1
|
Gao L, Liu Y, Ye L, Liang S, Lin J, Zeng J, Lei L, Huang Q, Wan Y, Zhang B. Metal ion coordinated tea polyphenol nanocoating for enhanced probiotic therapy in inflammatory bowel disease. Biomaterials 2025; 321:123323. [PMID: 40215650 DOI: 10.1016/j.biomaterials.2025.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
Probiotics encapsulated with metal-phenolic networks (MPNs) present a promising approach for treating inflammatory bowel diseases (IBD). However, current MPN systems predominantly use tannic acid (TA) as the phenolic source, with limited exploration of other polyphenols, and face challenges in long-term stability and biocompatibility. Herein, three alternative tea polyphenols, gallic acid (GA), epigallocatechin (EGC) and epigallocatechin gallate (EGCG), were coordinated with ferric ions, to fabricate MPN-coated Lactobacillus rhamnosus LGG (MPN@L). These were compared with TA-based MPN@L to evaluate their effectiveness in alleviating IBD. All MPN@L complexes demonstrated superior adhesion and retention compared to uncoated probiotics in both ex vivo and in vivo models. Specifically, EGC@L exhibited the highest survival rate throughout gastrointestinal digestion, with a 2.7 log CFU/mL improvement over uncoated probiotics, and showed optimal retention in murine intestine with a fluorescence intensity of 24.3 × 106 p/s/cm2/sr by day four. All MPN@L formation effectively alleviated ulcerative colitis by reducing myeloperoxidase levels, modulating cytokines profiles, and enhancing gut microbiota. EGC@L particularly increased beneficial bacterial genera, including Lactobacillus, Adlercreutzia, and Oscillospira, while decreasing the pro-inflammatory genera. This study highlights the potential of MPN-based probiotic microencapsulation to enhanced treatment for gastrointestinal disorders, expending the application of probiotic microencapsulation in IBD therapy.
Collapse
Affiliation(s)
- Lu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yunjian Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ling Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Sizhi Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiancan Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiaying Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lei Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou, 510640, China
| | - Yujun Wan
- Department of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Jiang JN, Kong FH, Lei Q, Zhang XZ. Surface-functionalized bacteria: Frontier explorations in next-generation live biotherapeutics. Biomaterials 2025; 317:123029. [PMID: 39736217 DOI: 10.1016/j.biomaterials.2024.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Screening robust living bacteria to produce living biotherapeutic products (LBPs) represents a burgeoning research field in biomedical applications. Despite their natural abilities to colonize bio-interfaces and proliferate, harnessing bacteria for such applications is hindered by considerable challenges in unsatisfied functionalities and safety concerns. Leveraging the high degree of customization and adaptability on the surface of bacteria demonstrates significant potential to improve therapeutic outcomes and achieve tailored functionalities of LBPs. This review focuses on the recent laboratory strategies of bacterial surface functionalization, which aims to address these challenges and potentiate the therapeutic effects in biomedicine. Firstly, we introduce various functional materials that are used for bacterial surface functionalization involving organic, inorganic, and biological materials. Secondly, the methodologies for achieving bacterial surface functionalization are categorized into three primary approaches including covalent bonding, non-covalent interactions, and hybrid techniques, while various advantages and limitations of different modification strategies are compared from multiple perspectives. Subsequently, the current status of the applications of surface-functionalized bacteria in bioimaging and disease treatments, especially in the treatment of inflammatory bowel disease (IBD) and cancer is summarized. Finally, challenges and pressing issues in the development of surface-functionalized bacteria as LBPs are presented.
Collapse
Affiliation(s)
- Jia-Ni Jiang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fan-Hui Kong
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China; Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Qi Lei
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
3
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2025; 17:1132-1170. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Rheem HB, Kim N, Nguyen DT, Baskoro GA, Roh JH, Lee JK, Kim BJ, Choi IS. Single-Cell Nanoencapsulation: Chemical Synthesis of Artificial Cell-in-Shell Spores. Chem Rev 2025. [PMID: 40403226 DOI: 10.1021/acs.chemrev.4c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Nature has evolved adaptive strategies to protect living cells and enhance their resilience against hostile environments, exemplified by bacterial and fungal spores. Inspired by cryptobiosis in nature, chemists have designed and synthesized artificial "cell-in-shell" structures, endowed with the protective and functional capabilities of nanoshells. The cell-in-shells hold the potential to overcome the inherent limitations of biologically naı̈ve cells, enabling the acquisition of exogenous phenotypic traits through the chemical process known as single-cell nanoencapsulation (SCNE). This review highlights recent advancements in the development of artificial spores, with sections organized based on the categorization of material types utilized in SCNE, specifically organic, hybrid, and inorganic types. Particular emphasis is placed on the cytoprotective and multifunctional roles of nanoshells, demonstrating potential applications of SCNEd cells across diverse fields, including synthetic biology, biochemistry, materials science, and biomedical engineering. Furthermore, the perspectives outlined in this review propose future research directions in SCNE, with the goal of achieving fine-tuned precision in chemical modulation at both intracellular and pericellular levels, paving the way for the design and construction of customized artificial spores tailored to meet specific functional needs.
Collapse
Affiliation(s)
- Hyeong Bin Rheem
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
| | | | - Jihun H Roh
- Department of Chemistry, University of Ulsan, Ulsan 44776, Korea
| | - Jungkyu K Lee
- Department of Chemistry, Kyungpook National University, Daegu 41566, Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Korea
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan 44033, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
5
|
Wang C, Fulati A, Kimura K, Li X, Richardson JJ, Naito M, Miyata K, Ichiki T, Ejima H. Encapsulation of Small Extracellular Vesicles into Selectively Disassemblable Shells of PEGylated Metal-Phenolic Networks. Adv Healthc Mater 2025:e2405188. [PMID: 40326152 DOI: 10.1002/adhm.202405188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/12/2025] [Indexed: 05/07/2025]
Abstract
Small extracellular vesicles (sEVs) are cell-derived particles used for intercellular communication in living organisms that have gained great interest from researchers for their use as drug carriers and diagnostic agents. However, the isolation and storage of sEVs lead to issues including lipid membrane disruption, protein denaturation, and nucleic acid degradation. Herein, a surface functionalization strategy is reported for encapsulating single sEV into selectively disassemblable protective shells composed of metal-phenolic networks (MPNs) post-modified with poly(ethylene glycol) (PEG). Disassemblable MPN shells can be rapidly deposited on sEVs in a one-step manner and post-modified with PEG. These coatings enhance the colloidal stability of sEVs and protect them against harsh storage conditions, while the non-covalent and selectively disassemblable nature of the MPN shell allows recovery after storage without compromising their surface integrity and functionality. It is demonstrated that various triggers, such as pH adjustment, competitive chelation, and redox reactions, can be used to disassemble the MPN shell, thereby offering widely adoptable strategies depending on the target applications. This approach potentially overcomes conventional challenges associated with sEV processing and storage and may contribute to reducing cold-chain requirements and transportation costs of future sEVs-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ailifeire Fulati
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kenta Kimura
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Xianglan Li
- Materials Fabrication and Analysis Platform, Research Network and Facility Services Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Joseph J Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Mitsuru Naito
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Zhang T, Wang C, Du T, Sun H, Han Y, Shi S, Wang J, Zhang W. Polydopamine-mediated biointerfacial nanozyme as probiotic protective coating for IBD therapy. Int J Biol Macromol 2025; 308:142699. [PMID: 40169054 DOI: 10.1016/j.ijbiomac.2025.142699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Probiotics offer a promising strategy to address the dysfunction of the intestinal mucosal barrier and dysregulation of the gut microbiota in inflammatory bowel disease (IBD). However, the low viability and poor adhesion of probiotics in complex gastrointestinal environments pose significant challenges. To tackle these issues, we designed a specialized protective nano-coating (PDA@CeO2) using biointerfacial phenolic assembly combined with nanozymes for Bifidobacterium bifidum (B.B.). Characteristic peaks of CeO2 nanoparticles were detected on B.B. via XRD analysis, while SEM and TEM images confirmed the successful attachment of CeO2 nanoparticles to the probiotic surface. The nano-coating (PDA@CeO2) simultaneously provides B.B. with high adhesion in the intestine, strong tolerance in complex gastrointestinal environments, and the ability to scavenge excess reactive oxygen species (ROS) due to its excellent mucoadhesive ability and high nanozyme activity. Specifically, the protection provided by nano-coating against simulated gastric fluid (SGF, pH 1.2) resulted in cell survival rates approximately 9.4 times higher than those of unprotected B.B. after 1 h of exposure. In IBD mouse models, the combination of PDA@CeO2 and B.B. demonstrated excellent therapeutic effects, promoting gut barrier repair. Additionally, an increase in Muribaculaceae and Prevotellaceae_UCG-001 and a decrease in Desulfovibrionaceae reshaped the intestinal flora, reducing recurrence. This study highlights the potential of enhancing probiotic functionality through targeted design of protective nano-coatings for IBD therapy.
Collapse
Affiliation(s)
- Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Chen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaru Han
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Shuo Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
7
|
Han SY, Kim N, Nguyen DT, Yang S, Kang EK, Baskoro GA, Lee SH, Lee KB, Kim BJ, Choi IS. Cytoprotective Nanoencapsulation of Probiotic Cells within Fe 3+-Phytic Acid Nanoshells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10625-10631. [PMID: 40249835 DOI: 10.1021/acs.langmuir.5c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Probiotic oral delivery is challenged by harsh gastrointestinal conditions and environmental stressors in the body. This study presents the construction of durable nanoshells composed of an Fe3+-phytic acid metal-organic complex around individual probiotic cells, providing exceptional cytoprotective properties, in single-cell nanoencapsulation. Nanoencapsulated Levilactobacillus brevis maintains high viability under simulated gastric fluid and the antibiotic tetracycline. The Fe3+-phytic acid nanoshells provide an effective platform for improving the viability and functionality of probiotics in therapeutic and nutritional applications.
Collapse
Affiliation(s)
| | - Nayoung Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | | | - Seoin Yang
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Eunhye K Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | | | - Sang-Hee Lee
- Center for Bio-Imaging and Translational Research, KBSI, Ochang, Cheongju28119, Korea
| | - Kyung-Bok Lee
- Center for Bio-Imaging and Translational Research, KBSI, Ochang, Cheongju28119, Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44610, Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
8
|
Wang Y, Liu L, Hou S. Surface engineering as a potential strategy to enhance desiccation tolerance of beneficial bacteria. Front Microbiol 2025; 16:1576511. [PMID: 40291806 PMCID: PMC12021878 DOI: 10.3389/fmicb.2025.1576511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Desiccation can diminish the viability of beneficial bacteria by over 90%, threatening their effectiveness in agricultural productivity and probiotic applications. Bacterial surface engineering, already proven to combat acidic environments and oxidative damage, offers promising avenues for mitigating desiccation stress. This Perspective explores and adapts these approaches-spanning bioinspired coatings, encapsulation methods, and nanotechnology-to significantly improve bacterial survival under dehydration. By slowing water loss, preserving membrane integrity, and minimizing oxidative damage, surface engineering paves the way for scalable and effective strategies to bolster bacterial resilience in demanding environments.
Collapse
Affiliation(s)
| | - Lei Liu
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Shuai Hou
- Institute of Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Wu Z, Xu K, Huang R, Wang X, Teng JLL, Yu X, Jin L, Li Q, Leung KCF, Wong HM, Li X. Cyborg microbe biohybrids with metal-organic coating layers: Strategies, functionalisation and potential applications. Mater Today Bio 2025; 31:101642. [PMID: 40161925 PMCID: PMC11950775 DOI: 10.1016/j.mtbio.2025.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The integration of living microbes, specifically bacteria and fungi, with metal-organic nanocoatings has led to the recent development of cyborg microbe biohybrids, which show excellent adaptability and functionality for a wide range of potential applications in biotechnology and medicine. This review discusses the strategies, functionalisation, and applications of these biohybrids, which are categorised into two types of coatings: metal-organic frameworks (MOFs) and metal-phenolic networks (MPNs). Key advances in their synthetic approaches via in-situ and pre-synthesised coatings are crucially addressed, and yet the methodology details and specific advantages are highlighted. Despite the notable advancements, there are various limitations and challenges, such as determination of the long-term viability and stability of the biohybrids, insufficient work on their theranostic applications and essentially scaling-up difficulties for industrial and clinical translation. The latest advancements in the biohybrids and related technology have established a critical foundation for enhancing innovative studies through the strong interdisciplinary teamwork.
Collapse
Affiliation(s)
- Zichen Wu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ke Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xinna Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, PR China
| | - Jade Lee-Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Quanli Li
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, No. 3004L Longgang Avenue, Shenzhen, PR China
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Meishan Road, Hefei, PR China
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, PR China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
10
|
Zhang T, Wang C, Su S, Sun A, Du T, Wang J, Liu J, Zhang W. Metal-phenolic networks enhanced the protection of excipients for probiotics during freeze-drying. Food Res Int 2025; 206:116097. [PMID: 40058935 DOI: 10.1016/j.foodres.2025.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/09/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Probiotic powder using a single protective method during freeze-drying is insufficient vitality because it lacks adequate protection. Here we developed a protection strategy through biointerfacial phenolic self-assembly to enhance the protection of excipients for probiotics to address existing challenges during freeze-drying. This strategy could strengthen the connections of excipients and phenolic protective layers containing hydroxyl groups with water molecules, improving the hydration layer's preservation and shielding bacteria from damage. The results indicated that, compared with origin probiotics, protected probiotics maintained higher viability at approximately 91 % and higher ATPase activity and exhibited a better survival rate in various environmental challenges after freeze-drying. The broad applicability of this protection strategy was confirmed across other LAB strains. Additionally, the protected probiotics demonstrated superior shelf life during 30 days of storage, indicating promising prospects for preparing bacterial powder via freeze-drying.
Collapse
Affiliation(s)
- Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Chen Wang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Shengpeng Su
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China; Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, China
| | - Axiang Sun
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Julong Liu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, Tongzhou, 101107, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China.
| |
Collapse
|
11
|
He Y, Liu Q, He Y, Deng S, Guo J. Engineering live cell surfaces with polyphenol-functionalized nanoarchitectures. Chem Sci 2025; 16:3774-3787. [PMID: 39975767 PMCID: PMC11833234 DOI: 10.1039/d4sc07198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Cell surface functionalization has emerged as a powerful strategy for modulating cellular behavior and expanding cellular capabilities beyond their intrinsic biological limits. Natural phenolic molecules present as 'green' and versatile building blocks for constructing cell-based biomanufacturing and biotherapeutic platforms. Due to the abundant catechol or galloyl groups, phenolic molecules can dynamically and reversibly bind to versatile substrates via multiple molecular interactions. A range of self-assembled cytoadhesive polyphenol-functionalized nanoarchitectures (cytoPNAs) can be formed via metal coordination or macromolecular self-assembly that can rapidly attach to cell surfaces in a cell-agnostic manner. Additionally, the cytoPNAs attached on the cell surface can also provide active sites for the conjunction of bioactive payloads, further expanding the structural repertoire and properties of engineered cells. This Perspective introduces the wide potential of cytoPNA-mediated cell engineering in three key applications: (1) creating inorganic-organic biohybrids as cell factories for efficient production of high-value chemicals, (2) constructing engineered cells for cell-based therapies with enhanced targeting specificity and nano-bio interactions, and (3) encapsulating microbes as biotherapeutics for the treatment of gastrointestinal tract-related diseases. Collectively, the rapid, versatile, and modular nature of cytoPNAs presents a promising platform for next-generation cell engineering and beyond.
Collapse
Affiliation(s)
- Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Qinling Liu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University Chengdu Sichuan 611130 China
| | - Yuanmeng He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Siqi Deng
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia Vancouver BC V6T 1Z4 Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
12
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
13
|
Li C, Feng M, Li B, Feng X, Zhang Y, Wang B. Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells. ACS NANO 2025; 19:2890-2899. [PMID: 39763451 DOI: 10.1021/acsnano.4c16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality. Herein, we report the construction of covalent organic framework (COF) mesoporous shells for single-cell nanoencapsulation, providing selective permeability and comprehensive protection for living microbial cells. The COF shells ensure nutrient uptake while blocking large harmful molecules and UV-C radiation, thereby preserving cell viability and metabolic activity. Integration of such crystalline porous shells with genetically modified cell factories for metabolic production is further investigated, revealing no adverse effects, as demonstrated by riboflavin production. Moreover, the COF shell effectively shields cells, ensuring efficient bioproduction even after being treated under harsh conditions. This versatile encapsulation approach is applicable for different cell types, providing a robust platform for cell surface engineering.
Collapse
Affiliation(s)
- Chen Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mengchu Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bixiao Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
14
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024; 53:10800-10826. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
15
|
Liao W, Cheng B, Wang C, Richardson JJ, Naito M, Miyata K, Ejima H. Surface-Initiated Synergistic Disassembly of Metal-Phenolic Networks by Redox and Hydrolytic Reactions. CHEMISTRY OF MATERIALS 2024; 36:9646-9657. [DOI: 10.1021/acs.chemmater.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Wenting Liao
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bohan Cheng
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Hiroshima 739-0046, Japan
- RIKEN Center of Emergent Matter Science (CEMS), Saitama 739-0046, Japan
| | - Chenyu Wang
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joseph J. Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mitsuru Naito
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
16
|
Zhao R, Yu T, Li J, Niu R, Liu D, Wang W. Single-cell encapsulation systems for probiotic delivery: Armor probiotics. Adv Colloid Interface Sci 2024; 332:103270. [PMID: 39142064 DOI: 10.1016/j.cis.2024.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Functional foods or drugs based on probiotics have gained unprecedented attention and development due to the increasingly clear relationship between probiotics and human health. Probiotics can regulate intestinal microbiota, dynamically participating in various physiological activities to directly affect human health. Some probiotic-based functional preparations have shown great potential in treating multiple refractory diseases. Currently, the survival and activity of probiotic cells in complex environments in vitro and in vivo have taken priority, and various encapsulation systems based on food-derived materials have been designed and constructed to protect and deliver probiotics. However, traditional encapsulation technology cannot achieve precise protection for a single probiotic, which makes it unable to have a significant effect after release. In this case, single-cell encapsulation systems can be assembled based on biological interfaces to protect and functionalize individual probiotic cells, maximizing their physiological activity. This review discussed the arduous challenges of probiotics in food processing, storage, human digestion, and the commonly used probiotic encapsulation system. Besides, a novel technology of probiotic encapsulation was introduced based on single-cell coating, namely, "armor probiotics". We focused on the classification, structural design, and functional characteristics of armor coatings, and emphasized the essential functional characteristics of armor probiotics in human health regulation, including regulating intestinal health and targeted bioimaging and treatment of diseased tissues. Subsequently, the benefits, limitations, potential challenges, as well as future direction of armor probiotics were put forward. We hope this review may provide new insights and ideas for developing a single-cell probiotics encapsulating system.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
17
|
Adebowale K, Liao R, Suja VC, Kapate N, Lu A, Gao Y, Mitragotri S. Materials for Cell Surface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210059. [PMID: 36809574 DOI: 10.1002/adma.202210059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface-modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell-surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof-of-concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.
Collapse
Affiliation(s)
- Kolade Adebowale
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
18
|
Ye H, Zheng X, Yang H, Kowal MD, Seifried TM, Singh GP, Aayush K, Gao G, Grant E, Kitts D, Yada RY, Yang T. Cost-Effective and Wireless Portable Device for Rapid and Sensitive Quantification of Micro/Nanoplastics. ACS Sens 2024; 9:4662-4670. [PMID: 39133267 DOI: 10.1021/acssensors.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The accumulation of micro/nanoplastics (MNPs) in ecosystems poses tremendous environmental risks for terrestrial and aquatic organisms. Designing rapid, field-deployable, and sensitive devices for assessing the potential risks of MNPs pollution is critical. However, current techniques for MNPs detection have limited effectiveness. Here, we design a wireless portable device that allows rapid, sensitive, and on-site detection of MNPs, followed by remote data processing via machine learning algorithms for quantitative fluorescence imaging. We utilized a supramolecular labeling strategy, employing luminescent metal-phenolic networks composed of zirconium ions, tannic acid, and rhodamine B, to efficiently label various sizes of MNPs (e.g., 50 nm-10 μm). Results showed that our device can quantify MNPs as low as 330 microplastics and 3.08 × 106 nanoplastics in less than 20 min. We demonstrated the applicability of the device to real-world samples through determination of MNPs released from plastic cups after hot water and flow induction and nanoplastics in tap water. Moreover, the device is user-friendly and operative by untrained personnel to conduct data processing on the APP remotely. The analytical platform integrating quantitative imaging, customized data processing, decision tree model, and low-cost analysis ($0.015 per assay) has great potential for high-throughput screening of MNPs in agrifood and environmental systems.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Xinzhe Zheng
- Department of Computer Science, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Haoming Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Matthew D Kowal
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Teresa M Seifried
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Gurvendra Pal Singh
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T1Z2, Canada
| | - Edward Grant
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - David Kitts
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Rickey Y Yada
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
19
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
20
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
21
|
Zeng X, Chen Q, Chen T. Nanomaterial-assisted oncolytic bacteria in solid tumor diagnosis and therapeutics. Bioeng Transl Med 2024; 9:e10672. [PMID: 39036084 PMCID: PMC11256190 DOI: 10.1002/btm2.10672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer presents a formidable challenge in modern medicine due to the intratumoral heterogeneity and the dynamic microenvironmental niche. Natural or genetically engineered oncolytic bacteria have always been hailed by scientists for their intrinsic tumor-targeting and oncolytic capacities. However, the immunogenicity and low toxicity inevitably constrain their application in clinical practice. When nanomaterials, characterized by distinctive physicochemical properties, are integrated with oncolytic bacteria, they achieve mutually complementary advantages and construct efficient and safe nanobiohybrids. In this review, we initially analyze the merits and drawbacks of conventional tumor therapeutic approaches, followed by a detailed examination of the precise oncolysis mechanisms employed by oncolytic bacteria. Subsequently, we focus on harnessing nanomaterial-assisted oncolytic bacteria (NAOB) to augment the effectiveness of tumor therapy and utilizing them as nanotheranostic agents for imaging-guided tumor treatment. Finally, by summarizing and analyzing the current deficiencies of NAOB, this review provides some innovative directions for developing nanobiohybrids, intending to infuse novel research concepts into the realm of solid tumor therapy.
Collapse
Affiliation(s)
- Xiangdi Zeng
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Qi Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Tingtao Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational Medicine, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- School of PharmacyJiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
22
|
Zaragoza N, Anderson GI, Allison-Logan S, Monir K, Furst AL. Novel delivery systems for controlled release of bacterial therapeutics. Trends Biotechnol 2024; 42:929-937. [PMID: 38310020 DOI: 10.1016/j.tibtech.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
As more is learned about the benefits of microbes, their potential to prevent and treat disease is expanding. Microbial therapeutics are less burdensome and costly to produce than traditional molecular drugs, often with superior efficacy. Yet, as with most medicines, controlled dosing and delivery to the area of need remain key challenges for microbes. Advances in materials to control small-molecule delivery are expected to translate to microbes, enabling similar control with equivalent benefits. In this perspective, recent advances in living biotherapeutics are discussed within the context of new methods for their controlled release. The integration of these advances provides a roadmap for the design, synthesis, and analysis of controlled microbial therapeutic delivery systems.
Collapse
Affiliation(s)
- Nadia Zaragoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace I Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirmina Monir
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Ye H, Esfahani EB, Chiu I, Mohseni M, Gao G, Yang T. Quantitative and rapid detection of nanoplastics labeled by luminescent metal phenolic networks using surface-enhanced Raman scattering. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134194. [PMID: 38583196 DOI: 10.1016/j.jhazmat.2024.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 μg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver V6T1Z2, Canada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada.
| |
Collapse
|
24
|
Nguyen DT, Han SY, Kozlowski F, Seisenbaeva GA, Kessler VG, Kim BJ, Choi IS. Biphasic water-oil systems for functional augmentation of probiotic Lactobacillus acidophilus nanoencapsulated in luteolin-Fe 3+ shells. Chem Commun (Camb) 2024; 60:5330-5333. [PMID: 38666704 DOI: 10.1039/d4cc01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Single-cell nanoencapsulation (SCNE) has great potential in the enhancement of therapeutic effects of probiotic microbes. However, the material scope has been limited to water-soluble compounds to avoid non-biocompatible organic solvents that are harmful to living cells. In this work, the SCNE of probiotic Lactobacillus acidophilus with water-insoluble luteolin and Fe3+ ions is achieved by the vortex-assisted, biphasic water-oil system. The process creates L. acidophilus nanoencapsulated in the luteolin-Fe3+ shells that empower the cells with extrinsic properties, such as resistance to lysozyme attack, anti-ROS ability, and α-amylase-inhibition activity, as well as sustaining viability under acidic conditions. The proposed protocol, embracing water-insoluble flavonoids as shell components in SCNE, will be an advanced add-on to the chemical toolbox for the manipulation of living cells at the single-cell level.
Collapse
Affiliation(s)
- Duc Tai Nguyen
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
| | - Sang Yeong Han
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
| | - Filip Kozlowski
- Department of Molecular Sciences, SLU, Uppsala 75007, Sweden
| | | | - Vadim G Kessler
- Department of Molecular Sciences, SLU, Uppsala 75007, Sweden
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
25
|
Fang T, Liu S. Metal-Phenolic Network Directed Coating of Single Probiotic Cell Followed by Photoinitiated Thiol-Ene Click Fortification to Enhance Oral Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308146. [PMID: 38054771 DOI: 10.1002/smll.202308146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Probiotics-based oral therapy has become a promising way to prevent and treat various diseases, while the application of probiotics is primarily restricted by loss of viability due to adverse conditions in the gastrointestinal (GI) tract during oral delivery. Layer-by-layer (LbL) single-cell encapsulation approaches are widely employed to improve the bioavailability of probiotics. However, they are generally time- and labor-intensive owing to multistep operation. Herein, a simple yet efficient LbL technique is developed to coat a model probiotic named Escherichia coli Nissle 1917 (EcN) through polyphenol-Ca2+ network directed allyl-modified gelatin (GelAGE) adsorption followed by cross-linking of GelAGE via photoinitiated thiol-ene click reaction to protect EcN from harsh microenvironments of GI tract. LbL single-cell encapsulation can be performed within 1 h through simple operation. It is revealed that coated EcN exhibits significantly improved viability against acidic gastric fluid and bile salts, and enhanced colonization in the intestinal tract without loss of proliferation capabilities. Furthermore, oral therapy of coated EcN remarkably relieves the pathological symptoms associated with colitis in mice including down-regulating inflammation, repairing epithelial barriers, scavenging reactive oxygen species (ROS), and restoring the homeostasis of gut microbiota. This simplified LbL coating strategy has great potential for various probiotics-mediated biomedical and nutraceutical applications.
Collapse
Affiliation(s)
- Taisong Fang
- Department of Food Science and Nutrition, Innovation Center of Yangtze River Delta, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Innovation Center of Yangtze River Delta, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
26
|
Zhu L, Yu T, Wang W, Xu T, Geng W, Li N, Zan X. Responsively Degradable Nanoarmor-Assisted Super Resistance and Stable Colonization of Probiotics for Enhanced Inflammation-Targeted Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308728. [PMID: 38241751 DOI: 10.1002/adma.202308728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Indexed: 01/21/2024]
Abstract
Manipulation of the gut microbiota using oral microecological preparations has shown great promise in treating various inflammatory disorders. However, delivering these preparations while maintaining their disease-site specificity, stability, and therapeutic efficacy is highly challenging due to the dynamic changes associated with pathological microenvironments in the gastrointestinal tract. Herein, a superior armored probiotic with an inflammation-targeting capacity is developed to enhance the efficacy and timely action of bacterial therapy against inflammatory bowel disease (IBD). The coating strategy exhibits suitability for diverse probiotic strains and has negligible influence on bacterial viability. This study demonstrates that these armored probiotics have ultraresistance to extreme intraluminal conditions and stable mucoadhesive capacity. Notably, the HA-functionalized nanoarmor equips the probiotics with inflamed-site targetability through multiple interactions, thus enhancing their efficacy in IBD therapy. Moreover, timely "awakening" of ingested probiotics through the responsive transferrin-directed degradation of the nanoarmor at the site of inflammation is highly beneficial for bacterial therapy, which requires the bacterial cells to be fully functional. Given its easy preparation and favorable biocompatibility, the developed single-cell coating approach provides an effective strategy for the advanced delivery of probiotics for biomedical applications at the cellular level.
Collapse
Affiliation(s)
- Limeng Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Yu
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tong Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wujun Geng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Li
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
27
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
28
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
29
|
Li X, Liu H, Lin Z, Richardson JJ, Xie W, Chen F, Lin W, Caruso F, Zhou J, Liu B. Cytoprotective Metal-Phenolic Network Sporulation to Modulate Microalgal Mobility and Division. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308026. [PMID: 38014599 PMCID: PMC10797472 DOI: 10.1002/advs.202308026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Synthetic cell exoskeletons created from abiotic materials have attracted interest in materials science and biotechnology, as they can regulate cell behavior and create new functionalities. Here, a facile strategy is reported to mimic microalgal sporulation with on-demand germination and locomotion via responsive metal-phenolic networks (MPNs). Specifically, MPNs with tunable thickness and composition are deposited on the surface of microalgae cells via one-step coordination, without any loss of cell viability or intrinsic cell photosynthetic properties. The MPN coating keeps the cells in a dormant state, but can be disassembled on-demand in response to environmental pH or chemical stimulus, thereby reviving the microalgae within 1 min. Moreover, the artificial sporulation of microalgae resulted in resistance to environmental stresses (e.g., metal ions and antibiotics) akin to the function of natural sporulation. This strategy can regulate the life cycle of complex cells, providing a synthetic strategy for designing hybrid microorganisms.
Collapse
Affiliation(s)
- Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Hai Liu
- College of Biomass Science and EngineeringKey Laboratory of Leather Chemistry and Engineering of Ministry of EducationNational Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengdu610065China
| | - Zhixing Lin
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Joseph J. Richardson
- Department of Chemical and Environmental EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Weiying Xie
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Wei Lin
- College of Biomass Science and EngineeringKey Laboratory of Leather Chemistry and Engineering of Ministry of EducationNational Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengdu610065China
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jiajing Zhou
- College of Biomass Science and EngineeringKey Laboratory of Leather Chemistry and Engineering of Ministry of EducationNational Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengdu610065China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
30
|
Lu ZC, Zhang R, Liu HZ, Zhou JX, Su HF. Nanoarmor: cytoprotection for single living cells. Trends Biotechnol 2024; 42:91-103. [PMID: 37507294 DOI: 10.1016/j.tibtech.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Single cell modification or hybridization technology has become a popular direction in bioengineering in recent years, with applications in clean energy, environmental stewardship, and sustainable human development. Here, we draw attention to nanoarmor, a representative achievement of cytoprotection and functionalization technology. The fundamental principles of nanoarmor need to be studied with input from multiple disciplines, including biology, chemistry, and material science. In this review, we explain the role of nanoarmor and review progress in its applications. We also discuss three main challenges associated with its development: self-driving ability, heterojunction characteristics, and mineralization formation. Finally, we propose a preliminary classification system for nanoarmor.
Collapse
Affiliation(s)
- Zi-Chun Lu
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hai-Zhu Liu
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jin-Xing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Hai-Feng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
31
|
Park J, Kim N, Han SY, Rhee SY, Nguyen DT, Lee H, Choi IS. A Micrometric Transformer: Compositional Nanoshell Transformation of Fe 3+ -Trimesic-Acid Complex with Concomitant Payload Release in Cell-in-Catalytic-Shell Nanobiohybrids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306450. [PMID: 37907409 PMCID: PMC10767450 DOI: 10.1002/advs.202306450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 11/02/2023]
Abstract
Nanoencapsulation of living cells within artificial shells is a powerful approach for augmenting the inherent capacity of cells and enabling the acquisition of extrinsic functions. However, the current state of the field requires the development of nanoshells that can dynamically sense and adapt to environmental changes by undergoing transformations in form and composition. This paper reports the compositional transformation of an enzyme-embedded nanoshell of Fe3+ -trimesic acid complex to an iron phosphate shell in phosphate-containing media. The cytocompatible transformation allows the nanoshells to release functional molecules without loss of activities and biorecognition, while preserving the initial shell properties, such as cytoprotection. Demonstrations include the lysis and killing of Escherichia coli by lysozyme, and the secretion of interleukin-2 by Jurkat T cells in response to paracrine stimulation by antibodies. This work on micrometric Transformers will benefit the creation of cell-in-shell nanobiohybrids that can interact with their surroundings in active and adaptive ways.
Collapse
Affiliation(s)
- Joohyouck Park
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAISTDaejeon34141Republic of Korea
| | - Nayoung Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAISTDaejeon34141Republic of Korea
| | - Sang Yeong Han
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAISTDaejeon34141Republic of Korea
| | - Su Yeon Rhee
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAISTDaejeon34141Republic of Korea
| | - Duc Tai Nguyen
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAISTDaejeon34141Republic of Korea
| | - Hojae Lee
- Department of ChemistryHallym UniversityChuncheon24252Republic of Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAISTDaejeon34141Republic of Korea
| |
Collapse
|
32
|
Wang A, Zhong Q. Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Compr Rev Food Sci Food Saf 2024; 23:e13287. [PMID: 38284583 DOI: 10.1111/1541-4337.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Functional food products containing viable probiotics have become increasingly popular and demand for probiotic ingredients that maintain viability and stability during processing, storage, and gastrointestinal digestions. This has resulted in heightened research and development of powdered probiotic ingredients. The aim of this review is to overview the development of dried probiotics from upstream identification to downstream applications in food. Free probiotic bacteria are susceptible to various environmental stresses during food processing, storage, and after ingestion, necessitating additional materials and processes to preserve their activity for delivery to the colon. Various classic and emerging thermal and nonthermal drying technologies are discussed for their efficiency in preparing dehydrated probiotics, and strategies for enhancing probiotic survival after dehydration are highlighted. Both the formulation and drying technology can influence the microbiological and physical properties of powdered probiotics that are to be characterized comprehensively with various techniques. Furthermore, quality control during probiotic manufacturing and strategies of incorporating powdered probiotics into liquid and solid food products are discussed. As emerging technologies, structure-design principles to encapsulate probiotics in engineered structures and protective materials with improved survivability are highlighted. Overall, this review provides insights into formulations and drying technologies required to supplement viable and stable probiotics into functional foods, ensuring the retention of their health benefits upon consumption.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
- International Flavors and Fragrances, Palo Alto, California, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
33
|
Burke B, Fan G, Wasuwanich P, Moore EB, Furst AL. Self-Assembled Nanocoatings Protect Microbial Fertilizers for Climate-Resilient Agriculture. JACS AU 2023; 3:2973-2980. [PMID: 38034965 PMCID: PMC10685410 DOI: 10.1021/jacsau.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Chemical fertilizers have been crucial for sustaining the current global population by supplementing overused farmland to support consistent food production, but their use is unsustainable. Pseudomonas chlororaphis is a nitrogen-fixing bacterium that could be used as a fertilizer replacement, but this microbe is delicate. It is sensitive to stressors, such as freeze-drying and high temperatures. Here, we demonstrate protection of P. chlororaphis from freeze-drying, high temperatures (50 oC), and high humidity using self-assembling metal-phenolic network (MPN) coatings. The composition of the MPN is found to significantly impact its protective efficacy, and with optimized compositions, no viability loss is observed for MPN-coated microbes under conditions where uncoated cells do not survive. Further, we demonstrate that MPN-coated microbes improve germination of seeds by 150% as compared to those treated with fresh P. chlororaphis. Taken together, these results demonstrate the protective capabilities of MPNs against environmental stressors and represent a critical step towards enabling the production and storage of delicate microbes under nonideal conditions.
Collapse
Affiliation(s)
- Benjamin Burke
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Gang Fan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Pris Wasuwanich
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Evan B. Moore
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
- Center for
Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
34
|
Jiang L, Zeng Y, Li H, Lin Z, Liu H, Richardson JJ, Gao Z, Wu D, Liu L, Caruso F, Zhou J. Peptide-Based Coacervate Protocells with Cytoprotective Metal-Phenolic Network Membranes. J Am Chem Soc 2023; 145:24108-24115. [PMID: 37788442 DOI: 10.1021/jacs.3c07748] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Protocells have garnered considerable attention from cell biologists, materials scientists, and synthetic biologists. Phase-separating coacervate microdroplets have emerged as a promising cytomimetic model because they can internalize and concentrate components from dilute surrounding environments. However, the membrane-free nature of such coacervates leads to coalescence into a bulk phase, a phenomenon that is not representative of the cells they are designed to mimic. Herein, we develop a membranized peptide coacervate (PC) with oppositely charged oligopeptides as the molecularly crowded cytosol and a metal-phenolic network (MPN) coating as the membrane. The hybrid protocell efficiently internalizes various bioactive macromolecules (e.g., bovine serum albumin and immunoglobulin G) (>90%) while also resisting radicals due to the semipermeable cytoprotective membrane. Notably, the resultant PC@MPNs are capable of anabolic cascade reactions and remain in discrete protocellular populations without coalescence. Finally, we demonstrate that the MPN protocell membrane can be postfunctionalized with various functional molecules (e.g., folic acid and fluorescence dye) to more closely resemble actual cells with complex membranes, such as recognition molecules, which allows for drug delivery. This membrane-bound cytosolic protocell structure paves the way for innovative synthetic cells with structural and functional complexity.
Collapse
Affiliation(s)
- Linli Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yiwei Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 Sichuan, China
| | - Hui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 Sichuan, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Joseph J Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Zhanshan Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 Sichuan, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Lin S, Wu F, Zhang Y, Chen H, Guo H, Chen Y, Liu J. Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chem Soc Rev 2023; 52:6617-6643. [PMID: 37724854 DOI: 10.1039/d3cs00369h] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a great leap forward in bacteria-based living agents, including imageable probes, diagnostic reagents, and therapeutics, by virtue of their unique characteristics, such as genetic manipulation, rapid proliferation, colonization capability, and disease site targeting specificity. However, successful translation of bacterial bioagents to clinical applications remains challenging, due largely to their inherent susceptibility to environmental insults, unavoidable toxic side effects, and limited accumulation at the sites of interest. Cell surface components, which play critical roles in shaping bacterial behaviors, provide an opportunity to chemically modify bacteria and introduce different exogenous functions that are naturally unachievable. With the help of surface modification, a wide range of functionalized bacteria have been prepared over the past years and exhibit great potential in various biomedical applications. In this article, we mainly review the synthesis, functionalization, and biomedical applications of surface-modified bacteria. We first introduce the approaches of chemical modification based on the bacterial surface structure and then highlight several advanced functions achieved by modifying specific components on the surface. We also summarize the advantages as well as limitations of surface chemically modified bacteria in the applications of bioimaging, diagnosis, and therapy and further discuss the current challenges and possible solutions in the future. This work will inspire innovative design thinking for the development of chemical strategies for preparing next-generation biomedical bacterial agents.
Collapse
Affiliation(s)
- Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
36
|
Zhu YX, You Y, Chen Z, Xu D, Yue W, Ma X, Jiang J, Wu W, Lin H, Shi J. Inorganic Nanosheet-Shielded Probiotics: A Self-Adaptable Oral Delivery System for Intestinal Disease Treatment. NANO LETTERS 2023; 23:4683-4692. [PMID: 36912868 DOI: 10.1021/acs.nanolett.3c00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The oral delivery of probiotics is commonly adopted for intestinal disease treatments in clinical settings; however, the probiotics suffer from a strong acidic attack in the gastric area and the low-efficiency intestinal colonization of naked probiotics. Coating living probiotics with synthetic materials has proven effective in enabling the adaption of bacteria to gastrointestinal environments, which, unfortunately, may shield the probiotics from initiating therapeutic responses. In this study, we report a copolymer-modified two-dimensional H-silicene nanomaterial (termed SiH@TPGS-PEI) that can facilitate probiotics to adapt to diverse gastrointestinal microenvironments on-demand. Briefly, SiH@TPGS-PEI electrostatically coated on the surface of probiotic bacteria helps to resist erosive destruction in the acidic stomach and spontaneously degrades by reacting with water to generate hydrogen, an anti-inflammatory gas in response to the neutral/weakly alkaline intestinal environment, thus exposing the probiotic bacteria for colitis amelioration. This strategy may shed new light on the development of intelligent self-adaptive materials.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Yanling You
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenwen Yue
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Xinxin Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Junjie Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Han Lin
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
37
|
Zhang F, Xu Z, Jolly KJ. Myeloid cell-mediated drug delivery: from nanomedicine to cell therapy. Adv Drug Deliv Rev 2023; 197:114827. [PMID: 37068659 DOI: 10.1016/j.addr.2023.114827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In the presence of tissue inflammation, injury, or cancer, myeloid cells are recruited to disease regions through a multi-step process involving myelopoiesis, chemotaxis, cell migration, and diapedesis. As an emerging drug delivery approach, cell-mediated drug delivery takes advantage of the cell recruitment process to enhance the active transport of therapeutic cargo to disease regions. In the past few decades, a variety of nano-engineering methods have emerged to enhance interactions of nanoparticles with cells of interest, which can be adapted for cell-mediated drug delivery. Moreover, the drug delivery field can benefit from the recent clinical success of cell-based therapies, which created cell-engineering methods to engineer circulating leukocytes as 'living drug delivery vehicles' to target diseased tissues. In this review, we first provide an overview of myeloid cell recruitment and discuss how various factors within this process may affect cell-mediated delivery. In the second part of this review article, we summarize the status quo of nano-engineering and cell-engineering approaches and discuss how these engineering approaches can be adapted for cell-mediated delivery. Finally, we discuss future directions of this field, pointing out key challenges in the clinical translation of cell-mediated drug delivery.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, USA; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Zijing Xu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Jia W, Wu X, Kang X. Integrated the embedding delivery system and targeted oxygen scavenger enhances free radical scavenging capacity. Food Chem X 2023; 17:100558. [PMID: 36845467 PMCID: PMC9943856 DOI: 10.1016/j.fochx.2022.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.
Collapse
Key Words
- Antioxidant control strategies
- Antioxidations
- BHA, butyl hydroxy anisole
- BHT, butylated hydroxytoluene
- FDA, Food and Drug Administration
- HPLC, high performance liquid chromatography
- HPODE, hydroperoxyoctadecadienoic acid
- LC, liquid chromatography
- Linoleic acid
- Lipoxygenase
- MDA, malondialdehyde
- MPN, metal-polyphenol network
- MS, mass spectrometry
- MUFA, monounsaturated fatty acid
- Nanocomposite packaging
- Nanoparticle delivery system
- PUFA, polyunsaturated fatty acid
- SFA, saturated fatty acid
- TA, tannic acid
- TBHQ, tert-butyl hydroquinone
- US FDA, US Food and Drug Administration
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Kang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
39
|
Nguyen DT, Han SY, Yun G, Lee H, Choi IS. Vortex-assisted, nanoarchitectonic manipulation of microparticles with flavonoid-Fe 3+ complex in biphasic water-oil systems. Chem Commun (Camb) 2023; 59:4612-4615. [PMID: 36987576 DOI: 10.1039/d3cc00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Coordination-driven self-assembly of metal-ligand complexes is a powerful nanoarchitectonic tool for particle engineering, but its usability is limited when using two immiscible coating components. This paper reports that simple vortexing of a biphasic system of Fe3+ ions in water and flavonoids in oil forms nanoshells on individual particles, thereby enabling the utilization of water-insoluble ligands as coating materials. Mechanistic studies suggest that the biphasic mass-transfer equilibrium of flavonoid-Fe3+ species controls the shell formation, with the oil phase acting as a reservoir of coating precursors for continuous coating. The versatility and convenience of our method expand the chemical toolbox for modulating particle-material interfaces.
Collapse
Affiliation(s)
| | | | - Gyeongwon Yun
- Department of Chemistry, KAIST, Daejeon 34141, Korea.
| | - Hojae Lee
- Department of Chemistry, Hallym University, Chuncheon 24252, Korea.
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
40
|
Geng Z, Wang X, Wu F, Cao Z, Liu J. Biointerface mineralization generates ultraresistant gut microbes as oral biotherapeutics. SCIENCE ADVANCES 2023; 9:eade0997. [PMID: 36930714 PMCID: PMC10022893 DOI: 10.1126/sciadv.ade0997] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Despite the fact that oral microecologics are effective in modulating the gut microbiome, they always suffer from multiple insults during the journey from manufacture to arrival at the intestine. Inspired by the protective mechanism of mineralization, we describe a cytocompatible approach of biointerface mineralization that can generate an ultraresistant and self-removable coating on bacterial surface to solve these challenges. Mineral coating endows bacteria with robust resistances against manufacture-associated oxygen exposure, ultraviolet irradiation, and 75% ethanol. Following oral ingestion, the coating is able to actively neutralize gastric acid and release encapsulated bacteria through spontaneous yet rapid double-decomposition reaction. In addition to acid neutralization, the generated calcium ions can trigger micellar aggregation of bile acid, enabling dual exemptions from the insults of gastric acid and bile acid to achieve uncompromised bacterial viability. Further supported by the therapeutic efficacy of coated bacteria toward colitis mice, biointerface mineralization provides a versatile platform for developing next-generation living oral biotherapeutics.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
41
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
42
|
Han SY, Nguyen DT, Kim BJ, Kim N, Kang EK, Park JH, Choi IS. Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation. Polymers (Basel) 2023; 15:polym15051104. [PMID: 36904345 PMCID: PMC10007236 DOI: 10.3390/polym15051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
One-step fabrication method for thin films and shells is developed with nature-derived eggshell membrane hydrolysates (ESMHs) and coffee melanoidins (CMs) that have been discarded as food waste. The nature-derived polymeric materials, ESMHs and CMs, prove highly biocompatible with living cells, and the one-step method enables cytocompatible construction of cell-in-shell nanobiohybrid structures. Nanometric ESMH-CM shells are formed on individual probiotic Lactobacillus acidophilus, without any noticeable decrease in viability, and the ESMH-CM shells effectively protected L. acidophilus in the simulated gastric fluid (SGF). The cytoprotection power is further enhanced by Fe3+-mediated shell augmentation. For example, after 2 h of incubation in SGF, the viability of native L. acidophilus is 30%, whereas nanoencapsulated L. acidophilus, armed with the Fe3+-fortified ESMH-CM shells, show 79% in viability. The simple, time-efficient, and easy-to-process method developed in this work would contribute to many technological developments, including microbial biotherapeutics, as well as waste upcycling.
Collapse
Affiliation(s)
- Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Eunhye K. Kang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| |
Collapse
|
43
|
Lu Z, Jiang X, Yi Q, Xiong J, Han Q, Liang Q. Metal-Polyphenol Network-Mediated Protein Encapsulation Strategy Facilitating the Separation of Proteins and Metabolites in Biospecimens. Anal Chem 2023; 95:581-586. [PMID: 36583571 DOI: 10.1021/acs.analchem.2c03070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Access to both protein and metabolite biomarker information in biospecimens from trace samples remains a significant challenge, and it is necessary to separate proteins and metabolites before analysis. In this work, the Fe3O4@SiO2@Proteins@Metal-polyphenol network (MPN) was successfully constructed and applied to separate metabolites and proteins. Tannic acid (TA) and Cu2+ were involved in the synthesis of MPN because of rapid degradation and maintaining the assay performance of proteins. There are a variety of interactions between TA and proteins, including hydrogen-bonding, hydrophobic, and ionic interactions. Moreover, benefiting from the small molecule permeability and surface adherence of MPN, proteins were encapsulated and immobilized on the surface of substrates with the growth of MPN. At the same time, endogenous metabolites remained dispersed in the supernatant. In the model sample and real biospecimen cases, the protein biomarkers (e.g., carcinoembryonic antigen and alanine aminotransferase) were encapsulated on the surface of Fe3O4@SiO2, which allowed the isolation of proteins from the original matrix, as well as release and analysis in a short time. Meanwhile, the metabolites in the produced supernatant were analyzed by LC-MS/MS. By the self-assembly and disassembly of MPN, the group differences of proteins and metabolites between physiological and pathological biospecimens are correctly characterized without multisampling. Overall, an MPN-mediated separation strategy of biomarkers was proposed, and MPN facilitated a "two birds with one stone" approach, where the proteins were encapsulated and immobilized in the precipitation while endogenous metabolites distributed in the produced supernatant, opening a new chapter in the application of MPNs.
Collapse
Affiliation(s)
- Zenghui Lu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xue Jiang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qi Yi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
44
|
Roberts LT, Issa PP, Sinnathamby ES, Granier M, Mayeux H, Eubanks TN, Malone K, Ahmadzadeh S, Cornett EM, Shekoohi S, Kaye AD. Helicobacter Pylori: A Review of Current Treatment Options in Clinical Practice. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122038. [PMID: 36556402 PMCID: PMC9785457 DOI: 10.3390/life12122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND When prescribing antibiotics, infection eradication rates, local resistance rates, and cost should be among the most essential considerations. Helicobacter pylori is among the most common infections worldwide, and it can lead to burdensome sequela for the patient and the healthcare system, without appropriate treatment. Due to constantly fluctuating resistance rates, regimens must be constantly assessed to ensure effectiveness. METHODS This was a narrative review. The sources for this review are as follows: searching on PubMed, Google Scholar, Medline, and ScienceDirect; using keywords: Helicobacter pylori, Treatment Options, Clinical Practice. RESULTS Multiple antibiotics are prescribed as part of the regimen to thwart high resistance rates. This can lead to unwanted adverse reactions and adherence issues, due to the amount and timing of medication administration, which also may contribute to resistance. Single-capsule combination capsules have reached the market to ease this concern, but brand-only may be problematic for patient affordability. Due to the previously mentioned factors, effectiveness and affordability must be equally considered. CONCLUSIONS This review will utilize guidelines to discuss current treatment options and give cost considerations to elicit the most effective regimen for the patient.
Collapse
Affiliation(s)
- Logan T. Roberts
- LSUHSC-New Orleans School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Peter P. Issa
- LSUHSC-New Orleans School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Evan S. Sinnathamby
- LSUHSC-New Orleans School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Mallory Granier
- LSUHSC-New Orleans School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Holly Mayeux
- LSUHSC-New Orleans School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Treniece N. Eubanks
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Kevin Malone
- LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Elyse M. Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
- Correspondence:
| | - Sahar Shekoohi
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Alan D. Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| |
Collapse
|
45
|
Hussain Z, Ullah S, Yan J, Wang Z, Ullah I, Ahmad Z, Zhang Y, Cao Y, Wang L, Mansoorianfar M, Pei R. Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. CHEMOSPHERE 2022; 307:135810. [PMID: 35932921 DOI: 10.1016/j.chemosphere.2022.135810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal, organic dyes, and bacterial contamination in water endanger human/animals' health, and therefore, the detection, adsorption, and capturing of contaminants are essential for environmental safety. Ligand-rich membranes are promising for sensors, adsorption, and bacterial decontamination. Herein, tannin (TA)-reinforced 3-aminopropyltriethoxysilane (APTES) crosslinked polycaprolactone (PCL) based nanofibrous membrane (PCL-TA-APTES) was fabricated via electrospinning. PCL-TA-APTES nanofibers possess superior thermal, mechanical, structural, chemical, and aqueous stability properties than the un-crosslinked membrane. It changed its color from yellowish to black in response to Fe2+/3+ ions due to supramolecular iron-tannin network (FeTA) interaction. Such selective sensing has been noticed after adsorption-desorption cycles. Fe3+ concentration, solution pH, contact time, and ligand concentration influence FeTA coordination. Under optimized conditions followed by image processing, the introduced membrane showed a colorimetric linear relationship against Fe3+ ions (16.58 μM-650 μM) with a limit of detection of 5.47 μM. The PCL-FeTA-APTES membrane could restrain phenolic group oxidation and result in a partial water-insoluble network. The adsorption filtration results showed that the PCL-FeTA-APTES membrane can be reused and had a higher methylene blue adsorption (32.04 mg/g) than the PCL-TA-APTES membrane (14.96 mg/g). The high capture efficiency of nanocomposite against Fe3+-based S. aureus suspension than Fe3+-free suspension demonstrated that Fe3+-bounded bacterium adhered to the nanocomposite through Fe3+/TA-dependent biointerface interactions. Overall, high surface area, rich phenolic ligand, porous microstructure, and super-wetting properties expedite FeTA coordination in the nanocomposite, crucial for Fe2+/3+ ions sensing, methylene blue adsorption-filtration, and capturing of Fe3+-bounded bacterium. These multifunctional properties could promise nanocomposite membrane practicability in wastewater and environmental protection.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zhili Wang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ismat Ullah
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zia Ahmad
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Ye Zhang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yi Cao
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Mojtaba Mansoorianfar
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China.
| |
Collapse
|
46
|
Cheng B, Lu S, Liao W, Wang C, Richardson JJ, Ejima H. Tannic acid-inspired star polymers for functional metal-phenolic networks with tunable pore sizes. NANOSCALE 2022; 14:14466-14470. [PMID: 36149411 DOI: 10.1039/d2nr02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tannic acid (TA) is a structurally undefined natural dendritic polyphenol. Here, we introduce a series of TA-inspired polymers with different arm lengths, Mn, and phenolic groups that can be used to engineer metal-phenolic network (MPN) capsules with different properties including controlled permeability, high biocompatibility, and fluorescence.
Collapse
Affiliation(s)
- Bohan Cheng
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Sifan Lu
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Wenting Liao
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Chenyu Wang
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Joseph J Richardson
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
47
|
Stem cell microencapsulation maintains stemness in inflammatory microenvironment. Int J Oral Sci 2022; 14:48. [PMID: 36216801 PMCID: PMC9551082 DOI: 10.1038/s41368-022-00198-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Maintaining the stemness of the transplanted stem cell spheroids in an inflammatory microenvironment is challenging but important in regenerative medicine. Direct delivery of stem cells to repair periodontal defects may yield suboptimal effects due to the complexity of the periodontal inflammatory environment. Herein, stem cell spheroid is encapsulated by interfacial assembly of metal-phenolic network (MPN) nanofilm to form a stem cell microsphere capsule. Specifically, periodontal ligament stem cells (PDLSCs) spheroid was coated with FeIII/tannic acid coordination network to obtain spheroid@[FeIII-TA] microcapsules. The formed biodegradable MPN biointerface acted as a cytoprotective barrier and exhibited antioxidative, antibacterial and anti-inflammatory activities, effectively remodeling the inflammatory microenvironment and maintaining the stemness of PDLSCs. The stem cell microencapsulation proposed in this study can be applied to multiple stem cells with various functional metal ion/polyphenol coordination, providing a simple yet efficient delivery strategy for stem cell stemness maintenance in an inflammatory environment toward a better therapeutic outcome.
Collapse
|
48
|
Yuan Y, Yin M, Zhai Q, Chen M. The encapsulation strategy to improve the survival of probiotics for food application: From rough multicellular to single-cell surface engineering and microbial mediation. Crit Rev Food Sci Nutr 2022; 64:2794-2810. [PMID: 36168909 DOI: 10.1080/10408398.2022.2126818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The application of probiotics is limited by the loss of survival due to food processing, storage, and gastrointestinal tract. Encapsulation is a key technology for overcoming these challenges. The review focuses on the latest progress in probiotic encapsulation since 2020, especially precision engineering on microbial surfaces and microbial-mediated role. Currently, the encapsulation materials include polysaccharides and proteins, followed by lipids, which is a traditional mainstream trend, while novel plant extracts and polyphenols are on the rise. Other natural materials and processing by-products are also involved. The encapsulation types are divided into rough multicellular encapsulation, precise single-cell encapsulation, and microbial-mediated encapsulation. Recent emerging techniques include cryomilling, 3D printing, spray-drying with a three-fluid coaxial nozzle, and microfluidic. Encapsulated probiotics applied in food is an upward trend in which "classic probiotic foods" (yogurt, cheese, butter, chocolate, etc.) are dominated, supplemented by "novel probiotic foods" (tea, peanut butter, and various dry-based foods). Future efforts mainly include the effect of novel encapsulation materials on probiotics in the gut, encapsulation strategy oriented by microbial enthusiasm and precise encapsulation, development of novel techniques that consider both cost and efficiency, and co-encapsulation of multiple strains. In conclusion, encapsulation provides a strong impetus for the food application of probiotics.
Collapse
Affiliation(s)
- Yongkai Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ming Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
49
|
Decorated bacteria and the application in drug delivery. Adv Drug Deliv Rev 2022; 188:114443. [PMID: 35817214 DOI: 10.1016/j.addr.2022.114443] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The use of living bacteria either as therapeutic agents or drug carriers has shown great potential in treating a multitude of intractable diseases. However, cells are often fragile to unfriendly environmental stressors and limited by inadequately therapeutic responses, leading to unwanted cell death and a decline in treatment efficacy. Surface decoration of bacteria has emerged as a simple yet useful strategy that not only confers bacteria with extra capacity to resist environmental threats but also endows them with exogenous characteristics that are neither inherent nor naturally achievable. In this review, we systematically introduce the advancements of physicochemical and biological technologies for surface modification of bacteria, especially the single-cell surface decoration strategies of individual bacteria. We highlight the recent progress on surface decoration that aims to improve the bioavailability and efficacy of therapeutic bacterial agents and also to achieve enhanced and targeted delivery of conventional drugs. The promises along with challenges of surface-decorated bacteria as drug delivery systems for applications in cancer therapy, intestinal disease treatment, bioimaging, and diagnosis are further discussed with respect to future clinical translation. This review offers an overview of the advances of decorated bacteria for drug delivery applications and would contribute to the development of the next generation of advanced bacterial-based therapies.
Collapse
|
50
|
Lee H, Park J, Kim N, Youn W, Yun G, Han SY, Nguyen DT, Choi IS. Cell-in-Catalytic-Shell Nanoarchitectonics: Catalytic Empowerment of Individual Living Cells by Single-Cell Nanoencapsulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201247. [PMID: 35641454 DOI: 10.1002/adma.202201247] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Cell-in-shell biohybrid structures, synthesized by encapsulating individual living cells with exogenous materials, have emerged as exciting functional entities for engineered living materials, with emergent properties outside the scope of biochemical modifications. Artificial exoskeletons have, to date, provided physicochemical shelters to the cells inside in the first stage of technological development, and further advances in the field demand catalytically empowered, cellular hybrid systems that augment the biological functions of cells and even introduce completely new functions to the cells. This work describes a facile and generalizable strategy for empowering living cells with extrinsic catalytic capability through nanoencapsulation of living cells with a supramolecular metal-organic complex of Fe3+ and benzene-1,3,5-tricarboxylic acid (BTC). A series of enzymes are embedded in situ, without loss of catalytic activity, in the Fe3+ -BTC shells, not to mention the superior characteristics of cytocompatible and rapid shell-forming processes. The nanoshell enhances the catalytic efficiency of multienzymatic cascade reactions by confining reaction intermediates to its internal voids and the nanoencapsulated cells acquire exogenous biochemical functions, including enzymatic cleavage of lethal octyl-β-d-glucopyranoside into d-glucose, with autonomous cytoprotection. The system will provide a versatile, nanoarchitectonic tool for interfacing biological cells with functional materials, especially for catalytic bioempowerment of living cells.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Gyeongwon Yun
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|