges and perspectives associated with 2D perovskites to provide insights into potential improvements in photovoltaic performance will be outlined.
Collapse
Affiliation(s)
- Guangbao Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Runqi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - He Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kangjie Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Junmin Xia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenzhen Lv
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Adv. Mater. (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Zhang Y, Abdi-Jalebi M, Larson BW, Zhang F. What Matters for the Charge Transport of 2D Perovskites? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404517. [PMID: 38779825 DOI: 10.1002/adma.202404517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Compared to 3D perovskites, 2D perovskites exhibit excellent stability, structural diversity, and tunable bandgaps, making them highly promising for applications in solar cells, light-emitting diodes, and photodetectors. However, the trade-off for worse charge transport is a critical issue that needs to be addressed. This comprehensive review first discusses the structure of 3D and 2D metal halide perovskites, then summarizes the significant factors influencing charge transport in detail and provides a brief overview of the testing methods. Subsequently, various strategies to improve the charge transport are presented, including tuning A'-site organic spacer cations, A-site cations, B-site metal cations, and X-site halide ions. Finally, an outlook on the future development of improving the 2D perovskites' charge transport is discussed.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mojtaba Abdi-Jalebi
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Bryon W Larson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
11
|
Saeed A, Wang L, Chen Z, Fang J, Hussain I, Yuan L, Wang S, Zhao J, Zhang H, Miao Q. Revealing the Roles of Guanidine Hydrochloride Ionic Liquid in Ion Inhibition and Defects Passivation for Efficient and Stable Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202400466. [PMID: 38727153 DOI: 10.1002/cssc.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Indexed: 07/23/2024]
Abstract
As a result of full-scale ongoing global efforts, the power conversion efficiency (PCE) of the organic-inorganic metal halide perovskite has skyrocketed. Unfortunately, the long-term operational stability for commercialization standards is still lagging owing to intrinsic defects such as ion migration-induced degradation, undercoordinated Pb2+, and shallow defects initiated by disordered crystal growth. Herein, we employed multifunctional, non-volatile tetra-methyl guanidine hydrochloride [TMGHCL] ionic liquid (IL) as an additive to elucidate defects' passivation effects on organic-inorganic metal halide perovskite. More specifically, the formation of hydrogen bonds between H+ in GA+ and I- and coordinate bonding between Cl- and undercoordinated Pb2+ could significantly passivate these defects. The hypothesis was confirmed by both experimental and DFT simulations displaying that the optimized ratio of IL integration restrains ion migration, improving grains' size, and significantly elongating the carrier lifetime. Remarkably, the modified cell achieved a peak efficiency of 22.00 % with negligible hysteresis, compared to the control device's PCE of 20.12 %. In addition, the TMGHCL-based device retains its 93.29 % efficiency after 16 days of continuous exposure to air with a relative humidity of 35±5% and temperature of 25±5 °C. This efficient approach of adding IL to perovskites absorber can produce high PCE and has strong commercialization potential.
Collapse
Affiliation(s)
- Aamir Saeed
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Wang
- Info-Powered Energy System Research Center (i-PERC), The University of Electro-Communications, Tokyo, 182-8585
| | - Zhaoyang Chen
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| | - Junhui Fang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Iqbal Hussain
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Lin Yuan
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Shuai Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jianwei Zhao
- Shenzhen Huasuan Technology Co. Ltd, Shenzhen, 518055, P.R. China
| | - Haitao Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| | - Qingqing Miao
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
- Langfang Technological Centre of Green Industry, Langfang, 065001, P.R. China
| |
Collapse
|
12
|
Mączka M, Smółka S, Ptak M. Phonon Properties and Lattice Dynamics of Two- and Tri-Layered Lead Iodide Perovskites Comprising Butylammonium and Methylammonium Cations-Temperature-Dependent Raman Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2503. [PMID: 38893767 PMCID: PMC11172726 DOI: 10.3390/ma17112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Hybrid lead iodide perovskites are promising photovoltaic and light-emitting materials. Extant literature data on the key optoelectronic and luminescent properties of hybrid perovskites indicate that these properties are affected by electron-phonon coupling, the dynamics of the organic cations, and the degree of lattice distortion. We report temperature-dependent Raman studies of BA2MAPb2I7 and BA2MA2Pb3I10 (BA = butylammonium; MA = methylammonium), which undergo two structural phase transitions. Raman data obtained in broad temperature (360-80 K) and wavenumber (1800-10 cm-1) ranges show that ordering of BA+ cations triggers the higher temperature phase transition, whereas freezing of MA+ dynamics occurs below 200 K, leading to the onset of the low-temperature phase transition. This ordering is associated with significant deformation of the inorganic sublattice, as evidenced by changes observed in the lattice mode region. Our results show, therefore, that Raman spectroscopy is a very valuable tool for monitoring the separate dynamics of different organic cations in perovskites, comprising "perovskitizer" and interlayer cations.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 str., 50-422 Wroclaw, Poland; (S.S.); (M.P.)
| | | | | |
Collapse
|
13
|
Dong X, Li X, Wang X, Zhao Y, Song W, Wang F, Xu S, Miao Z, Wu Z. Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313056. [PMID: 38315828 DOI: 10.1002/adma.202313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Conventional 3D organic-inorganic halide perovskite materials have shown substantial potential in the field of optoelectronics, enabling the power conversation efficiency of solar cells beyond 26%. A key challenge limiting the further commercial application of 3D perovskite solar cells is their inherent instability over outer oxygen, humidity, light, and heat. By contrast, 2D Ruddlesden-Popper (2DRP) perovskites with bulky organic cations can effectively stabilize the inorganic slabs, yielding excellent environmental stability. However, the efficiencies of 2DRP perovskite solar cells are much lower than those of the 3D counterparts due to poor charge carrier transporting property of insulating bulky organic cations. Their inner structural, dielectric, optical, and excitonic properties remain to be primarily studied. In this review, the main reasons for the low efficiency of 2DRP perovskite solar cells are first analyzed. Next, a detailed description of various strategies for improving the charge carrier transporting of 2DRP perovskites is provided, such as bandgap regulation, perovskite crystal phase orientation and distribution, energy level matching, interfacial modification, etc. Finally, a summary is given, and the possible future research directions and methods to achieve high-efficiency and stable 2DRP perovskite solar cells are rationalized.
Collapse
Affiliation(s)
- Xue Dong
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Xin Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaobo Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Fangmin Wang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Shudong Xu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
14
|
Zhang X, Einhaus L, Huijser A, ten Elshof JE. Manipulation of Crystal Orientation and Phase Distribution of Quasi-2D Perovskite through Synergistic Effect of Additive Doping and Spacer Engineering. Inorg Chem 2024; 63:5246-5259. [PMID: 38429861 PMCID: PMC10951954 DOI: 10.1021/acs.inorgchem.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The diammonium precursor 1,4-phenylenedimethanammonium (PDMA) was used as a large organic spacer for the preparation of Dion-Jacobson-type quasi-2D perovskites (PDMA)(MA)n-1PbnI3n+1 (MA = methylammonium). Films with composition ⟨n⟩ = 5 comprised randomly orientated grains and multiple microstructural domains with locally differing n values. However, by mixing the Dion-Jacobson-type spacer PDMA and the Ruddlesden-Popper-type spacer propylammonium (PA), the crystal orientation in both the vertical and the horizonal directions became regulated. High crystallinity owing to well-matched interlayer distances was observed. Combining this spacer-engineering approach with the addition of methylammonium chloride (MACl) led to full vertical alignment of the crystal orientation. Moreover, the microstructural domains at the substrate interface changed from low-n (n = 1, 2, 3) to high-n (n = 4, 5), which may be beneficial for hole extraction at the interface between perovskite and hole transport layer due to a more finely tuned band alignment. Our work sheds light on manipulating the crystallization behavior of quasi-2D perovskite and further paves the way for highly stable and efficient perovskite devices.
Collapse
Affiliation(s)
- Xiao Zhang
- Inorganic
Materials Science Group, MESA+ Research Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Lisanne Einhaus
- PhotoCatalytic
Synthesis Group, MESA+ Research Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Annemarie Huijser
- PhotoCatalytic
Synthesis Group, MESA+ Research Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | | |
Collapse
|
15
|
Nayab F, Aamir M, Khan ME, Wali Q, Sher M, Khurshid H, Akhtar J. Color-tunable stable quasi-2D hybrid metal halide perovskites: synthesis, characterization, and optical analysis. Phys Chem Chem Phys 2024; 26:6058-6067. [PMID: 38295376 DOI: 10.1039/d3cp05563a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Metal halide perovskites show remarkable optical properties and useful applications in optoelectronic devices. However, the instability of three-dimensional (3D) metal halide perovskites limits their applications, leading to the emergence of more stable two-dimensional (2D) metal halide perovskites. Herein, we present a facile synthesis of the 2D hybrid metal halide perovskite (EDA)(MA)n-1PbnBr3n+1 (EDA: ethylene diammonium, MA: methylammonium), where n = 1-6, and MAPbBr3 perovskite layers using an anti-solvent co-precipitation technique. The synthesized materials exhibited tunable optical properties, and the color emissions of pure EDAPbBr4 and (EDA)(MA)2Pb3Br10 perovskites were successfully tailored by altering halide anion layers. The band gap decreases as the value of n in the (EDA)(MA)n-1PbnBr3n+1 compound increases from 1 to 6. The as-prepared materials were characterized using X-ray diffraction (XRD) technique, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Finally, the stability of the 2D hybrid metal halide perovskite structures was evaluated under ambient conditions over different periods. Their tunable color emission was investigated and robust fluorescence was observed after 55 days. Thus, this study provides valuable insights into the synthesis and characterization of 2D hybrid metal halide perovskites for tunable color emission, highlighting their potential for use in various optoelectronic applications.
Collapse
Affiliation(s)
- Farva Nayab
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur-10250, AJK, Pakistan.
- Department of Chemistry, Allama Iqbal Open University, H-8, Islamabad 44000, Pakistan.
| | - Muhammad Aamir
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur-10250, AJK, Pakistan.
| | - Muhammad Ejaz Khan
- Department of Computer Engineering, National University of Technology, Islamabad 44000, Pakistan.
| | - Qamar Wali
- NUTECH School of Applied Sciences & Humanities, National University of Technology, Islamabad 44000, Pakistan.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Muhammad Sher
- Department of Chemistry, Allama Iqbal Open University, H-8, Islamabad 44000, Pakistan.
| | - Hafsa Khurshid
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur-10250, AJK, Pakistan.
| | - Javeed Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur-10250, AJK, Pakistan.
| |
Collapse
|
16
|
Wu Y, Ren G, Lin W, Xiao L, Wu X, Yang C, Qi M, Luo Z, Zhang W, Liu Y, Min Y. The Synergistic Effect of Additives for Formamidinium-Based Inverted Dion-Jacobson 2D Perovskite Solar Cells with Enhanced Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58286-58295. [PMID: 38052074 DOI: 10.1021/acsami.3c11114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Two-dimensional (2D) perovskite solar cells (PSCs) have attracted rapid growing attention due to their excellent environmental and operational stability. As an important type of 2D perovskite, Dion-Jacobson (DJ) 2D perovskites exhibit better structural integrity and more stable optoelectronic properties than those of Ruddlesden-Popper (RP) ones because of the elimination of weak van der Waals interactions. Random phase distribution, phase impurity, and weak crystallinity, however, can lead to severe nonradiative recombination losses in 2D perovskites and inferior device stability. Herein, formamidinium chloride (FACl) and lead chloride (PbCl2) are selected as additives to fabricate efficient and stable DJ 2D PSCs. The synergistic effect of additives could efficiently induce crystallization and suppress the low-n phase perovskites. The obtained 2D perovskites exhibit extended charge lifetime and enhanced charge transfer. The corresponding PSC device delivers an efficiency of 16.63% with a significantly improved open-circuit voltage (VOC) of 1.18 V and a fill factor (FF) of 81.65% than the control one. This PCE ranks the highest for inverted FA-based 2D DJ PSCs. Moreover, this device has exhibited exceptional long-term stability, which retains more than 95% of the initial efficiencies at about 50% relative humidity for 600 h.
Collapse
Affiliation(s)
- Yixuan Wu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoxing Ren
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Weidong Lin
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhan Wu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhenyu Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
Liu R, Hu X, Xu M, Ren H, Yu H. Layered Low-Dimensional Ruddlesden-Popper and Dion-Jacobson Perovskites: From Material Properties to Photovoltaic Device Performance. CHEMSUSCHEM 2023; 16:e202300736. [PMID: 37321966 DOI: 10.1002/cssc.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
Layered low-dimensional halide perovskites (LDPs) with multiple quantum well structure have shown increasing research interest in photovoltaic solar cell applications owing to their intrinsic moisture stability and favorable photophysical properties in comparison with their three-dimensional (3D) counterparts. The most common LDPs are Ruddlesden-Popper (RP) phases and Dion-Jacobson (DJ) phases, both of which have made significant research advances in efficiency and stability. However, distinct interlayer cations between RP and DJ phase lead to disparate chemical bonds and different perovskite structures, which endow RP and DJ perovskite with distinctive chemical and physical properties. Plenty of reviews have reported the research progress of LDPs but no summary has elaborated from the perspective of the merits and drawbacks of the RP and DJ phases. Herein, in this review, we offer a comprehensive expound on the merits and promises of RP and DJ LDPs from their chemical structure, physicochemical properties, and photovoltaic performance research progress aiming to provide a new insight into the dominance of RP and DJ phases. Then, we reviewed the recent progress on the synthesis and implementation of RP and DJ LDPs thin films and devices, as well as their optoelectronic properties. Finally, we discussed the possible strategies to resolve existing toughs to realize the desired high-performance LDPs solar cells.
Collapse
Affiliation(s)
- Rui Liu
- School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, P. R. China
| | - Xin Hu
- School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, P. R. China
| | - Maoxia Xu
- School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, P. R. China
| | - Haorong Ren
- School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, P. R. China
| | - Hua Yu
- School of New Energy and Materials, Southwest Petroleum University, 610500, Chengdu, P. R. China
| |
Collapse
|
18
|
Fu Q, Chen M, Li Q, Liu H, Wang R, Liu Y. Selenophene-Based 2D Ruddlesden-Popper Perovskite Solar Cells with an Efficiency Exceeding 19. J Am Chem Soc 2023; 145:21687-21695. [PMID: 37750835 DOI: 10.1021/jacs.3c08604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Two-dimensional (2D) Ruddlesden-Popper (RP) perovskites have emerged as attractive candidates for high-performance perovskite solar cells (PSCs) thanks to their superior environmental and structural stability. However, 2D RP PSCs exhibit larger exciton binding energy due to the dielectric mismatch between the organic and inorganic layers, resulting in poorer photovoltaic performance compared to their 3D analogs. Here, we developed a selenophene-based spacer, namely, 2-selenophenemethylammonium (SeMA), for stable and efficient 2D RP PSCs. The 2D perovskite film using methylammonium (MA) as the A-site cation (nominal n = 5) shows excellent film quality with large grain size and a preferred vertical orientation relative to the substrate. Furthermore, we have successfully demonstrated the effectiveness of a predeposition transport layer (PDTL) consisting of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in passivating surface defects of the perovskite film and inducing densification of the upper PCBM electron transport layer. This densification promotes efficient extraction and transport of electrons. The optimized PSCs based on 2D RP perovskite using MA as A-site cation (nominal n = 5) achieved a power conversion efficiency (PCE) of 17.25%, which was further boosted to 19.03% when using formamidinium (FA) as A-site cation. This represents a record PCE of 2D RP PSCs by using the selenophene-based spacer. Moreover, these 2D RP PSCs significantly improve thermal, moisture, and light stability. Our results provide significant implications for the synergistic strategy of developing selenophene-based spacers and device engineering methods for achieving highly efficient and stable 2D RP perovskite solar cells.
Collapse
Affiliation(s)
- Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Mingqian Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiaohui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hang Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Wang Q, Qiu P, Luo X, Zheng C, Wang S, Ren X, Gao J, Lu X, Gao X, Shui L, Wu S, Liu JM. Mutually Tuned Dual Additive Engineering Synergistically Enhances the Photovoltaic Performance of Tin-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45064-45075. [PMID: 37710994 DOI: 10.1021/acsami.3c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Tin-based perovskite solar cells (T-PSCs) have become the star photovoltaic products in recent years due to their low environmental toxicity and superior photovoltaic performance. However, the easy oxidation of Sn2+ and the energy level mismatch between the perovskite film and charge transport layer limit its efficiency. In order to regulate the microstructure and photoelectric properties of tin-based perovskite films to enhance the efficiency and stability of T-PSCs, guanidinium bromide (GABr) and organic Lewis-based additive methylamine cyanate (MAOCN) are introduced into the FA0.9PEA0.1SnI3-based perovskite precursor. A series of characterizations show that the interactions between additive molecules and perovskite mutually reconcile to improve the photovoltaic performance of T-PSCs. The introduction of GABr can adjust the band gap of the perovskite film and energy level alignment of T-PSCs. They significantly increase the open-circuit voltage (Voc). The MAOCN material can form hydrogen bonds with SnI2 in the precursor, which can inhibit the oxidation of Sn2+ and significantly improve the short-circuit current density (Jsc). The synergistic modulation of the dual additives reduces the trap-state density and improves photovoltaic performance, resulting in an increased champion efficiency of 9.34 for 5.22% of the control PSCs. The unencapsulated T-PSCs with GABr and MAOCN dual additives prepared in the optimized process can retain more than 110% of their initial efficiency after aging for 1750 h in a nitrogen glovebox, but the control PSCs maintain only 50% of their initial efficiency kept in the same conditions. This work provides a new perspective to further improve the efficiency and stability of T-PSCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
20
|
Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite AD. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem Rev 2023; 123:9565-9652. [PMID: 37428563 DOI: 10.1021/acs.chemrev.3c00214] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Three-dimensional (3D) organic-inorganic lead halide perovskites have emerged in the past few years as a promising material for low-cost, high-efficiency optoelectronic devices. Spurred by this recent interest, several subclasses of halide perovskites such as two-dimensional (2D) halide perovskites have begun to play a significant role in advancing the fundamental understanding of the structural, chemical, and physical properties of halide perovskites, which are technologically relevant. While the chemistry of these 2D materials is similar to that of the 3D halide perovskites, their layered structure with a hybrid organic-inorganic interface induces new emergent properties that can significantly or sometimes subtly be important. Synergistic properties can be realized in systems that combine different materials exhibiting different dimensionalities by exploiting their intrinsic compatibility. In many cases, the weaknesses of each material can be alleviated in heteroarchitectures. For example, 3D-2D halide perovskites can demonstrate novel behavior that neither material would be capable of separately. This review describes how the structural differences between 3D halide perovskites and 2D halide perovskites give rise to their disparate materials properties, discusses strategies for realizing mixed-dimensional systems of various architectures through solution-processing techniques, and presents a comprehensive outlook for the use of 3D-2D systems in solar cells. Finally, we investigate applications of 3D-2D systems beyond photovoltaics and offer our perspective on mixed-dimensional perovskite systems as semiconductor materials with unrivaled tunability, efficiency, and technologically relevant durability.
Collapse
Affiliation(s)
- Isaac Metcalf
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Siraj Sidhik
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Ayush Agrawal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jessica Persaud
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jacky Even
- Université de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, 35708 Rennes, France
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
22
|
Chao IH, Yang YT, Yu MH, Chen CH, Liao CH, Lin BH, Ni IC, Chen WC, Ho-Baillie AWY, Chueh CC. Performance Enhancement of Lead-Free 2D Tin Halide Perovskite Transistors by Surface Passivation and Its Impact on Non-Volatile Photomemory Characteristics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207734. [PMID: 36794296 DOI: 10.1002/smll.202207734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/29/2023] [Indexed: 05/18/2023]
Abstract
Two-dimensional (2D) tin (Sn)-based perovskites have recently received increasing research attention for perovskite transistor application. Although some progress is made, Sn-based perovskites have long suffered from easy oxidation from Sn2+ to Sn4+ , leading to undesirable p-doping and instability. In this study, it is demonstrated that surface passivation by phenethylammonium iodide (PEAI) and 4-fluorophenethylammonium iodide (FPEAI) effectively passivates surface defects in 2D phenethylammonium tin iodide (PEA2 SnI4 ) films, increases the grain size by surface recrystallization, and p-dopes the PEA2 SnI4 film to form a better energy-level alignment with the electrodes and promote charge transport properties. As a result, the passivated devices exhibit better ambient and gate bias stability, improved photo-response, and higher mobility, for example, 2.96 cm2 V-1 s-1 for the FPEAI-passivated films-four times higher than the control film (0.76 cm2 V-1 s-1 ). In addition, these perovskite transistors display non-volatile photomemory characteristics and are used as perovskite-transistor-based memories. Although the reduction of surface defects in perovskite films results in reduced charge retention time due to lower trap density, these passivated devices with better photoresponse and air stability show promise for future photomemory applications.
Collapse
Affiliation(s)
- I-Hsiang Chao
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ting Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chiung-Han Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chwen-Haw Liao
- School of Physics and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - I-Chih Ni
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Anita W Y Ho-Baillie
- School of Physics and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
23
|
He J, Wang S, Li X, Zhang F. Seeding Agents in Metal Halide Perovskite Solar Cells: From Material to Mechanism. CHEMSUSCHEM 2023; 16:e202202109. [PMID: 36624051 DOI: 10.1002/cssc.202202109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Metal halide perovskite solar cells (PSCs) have been showing up in the commercial field, with an inspiring power conversion efficiency (PCE) of over 26 % in the laboratory. The quality of perovskite films is still a bottleneck due to the random and fast crystallization of ionic perovskite materials. Seeding agent-mediated crystallization has consistently been recognized as an efficient method for preparing bulk single crystals and high-quality films. Herein, we summarized the seeding mechanism, characterization techniques, and seeding agents working in different locations during PSC device fabrication. This Review could further facilitate researchers with a deeper understanding of seeding agents and enhance more choices for seeding crystallization to improve the performance further and the device's large-scale fabrication toward commercialization.
Collapse
Affiliation(s)
- Jun He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
24
|
Kostopoulou A, Konidakis I, Stratakis E. Two-dimensional metal halide perovskites and their heterostructures: from synthesis to applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1643-1710. [PMID: 39634119 PMCID: PMC11501535 DOI: 10.1515/nanoph-2022-0797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 12/07/2024]
Abstract
Size- and shape-dependent unique properties of the metal halide perovskite nanocrystals make them promising building blocks for constructing various electronic and optoelectronic devices. These unique properties together with their easy colloidal synthesis render them efficient nanoscale functional components for multiple applications ranging from light emission devices to energy conversion and storage devices. Recently, two-dimensional (2D) metal halide perovskites in the form of nanosheets (NSs) or nanoplatelets (NPls) are being intensively studied due to their promising 2D geometry which is more compatible with the conventional electronic and optoelectronic device structures where film-like components are usually employed. In particular, 2D perovskites exhibit unique thickness-dependent properties due to the strong quantum confinement effect, while enabling the bandgap tuning in a wide spectral range. In this review the synthesis procedures of 2D perovskite nanostructures will be summarized, while the application-related properties together with the corresponding applications will be extensively discussed. In addition, perovskite nanocrystals/2D material heterostructures will be reviewed in detail. Finally, the wide application range of the 2D perovskite-based structures developed to date, including pure perovskites and their heterostructures, will be presented while the improved synergetic properties of the multifunctional materials will be discussed in a comprehensive way.
Collapse
Affiliation(s)
- Athanasia Kostopoulou
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Ioannis Konidakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| | - Emmanuel Stratakis
- Foundation for Research & Technology – Hellas (FORTH), Institute of Electronic Structure & Laser (IESL), Vassilika Vouton, Heraklion700 13, Greece
| |
Collapse
|
25
|
Wang Y, Lin R, Wang X, Liu C, Ahmed Y, Huang Z, Zhang Z, Li H, Zhang M, Gao Y, Luo H, Wu P, Gao H, Zheng X, Li M, Liu Z, Kong W, Li L, Liu K, Saidaminov MI, Zhang L, Tan H. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat Commun 2023; 14:1819. [PMID: 37002238 PMCID: PMC10066323 DOI: 10.1038/s41467-023-37492-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
The commonly-used superstrate configuration (depositing front subcell first and then depositing back subcell) in all-perovskite tandem solar cells is disadvantageous for long-term stability due to oxidizable narrow-bandgap perovskite assembled last and easily exposable to air. Here we reverse the processing order and demonstrate all-perovskite tandems in a substrate configuration (depositing back subcell first and then depositing front subcell) to bury oxidizable narrow-bandgap perovskite deep in the device stack. By using guanidinium tetrafluoroborate additive in wide-bandgap perovskite subcell, we achieve an efficiency of 25.3% for the substrate-configured all-perovskite tandem cells. The unencapsulated devices exhibit no performance degradation after storage in dry air for 1000 hours. The substrate configuration also widens the choice of flexible substrates: we achieve 24.1% and 20.3% efficient flexible all-perovskite tandem solar cells on copper-coated polyethylene naphthalene and copper metal foil, respectively. Substrate configuration offers a promising route to unleash the commercial potential of all-perovskite tandem solar cells.
Collapse
Affiliation(s)
- Yurui Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Renxing Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Xiaoyu Wang
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun, China
| | - Chenshuaiyu Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Yameen Ahmed
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Zilong Huang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Hongjiang Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Mei Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Yuan Gao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Haowen Luo
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Pu Wu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Han Gao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Xuntian Zheng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Manya Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Zhou Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Wenchi Kong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Ludong Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | | | - Lijun Zhang
- State Key Laboratory of Superhard Materials, Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Jin L, Ren N, Wang P, Li R, Xue Q, Huang F, Zhang X, Zhao Y, Zhang X. Secondary Anti-Solvent Treatment for Efficient 2D Dion-Jacobson Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205088. [PMID: 36424142 DOI: 10.1002/smll.202205088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Surface defects-mediated nonradiative recombination plays a critical role in the performance and stability of perovskite solar cells (PSCs) and surface post-treatment is widely used for efficient PSCs. However, the commonly used surface passivation strategies are one-off and the passivation defect ability is limited, which can only solve part of the defects in the topmost surface area. Here, a secondary anti-solvent strategy is proposed to further reduce surface defects based on conventional surface passivation for the first time. Based on this, the crystallization quality of 2D Dion-Jacobson perovskite is enhanced and the surface defects density is further reduced by nearly two orders. In addition, a gradient structure of perovskite with n = 2 phases located at the top of the film and 3D-like phases located at the bottom of the film can also be obtained. The modulated perovskite film boosts the efficiency of 2D perovskites (n = 5) up to 19.55%. This strategy is also very useful in other anti-solvent processed perovskite dipping systems, which paves a promising avenue for minimizing surface defects toward highly efficient perovskite devices.
Collapse
Affiliation(s)
- Lu Jin
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Ningyu Ren
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
- School of Physical Science and Technology, Key Laboratory of Semiconductor, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Pengyang Wang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Renjie Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Qifan Xue
- School of Materials Science and Engineering, South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, 510640, P. R. China
| | - Fei Huang
- School of Materials Science and Engineering, South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, 510640, P. R. China
| | - Xiaobo Zhang
- Key Laboratory of Optoelectronics Technology, College of Microelectronics, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
27
|
Alvarado-Leaños AL, Cortecchia D, Saggau CN, Martani S, Folpini G, Feltri E, Albaqami MD, Ma L, Petrozza A. Lasing in Two-Dimensional Tin Perovskites. ACS NANO 2022; 16:20671-20679. [PMID: 36420860 PMCID: PMC9798858 DOI: 10.1021/acsnano.2c07705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) perovskites have been proposed as materials capable of improving the stability and surpassing the radiative recombination efficiency of three-dimensional perovskites. However, their luminescent properties have often fallen short of what has been expected. In fact, despite attracting considerable attention for photonic applications during the last two decades, lasing in 2D perovskites remains unclear and under debate. Here, we were able to improve the optical gain properties of 2D perovskite and achieve optically pumped lasing. We show that the choice of the spacer cation affects the defectivity and photostability of the perovskite, which in turn influences its optical gain. Based on our synthetic strategy, we obtain PEA2SnI4 films with high crystallinity and favorable optical properties, resulting in amplified spontaneous emission (ASE) with a low threshold (30 μJ/cm2), a high optical gain above 4000 cm-1 at 77 K, and ASE operation up to room temperature.
Collapse
Affiliation(s)
- Ada Lilí Alvarado-Leaños
- Istituto
Italiano de Tecnologia, Centre for Nano Science and Technology (CNST@PoliMi), Milan20133, Italy
- Physics
Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan20133, Italy
| | - Daniele Cortecchia
- Istituto
Italiano de Tecnologia, Centre for Nano Science and Technology (CNST@PoliMi), Milan20133, Italy
| | | | - Samuele Martani
- Istituto
Italiano de Tecnologia, Centre for Nano Science and Technology (CNST@PoliMi), Milan20133, Italy
| | - Giulia Folpini
- Istituto
Italiano de Tecnologia, Centre for Nano Science and Technology (CNST@PoliMi), Milan20133, Italy
| | - Elena Feltri
- Istituto
Italiano de Tecnologia, Centre for Nano Science and Technology (CNST@PoliMi), Milan20133, Italy
- Physics
Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan20133, Italy
| | - Munirah D. Albaqami
- Chemistry
Department, College of Science, King Saud
University, Riyadh11451, Saudi Arabia
| | - Libo Ma
- Institute
for Integrative Nanosciences, Leibniz IFW
Dresden, Dresden01069, Germany
| | - Annamaria Petrozza
- Istituto
Italiano de Tecnologia, Centre for Nano Science and Technology (CNST@PoliMi), Milan20133, Italy
| |
Collapse
|
28
|
Mondal A, Gupta S. Effect of ‘Fluorophenylammonium’ and ‘Fluorophenethylammonium’ as Spacer on the Photo(electro)chemical and Photocatalytic Behaviour of Mixed Halide Based Layered Perovskites. ChemistrySelect 2022. [DOI: 10.1002/slct.202203322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Arindam Mondal
- Department of Chemistry Indian Institute of Technology Bhilai 492015 Raipur Chhattisgarh India
| | - Satyajit Gupta
- Department of Chemistry Indian Institute of Technology Bhilai 492015 Raipur Chhattisgarh India
| |
Collapse
|
29
|
Dyksik M. Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. Int J Mol Sci 2022; 23:ijms232012531. [PMID: 36293385 PMCID: PMC9604088 DOI: 10.3390/ijms232012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, the current state of research concerning the determination of the effective mass in 2D layered perovskites is presented. The available experimental reports in which the reduced effective mass μ has been directly measured using magneto-absorption spectroscopy of interband Landau levels are reviewed. By comparing these results with DFT computational studies and various other methods, it is concluded that depending on the approach used, the μ found spans a broad range of values from as low as 0.05 up to 0.3 me. To facilitate quick and reliable estimation of μ, a model is proposed based solely on the available experimental data that bypass the complexity of interband Landau level spectroscopy. The model takes advantage of the μ value measured for (PEA)2PbI4 and approximates the reduced effective mass of the given 2D layered perovskites based on only two experimental parameters—the diamagnetic coefficient and the effective dielectric constant. The proposed model is tested on a broad range of 2D layered perovskites and captures well the main experimental and theoretical trends.
Collapse
Affiliation(s)
- Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
30
|
Liu R, Yu Y, Liu C, Yang H, Shi XL, Yu H, Chen ZG. A-site cation engineering enables oriented Ruddlesden-Popper perovskites towards efficient solar cells. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Mishra A, Hope MA, Almalki M, Pfeifer L, Zakeeruddin SM, Grätzel M, Emsley L. Dynamic Nuclear Polarization Enables NMR of Surface Passivating Agents on Hybrid Perovskite Thin Films. J Am Chem Soc 2022; 144:15175-15184. [PMID: 35959925 PMCID: PMC9413210 DOI: 10.1021/jacs.2c05316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/26/2022]
Abstract
Surface and bulk molecular modulators are the key to improving the efficiency and stability of hybrid perovskite solar cells. However, due to their low concentration, heterogeneous environments, and low sample mass, it remains challenging to characterize their structure and dynamics at the atomic level, as required to establish structure-activity relationships. Nuclear magnetic resonance (NMR) spectroscopy has revealed a wealth of information on the atomic-level structure of hybrid perovskites, but the inherent insensitivity of NMR severely limits its utility to characterize thin-film samples. Dynamic nuclear polarization (DNP) can enhance NMR sensitivity by orders of magnitude, but DNP methods for perovskite materials have so far been limited. Here, we determined the factors that limit the efficiency of DNP NMR for perovskite samples by systematically studying layered hybrid perovskite analogues. We find that the fast-relaxing dynamic cation is the major impediment to higher DNP efficiency, while microwave absorption and particle morphology play a secondary role. We then show that the former can be mitigated by deuteration, enabling 1H DNP enhancement factors of up to 100, which can be harnessed to enhance signals from dopants or additives present in very low concentrations. Specifically, using this new DNP methodology at a high magnetic field and with small sample volumes, we have recorded the NMR spectrum of the 20 nm (6 μg) passivating layer on a single perovskite thin film, revealing a two-dimensional (2D) layered perovskite structure at the surface that resembles the n = 1 homologue but which has greater disorder than in bulk layered perovskites.
Collapse
Affiliation(s)
- Aditya Mishra
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael A. Hope
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masaud Almalki
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lukas Pfeifer
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shaik Mohammed Zakeeruddin
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory
of Photonics and Interfaces, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Liu YC, Lin JT, Lee YL, Hung CM, Chou TC, Chao WC, Huang ZX, Chiang TH, Chiu CW, Chuang WT, Chou PT. Recognizing the Importance of Fast Nonisothermal Crystallization for High-Performance Two-Dimensional Dion-Jacobson Perovskite Solar Cells with High Fill Factors: A Comprehensive Mechanistic Study. J Am Chem Soc 2022; 144:14897-14906. [PMID: 35924834 DOI: 10.1021/jacs.2c06342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) Dion-Jacobson (DJ) perovskite solar cells (PSCs), despite their advantage in versatility of n-layer variation, are subject to poor photovoltaic efficiency, particularly in the fill factor (FF), compared to their three-dimensional counterparts. To enhance the performance of DJ PSCs, the process of growing crystals and hence the corresponding morphology of DJ perovskites are of prime importance. Herein, we report the fast nonisothermal (NIT) crystallization protocol that is previously unrecognized for 2D perovskites to significantly improve the morphology, orientation, and charge transport of the DJ perovskite films. Comprehensive mechanistic studies reveal that the NIT effect leads to the secondary crystallization stage, forming network-like channels that play a vital role in the FF's leap-forward improvement and hence the DJ PSC's performance. As a whole, the NIT crystallized PSCs demonstrate a high power conversion efficiency and an FF of up to 19.87 and 86.16%, respectively. This research thus provides new perspectives to achieve highly efficient DJ PSCs.
Collapse
Affiliation(s)
- Yi-Chun Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jin-Tai Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yao-Lin Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chih Chao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhi-Xuan Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Hsuan Chiang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Wen Chiu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
33
|
Parikh N, Chavan RD, Yadav P, Nazeeruddin MK, Satapathi S. Highly Efficient and Stable 2D Dion Jacobson/3D Perovskite Heterojunction Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29744-29753. [PMID: 35728567 DOI: 10.1021/acsami.2c04455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heterostructures involving two-dimensional/three-dimensional (2D/3D) perovskites have recently attracted increased attention due to their ability to combine the high photovoltaic performance of 3D perovskites with the increased stability of 2D perovskites. Here we report ammonium thiocyanate (NH4SCN) passivated 3D methylammonium lead triiodide (MAPbI3) perovskite active layer and deposition of 2D perovskite capping layer using xylylene diammonium iodide (XDAI) organic cation. The 2D/3D perovskite heterojunction formation is probed by using FESEM and UPS spectroscopy. The NH4SCN passivated MAPbI3 perovskite has shown 19.6% PCE compared to the 17.18% PCE of pristine MAPbI3 perovskite solar cells (PSCs). Finally, the champion 2D/3D perovskite heterojunction based solar cells have achieved the remarkable PCE of 20.74%. The increased PCE in 2D/3D PSCs is mainly attributed to the reduced defect density and suppressed nonradiative recombination losses. Moreover, the hydrophobic 2D capping layer endows the 2D/3D heterojunction perovskites with exceptional moisture, thermal and UV stability, highlighting the promise of highly stable and efficient 2D/3D PSCs.
Collapse
Affiliation(s)
- Nishi Parikh
- Department of Solar Energy, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
| | - Rohit D Chavan
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pankaj Yadav
- Department of Solar Energy, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382007, India
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), CH-1951 Sion, Switzerland
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
34
|
Yuan Y, Cao F, Li P, Wu J, Zhu B, Gu Y. Ultrafast charge transfer enhanced nonlinear optical properties of CH 3NH 3PbBr 3 perovskite quantum dots grown from graphene. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3177-3188. [PMID: 39634661 PMCID: PMC11501371 DOI: 10.1515/nanoph-2022-0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2024]
Abstract
Halide perovskite quantum dots (PQDs) have exhibited significantly superior nonlinear optical properties compared to traditional semiconductor materials thanks to their peculiar physical and electronic structures. By further improving the nonlinear optical properties of PQDs, it is expected to adapt to ultrafast photonics applications. This work reported the nonlinear optical properties of methylammonium lead bromide-graphene (CH3NH3PbBr3-G) composites synthesized by growing CH3NH3PbBr3 quantum dots directly from a graphene oxide lattice. Our experiments indicate that the combined advantages of the ultrafast charge transport properties from graphene and the strong charge generation efficiency of perovskite can be integrated together. The CH3NH3PbBr3-G composite exhibited enhanced saturable absorption properties with large modulation depth and very low saturation intensity. The transient absorption spectra and carrier dynamics analysis revealed that the enhancement of the saturated absorption properties of the composites mainly arose from the ultrafast charge transfer between G and CH3NH3PbBr3 which promoted the coupling between different states. The results pave the way for the design of optical switches or mode lockers based on saturable absorbers with good performance.
Collapse
Affiliation(s)
- Ye Yuan
- Physics Research Center for Two-Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng475004, China
| | - Fenglin Cao
- Physics Research Center for Two-Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng475004, China
| | - Peng Li
- Physics Research Center for Two-Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng475004, China
| | - Jiawen Wu
- Physics Research Center for Two-Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng475004, China
| | - Baohua Zhu
- Physics Research Center for Two-Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng475004, China
| | - Yuzong Gu
- Physics Research Center for Two-Dimensional Optoelectronic Materials and Devices, School of Physics and Electronics, Henan University, Kaifeng475004, China
| |
Collapse
|
35
|
Hung CM, Lin JT, Yang YH, Liu YC, Gu MW, Chou TC, Wang SF, Chen ZQ, Wu CC, Chen LC, Hsu CC, Chen CH, Chiu CW, Chen HC, Chou PT. Modulation of Perovskite Grain Boundaries by Electron Donor-Acceptor Zwitterions R, R-Diphenylamino-phenyl-pyridinium-(CH 2) n -sulfonates: All-Round Improvement on the Solar Cell Performance. JACS AU 2022; 2:1189-1199. [PMID: 35647592 PMCID: PMC9131477 DOI: 10.1021/jacsau.2c00160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 05/29/2023]
Abstract
Inverted perovskite solar cells (PSCs) have attracted intense attention because of their insignificant hysteresis and low-temperature fabrication process. However, the efficiencies of inverted PSCs are still inferior to those of commercialized silicon solar cells. Also, the poor stability of PSCs is one of the major impedances to commercialization. Herein, we rationally designed and synthesized a new series of electron donor (R,R-diphenylamino) and acceptor (pyridimium-(CH2) n -sulfonates) zwitterions as a boundary modulator and systematically investigated their associated interface properties. Comprehensive physical and optoelectronic studies verify that these zwitterions provide a four-in-one functionality: balancing charge carrier transport, suppressing less-coordinated Pb2+ defects, enhancing moisture resistance, and reducing ion migration. Although each functionality may have been reported by specific passivating molecules, a strategy that simultaneously regulates the charge-transfer balance and three other functionalities has not yet been developed. The results are to make an omnidirectional improvement of PSCs. Among all zwitterions, 4-(4-(4-(di-(4-methoxylphenyl)amino)phenyl)propane-1-ium-1-yl)butane-1-sulfonate (OMeZC3) optimizes the balance hole/electron mobility ratio of perovskite to 0.91, and the corresponding PSCs demonstrate a high power conversion efficiency (PCE) of up to 23.15% free from hysteresis, standing out as one of the champion PSCs with an inverted structure. Importantly, the OMeZC3-modified PSC exhibits excellent long-term stability, maintaining almost its initial PCE after being stored at 80% relative humidity for 35 days.
Collapse
Affiliation(s)
- Chieh-Ming Hung
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jin-Tai Lin
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsuan Yang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Liu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Mong-Wen Gu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Che Chou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Fu Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zi-Qin Chen
- Department
of Fiber and Composite Materials, Feng Chia
University, Taichung 40724, Taiwan
| | - Chi-Chi Wu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Cyun Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Wen Chiu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsieh-Chih Chen
- Department
of Fiber and Composite Materials, Feng Chia
University, Taichung 40724, Taiwan
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center
for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
36
|
Kabra D. Origin of Contrasting Emission Spectrum of Bromide versus Iodide Layered Perovskite Semiconductors. J Phys Chem Lett 2022; 13:2737-2743. [PMID: 35312333 DOI: 10.1021/acs.jpclett.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The origin of broadband emission is studied using temperature-dependent time-resolved photoluminescence (PL) spectra for two-dimensional (2D) layered halide perovskites (i.e., (PEA)2PbBr4 = phenylethylammonium lead bromide and (PEA)2PbI4 = phenylethylammonium lead iodide) semiconductors. Both perovskite systems show only a single peak exciton emission at room temperature, which becomes multipeak exciton emissions at low temperatures. For temperatures below 100 K, the (PEA)2PbBr4 film gives broad PL emission, Stokes shifted by 750 meV from narrow exciton emission peaks, whereas the (PEA)2PbI4 film does not show any broad emission. Kinetics of various peaks could provide useful insight to propose a consistent energy level scheme associated with a barrier (PEA) and well (PbX64-) material system's electronic states. This broad emission in (PEA)2PbBr4 perovskite is observed due to coupling of triplet states in the inorganic well (PbBr64-) and organic barrier (PEA) layer, which is in contrast to a proposed model based on self-trapped exciton.
Collapse
Affiliation(s)
- Dinesh Kabra
- Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076, India
| |
Collapse
|
37
|
Peng C, Li C, Zhu M, Zhang C, Jiang X, Yin H, He B, Li H, Li M, So SK, Zhou Z. Reducing Energy Disorder for Efficient and Stable Sn−Pb Alloyed Perovskite Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202201209. [PMID: 35332979 DOI: 10.1002/anie.202201209] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 11/11/2022]
Abstract
An organic small molecule, 1-bromo-4-(methylsulfinyl)benzene (BBMS), was utilized to reduce the energy disorder of a Sn-Pb alloyed perovskite film via hydrogen bonding and coordination bonding interactions, and the resultant BBMS-treated device showed a high efficiency of over 22 % as well as outstanding long-term stability.
Collapse
Affiliation(s)
- Cheng Peng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chongwen Li
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingzhe Zhu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chujun Zhang
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| | - Xiafei Jiang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hang Yin
- School of Physics, Shandong University, Jinan, 250100, P. R. China
| | - Benlin He
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Haiyan Li
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Ming Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shu Kong So
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, P. R. China
| | - Zhongmin Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
38
|
zhou Z, Peng C, Li C, Zhu M, Zhang C, Jiang X, He B, Li H, Li M, So SK, Yin H. Reducing Energy Disorder for Efficient and Stable Sn‐Pb Alloyed Perovskite Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- zhongmin zhou
- Qingdao University of Science and Technology College of chemistry and molecular engineering No.53 Zhengzhou Rd,Qingdao,Shandong,P.R.China, 266042 Qingdao CHINA
| | - Cheng Peng
- Qingdao University of Science and Technology College of Chemistry and Molecular Engineering CHINA
| | - Chongwen Li
- Ocean University of China - Laoshan Campus: Ocean University of China Institute of Materials Science and Engineering CHINA
| | - Mingzhe Zhu
- Qingdao University of Science and Technology College of Chemistry and Molecular Engineering CHINA
| | - Chujun Zhang
- HKBU: Hong Kong Baptist University Department of Physics HONG KONG
| | - Xiafei Jiang
- Qingdao University of Science and Technology College of Chemistry and Molecular Engineering CHINA
| | - Benlin He
- Ocean University of China Institute of Materials Science and Engineering CHINA
| | - Haiyan Li
- Ocean University of China Institute of Materials Science and Engineering CHINA
| | - Ming Li
- Qingdao University of Science and Technology College of Chemistry and Molecular Engineering CHINA
| | - Shu Kong So
- Hong Kong Baptist University Department of Physics HONG KONG
| | - Hang Yin
- Shandong University School of Physics CHINA
| |
Collapse
|
39
|
Parveen S, Giri PK. Emerging doping strategies in two-dimensional hybrid perovskite semiconductors for cutting edge optoelectronics applications. NANOSCALE ADVANCES 2022; 4:995-1025. [PMID: 36131773 PMCID: PMC9417862 DOI: 10.1039/d1na00709b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/16/2022] [Indexed: 05/08/2023]
Abstract
The past decade has witnessed tremendous progress in metal halide perovskites, particularly in lead (Pb) halide perovskites, because of their extraordinary performance in cutting-edge optoelectronic devices. However, the toxicity of Pb and the environmental stability of the perovskites are two major issues that this field is currently facing. In recent years, 2D layered perovskites have emerged as a promising alternative to the traditional 3D perovskites due to their structural flexibility and higher environmental stability, though they lack the desired level of device efficiency. Doping with target ions can drastically tune the crystal structure, optical properties, charge recombination dynamics, and electronic properties of the 2D perovskite. Although the field of doping in 2D perovskites has seen substantial growth in recent times, no comprehensive review is available on the recent advances in doping of 2D perovskites and its effect on the optoelectronic properties. In this review, we summarize the progress in doping in 2D perovskites based on different doping sites including progress in different synthesis strategies and their impact on crystal structures and various optoelectronic properties. We then highlight the recent achievements in doped 2D perovskites for photovoltaic, LED and other emerging applications. Finally, we conclude with the challenges and the future scope in the doping studies of 2D layered perovskites, which need to be addressed for further developments of next-generation 2D perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Sumaiya Parveen
- Department of Physics, Indian Institute of Technology Guwahati Guwahati 781039 India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati Guwahati 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati 781039 India
| |
Collapse
|
40
|
Yan L, Ma J, Li P, Zang S, Han L, Zhang Y, Song Y. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106822. [PMID: 34676930 DOI: 10.1002/adma.202106822] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In recent years, 2D Ruddlesden-Popper (2DRP) perovskite materials have been explored as emerging semiconductor materials in solar cells owing to their excellent stability and structural diversity. Although 2DRP perovskites have achieved photovoltaic efficiencies exceeding 19%, their widespread use is hindered by their inferior charge-carrier transport properties in the presence of diverse organic spacer cations, compared to that of traditional 3D perovskites. Hence, a systematic understanding of the carrier transport mechanism in 2D perovskites is critical for the development of high-performance 2D perovskite solar cells (PSCs). Here, the recent advances in the carrier behavior of 2DRP PSCs are summarized, and guidelines for successfully enhancing carrier transport are provided. First, the composition and crystal structure of 2DRP perovskite materials that affect carrier transport are discussed. Then, the features of 2DRP perovskite films (phase separation, grain orientation, crystallinity kinetics, etc.), which are closely related to carrier transport, are evaluated. Next, the principal direction of carrier transport guiding the selection of the transport layer is revealed. Finally, an outlook is proposed and strategies for enhancing carrier transport in high-performance PSCs are rationalized.
Collapse
Affiliation(s)
- Linfang Yan
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junjie Ma
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengwei Li
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuangquan Zang
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liyuan Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yiqiang Zhang
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
41
|
Xing S, Lian Y, Lai R, Cao X, Yu M, Zhang G, Zhao B, Di D. Tuning Precursor-Amine Interactions for Light-Emitting Lead Bromide Perovskites. J Phys Chem Lett 2022; 13:704-710. [PMID: 35023748 DOI: 10.1021/acs.jpclett.1c03977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic additives with amino moieties are effective in improving the properties of archetypical formamidinium (FA)-based hybrid perovskites for photovoltaic and light-emitting applications. However, a detailed understanding of how amino additives affect the perovskite materials is lacking, impeding developments in this area. Here, by investigating the interactions of lead bromide perovskite precursors with phenethylamine (PEA) and its derivatives with small variations in chemical structure, we reveal that only the secondary amine (N-methyl-2-phenylethylamine (N-PEA)) results in strengthened hydrogen bonds with FABr in precursor solutions, allowing the formation of high-quality perovskite films. The photoluminescence quantum efficiencies (PLQEs) of the resultant perovskite samples on widely used charge-transport substrates are retained to 82% of their original values, indicating reduced sensitivity to interfacial nonradiative traps critical to device applications. Using a standard device structure, green perovskite light-emitting diodes with peak external quantum efficiencies of 12.7% at ∼500 cd m-2 and operational lifetimes (T50) exceeding 10 h (at 100 cd m-2) are obtained.
Collapse
Affiliation(s)
- Shiyu Xing
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Yaxiao Lian
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Runchen Lai
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Xuhui Cao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Minhui Yu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Guoling Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Baodan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
42
|
Zheng H, Zhang T, Wang Y, Li C, Su Z, Wang Z, Chen H, Yuan S, Gu Y, Ji L, Li J, Li S. Zwitterion-Assisted Crystal Growth of 2D Perovskites with Unfavorable Phase Suppression for High-Performance Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:814-825. [PMID: 34963289 DOI: 10.1021/acsami.1c19263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite two-dimensional (2D) Ruddlesden-Popper-phase layered perovskites (RPLPs) exhibiting excellent environmental stability, most solar cells based on 2D RPLP films are fabricated in a controlled inert atmosphere. Meanwhile, the poor charge transport of 2D RPLP films owing to the unfavorable phase arrangement and defects limits the efficiency of 2D RPLP solar cells. Here, we fabricate high-efficiency 2D RPLP solar cells in ambient air assisted by a zwitterion (ZW) additive. We show that the ZW additive suppresses the formation of the bottom 2D phases (n ≤ 2) and the top 3D-like phases in 2D RPLP films. These 2D phases usually grow parallel to the substrate and act as trap sites that inhibit charge transport in the vertical direction. The 3D-like phases, on the other hand, aggravate the long-term stability due to the intrinsic instability of MA+ cations. With improved phase distribution, crystal orientation, and reduced trap states in 2D RPLP films, efficient charge transport is obtained. Finally, a record-high open-circuit voltage (Voc) of 1.19 V and a power conversion efficiency of 17.04% with an enhanced stability are achieved for (BA0.9PEA0.1)2MA3Pb4I13-based (n = 4) solar cells fabricated under high humidity (∼65% RH).
Collapse
Affiliation(s)
- Hualin Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Ting Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Yafei Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Canzhou Li
- School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Ze Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Hao Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Shihao Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Yiding Gu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Long Ji
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Jian Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Shibin Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| |
Collapse
|
43
|
Li N, Yang Y, Shi Z, Lan Z, Arramel A, Zhang P, Ong WJ, Jiang J, Lu J. Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. iScience 2022; 25:103753. [PMID: 35128355 PMCID: PMC8803620 DOI: 10.1016/j.isci.2022.103753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Unique performance of the hybrid organic-inorganic halide perovskites (HOIPs) has attracted great attention because of their continuous exploration and breakthrough in a multitude of energy-related applications. However, the instability and lead-induced toxicity that arise in bulk perovskites are the two major challenges that impede their future commercialization process. To find a solution, a series of two-dimensional HOIPs (2D HOIPs) are investigated to prolong the device lifetime with highly efficient photoelectric conversion and energy storage. Herein, the recent advances of 2D HOIPs and their structural derivatives for the energy realms are summarized and discussed. The basic understanding of crystal structures, physicochemical properties, and growth mechanisms is presented. In addition, the current challenges and future directions to provide a roadmap for the development of next generation 2D HOIPs are prospected
Collapse
Affiliation(s)
- Neng Li
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Corresponding author
| | - Yufei Yang
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zuhao Shi
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhigao Lan
- Institute of New Materials & College of Physics and Telecommunications, Huanggang Normal University, Huangzhou 438000, China
- Corresponding author
| | - Arramel Arramel
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang Selangor Darul Ehsan 43900, Malaysia
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering & School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China
- Corresponding author
| | - Jianfeng Lu
- State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
44
|
Cheng L, Meng K, Qiao Z, Zhai Y, Yu R, Pan L, Chen B, Xiao M, Chen G. Tailoring Interlayer Spacers for Efficient and Stable Formamidinium-Based Low-Dimensional Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106380. [PMID: 34750869 DOI: 10.1002/adma.202106380] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
2D Dion-Jacobson (DJ) perovskite solar cells generally show mediocre device performances as they are restrained by their defective film quality. The rigid diammonium organic interlayer spacers are intolerant to lattice mismatches, which induces defects and distortions and ultimately deteriorates the optoelectronic properties. Herein, a secondary interlayer spacer is introduced into formamidinium (FA)-based low-dimensional perovskite, which substantially improves the film quality. The flexible monovalent spacer cations effectively alleviate lattice distortions and reduce crystal defects, providing perovskite films with desirable microscopic morphology, preferable crystal orientation, reduced defect states, and improved charge transport capability. As a result, the optimized perovskite solar cell based on the (PDA0.9 PA0.2 )(FA)3 Pb4 I13 (PDA = propane-1,3-diammonium, PA = propylammonium) film exhibits the exceptional power conversion efficiency of 16.0%, the highest reported value in its class. In addition, the device demonstrates the enhanced thermal stability, retaining 90% of its initial efficiency after aging at 85 °C for 800 h.
Collapse
Affiliation(s)
- Lei Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ke Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yufeng Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Li Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mingyue Xiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
45
|
Zhu N, Xu K, Xing J, Zhang J, Dai J. Ionic Liquid Passivation Eliminates Low- n Quantum Well Domains in Blue Quasi-2D Perovskite Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57540-57547. [PMID: 34844410 DOI: 10.1021/acsami.1c15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In quasi-two-dimensional (quasi-2D) perovskite films, carriers transport in the cascade structural systems involving various quantum wells (QWs) n, but their efficiency is limited by the severe nonradiative recombination within plentiful n = 1, 2, 3 domains induced by traditional ammonium bromide passivation. Here, we fabricate the quasi-2D films with the elimination of n = 1, 2, 3 domains by introducing the ionic liquid n-butylamine acetate (BAAc) instead of n-butylamine hydrobromide (BABr), which increases the photoluminescence quantum yield (PLQY) and lowers the surface roughness of films. Due to the anion exchange between BAAc and methylamine hydrobromide (MABr), BAAc exhibits a sole passivation effect on methylamine-based perovskites. As a result, the ionic liquid-derived perovskite light-emitting diodes (PeLEDs) display blue emission at 479 nm and show significantly improved performance on external quantum efficiency (EQE) and luminance. Our finding provides insights into the passivating effect of ionic liquid on quasi-2D perovskites and will benefit fabricating PeLEDs with enhanced performance.
Collapse
Affiliation(s)
- Ningning Zhu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kaixuan Xu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xing
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Academy of Quantum Information Science, Beijing 100193, China
| | - Jiangnan Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
46
|
Ren M, Cao S, Zhao J, Zou B, Zeng R. Advances and Challenges in Two-Dimensional Organic-Inorganic Hybrid Perovskites Toward High-Performance Light-Emitting Diodes. NANO-MICRO LETTERS 2021; 13:163. [PMID: 34341878 PMCID: PMC8329153 DOI: 10.1007/s40820-021-00685-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) perovskites are known as one of the most promising luminescent materials due to their structural diversity and outstanding optoelectronic properties. Compared with 3D perovskites, 2D perovskites have natural quantum well structures, large exciton binding energy (Eb) and outstanding thermal stability, which shows great potential in the next-generation displays and solid-state lighting. In this review, the fundamental structure, photophysical and electrical properties of 2D perovskite films were illustrated systematically. Based on the advantages of 2D perovskites, such as special energy funnel process, ultra-fast energy transfer, dense film and low efficiency roll-off, the remarkable achievements of 2D perovskite light-emitting diodes (PeLEDs) are summarized, and exciting challenges of 2D perovskite are also discussed. An outlook on further improving the efficiency of pure-blue PeLEDs, enhancing the operational stability of PeLEDs and reducing the toxicity to push this field forward was also provided. This review provides an overview of the recent developments of 2D perovskite materials and LED applications, and outlining challenges for achieving the high-performance devices.
Collapse
Affiliation(s)
- Miao Ren
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|