1
|
Dong J, Weis P, Wani V, Kappes MM, Wang LS. Observation of Structural Isomers and Isomerization of an Atom-Precise Gold Hydride Nanocluster Using Ion Mobility Spectrometry. J Phys Chem Lett 2025:4975-4981. [PMID: 40354472 DOI: 10.1021/acs.jpclett.5c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Ion mobility spectrometry (IMS) is a powerful technique to determine structures and isomers of gas phase clusters and complex molecules. It is also a valuable tool to investigate ligand-protected atom-precise nanoclusters that cannot be readily crystallized and examined by X-ray diffraction. Here we use IMS to study a diphosphine-protected gold hydride nanocluster, [Au22H3(dppee)7]3+ (dppee = bis(2-diphenylphosphino)ethyl ether), which was synthesized previously and hypothesized to contain two Au11 units with different bridging ligands. Surprisingly, our IMS data revealed the coexistence of two structural isomers in the as-synthesized product with a population of ∼85% for the main isomer and ∼15% for the minor isomer. The two isomers are found to be interconvertible at high activation voltages. Comparison between the IMS data and theoretical calculations confirm that the main and minor isomers consist of one and three bridging ligands, respectively. The isomers and isomerization process uncovered in this work provide opportunities to study the structure-property relationship of atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Jia Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Vaibhav Wani
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Zhu P, Zhu X, Zhou X, Sun F, Chen Y, Wang L, Tang Z, Tang Q. Computational and Experimental Elucidation of the Charge-Dependent Acid-Etching Dynamics and Electrocatalytic Performance of Au 25(SR) 18 q(q = -1, 0, +1) Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411226. [PMID: 39989091 DOI: 10.1002/smll.202411226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/26/2025] [Indexed: 02/25/2025]
Abstract
Using thiolate-protected Au25(SR)18 nanocluster (NC) with different charge states as the test candidate, how the charge effect affects the etching dynamics of thiolate ligands in acid and the electrocatalytic performance is explored. The ab initio molecular dynamics (AIMD) simulations revealed the charge-dependent reaction kinetics in acid, where the anionic and neutral Au25(SCH3)18 q (q = -1, 0) favorably react with the acid and partially remove the thiolate ligands via two-step proton attack, while the cationic Au25(SCH3)18 + NC is acid-resistant with no tendency for -SR removal. Density functional theory (DFT) calculations further predict that the dethiolated Au sites exhibit enhanced catalytic activity for CO2 electroreduction to CO, with the anionic Au25 - showing significantly superior activity. Acid etching and electrocatalytic experiments further confirmed partial removal of thiolate ligands in Au25(SCH3)18 q (q = -1, 0), with dethiolated Au25 NCs showing enhanced catalytic performance in CO2 electroreduction, particularly Au25 - exhibiting better activity than Au25 0. This work revealed an interesting charge state-mediated interface dynamics and electrocatalytic behaviors in Au25 NCs, which can be applied to modulate the interface and catalytic properties of other atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Pan Zhu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Xin Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xia Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
3
|
Ma X, Fang C, Ding M, Zuo Y, Sun X, Wang S. Atomic-Level Elucidation of Lattice-Hydrogens in Copper Catalysts for Selective CO 2 Electrochemical Conversion toward C 2 Products. Angew Chem Int Ed Engl 2025; 64:e202500191. [PMID: 39939292 DOI: 10.1002/anie.202500191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
Copper is the most efficient and practical electrocatalyst for the electrochemical reduction of carbon dioxide (ECR) to give multicarbon (C2+) products, but the mechanism by which such products are formed - though known to involve lattice-hydrogens - remains elusive, and the selectivity of the reaction is poor. Herein, we report the synthesis of [AuCu24(dppp)6H22]+, a copper hydride nanocluster bearing exposed Cu3H3 units in specific surface cavities, and our use of it to study the mechansim and selectivity of the reduction of CO2 to C2+ products. Results of in situ infrared spectroscopy and theoretical calculations showed that these Cu3H3 units can effectively lower the energy barrier to the formation of the *COCOH intermediate, which allowed the competition between the C1 and C2 pathways to be elucidated. Isotope labeling experiments and catalyst recrystallization studies corroborated the theoretical simulations, identifying the lattice-hydrogen (H-) in the Cu3H3 active unit as being indispensable for the formation of C2H4. The molecular design guidelines which this work has facilitated constitute a new approach towards the of copper-based catalysts that convert CO2 to C2+ products based on lattice-hydrogen engineering.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cong Fang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Mei Ding
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yang Zuo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaoyan Sun
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Shuxin Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
4
|
Yoo S, Kim D, Deng G, Chen Y, Lee K, Yoo S, Liu X, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Impact of Heterocore Atoms on CO 2 Electroreduction in Atomically Precise Silver Nanoclusters. J Am Chem Soc 2025; 147:12546-12554. [PMID: 40185682 DOI: 10.1021/jacs.4c17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Understanding the effect of internal atoms in metal nanoparticles on heterogeneous catalytic processes is crucial for achieving high activity and selectivity. This requires meticulous synthetic control over the size, composition, and atomic arrangement of nanoparticles. Here, we report the design of ligand-exchange-induced structure transformation and nanomolecule-templated atomic-level galvanic exchange strategies to synthesize PtAg24(IPBT)18 (denoted as PtAg24) and AuAg24(IPBT)18 (denoted as AuAg24) nanoclusters (NCs). Both NCs exhibit identical total metal atom and ligand (IPBT: 2-isopropylbenzenethiolate) counts, as well as atomic-level structure, except for the difference in the core atom (Pt and Au). Using these model NCs, we uncover the impact of heterocore atoms on the electrochemical CO2 reduction reaction (eCO2RR) activity and selectivity. The central Pt atom in PtAg24 is less favorable for eCO2RR activity, with an activity approximately 4 times smaller than that of Au in AuAg24. The eCO2RR product CO selectivity is <30% for PtAg24, while it exceeds 70% for AuAg24, revealing the critical role of the central atom in surface catalytic pathways. Furthermore, AuAg24 exhibits high activity, with a CO partial current density of -202.2 mA cm-2, and stability over 24 h, retaining 90% CO selectivity in a membrane electrode assembly configuration. Operando spectroscopy and density functional theory calculations suggest the weaker adsorption of *CO intermediates and smaller energy barrier facilitate CO production on AuAg24 compared to PtAg24, providing valuable atomistic insights into the reaction intermediates and mechanism. The findings in this work will inspire the design of more atomically precise model nanocatalysts to explore the role of their remarkable features in the catalytic activity and selectivity for renewable energy conversion and storage.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dayeon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Zhao J, Ziarati A, Bürgi T. Tuning Atomically Precise Gold Nanoclusters for Selective Electroreduction of CO 2. Angew Chem Int Ed Engl 2025:e202504320. [PMID: 40232651 DOI: 10.1002/anie.202504320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
The electroreduction of greenhouse gas CO2 into high-value-added chemicals using renewable electricity is a promising way to mitigate climate change and realize carbon cycling. Atomically precise thiolate-protected gold nanoclusters have shown great potential for selective electrochemical conversion of CO2 toward CO due to their quantum confinement effect and unique electronic structures. Additionally, the atomic precision of gold nanocluster is advantageous for investigating the CO2 reduction mechanism, which is typically challenging to understand due to the complexity of the catalytic interface, and unknown structure of the active site in more conventional catalysts. By summarizing CO2 reduction catalyzed by gold nanoclusters, we aim to identify key factors that contribute to the activity, selectivity, and stability of nanocluster catalysts, as well as elucidate the CO₂ reduction pathway, thereby contributing to the design of more active and selective nanocluster catalysts for CO2 reduction.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Arnest-Ansermet, Geneva, 1211, Switzerland
| | - Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Arnest-Ansermet, Geneva, 1211, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Arnest-Ansermet, Geneva, 1211, Switzerland
| |
Collapse
|
6
|
Sun J, Liu J, Su HF, Li S, Tang X, Xie Z, Xu Z, Jiang W, Wei J, Gong X, He A, Wang S, Jiang DE, Zheng N, Shen H. Eight-electron copper-hydride nanoclusters: synthesis, structure, alloying chemistry and photoluminescence. Chem Sci 2025; 16:6392-6401. [PMID: 40092602 PMCID: PMC11907706 DOI: 10.1039/d4sc08547g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
The first copper-hydride nanocluster featuring eight free valence electrons has been successfully isolated and characterized spectroscopically. The structure of the nanocluster, represented by the chemical formula [Cu47(PhSe)15(PPh3)5(CF3COO)12H12] (referred to as Cu47H12, where PPh3 denotes triphenylphosphine), has been precisely determined through single crystal X-ray diffraction analysis. Several distinguishing features differentiate the Cu47H12 clusters from previously reported examples. In terms of composition, these clusters represent a rare instance of high-nuclearity Cu nanoclusters containing hydride and stabilized by selenolate ligands. From an electronic standpoint, the stabilization of the nanocluster is achieved through its eight free valence electrons, marking it as the first copper-hydride cluster with this configuration. The alloying chemistry of the nanocluster also introduces unexpected findings in the field. The incorporation of silver atoms leads to the formation of [(CuAg)47(PhSe)18(PPh3)6(CF3COO)12H6]3+ clusters, which exhibit significant structural differences from the parent cluster. Both the homo and alloy clusters display dual-emission properties at 298 K, with the clusters additionally showcasing triple or even quadruple emission at 77 K. This work is anticipated to stimulate research interest in hydride-containing metal nanoclusters, focusing not only on compositional tailoring and structural engineering, but also on electronic structure details and potential applications.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Jiahe Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hai-Feng Su
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhenlang Xie
- College of Food Science and Engineering, Guangdong Ocean University Yangjiang 529500 China
| | - Zhen Xu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Wenya Jiang
- School of Materials and New Energy, Ningxia University Yinchuan Ningxia 750021 China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University Yinchuan Ningxia 750021 China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Ayisha He
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| | - Song Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville Tennessee 37235 USA
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University Hohhot 010021 China
| |
Collapse
|
7
|
Li YZ, Liu ZS, Liu WY, Yuan ZR, Yang PF, Xu J, Hao F, Wang JG, Wang NX, Azam M, Sun D. Halide-Directed Ligand Engineering Enables Expedient, Controlled and Divergent Syntheses of Diphosphine-Protected Au Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500189. [PMID: 39995352 DOI: 10.1002/smll.202500189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Despite substantial progress in ligand engineering, the efforts in the field of Au nanoclusters have been concentrated almost exclusively on organic ligands. Halides, the most typical auxiliary inorganic ligands widely present in Au clusters, remain virtually unexplored, particularly regarding their effects on cluster construction. Herein, diphosphine Ph2P(CH2)nPPh2 (Ln, n = 1-6) is chosen as the co-protecting organic ligands and a comparative analysis on the influential roles of halide ions (Cl-, Br-, I-) in guiding Au cluster synthesis is conducted. A simple yet efficient halide-directed synthetic approach has been developed and a series of Au nanoclusters, including the known [Au18(L1)6Br4]2+, [Au13(L2)5Cl2]3+ and [Au8(L3)4Cl2]2+ that however crystallized in new polymorphic forms, as well as the new reduction-active [Au18(L1)6Cl4]2+, luminescence-enhanced [Au14(L3)5Br4]2+ and core-isomeric [Au11(Ln)4X2]+ (n = 4-6; X = Cl, Br, I), are obtained in a more expedient and controllable manner. This work clearly demonstrates the non-negligible roles of halide ions in directing cluster synthesis, and provides an easier access to diverse diphosphine-protected Au nanoclusters. This approach, promising in gram-scale synthesis, is expected to further extend the ligand scope and holds promise for advancing the diversified syntheses of a broader range of ligand-protected metal nanoclusters.
Collapse
Affiliation(s)
- Ying-Zhou Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Zhi-Shuai Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Wen-Yan Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Zhi-Rui Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Peng-Fei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Fei Hao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Jin-Gui Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Nian-Xing Wang
- Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, 20500, Finland
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
8
|
Shingyouchi Y, Ogami M, Biswas S, Tanaka T, Kamiyama M, Ikeda K, Hossain S, Yoshigoe Y, Osborn DJ, Metha GF, Kawawaki T, Negishi Y. Ligand-Dependent Intracluster Interactions in Electrochemical CO 2 Reduction Using Cu 14 Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409910. [PMID: 39632376 PMCID: PMC12019909 DOI: 10.1002/smll.202409910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been extensively studied because it can be leveraged to directly convert CO2 into valuable hydrocarbons. Among the various catalysts, copper nanoclusters (Cu NCs) exhibit high selectivity and efficiency for producing CO2RR products owing to their unique geometric/electronic structures. However, the influence of protective ligands on the CO2RR performance of Cu NCs remains unclear. In this study, it is shown that different thiolate ligands, despite having nearly identical geometries, can substantially affect the electrochemical stability of Cu14 NCs in the CO2RR. Notably, Cu14 NCs protected by 2-phenylethanethiolate exhibit greater stability and achieve a relatively higher selectivity (≈40%) for formic acid production compared with the cyclohexanethiolate-protected counterpart. These insights are crucial for designing Cu NCs that are both stable and highly selective, enhancing their efficacy for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Yamato Shingyouchi
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Masaki Ogami
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Sourav Biswas
- Research Institute for Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
| | - Tomoya Tanaka
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Maho Kamiyama
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Kaoru Ikeda
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - Sakiat Hossain
- Research Institute for Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
| | - Yusuke Yoshigoe
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
| | - D. J. Osborn
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
- Research Institute for Science and TechnologyTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
- Carbon Value Research CenterTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science1−3 Kagurazaka, Shinjuku‐kuTokyo162–8601Japan
- Carbon Value Research CenterTokyo University of Science2641 YamazakiNodaChiba278–8510Japan
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversityKatahira 2‐1‐1, Aoba‐kuSendai980–8577Japan
| |
Collapse
|
9
|
Zhang D, Liu X, Zhao Y, Zhang H, Rudnev AV, Li JF. In situ Raman spectroscopic studies of CO 2 reduction reactions: from catalyst surface structures to reaction mechanisms. Chem Sci 2025; 16:4916-4936. [PMID: 40007664 PMCID: PMC11848642 DOI: 10.1039/d5sc00569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) has gained widespread attention as an important technology for carbon cycling and sustainable chemistry. In situ Raman spectroscopy, due to its molecular structure, sensitive advantage and real-time monitoring capability, has become an effective tool for studying the reaction mechanisms and structure-performance relationships in eCO2RR. This article reviews recent advancements in the application of in situ Raman spectroscopy in eCO2RR research, focusing on its critical role in monitoring reaction intermediates, analyzing catalyst surface states, and optimizing catalyst design. Through systematic studies of different catalysts and reaction conditions, in situ Raman spectroscopy has revealed the formation and transformation pathways of various intermediates, deeply exploring their relationship with the active sites of the catalysts. Furthermore, the review discusses the integration of in situ Raman spectroscopy with other characterization techniques to achieve a more comprehensive understanding of the reaction mechanisms. Finally, we summarize the current challenges and opportunities in this research area and look ahead to the future applications of in situ Raman spectroscopy in the field of eCO2RR.
Collapse
Affiliation(s)
- Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Xuan Liu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Yu Zhao
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Hua Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences Leninsky Prospekt 31 119071 Moscow Russia
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| |
Collapse
|
10
|
Zhou Y, Chen D, Gu W, Fan W, Wang R, Fang L, You Q, Zhuang S, Bian G, Liao L, Zhou Z, Xia N, Yang J, Wu Z. Chemical Synthesis of ~1 nm Multilevel Capacitor-like Particles with Atomic Precision. Angew Chem Int Ed Engl 2025; 64:e202420931. [PMID: 39620464 DOI: 10.1002/anie.202420931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Can the chemically synthesized nanoparticles act as nanodevices or nanomachines? Herein, we demonstrated this feasibility. A novel nanocluster (ultrasmall nanoparticle) [Au44Cd20(m-MBT)40][N(C8H17)4]2 (Au44Cd20 in short, m-MBTH: m-methylbenzenethiol) obtained via developing a synthesis method has a cannula-like structure of the outer shell and an internal sleeve, revealed by single-crystal X-ray diffraction. Natural population analysis (NPA) charge calculations, charge carrier transport of Au44Cd20 (during which an intra-nanocluster anti-galvanic reaction was observed) after unneutral charging using NaBH4 as well as voltammetry proved the capacitor-like character of Au44Cd20. The subsidiary capacitor-like character of the outer shell of Au44Cd20 was further probed via NPA charge calculations and electrocatalytic reduction of CO2 to CO. Thus, this study predicts a new era of engineering metal nanoparticles for realizing atomically precise ultrasmall nanodevices and nanomachines.
Collapse
Grants
- 21925303, 21829501, 21771186, 21501181, 21222301, 21171170, 21528303, 22171268, 22075290, 2272179 National Natural Science Foundation of China
- 2008085MB31, 2108085MB56 Anhui Provincial Natural Science Foundation
- YZJJ202102, YZJJ202306-TS Special Foundation of President of HFIPS
- 2020HSC-CIP005, 2022HSC-CIP018 Collaborative Innovation Program of Hefei Science Center, CAS
- YZJJ2023QN28 Presidential Foundation of HFIPS of Chinese Academy of Sciences
- 2021M703251 China Postdoctoral Science Foundation
- MESO-23-A06, MESO-24-A01 State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- 21925303, 21829501, 21771186, 21501181, 21222301, 21171170, 21528303, 22471275,22171268, 22075290, 2272179, 22075291, 92475105, U24A20480, 22403096 National Natural Science Foundation of China
- 2008085MB31, 2108085MB56, 2408085QB040 Anhui Provincial Natural Science Foundation
- YZJJ2023QN28, GGZX-GTCX-2023-07 Presidential Foundation of HFIPS of Chinese Academy of Sciences
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ziyan Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Du P, Li S, Xu Q, He A, Yuan W, Qu X, Tan B, Niu X, Zhang F, Shen H. Ligand Strategies for Regulating Atomically Precise CeO 2 Nanoparticles: From Structure to Property. Molecules 2025; 30:846. [PMID: 40005157 PMCID: PMC11858138 DOI: 10.3390/molecules30040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The increasing interest in studying the structure-property relationships of ceria dioxide (CeO2) relies on the fact that many factors are key to determining the performance of CeO2 materials. Despite the great advances achieved, it remains a formidable challenge to regulate CeO2 nanoparticles at the molecular level and gain in-depth insight into their structure-property relationships. What is reported here is a ligand strategy for regulating CeO2 nanoparticles, in terms of not only shape, structure, surface composition, but also property. Atomically precise CeO2 nanoparticles (also named nanoclusters) are used as a model system, in which two Ce16 clusters are gained by a wet-chemical synthesis method. Featuring different carboxylate ligands on the surface, the two clusters are distinct in formula, core geometry, surface composition, and photoelectric merits. This work not only reports the first pair of atomically precise CeO2 nanoclusters with the same number of Ce atoms but different structures, which is highly desirable for studying structure-property relationships, but also provides in-depth insight into the molecular ligand effect in CeO2 materials.
Collapse
Affiliation(s)
- Peiling Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (P.D.); (S.L.); (Q.X.); (A.H.)
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (P.D.); (S.L.); (Q.X.); (A.H.)
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (P.D.); (S.L.); (Q.X.); (A.H.)
| | - Ayisha He
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (P.D.); (S.L.); (Q.X.); (A.H.)
| | - Wei Yuan
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, 2005 Songhu Road, Shanghai 200438, China;
| | - Xinping Qu
- School of Microelectronics, Fudan University, Shanghai 200433, China;
| | - Baimei Tan
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300130, China; (B.T.); (X.N.)
| | - Xinhuan Niu
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300130, China; (B.T.); (X.N.)
| | - Fan Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (P.D.); (S.L.); (Q.X.); (A.H.)
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China; (P.D.); (S.L.); (Q.X.); (A.H.)
| |
Collapse
|
12
|
Deng G, Yun H, Chen Y, Yoo S, Lee K, Jang J, Liu X, Lee CW, Tang Q, Bootharaju MS, Hwang YJ, Hyeon T. Ferrocene-Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO 2 Electroreduction. Angew Chem Int Ed Engl 2025; 64:e202418264. [PMID: 39628114 DOI: 10.1002/anie.202418264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/14/2024]
Abstract
The integration of organometallic compounds with metal nanoparticles can, in principle, generate hybrid nanocatalysts endowed with augmented functionality, presenting substantial promise for catalytic applications. Herein, we synthesize an atomically precise metal cluster (Ag9Cu6) catalyst integrated with alkynylferrocene molecules (Ag9Cu6-Fc). This hybrid catalyst design facilitates a continuous electron transfer channel via an ethynyl bridge and establishes a distinctive local chemical environment, resulting in remarkably enhanced catalytic activity in CO2 electroreduction. The Ag9Cu6-Fc catalyst achieves a record-high product selectivity of CO Faradaic efficiency of 100 % and an industrial-level CO partial current density of -680 mA/cm2, surpassing the performance of the Ag9Cu6 cluster (62 % and -230 mA/cm2, respectively) without ferrocene functionalization in a membrane electrode assembly cell. Operando experimental and computational findings offer valuable insights into the role of ferrocene functionalization in synergistically improving the catalytic performance of metal clusters, propelling the advancement of metallic-organometallic hybrid nanoparticles for energy conversion technologies.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
13
|
Phan H, Gueret R, Martínez‐Pardo P, Valiente A, Jaworski A, Slabon A, Martín‐Matute B. Synthesis of Benzoic Acids from Electrochemically Reduced CO 2 Using Heterogeneous Catalysts. CHEMSUSCHEM 2025; 18:e202401084. [PMID: 39310956 PMCID: PMC11790006 DOI: 10.1002/cssc.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
A method for the synthesis of benzoic acids from aryl iodides using two of the most abundant and sustainable feedstocks, carbon dioxide (CO2) and water, is disclosed. Central to this method is an effective and selective electrochemical reduction of CO2 (eCO2RR) to CO, which mitigates unwanted dehalogenation reactions occurring when H2 is produced via the hydrogen evolution reaction (HER). In a 3-compartment set-up, CO2 was reduced to CO electrochemically by using a surface-modified silver electrode in aqueous electrolyte. The ex-situ generated CO further underwent hydroxycarbonylation of aryl iodides by MOF-supported palladium catalyst in excellent yields at room temperature. The method avoids the direct handling of hazardous CO gas and gives a wide range of benzoic acid derivatives. Both components of the tandem system can be recycled for several consecutive runs while keeping a high catalytic activity.
Collapse
Affiliation(s)
- Ha Phan
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Robin Gueret
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Pablo Martínez‐Pardo
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Alejandro Valiente
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Aleksander Jaworski
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Adam Slabon
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
- Faculty of Mathematics and Natural SciencesChair of Inorganic ChemistryUniversity of WuppertalGaußstraße 2042219WuppertalGermany
| | - Belén Martín‐Matute
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| |
Collapse
|
14
|
Wang W, Chen D, Fung V, Zhuang S, Zhou Y, Wang C, Bian G, Zhao Y, Xia N, Li J, Deng H, Liao L, Yang J, Jiang DE, Wu Z. Gapped and Rotated Grain Boundary Revealed in Ultra-Small Au Nanoparticles for Enhancing Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202410109. [PMID: 39234799 DOI: 10.1002/anie.202410109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Although gapped grain boundaries have often been observed in bulk and nanosized materials, and their crucial roles in some physical and chemical processes have been confirmed, their acquisition at ultrasmall nanoscale presents a significant challenge. To date, they had not been reported in metal nanoparticles smaller than 2 nm owing to the difficulty in characterization and the high instability of grain boundary (GB) atoms. Herein, we have successfully developed a synthesis method for producing a novel chiral nanocluster Au78(TBBT)40 (TBBT=4-tert-butylphenylthiolate) with a 26-atom gapped and rotated GB. This nanocluster was precisely characterized using single-crystal X-ray crystallography and mass spectrometry. Additionally, an offset atomic defect linked to the peripheral Au(TBBT)2 staple was found in the structure. Comparing it to similarly face-centered cubic-structured Au36(TBBT)24, Au44(TBBT)28, Au52(TBBT)32, Au92(TBBT)44, and ~5 nm nanocrystals, the bridging Au78(TBBT)40 nanocluster exhibited higher catalytic activity in the electroreduction of CO2 to CO. This enhanced activity was explained through density functional theory calculations and X-ray photoelectron spectroscopy analysis, which highlight the impact of GBs and point defects on the surface properties of metal nanoclusters in balancing intermediate adsorption and product desorption.
Collapse
Grants
- 21925303, 21829501, 22471275, 21771186, 22075290, 22075291, 22272179, 21222301, 21171170, and 21528303 National Natural Science Foundation of China
- BJPY2019A02 CASHIPS Director's Fund
- MESO-23-A06 State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- 2020HSC-CIP005, 2022HSC-CIP018 Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- YZJJ-GGZX-2022-01 HFIPS Director's Fund
Collapse
Affiliation(s)
- Wenying Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Victor Fung
- Department of Chemistry, University of California, 92521, Riverside, CA, USA
- School of Computational Science and Engineering, Georgia Institute of Technology, 30332, Atlanta, Georgia, USA
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Chengming Wang
- Instruments' Center for Physical Science, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - De-En Jiang
- Department of Chemistry, University of California, 92521, Riverside, CA, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 37235, Nashville, Tennessee, USA
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R. China
| |
Collapse
|
15
|
Sun X, Jiang WY, Du P, Gong X, Li S, Guo Q, Wei J, Shen H. Atomically Precise Cu 12 Nanoclusters with Thermally Activated Delayed Fluorescence Properties. Inorg Chem 2025; 64:716-722. [PMID: 39718354 DOI: 10.1021/acs.inorgchem.4c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Ligand-stabilized metal nanoclusters with atomic precision are considered to be promising materials in the field of light-emitting and harvesting. Among these, nanoclusters with thermally activated delayed fluorescence (TADF) properties are highly sought after. While several gold and silver nanoclusters with TADF properties have been reported in recent years, research on copper counterparts has significantly lagged behind. In this study, we present the synthesis, total structure determination, and photoluminescent properties of a copper cluster with TADF properties. The cluster, with the molecular formula (PPh4)[Cu12(NO3)6(AdmS)6] (PPh4 is tetraphenylphosphine tetraphenylboron, and AdmSH is adamantanethiol), was obtained in a single reaction in the presence of air and fully characterized using electrospray ionization mass spectroscopy (ESI-MS), X-ray photoelectron spectroscopy, nuclear magnetic resonance, and ultraviolet-visible spectroscopy (UV-vis). The molecular structure of the cluster, as determined by X-ray crystallographic analysis, reveals the stabilization of a Cu12 core (layer-by-layer growth mode of Cu3@Cu6@Cu3) with 6 NO3- and 6 AdmS- ligands acting as stabilizing ligands. Interestingly, the cluster exhibits photoluminescence in both crystalline and solution states and displays typical TADF characteristics within the temperature range of 163-243 K. This study not only presents a pioneering example of copper nanoclusters with TADF properties but also highlights the promising future of copper clusters in material science.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Wen-Ya Jiang
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Peiling Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
16
|
He A, Zuo D, Jiang G, Tang X, Wang L, Feng L, Zhao Z, Wei J, Zheng N, Shen H. Eight-electron Pt/Cu superatom encapsulating three "electron-donating" hydrides. SCIENCE ADVANCES 2025; 11:eads4488. [PMID: 39772673 PMCID: PMC11708884 DOI: 10.1126/sciadv.ads4488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Hydrides in metal complexes or nanoclusters are typically viewed as electron-withdrawing. Several recent reports have demonstrated the emergence of "electron-donating" hydrides in tailoring the structure, electronic structure, and reactivity of metal nanoclusters. However, the number of such hydrides included in each cluster kernel is limited to one or two. There is even no structure model, neither theoretical nor experimental, for encapsulating a third electron-donating hydride into one cluster entity. Here, we present a structurally precise superatomic nanocluster, PtH3Cu23(iso-propyl-PhS)18(PPh3)4 (PtH3Cu23), which contains three interstitial electron-donating hydrides. The molecular structure of PtH3Cu23 describes the encapsulation of a PtCu12 core that contains three interstitial hydrides in a distorted anticuboctahedral architecture, in an outer sphere consisting of copper atoms and thiolate and phosphine ligands. Density functional theory calculations reveal that the three hydrides in PtH3Cu23 contribute their valence electrons to the cluster superatomic electron count of eight. In this regard, the cluster represents a rare Pt-included copper-hydride superatom with eight free electrons.
Collapse
Affiliation(s)
- Ayisha He
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Guangmei Jiang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Liubin Feng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
17
|
Qian J, Yang Z, Lyu J, Yao Q, Xie J. Molecular Interactions in Atomically Precise Metal Nanoclusters. PRECISION CHEMISTRY 2024; 2:495-517. [PMID: 39483272 PMCID: PMC11522999 DOI: 10.1021/prechem.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/03/2024]
Abstract
For nanochemistry, precise manipulation of nanoscale structures and the accompanying chemical properties at atomic precision is one of the greatest challenges today. The scientific community strives to develop and design customized nanomaterials, while molecular interactions often serve as key tools or probes for this atomically precise undertaking. In this Perspective, metal nanoclusters, especially gold nanoclusters, serve as a good platform for understanding such nanoscale interactions. These nanoclusters often have a core size of about 2 nm, a defined number of core metal atoms, and protecting ligands with known crystal structure. The atomically precise structure of metal nanoclusters allows us to discuss how the molecular interactions facilitate the systematic modification and functionalization of nanoclusters from their inner core, through the ligand shell, to the external assembly. Interestingly, the atomic packing structure of the nanocluster core can be affected by forces on the surface. After discussing the core structure, we examine various atomic-level strategies to enhance their photoluminescent quantum yield and improve nanoclusters' catalytic performance. Beyond the single cluster level, various attractive or repulsive molecular interactions have been employed to engineer the self-assembly behavior and thus packing morphology of metal nanoclusters. The methodological and fundamental insights systemized in this review should be useful for customizing the cluster structure and assembly patterns at the atomic level.
Collapse
Affiliation(s)
- Jing Qian
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhucheng Yang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jingkuan Lyu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key
Laboratory of Organic Integrated Circuits, Ministry of Education &
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department
of Chemistry, School of Science, Tianjin
University, Tianjin 300072, P.R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Jianping Xie
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
18
|
Ma Z, Wang B, Yang X, Ma C, Wang W, Chen C, Liang F, Zhang N, Zhang H, Chu Y, Zhuang Z, Xu H, Wang Y, Liu J. P-Block Aluminum Single-Atom Catalyst for Electrocatalytic CO 2 Reduction with High Intrinsic Activity. J Am Chem Soc 2024; 146:29140-29149. [PMID: 39382968 DOI: 10.1021/jacs.4c11326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Atomically dispersed transition metal sites on nitrogen-doped carbon catalysts hold great potential for the electrochemical CO2 reduction reaction (CO2RR) to CO due to their encouraging selectivity. However, their intrinsic activity is restricted by the hurdle of the high energy barrier of either *COOH formation or *CO desorption due to the scaling relationship. Herein, we discover a p-block aluminum single-atom catalyst (Al-NC) featuring an Al-N4 site that enables disentangling this hurdle, which endows a moderate reaction kinetic barrier for *COOH formation and *CO desorption, as validated by in situ attenuated total reflection infrared spectroscopy and theoretical simulations. As a result, the developed Al-NC shows a CO Faradaic efficiency (FECO) of up to 98.76% at -0.65 V vs RHE and an intrinsic catalytic turnover frequency of 3.60 s-1 at -0.99 V vs RHE, exceeding those of the state-of-the-art Ni-NC and Fe-NC counterparts. Moreover, it also delivers a partial CO current of 309 mA·cm-2 at 93.65% FECO and 605 mA at >85% FECO in a flow cell and membrane electrode assembly (MEA), respectively. Strikingly, when using low-concentration CO2 (30%) as the feedstock, this catalyst can still deliver a partial CO current of 240 mA at >80% FECO in the MEA. Considering the earth-abundant character of the Al element and the high intrinsic activity of the Al-NC catalyst, it is a promising alternative to today's transition metal-based single-atom catalysts.
Collapse
Affiliation(s)
- Zhanshuai Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bingqing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weibo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengjin Chen
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fangkui Liang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nian Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Hui Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yongheng Chu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Li S, Wu Q, You X, Ren X, Du P, Li F, Zheng N, Shen H. Anchoring Frustrated Lewis Pair Active Sites on Copper Nanoclusters for Regioselective Hydrogenation. J Am Chem Soc 2024; 146:27852-27860. [PMID: 39352212 DOI: 10.1021/jacs.4c10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, the concept of Frustrated Lewis Pairs (FLPs), which consist of a combination of Lewis acid (LA) and Lewis base (LB) active sites arranged in a suitable geometric configuration, has been widely utilized in homogeneous catalytic reactions. This concept has also been extended to solid supports such as zeolites, metal oxide surfaces, and metal/covalent organic frameworks, resulting in a diverse range of heterogeneous FLP catalysts that have demonstrated notable efficiency and recyclability in activating small molecules. This study presents the successful immobilization of FLP active sites onto the surface of ligand-stabilized copper nanoclusters with atomic precision, leading to the development of copper nanocluster FLP catalysts characterized by high reactivity, stability, and selectivity. Specifically, thiol ligands containing 2-methoxyl groups were strategically designed to stabilize the surface of [Cu34S7(RS)18(PPh3)4]2+ (where RSH = 2-methoxybenzenethiol), facilitating the formation of FLPs between the surface copper atoms (LA) and ligand oxygen atoms (LB). Experimental and theoretical investigations have demonstrated that these FLPs on the cluster surface can efficiently activate H2 through a heterolytic pathway, resulting in superior catalytic performance in the hydrogenation of alkenes under mild conditions. Notably, the intricate yet precise surface coordination structures of the cluster, reminiscent of enzyme catalysts, enable the hydrogenation process to proceed with nearly 100% selectivity. This research offers valuable insights into the design of FLP catalysts with enhanced activity and selectivity by leveraging surface/interface coordination chemistry of ligand-stabilized atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qingyuan Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Xuexin You
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Xiaofei Ren
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Peilin Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
20
|
Wang YQ, Fu J, Feng Y, Zhao K, Wang L, Cai JY, Wang X, Chen T, Yang F, Hu JS, Xu B, Wang D, Wan LJ. Alkali Metal Cations Induce Structural Evolution on Au(111) During Cathodic Polarization. J Am Chem Soc 2024; 146:27713-27724. [PMID: 39324482 DOI: 10.1021/jacs.4c09404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The activity of the electrocatalytic CO2 reduction reaction (CO2RR) is substantially affected by alkali metal cations (AM+) in electrolytes, yet the underlying mechanism is still controversial. Here, we employed electrochemical scanning tunneling microscopy and in situ observed Au(111) surface roughening in AM+ electrolytes during cathodic polarization. The roughened surface is highly active for catalyzing the CO2RR due to the formation of surface low-coordinated Au atoms. The critical potential for surface roughening follows the order Cs+ > Rb+ > K+ > Na+ > Li+, and the surface proportion of roughened area decreases in the order of Cs+ > Rb+ > K+ > Na+ > Li+. Electrochemical CO2RR measurements demonstrate that the catalytic activity strongly correlates with the surface roughness. Furthermore, we found that AM+ is critical for surface roughening to occur. The results unveil the unrecognized effect of AM+ on the surface structural evolution and elucidate that the AM+-induced formation of surface high-activity sites contributes to the enhanced CO2RR in large AM+ electrolytes.
Collapse
Affiliation(s)
- Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaju Fu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Feng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyue Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji-Yuan Cai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin-Song Hu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Sun J, Wu Q, Yan X, Li L, Tang X, Gong X, Yan B, Xu Q, Guo Q, He J, Shen H. Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis. JACS AU 2024; 4:3427-3435. [PMID: 39328750 PMCID: PMC11423317 DOI: 10.1021/jacsau.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
The utilization of structure distortion to modulate the electronic structure and alter catalytic properties of metallic nanomaterials is a well-established practice, but accurately identifying and comprehensively understanding these distortions present significant challenges. Ligand-stabilized metal nanoclusters with well-defined structures serve as exemplary model systems to illustrate the structure chemistry of nanomaterials, among which few studies have investigated nanocluster models that incorporate structural distortions. In this work, a novel copper hydride nanocluster, Cu42(PPh3)8(RS)4(CF3COO)10(CH3O)4H10 (Cu42; PPh3 is triphenylphosphine and RSH is 2,4-dichlorophenylthiol), with a highly twisted structure has been synthesized in a simple way. Structural analysis reveals Cu42 comprises two Cu25 units that are conjoined in a nearly orthogonal manner. The dramatic distortion in the metal framework, which is driven by multiple interactions from the surface ligands, endows the cluster with a rich array of uncoordinated metal sites on the surface. The resulting cluster, as envisioned, exhibits remarkable activity in catalyzing carbonylation of anilines. The findings from this study not only provides atomically precise insights into the structural distortions that are pertinent to nanoparticle catalysts but also underscores the potential of structurally distorted NCs as a burgeoning generation of catalysts with precise structures and outstanding performances that can be tailored for specific functions.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Lei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
22
|
Wang R, Lee JM. High-Energy Facet Engineering for Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401546. [PMID: 38705853 DOI: 10.1002/smll.202401546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/15/2024] [Indexed: 05/07/2024]
Abstract
The design of high-energy facets in electrocatalysts has attracted significant attention due to their potential to enhance electrocatalytic activity. In this review, the significance of high-energy facets in various electrochemical reactions are highlighted, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CRR). Their importance in various electrochemical reactions and present strategies for constructing high-energy facets are discussed, including alloying, heterostructure formation, selective etching, capping agents, and coupling with substrates. These strategies enable control over crystallographic orientation and surface morphology, fine-tuning electrocatalytic properties. This study also addresses future directions and challenges, emphasizing the need to better understand fundamental mechanisms. Overall, high-energy facets offer exciting opportunities for advancing electrocatalysis.
Collapse
Affiliation(s)
- Rui Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
23
|
Rodríguez-Rubio A, Yuste Á, Torroba T, García-Herbosa G, Cuevas-Vicario JV. Synthesis and Electrochemical Study of Gold(I) Carbene Complexes. Molecules 2024; 29:4081. [PMID: 39274929 PMCID: PMC11487389 DOI: 10.3390/molecules29174081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
In this work, we have prepared and characterized some gold compounds wearing a N-heterocyclic carbene (NHC) ligand as well as alkynyl derivatives with different substituents. The study of their electrochemical behavior reveals that these complexes show an irreversible wave at potentials ranging between -2.79 and -2.91 V, referenced to the ferrocenium/ferrocene pair. DFT calculations indicate that the reduction occurs mainly on the aryl-C≡C fragment. The cyclic voltammetry experiments under CO2 atmosphere show an increase in the faradaic current of the reduction wave compared to the experiments under argon atmosphere, indicating a possible catalytic activity towards the carbon dioxide reduction reaction (CO2RR).
Collapse
Affiliation(s)
| | | | | | | | - José V. Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain; (A.R.-R.); (Á.Y.); (T.T.); (G.G.-H.)
| |
Collapse
|
24
|
Luo Q, Tapia J, Zhou L, Liu CH, Liaqat M, Duan H, Yang Z, Nieh MP, Emrick T, Bai P, He J. Fluorinated polymer zwitterions on gold nanoparticles: patterned catalyst surfaces guide interfacial transport and electrochemical CO 2 reduction. NANOSCALE 2024; 16:15558-15567. [PMID: 39101249 PMCID: PMC11340345 DOI: 10.1039/d4nr01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
We report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO2 electroreduction. The unique combination of hydrophilic phosphorylcholine and hydrophobic fluorinated moieties in these polymers creates a fractal structure with mixed branched cylinders on the surface of gold nanoparticles (AuNPs). In the presence of these polymers, the CO faradaic efficiency improves by 50-80% in the range of -0.7 V to -0.9 V. The fractal structures have a domain size of ∼3 nm, showing enhanced mass transfer kinetics of CO2 approaching the catalyst surfaces without limiting ion diffusion. The phase-separated hydrophilic and hydrophobic domains offer separated channeling to water and CO2, as confirmed by attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and molecule dynamic (MD) simulations. H2O molecules permeate extensively into the polymer layer that adsorbs on zwitterions, forming continuous chains, while CO2 molecules strongly associate with the fluorinated tails of fluorinated polyzwitterions, with oxygen facing the positively charged amine groups. Overall, this coupling of zwitterion and fluorocarbon in a polymer material creates new opportunities for defining microenvironments of metallic nanocatalysts in hybrid structures.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Joseph Tapia
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Le Zhou
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Maham Liaqat
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhefei Yang
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Peng Bai
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
25
|
Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan LL, Shang L, Yang YW. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS NANO 2024; 18:22548-22559. [PMID: 39110641 DOI: 10.1021/acsnano.4c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zijian Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yu Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| |
Collapse
|
26
|
Su S, Zhou Y, Xiong L, Jin S, Du Y, Zhu M. Structure-Activity Relationships of the Structural Analogs Au 8Cu 1 and Au 8Ag 1 in the Electrocatalytic CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202404629. [PMID: 38845560 DOI: 10.1002/anie.202404629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.
Collapse
Affiliation(s)
- Shangyu Su
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yanting Zhou
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, PR China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yuanxin Du
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, PR China
- Anhui Tongyuan Environment Energy Saving Co., Ltd., Hefei, 230041, China
| |
Collapse
|
27
|
Han SM, Park M, Kim J, Lee D. Boosting the Electroreduction of CO 2 to CO by Ligand Engineering of Gold Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202404387. [PMID: 38757232 DOI: 10.1002/anie.202404387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been widely studied as a promising means to convert anthropogenic CO2 into valuable chemicals and fuels. In this process, the alkali metal ions present in the electrolyte are known to significantly influence the CO2RR activity and selectivity. In this study, we report a strategy for preparing efficient electrocatalysts by introducing a cation-relaying ligand, namely 6-mercaptohexanoic acid (MHA), into atom-precise Au25 nanoclusters (NCs). The CO2RR activity of the synthesized Au25(MHA)18 NCs was compared with that of Au25(HT)18 NCs (HT=1-hexanethiolate). While both NCs selectively produced CO over H2, the CO2-to-CO conversion activity of the Au25(MHA)18 NCs was significantly higher than that of the Au25(HT)18 NCs when the catholyte pH was higher than the pKa of MHA, demonstrating the cation-relaying effect of the anionic terminal group. Mechanistic investigations into the CO2RR occurring on the Au25 NCs in the presence of different catholyte cations and concentrations revealed that the CO2-to-CO conversion activities of these Au25 NCs increased in the order Li+
Collapse
Affiliation(s)
- Sang Myeong Han
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minyoung Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiyoung Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dongil Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
28
|
Wang N, Jiang W, Yang J, Feng H, Zheng Y, Wang S, Li B, Heng JZX, Ong WC, Tan HR, Zhang YW, Wang D, Ye E, Li Z. Contact-electro-catalytic CO 2 reduction from ambient air. Nat Commun 2024; 15:5913. [PMID: 39003260 PMCID: PMC11246423 DOI: 10.1038/s41467-024-50118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
Traditional catalytic techniques often encounter obstacles in the search for sustainable solutions for converting CO2 into value-added products because of their high energy consumption and expensive catalysts. Here, we introduce a contact-electro-catalysis approach for CO2 reduction reaction, achieving a CO Faradaic efficiency of 96.24%. The contact-electro-catalysis is driven by a triboelectric nanogenerator consisting of electrospun polyvinylidene fluoride loaded with single Cu atoms-anchored polymeric carbon nitride (Cu-PCN) catalysts and quaternized cellulose nanofibers (CNF). Mechanistic investigation reveals that the single Cu atoms on Cu-PCN can effectively enrich electrons during contact electrification, facilitating electron transfer upon their contact with CO2 adsorbed on quaternized CNF. Furthermore, the strong adsorption of CO2 on quaternized CNF allows efficient CO2 capture at low concentrations, thus enabling the CO2 reduction reaction in the ambient air. Compared to the state-of-the-art air-based CO2 reduction technologies, contact-electro-catalysis achieves a superior CO yield of 33 μmol g-1 h-1. This technique provides a solution for reducing airborne CO2 emissions while advancing chemical sustainability strategy.
Collapse
Affiliation(s)
- Nannan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jing Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Haisong Feng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Youbin Zheng
- Department of Electrical Engineering & Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 7GJ, UK
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Jerry Zhi Xiong Heng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Wai Chung Ong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Hui Ru Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.
| |
Collapse
|
29
|
Wang R, Chen D, Fang L, Fan W, You Q, Bian G, Zhou Y, Gu W, Wang C, Bai L, Li J, Deng H, Liao L, Yang J, Wu Z. Atomically Precise Nanometer-Sized Pt Catalysts with an Additional Photothermy Functionality. Angew Chem Int Ed Engl 2024; 63:e202402565. [PMID: 38588114 DOI: 10.1002/anie.202402565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Atomically precise ~1-nm Pt nanoparticles (nanoclusters, NCs) with ambient stability are important in fundamental research and exhibit diverse practical applications (catalysis, biomedicine, etc.). However, synthesizing such materials is challenging. Herein, by employing the mixture ligand protecting strategy, we successfully synthesized the largest organic-ligand-protected (~1-nm) Pt23 NCs precisely characterized with mass spectrometry and single-crystal X-ray diffraction analyses. Interestingly, natural population analysis and Bader charge calculation indicate an alternate, varying charge -layer distribution in the sandwich-like Pt23 NC kernel. Pt23 NCs can catalyze the oxygen reduction reaction under acidic conditions without requiring calcination and other treatments, and the resulting specific and mass activities without further treatment are sevenfold and eightfold higher than those observed for commercial Pt/C catalysts, respectively. Density functional theory and d-band center calculations interpret the high activity. Furthermore, Pt23 NCs exhibit a photothermal conversion efficiency of 68.4 % under 532-nm laser irradiation and can be used at least for six cycles, thus demonstrating great potential for practical applications.
Collapse
Grants
- 21925303, 21829501, 21771186, 22075290, 22075291, 22272179, 21222301, 21171170, and 21528303 Natural Science Foundation of China
- BJPY2019A02 CASHIPS Director's Fund
- MESO-23-A06 State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- 2020HSC-CIP005 and 2022HSC-CIP018 Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- 2021M703251 China Postdoctoral Science Foundation
- YZJJ-GGZX-2022-01 and YZJJ202306-TS HFIPS Director's Fund
Collapse
Affiliation(s)
- Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Dong Chen
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Chengming Wang
- Instruments' Center for Physical Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Licheng Bai
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P.R.China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P.R.China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| |
Collapse
|
30
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
31
|
Sun X, Yan B, Gong X, Xu Q, Guo Q, Shen H. Eight-Electron Copper Nanoclusters for Photothermal Conversion. Chemistry 2024; 30:e202400527. [PMID: 38470123 DOI: 10.1002/chem.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Owing to distinct physicochemical properties in comparison to gold and silver counterparts, atomically precise copper nanoclusters are attracting embryonic interest in material science. The introduction of copper cluster nanomaterials in more interesting fields is currently urgent and desired. Reported in this work are novel copper nanoclusters of [XCu54Cl12(tBuS)20(NO3)12] (X=S or none, tBuSH=2-methyl-2-propanethiol), which exhibit high performance in photothermal conversion. The clusters have been prepared in one pot and characterized by combinatorial techniques including ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and X-ray photoelectron spectroscopy (XPS). The molecular structure of the clusters, as revealed by single crystal X-ray diffraction analysis (SCXRD), shows the concentric three-shell Russian doll arrangement of X@Cu14@Cl12@Cu40. Interestingly, the [SCu54Cl12(tBuS)20(NO3)12] cluster contains 8 free valence electrons in its structure, making it the first eight-electron copper nanocluster stabilized by thiolates. More impressively, the clusters possess an effective photothermal conversion (temperature increases by 71 °C within ~50 s, λex=445 nm, 0.5 W cm-2) in a wide wavelength range (either blue or near-infrared). The photothermal conversion can be even driven under irradiation of simulated sunlight (3 sun), endowing the clusters with great potency in solar energy utilization.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
32
|
Liu Z, Chen J, Li B, Jiang DE, Wang L, Yao Q, Xie J. Enzyme-Inspired Ligand Engineering of Gold Nanoclusters for Electrocatalytic Microenvironment Manipulation. J Am Chem Soc 2024; 146:11773-11781. [PMID: 38648616 DOI: 10.1021/jacs.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Natural enzymes intricately regulate substrate accessibility through specific amino acid sequences and folded structures at their active sites. Achieving such precise control over the microenvironment has proven to be challenging in nanocatalysis, especially in the realm of ligand-stabilized metal nanoparticles. Here, we use atomically precise metal nanoclusters (NCs) as model catalysts to demonstrate an effective ligand engineering strategy to control the local concentration of CO2 on the surface of gold (Au) NCs during electrocatalytic CO2 reduction reactions (CO2RR). The precise incorporation of two 2-thiouracil-5-carboxylic acid (TCA) ligands within the pocket-like cavity of [Au25(pMBA)18]- NCs (pMBA = para-mercaptobenzoic acid) leads to a substantial acceleration in the reaction kinetics of CO2RR. This enhancement is attributed to a more favorable microenvironment in proximity to the active site for CO2, facilitated by supramolecular interactions between the nucleophilic Nδ- of the pyrimidine ring of the TCA ligand and the electrophilic Cδ+ of CO2. A comprehensive investigation employing absorption spectroscopy, mass spectrometry, isotopic labeling measurements, electrochemical analyses, and quantum chemical computation highlights the pivotal role of local CO2 enrichment in enhancing the activity and selectivity of TCA-modified Au25 NCs for CO2RR. Notably, a high Faradaic efficiency of 98.6% toward CO has been achieved. The surface engineering approach and catalytic fundamentals elucidated in this study provide a systematic foundation for the molecular-level design of metal-based electrocatalysts.
Collapse
Affiliation(s)
- Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
33
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
34
|
Jiang S, Chen Y, Cui X, Sun Y, Ma G, Bao Y, Yao Y, Ma T. Constructing Highly Efficient ZnO Nanocatalysts with Exposed Extraordinary (110) Facet for CO 2 Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489479 DOI: 10.1021/acsami.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Electrochemical reduction of CO2 to highly valuable products is a promising way to reduce CO2 emissions. The shape and facets of metal nanocatalysts are the key parameters in determining the catalytic performance. However, the exposed crystal facets of ZnO with different morphologies and which facets achieve a high performance for CO2 reduction are still controversial. Here, we systematically investigate the effect of the facet-dependent reactivity of reduction of CO2 to CO on ZnO (nanowire, nanosheet, and flower-like). The ZnO nanosheet with exposed (110) facet exhibited prominent catalytic performance with a Faradaic efficiency of CO up to 84% and a current density of -10 mA cm-2 at -1.2 V versus RHE, far outperforming the ZnO nanowire (101) and ZnO nanoflower (103). Based on detailed characterizations and kinetic analysis, the ZnO nanosheet (110) with porous architecture increased the exposure of active sites. Further studies revealed that the high CO selectivity originated from the enhancement of CO2 adsorption and activation on the ZnO (110) facet, which promoted the conversion of CO2 toward CO. This study provides a new way to tailor the activity and selectivity of metal catalysts by engineering exposed specific facets.
Collapse
Affiliation(s)
- Shuoshuo Jiang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Cui
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Guanghuan Ma
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yuxin Bao
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yali Yao
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1710, South Africa
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
35
|
Ma A, Ren Y, Zuo Y, Wang J, Huang S, Ma X, Wang S. Ligand-controlled exposure of active sites on the Pd 1Ag 14 nanocluster surface to boost electrocatalytic CO 2 reduction. Chem Commun (Camb) 2024; 60:3162-3165. [PMID: 38407303 DOI: 10.1039/d4cc00152d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Advancing catalyst design requires meticulous control of nanocatalyst selectivity at the atomic level. Here, we synthesized two Pd1Ag14 nanoclusters: Pd1Ag14(PPh3)8(SPh(CF3)2)6 and Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, each with well-defined structures. Notably, in Pd1Ag14(P(Ph-p-OMe)3)7(SPh)6, the detachment of a phosphine ligand from the top silver atom facilitates the exposure of singular active sites. This exposure significantly enhances its selectivity for the electrocatalytic reduction of CO2 to CO, achieving a Faraday efficiency of 83.3% at -1.3 V, markedly surpassing the 28.1% performance at -1.2 V of Pd1Ag14(PPh3)8(SPh(CF3)2)6. This work underscores the impact of atomic-level structural manipulation on enhancing nanocatalyst performance.
Collapse
Affiliation(s)
- Along Ma
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yonggang Ren
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yang Zuo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shutong Huang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaoshuang Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuxin Wang
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
36
|
Albright EL, Levchenko TI, Kulkarni VK, Sullivan AI, DeJesus JF, Malola S, Takano S, Nambo M, Stamplecoskie K, Häkkinen H, Tsukuda T, Crudden CM. N-Heterocyclic Carbene-Stabilized Atomically Precise Metal Nanoclusters. J Am Chem Soc 2024; 146:5759-5780. [PMID: 38373254 DOI: 10.1021/jacs.3c11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
This perspective highlights advances in the preparation and understanding of metal nanoclusters stabilized by organic ligands with a focus on N-heterocyclic carbenes (NHCs). We demonstrate the need for a clear understanding of the relationship between NHC properties and their resulting metal nanocluster structure and properties. We emphasize the importance of balancing nanocluster stability with the introduction of reactive sites for catalytic applications and the importance of a better understanding of how these clusters interact with their environments for effective use in biological applications. The impact of atom-scale simulations, development of atomic interaction potentials suitable for large-scale molecular dynamics simulations, and a deeper understanding of the mechanisms behind synthetic methods and physical properties (e.g., the bright fluorescence displayed by many clusters) are emphasized.
Collapse
Affiliation(s)
- Emily L Albright
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tetyana I Levchenko
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Viveka K Kulkarni
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Angus I Sullivan
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Joseph F DeJesus
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Sami Malola
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Shinjiro Takano
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Kevin Stamplecoskie
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hannu Häkkinen
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Tatsuya Tsukuda
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
37
|
Wang YM, Yan FQ, Wang QY, Du CX, Wang LY, Li B, Wang S, Zang SQ. Single-atom tailored atomically-precise nanoclusters for enhanced electrochemical reduction of CO 2-to-CO activity. Nat Commun 2024; 15:1843. [PMID: 38418496 PMCID: PMC10901820 DOI: 10.1038/s41467-024-46098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
The development of facile tailoring approach to adjust the intrinsic activity and stability of atomically-precise metal nanoclusters catalysts is of great interest but remians challenging. Herein, the well-defined Au8 nanoclusters modified by single-atom sites are rationally synthesized via a co-eletropolymerization strategy, in which uniformly dispersed metal nanocluster and single-atom co-entrenched on the poly-carbazole matrix. Systematic characterization and theoretical modeling reveal that functionalizing single-atoms enable altering the electronic structures of Au8 clusters, which amplifies their electrocatalytic reduction of CO2 to CO activity by ~18.07 fold compared to isolated Au8 metal clusters. The rearrangements of the electronic structure not only strengthen the adsorption of the key intermediates *COOH, but also establish a favorable reaction pathway for the CO2 reduction reaction. Moreover, this strategy fixing nanoclusters and single-atoms on cross-linked polymer networks efficiently deduce the performance deactivation caused by agglomeration during the catalytic process. This work contribute to explore the intrinsic activity and stability improvement of metal clusters.
Collapse
Affiliation(s)
- Yi-Man Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fang-Qin Yan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Xia Du
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Ya Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
38
|
Zhao R, Zhu Z, Ouyang T, Liu ZQ. Selective CO 2 -to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angew Chem Int Ed Engl 2024; 63:e202313597. [PMID: 37853853 DOI: 10.1002/anie.202313597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Electrocatalytic CO2 -to-syngas (gaseous mixture of CO and H2 ) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2 O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2 -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
39
|
Tan Y, Sun G, Jiang T, Liu D, Li Q, Yang S, Chai J, Gao S, Yu H, Zhu M. Symmetry Breaking Enhancing the Activity of Electrocatalytic CO 2 Reduction on an Icosahedron-Kernel Cluster by Cu Atoms Regulation. Angew Chem Int Ed Engl 2024; 63:e202317471. [PMID: 38072830 DOI: 10.1002/anie.202317471] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Recently, CO2 hydrogenation had a new breakthrough resulting from the design of catalysts to effectively activate linear CO2 with symmetry-breaking sites. However, understanding the relationship between symmetry-breaking sites and catalytic activity at the atomic level is still a great challenge. In this study, a set of gold-copper alloy Au13 Cux (x=0-4) nanoclusters were used as research objects to show the symmetry-controlled breaking structure on the surface of nanoclusters with the help of manipulability of the Cu atoms. Among them, Au13 Cu3 nanocluster displays the highest degree of symmetry-breaking on its crystal structure compared with the other nanoclusters in the family. Where the three copper atoms occupying the surface of the icosahedral kernel unevenly with one copper atom is coordinately unsaturated (CuS2 motif relative to CuS3 motif). As expected, Au13 Cu3 has an excellent hydrogenation activity of CO2 , in which the current density is as high as 70 mA cm-2 (-0.97 V) and the maximum FECO reaches 99 % at -0.58 V. Through the combination of crystal structures and theoretical calculations, the excellent catalytic activity of Au13 Cu3 is revealed to be indeed closely related to its asymmetric structure.
Collapse
Affiliation(s)
- Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Guilin Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Tingting Jiang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Dong Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| |
Collapse
|
40
|
Guo ST, Du YW, Luo H, Zhu Z, Ouyang T, Liu ZQ. Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO 2 Nanotubes for Efficient Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202314099. [PMID: 38059828 DOI: 10.1002/anie.202314099] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Zn-based catalysts hold great potential to replace the noble metal-based ones for CO2 reduction reaction (CO2 RR). Undercoordinated Zn (Znδ+ ) sites may serve as the active sites for enhanced CO production by optimizing the binding energy of *COOH intermediates. However, there is relatively less exploration into the dynamic evolution and stability of Znδ+ sites during CO2 reduction process. Herein, we present ZnO, Znδ+ /ZnO and Zn as catalysts by varying the applied reduction potential. Theoretical studies reveal that Znδ+ sites could suppress HER and HCOOH production to induce CO generation. And Znδ+ /ZnO presents the highest CO selectivity (FECO 70.9 % at -1.48 V vs. RHE) compared to Zn and ZnO. Furthermore, we propose a CeO2 nanotube with confinement effect and Ce3+ /Ce4+ redox to stabilize Znδ+ species. The hollow core-shell structure of the Znδ+ /ZnO/CeO2 catalyst enables to extremely expose electrochemically active area while maintaining the Znδ+ sites with long-time stability. Certainly, the target catalyst affords a FECO of 76.9 % at -1.08 V vs. RHE and no significant decay of CO selectivity in excess of 18 h.
Collapse
Affiliation(s)
- Si-Tong Guo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Yu-Wei Du
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Huihua Luo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
41
|
Wang X, Ding S, Feng X, Zhu Y. High stability copper clusters anchored on N-doped carbon nanosheets for efficient CO 2 electroreduction to HCOOH. J Colloid Interface Sci 2024; 653:741-748. [PMID: 37742433 DOI: 10.1016/j.jcis.2023.09.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Cu-based nanomaterials is crucial for electrochemical CO2 reduction reaction (CO2RR), but they inevitably undergo performance degradation due to structural self-reconstruction at a large current density during CO2RR. Here, we developed a pre-synthetic atomically dispersed Cu source strategy to fabricate a catalyst of stable Cu clusters anchored on N-doped carbon nanosheets (c-Cu/NC), which exhibited an exceptional electroreduction for CO2 to HCOOH with a Faradaic efficiency of up to 96.2 % at current density of 276.4 mA cm-2 at - 0.96 V vs. RHE, which surpasses most reported catalysts. Especially, there was no any decay in stability during a 100 h continuous test, attributed to a strong interaction of Cu-C for restraining its self-reconstruction during CO2RR. DFT calculations indicated that N-doped carbon can strongly stabilize Cu clusters for keeping stability and cause the downshift of d-band center of Cu on c-Cu/NC for reducing the desorption energy between c-Cu/NC and OCHO* intermediates. This work provides an effective way to construct stable Cu clusters catalysts, and unveil the origin of catalyticmechanism over Cu clusters anchored on N-doped carbon towards electrochemical conversion ofCO2 to HCOOH.
Collapse
Affiliation(s)
- Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaochen Feng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
42
|
Liu C, Li Y, He Z, Yang Y, Wu C, Fan W, Xu WW, Li MB. Reduction-Oxidation Cascade Strategy for Reforming a Au 13-Kerneled Gold Thiolate Nanocluster. J Phys Chem Lett 2023; 14:11558-11564. [PMID: 38096134 DOI: 10.1021/acs.jpclett.3c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Gold nanoclusters protected by thiolate ligands are ideal models for investigating the structure-property correlation of nanomaterals. Introducing relatively weak coordinating ligands into gold thiolate nanoclusters and thus reforming their structures is beneficial for further releasing their activities. However, controlling the selectivity of the process is a challenging task. In this work, we report a cascade strategy for deeply and purposefully reforming the structures of gold thiolate nanoclusters, exemplified by a Au13-kerneled Au23 nanocluster. Specifically, weakly coordinated triphenylphosphine was utilized to reduce (activate) the surface of Au23, enabling its further structural reformation by the following oxidation step. A structurally distinctive Au20 nanocluster was obtained based on this reduction-oxidation cascade strategy. Mechanism studies reveal that both the reduction and oxidation steps and their working sequence are critical for the transformation. Theoretical and experimental results all indicate that the deep structural reformation results in the evolution of the electronic and photoluminescent properties of the gold thiolate nanocluster.
Collapse
Affiliation(s)
- Chang Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Yanshuang Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Zongbing He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237015, P.R. China
| | - Chao Wu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
43
|
Tang L, Han Q, Wang B, Yang Z, Song C, Feng G, Wang S. Constructing perfect cubic Ag-Cu alloyed nanoclusters through selective elimination of phosphine ligands. Phys Chem Chem Phys 2023; 26:62-66. [PMID: 38086629 DOI: 10.1039/d3cp04224c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The aspiration of chemists has always been to design and achieve control over nanoparticle morphology at the atomic level. Here, we report a synthesis strategy and crystal structure of a perfect cubic Ag-Cu alloyed nanocluster, [Ag55Cu8I12(S-C6H32,4(CH3)2)24][(PPh4)] (Ag55Cu8I12 for short). The structure of this cluster was determined by single-crystal X-ray diffraction (SCXRD) and further validated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and 1H and 31P nuclear magnetic resonance (NMR). The surface deviation of the cube was measured to be 0.291 Å, making it the flattest known cube to date.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Qikai Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Zhonghua Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Chunyuan Song
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Guanyu Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
44
|
Deng G, Yun H, Bootharaju MS, Sun F, Lee K, Liu X, Yoo S, Tang Q, Hwang YJ, Hyeon T. Copper Doping Boosts Electrocatalytic CO 2 Reduction of Atomically Precise Gold Nanoclusters. J Am Chem Soc 2023; 145:27407-27414. [PMID: 38055351 DOI: 10.1021/jacs.3c08438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Unraveling the atomistic synergistic effects of nanoalloys on the electrocatalytic CO2 reduction reaction (eCO2RR), especially in the presence of copper, is of paramount importance. However, this endeavor encounters significant challenges due to the lack of the crystallographically determined atomic-level structure of appropriate monometallic and bimetallic analogues. Herein, we report a one-pot synthesis and structure characterization of a AuCu nanoalloy cluster catalyst, [Au15Cu4(DPPM)6Cl4(C≡CR)1]2+ (denoted as Au15Cu4). Single-crystal X-ray diffraction analysis reveals that Au15Cu4 comprises two interpenetrating incomplete, centered icosahedra (Au9Cu2 and Au8Cu3) and is protected by six DPPM, four halide, and one alkynyl ligand. The Au15Cu4 cluster and its closest monometal structural analogue, [Au18(DPPM)6Br4]2+ (denoted as Au18), as model systems, enable the elucidation of the atomistic synergistic effects of Au and Cu on eCO2RR. The results reveal that Au15Cu4 is an excellent eCO2RR catalyst in a gas diffusion electrode-based membrane electrode assembly (MEA) cell, exhibiting a high CO Faradaic efficiency (FECO) of >90%, and this efficiency is substantially higher than that of the undoped Au18 (FECO: 60% at -3.75 V). Au15Cu4 exhibits an industrial-level CO partial current density of up to -413 mA/cm2 at -3.75 V with the gas CO2-fed MEA, which is 2-fold higher than that of Au18. The density functional theory (DFT) calculations demonstrate that the synergistic effects are induced by Cu doping, where the exposed pair of AuCu dual sites was suggested for launching the eCO2RR process. Besides, DFT simulations reveal that these special dual sites synergistically coordinate a moderate shift in the d-state, thus enhancing its overall catalytic performance.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
45
|
Yoo S, Yoo S, Deng G, Sun F, Lee K, Jang H, Lee CW, Liu X, Jang J, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Nanocluster Surface Microenvironment Modulates Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2313032. [PMID: 38113897 DOI: 10.1002/adma.202313032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/21/2023]
Abstract
The catalytic activity and product selectivity of the electrochemical CO2 reduction reaction (eCO2 RR) depend strongly on the local microenvironment of mass diffusion at the nanostructured catalyst and electrolyte interface. Achieving a molecular-level understanding of the electrocatalytic reaction requires the development of tunable metal-ligand interfacial structures with atomic precision, which is highly challenging. Here, the synthesis and molecular structure of a 25-atom silver nanocluster interfaced with an organic shell comprising 18 thiolate ligands are presented. The locally induced hydrophobicity by bulky alkyl functionality near the surface of the Ag25 cluster dramatically enhances the eCO2 RR activity (CO Faradaic efficiency, FECO : 90.3%) with higher CO partial current density (jCO ) in an H-cell compared to Ag25 cluster (FECO : 66.6%) with confined hydrophilicity, which modulates surface interactions with water and CO2 . Remarkably, the hydrophobic Ag25 cluster exhibits jCO as high as -240 mA cm-2 with FECO >90% at -3.4 V cell potential in a gas-fed membrane electrode assembly device. Furthermore, this cluster demonstrates stable eCO2 RR over 120 h. Operando surface-enhanced infrared absorption spectroscopy and theoretical simulations reveal how the ligands alter the neighboring water structure and *CO intermediates, impacting the intrinsic eCO2 RR activity, which provides atomistic mechanistic insights into the crucial role of confined hydrophobicity.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsung Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Megalamane Siddaramappa Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
46
|
Fan JQ, Cen K, Xu HJ, Wang HY, Yang Y, Zhu ZM, Liu H, Chen D, Fan W, Li MB. Photochemical synthesis of group 10 metal nanoclusters for electrocatalysis. NANOSCALE 2023; 15:19079-19084. [PMID: 38009073 DOI: 10.1039/d3nr05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Four group 10 metal nanoclusters, Ni10(4-MePhS)20, Ni11(PhS)22, Pd9(PhS)18 and Pd10(PhS)20 were synthesized from disulfides based on a photochemical reduction-oxidation cascade process, which proceeds via a different mechanism to that of the conventional two-step reduction process. The as-obtained nanoclusters possess oxidative resistance and structural robustness under different conditions. Their atomically precise structures are determined to be nickel or palladium rings in which the metal atoms are bridged by Ar-S groups. Their catalytic performance in oxygen reduction reaction was compared, and the ring size-dependent catalytic activity of the group 10 metal nanoclusters was revealed. This work provides an efficient route to atomically precise and structurally stable group 10 metal nanoclusters, and sheds light on their further applications in electrocatalysis.
Collapse
Affiliation(s)
- Ji-Qiang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Kehui Cen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hua-Jun Xu
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, 9 Tianda Road, Hefei 230088, P. R. China
| | - Hai-Yang Wang
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, 9 Tianda Road, Hefei 230088, P. R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237015, P. R. China
| | - Ze-Min Zhu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Hao Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Dengyu Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
47
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
48
|
Wang M, Wang L, Wu H, Sun J, Xu X, Guo S, Jia Y, Li S, Guan ZJ, Shen H. PtAg 18 superatoms costabilized by phosphines and halides: synthesis, structure, and catalysis. NANOSCALE 2023; 15:17818-17824. [PMID: 37668358 DOI: 10.1039/d3nr02196c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Reported herein is the facial synthesis, molecular structure, and catalysis of a Pt/Ag nanocluster costabilized by organic ligands of phosphines and inorganic ligands of chlorides. The nanocluster with molecular formula of [PtAg18(dppp)6Cl8](SbF6)2 has been obtained facilely by the one pot method. The structure of the cluster could be anatomized as the stabilizaiton of PtAg12-centered icosahedral core by the metalloligand of dppp-Ag-Cl, in which Cl- not only caps the surface Ag atoms but also binds the core and surface motifs. Featuring eight free electrons in its structure, the cluster exhibits high stability. More interestingly, the exposure of surface metal sites endows the cluster with counterintutively high catalytic activity in hydrogenation reactions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Haoyuan Wu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaoxuan Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
49
|
Li Y, Stec GJ, Thorarinsdottir AE, McGillicuddy RD, Zheng SL, Mason JA. The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters. Chem Sci 2023; 14:12283-12291. [PMID: 37969596 PMCID: PMC10631301 DOI: 10.1039/d3sc04085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Grant J Stec
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Agnes E Thorarinsdottir
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
50
|
Sun X, Wang P, Yan X, Guo H, Wang L, Xu Q, Yan B, Li S, He J, Chen G, Shen H, Zheng N. Hydride-doped Ag 17Cu 10 nanoclusters as high-performance electrocatalysts for CO 2 reduction. iScience 2023; 26:107850. [PMID: 37752951 PMCID: PMC10518712 DOI: 10.1016/j.isci.2023.107850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
The atomically precise metal electrocatalysts for driving CO2 reduction reactions are eagerly pursued as they are model systems to identify the active sites, understand the reaction mechanism, and further guide the exploration of efficient and practical metal nanocatalysts. Reported herein is a nanocluster-based electrocatalyst for CO2 reduction, which features a clear geometric and electronic structure, and more importantly excellent performance. The nanocatalysts with the molecular formula of [Ag17Cu10(dppm)4(PhC≡C)20H4]3+ have been obtained in a facile way. The unique metal framework of the cluster, with silver, copper, and hydride included, and dedicated surface structure, with strong (dppm) and labile (alkynyl) ligands coordinated, endow the cluster with excellent performance in electrochemical CO2 reduction reaction to CO. With the atomically precise electrocatalysts in hand, not only high reactivity and selectivity (Faradaic efficiency for CO up to 91.6%) but also long-term stability (24 h), are achieved.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Guo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|