1
|
Liu C, Zhao Q, Cao Y, Li X, Peng K, Fu F. Bioinspired Structural Color Hydrogel Skin from Nonclose-Packed Colloidal Crystal Arrays for Epidermal Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16658-16667. [PMID: 40056106 DOI: 10.1021/acsami.5c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Developing multifunctional structural color hydrogel skin without sacrificing the unique periodic structure of photonic crystals is still a challenge due to the photonic bandgap limitation. Taking advantage of the synergistic effect of electrostatic repulsion and electronic conductivity, an intelligent structural color hydrogel skin with electrical and photonic sensing capabilities has been developed by doping MXene (Ti3C2Tx) nanosheets and adhesive functional groups (nucleobases) into colloidal particle solutions. The introduction of MXene nanosheets could improve both the stability and electrical conductivity of the colloidal particle solutions, resulting in a conductive hydrogel with bright structural colors. With the help of functional groups of nucleobases, the resulting structural color hydrogel was also endowed with high biocompatibility and strong adhesion to different substrates, including the wet surfaces of tissues. It was demonstrated that the structural color hydrogel can not only realize visual sensing of tiny limb movements but also provide stable electrical sensing signals. The intelligent structural color hydrogel can be integrated into a capacitor device as a hydrogel electronic skin to simulate the sensory function of human skin. The results showed that such hydrogel skin can simulate the touch of human skin and perceive tiny movements on the body surface with both electrical and photonic signals. These features of the multifunctional structural color hydrogels make them potentially excellent value in bioinspired hydrogel skin electronics.
Collapse
Affiliation(s)
- Changyi Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qingyu Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yucheng Cao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaohui Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kexin Peng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fanfan Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Yang X, Zhang Z, Sun H, Yun Y, Xie H, Tan Z, Wang H, Yang Y, Chen B, Teng H, Pan X, Yang M, Sun Y, Song Y, Su M. Multidimensional Resonance Controlled by Critical Size in Printed Binary Colloidal Crystals for High-Contrast Imaging. J Am Chem Soc 2025; 147:3383-3391. [PMID: 39823255 DOI: 10.1021/jacs.4c14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Colloidal crystal engineering enables the precise construction of structures with remarkable properties. However, the flexible and synergistic regulation of multiple properties of colloidal crystals remains a significant challenge. Here, we inspire from Brazilian opals to self-assemble polymer nanoparticles in the gaps of a single-layer opal substrate to fabricate large-scale binary colloidal crystals (BCCs). These BCCs have well-defined sizes, compositions, and dimensions, of which the crystallization process is finely controlled by the Marangoni flow. Notably, we find a critical size for the simultaneous and independent regulation of their lattice resonance wavelength and intensity, forming a full-color palette. Moreover, these BCCs as optical coatings allow for high-contrast imaging of microbials, benefiting from strong spatial confinement. Compared to glass in clinical smearing, they have an order of magnitude improvement in chromatism without dyeing. This work demonstrates that BCCs hold great potential in creating multifunctional devices for various applications including information display, biological detection, and optical imaging.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongyu Sun
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing 100700, P. R. China
| | - Yang Yun
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yaqi Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haoran Teng
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing 100700, P. R. China
| | - Xiangyu Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Mingtong Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
3
|
Wang X, Sun C, Jia S, Pang Y, Liu Z. Flow pattern maps of double emulsions transporting through bifurcation microchannels. SOFT MATTER 2024; 20:6544-6557. [PMID: 38984795 DOI: 10.1039/d4sm00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The transportation behaviors of compound droplets in confined channels are widespread phenomena while the physical mechanisms are far from being completely unraveled. In this work, behaviors of double emulsions flowing through bifurcation microchannels are experimentally studied with the aim of building universal flow pattern maps. Three flow patterns are categorized according to different features of daughter droplets in terms of size, uniformity, and shell thickness. A detailed analysis of the dynamics of interfacial evolutions in different patterns is carried out and the coupling interaction between interfaces is found to affect the minimum tail distance during transportation. It is feasible to obtain the threshold of the occurrence of the coupling interaction, due to the different variation tendencies in the two states, which relies on three dimensionless parameters, i.e. droplet length, length ratio, and capillary number. Furthermore, a novel physical model is proposed to build the flow pattern map, with the two transition boundaries being expressed as different relationships in terms of the three identified parameters. The physical mechanisms are summarized with the aid of force analysis. An excellent agreement is shown between the model and experimental results in different liquid systems and bifurcation structures, indicating the generality of the proposed model.
Collapse
Affiliation(s)
- Xiang Wang
- Faculty of Mechanics, Beijing University of Technology, Beijing 100124, China.
| | - Chao Sun
- School of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shiyan Jia
- School of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Pang
- Faculty of Mechanics, Beijing University of Technology, Beijing 100124, China.
| | - Zhaomiao Liu
- Faculty of Mechanics, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Wang Q, Zhang Z, Wang C, Yang X, Fang Z, Shang L. Bioinspired Confined Assembly of Cellulosic Cholesteric Liquid Crystal Bubbles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308442. [PMID: 38225706 PMCID: PMC10953211 DOI: 10.1002/advs.202308442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Construction of biomimetic models for structural color evolution not only gives new photonic phenomena but also provide cues for biological morphogenesis. Here, a novel confined self-assembly method is proposed for the generation of hydroxypropyl cellulose (HPC)-based cholesteric liquid crystals (CLCs) microbubbles. The assembly process relies on the combination of droplet microfluidics, solvent extraction, and a volume confined environment. The as-prepared HPC structural color microbubbles have a transparent shell, an orderly arranged cholesteric liquid crystal (CLC) middle layer, and an innermost bubble core. The size of the microbubble, shell thickness, and the color of the CLC layer can be adjusted by altering the microfluidic parameters. Intriguingly, benefited from the compartmentalization effect provided by droplet microfluidics, microbubbles with multiple cores of different color combinations are generated under precise control. The self-assembled CLCs microbubbles have bright structural color, suspending ability, and good temperature-sensitive characteristics, making them ideal underwater sensors. The present confined assembly approach will shed light on creating novel photonic structures and the HPC microbubble will find widespread applications in multifunctional sensing, optical display, and other related fields are believed.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhonglin Fang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Nam SK, Amstad E, Kim SH. Hydrogel-Encased Photonic Microspheres with Enhanced Color Saturation and High Suspension Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58761-58769. [PMID: 38084724 DOI: 10.1021/acsami.3c14364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Regular arrays of colloidal particles can produce striking structural colors without the need for any chemical pigments. Regular arrays of colloidal particles can be processed into microparticles via emulsion templates for use as structural colorants. Photonic microparticles, however, suffer from intense incoherent scattering and lack of suspension stability. We propose a microfluidic technique to generate hydrogel-shelled photonic microspheres that display enhanced color saturation and suspension stability. We created these microspheres using oil-in-water-in-oil (O/W/O) double-emulsion droplets with well-defined dimensions with a capillary microfluidic device. The inner oil droplet contains silica particles in a photocurable monomer, while the middle water droplet carries the hydrogel precursor. Within the inner oil droplet, silica particles arrange into crystalline arrays due to solvation-layer-induced interparticle repulsion. UV irradiation solidifies the inner photonic core and the outer hydrogel shell. The hydrogel shell reduces white scattering and enhances the suspension stability in water. Notably, the hydrogel precursor in the water droplet aids in maintaining the solvation layer, resulting in enhanced crystallinity and richer colors compared with microspheres from O/W single-emulsion droplets. These hydrogel-encased photonic microspheres show promise as structural colorants in water-based inks and polymer composites.
Collapse
Affiliation(s)
- Seong Kyeong Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Esther Amstad
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Li DY, Wang W, Chu LY, Deng NN. Tunable Structural Coloration in Eccentric Water-in-Oil-in-Water Droplets. NANO LETTERS 2023; 23:9657-9663. [PMID: 37548909 DOI: 10.1021/acs.nanolett.3c02119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural colors show diverse advantages such as fade resistance, eco-friendliness, iridescence, and high saturation in comparison with chemical pigments. In this paper, we show tunable structural coloration in colorless water-in-oil-in-water double emulsion droplets via total internal reflection and interference at the microscale concave interfaces. Through experimental work and simulations, we demonstrate that the shell thickness and the eccentricity of the core-shell structures are key to the successful formation of iridescent structural colors. Only eccentric thin-shell water-in-oil-in-water droplets show structural colors. Importantly, structural colors based on water-oil interfaces are readily responsive to a variety of environmental stimuli, such as osmotic pressure, temperature, magnetic fields, and light composition. This work highlights an alternative structural coloration that expands the applications of droplet-based structural colors to aqueous systems.
Collapse
Affiliation(s)
- Dong-Yu Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Nan-Nan Deng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, Sichuan 610213, China
| |
Collapse
|
7
|
Yang S, Kim YG, Park S, Kim SH. Structural Color Mixing in Microcapsules through Exclusive Crystallization of Binary and Ternary Colloids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302750. [PMID: 37319336 DOI: 10.1002/adma.202302750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Colloidal crystals are designed as photonic microparticles for various applications. However, conventional microparticles generally have only one stopband from a single lattice constant, which restricts the range of colors and optical codes available. Here, photonic microcapsules are created that contain two or three distinct crystalline grains, resulting in dual or triple stopbands that offer a wider range of colors through structural color mixing. To produce distinct colloidal crystallites from binary or ternary colloidal mixtures, the interparticle interaction is manipulated using depletion forces in double-emulsion droplets. Aqueous dispersions of binary or ternary colloidal mixtures in the innermost droplet are gently concentrated in the presence of a depletant and salt by imposing hypertonic conditions. Different-sized particles crystallize into their own crystals rather than forming random glassy alloys to minimize free energy. The average size of the crystalline grains can be adjusted with osmotic pressure, and the relative ratio of distinct grains can be controlled with the mixing ratio of particles. The resulting microcapsules with small grains and high surface coverage are almost optically isotropic and exhibit highly-saturated mixed structural colors and multiple reflectance peaks. The mixed color and reflectance spectrum are controllable with the selection of particle sizes and mixing ratios.
Collapse
Affiliation(s)
- Sehee Yang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Li B, Chen X, Zhou Y, Zhao Y, Song T, Wu X, Shi W. Liquid-liquid phase separation of immiscible polymers at double emulsion interfaces for configurable microcapsules. J Colloid Interface Sci 2023; 641:299-308. [PMID: 36934577 DOI: 10.1016/j.jcis.2023.03.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Liquid-liquid phase separation at complex interfaces is a common phenomenon in biological systems and is also a fundamental basis to create synthetic materials in multicomponent mixtures. Understanding the liquid-liquid phase separation in well-defined macromolecular systems is anticipated to shed light on similar behaviors in cross-disciplinary areas. Here we study a series of immiscible polymers and reveal a generic phase diagram of liquid-liquid phase separation at double emulsion interfaces, which depicts the equilibrium structures by interfacial tension and polymer fraction. We further reveal that the interfacial tensions in various systems fall on a linear relationship with spreading coefficients. Based on this theoretical guideline, the liquid-liquid phase separation can be modulated by a low fraction of amphiphilic block copolymers, leading the double emulsion droplets configurable between compartments and anisotropic shapes. The solidified anisotropic microcapsules could provide unique orientation-sensitive optical properties and thermomechanical responses. The theoretical analysis and experimental protocol in this study yield a generalizable strategy to prepare multiphase double emulsions with controlled structures and desired properties.
Collapse
Affiliation(s)
- Baihui Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaotong Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiantian Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxue Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China.
| |
Collapse
|
9
|
Li Z, Ma H, Guo Y, Fang H, Zhu C, Xue J, Wang W, Luo G, Sun Y. Synthesis of uniform Pickering microspheres doped with quantum dot by microfluidic technology and its application in tumor marker. Talanta 2023; 262:124495. [DOI: 10.1016/j.talanta.2023.124495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
|
10
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
11
|
Wei X, Shang Y, Zhu Y, Gu Z, Zhang D. Encoding microcarriers for biomedicine. SMART MEDICINE 2023; 2:e20220009. [PMID: 39188559 PMCID: PMC11235794 DOI: 10.1002/smmd.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 08/28/2024]
Abstract
High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms. Biosensor analysis, drug screening, cell culture, and the construction and evaluation of bionic organ chips can be realized by decoding the microcarriers and quantifying the detection signal intensity. In this review, the encoding strategy of microcarriers was divided into the optical and non-optical encoding approaches according to their encoding elements, and the research progress of the microcarrier encoding strategy was elaborated. Finally, we summarized the biomedical applications and predicted their future prospects.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yixuan Shang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yefei Zhu
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dagan Zhang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
12
|
Deng Q, Mi J, Dong J, Chen Y, Chen L, He J, Zhou J. Superiorly Stable Three-Layer Air Microbubbles Generated by Versatile Ethanol-Water Exchange for Contrast-Enhanced Ultrasound Theranostics. ACS NANO 2023; 17:263-274. [PMID: 36354372 DOI: 10.1021/acsnano.2c07300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbubbles have been widely used as ultrasound contrast agents in clinical diagnosis. Moreover, most current preparation methods for microbubbles are uncontrollable, and the as-obtained microbubbles are unstable in aqueous solution or under ultrasound. Here, we report a strategy to prepare superiorly stable microbubbles with three-layer structures by the ethanol-water exchange. This versatile method can also be applied to prepare different kinds of protein microbubbles with various sizes for advanced biomedical applications. To demonstrate this, the protein air microbubbles are created, which is stable in water for several days with intact structures and exhibits excellent contrast-enhanced ultrasound imaging. Moreover, the protein air microbubbles can also deliver a mass of drugs while maintaining their stable structures, making them a platform for ultrasound imaging-guided drug delivery. The versatile protein air microbubbles have great potential for the design and application of theranostic platforms.
Collapse
Affiliation(s)
- Qiurong Deng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jiaomei Mi
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Yin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Lanxi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jinxu He
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
13
|
Microfluidics-Assisted Fabrication of Dual Stopband Photonic Microcapsules and Their Applications for Anticounterfeiting. Polymers (Basel) 2022; 14:polym14193954. [PMID: 36235902 PMCID: PMC9572925 DOI: 10.3390/polym14193954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
The assembly of two different kinds of colloidal particle-based photonic structures into an individual micro-object can achieve multifunctionality. In this study, core–shell photonic microcapsules with dual structural colors and photonic stop bands were prepared through a standard microfluidic technique. Photocurable resin suspension of silica nanoparticles and an aqueous suspension of nanogels were used as shell and core parts of microcapsules, respectively. The structural colors of shells and cores can be tuned by adjusting the concentrations of silica nanoparticles and soft nanogels in their corresponding suspensions. The individual microcapsules possess two distinct stop bands when the two suspensions are combined appropriately. Remarkably, the color information of the core part cannot be directly viewed at a macroscopic level (such as visual inspection) but can be detected at a microscopic scale (such as optical microscopy observation). The color information hidden enables the capability for information encryption and has potentially critical applications in anti-counterfeiting, display, and other fields.
Collapse
|
14
|
Chen X, Song DP, Li Y. Precisely Tunable Photonic Pigments via Interfacial Self-Assembly of Bottlebrush Block Copolymer Binary Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Tang WS, Zhang B, Xu LD, Bao N, Zhang Q, Ding SN. CdSe/ZnS quantum dot-encoded maleic anhydride-grafted PLA microspheres prepared through membrane emulsification for multiplexed immunoassays of tumor markers. Analyst 2022; 147:1873-1880. [PMID: 35420086 DOI: 10.1039/d2an00350c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early diagnosis of tumor markers is of great importance for the successful treatment of cancer. As a high-throughput and high-sensitivity detection technology, liquid suspension biochips based on quantum dot (QD) encoded microspheres have been widely used in the immunodetection of tumor markers. In this work, maleic anhydride grafted PLA (PLA-MA) microspheres based on quantum dot encoding were used as carriers for liquid phase suspension biochips for the immunoassay of tumor markers. PLA-MA fluorescent beads are prepared by embedding CdSe/ZnS quantum dots in PLA-MA using Shirasu porous glass (SPG) membrane emulsification technology, which has high fluorescence intensity, good stability, and good dispersion. Fluorescent immunoassays on dipsticks found that PLA-MA microspheres have high biological activity and good stability, which is conducive to immunoassays. Based on this, using the characteristics of CdSe/ZnS quantum dots and flow cytometry, monochromatic and two-color coding methods were developed, and 9 distinguishable coding beads were prepared. The results showed that PLA-MA fluorescent microspheres exhibited good biocompatibility, stable coding signals, low background noise, and low detection limits when performing quaternary immunoassays on tumor markers CA125, CA199, CA724, and CEA by CdSe/ZnS QD-encoded PLA-MA microsphere binding flow cytometry.
Collapse
Affiliation(s)
- Wan-Sheng Tang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Bo Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Lai-Di Xu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ning Bao
- School of Public Health, Nantong University, 226019 Nantong, Jiangsu, China
| | - Qing Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
16
|
Ji DD, Wu MX, Ding SN. Photonic crystal barcodes assembled from dendritic silica nanoparticles for the multiplex immunoassays of ovarian cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:298-305. [PMID: 34985054 DOI: 10.1039/d1ay01658j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined detection of CA125, CEA and AFP is of great significance in the diagnosis of ovarian cancer. Photonic crystal (PhC) barcodes have apparent advantages in multiplex immunoassays of ovarian cancer markers. In this paper, a novel PhC barcode was assembled from dendritic silica nanoparticles (dSiO2) for multiplex detection of ovarian cancer biomarkers. The interconnected macroporous structure of the dSiO2 PhC beads and the open porous topography of dendritic silica particles could increase the surface area to volume ratio for antibody immobilization. We simultaneously detected multiple ovarian cancer markers in one test tube using the sandwich immunization method by utilizing dSiO2 PhC beads as a barcode and CdTe QDs as a detection signal. The detection limits of the three ovarian cancer markers, AFP, CEA and CA125, were 0.52 ng mL-1, 0.64 ng mL-1 and 0.79 U mL-1, respectively (the signal-to-noise ratio was 3). Compared with the classic silica colloidal crystal bead (SCCB) suspension array, the sensitivity of the dSiO2 PhC bead suspension array was increased. In addition, the results showed that this barcode suspension array had acceptable accuracy and good reproducibility.
Collapse
Affiliation(s)
- Dan-Dan Ji
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Mei-Xia Wu
- Lianshui People's Hospital, Jiangsu 223400, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
17
|
Li G, Qu X, Hao L, Li Q, Chen S. A microfluidics‐dispensing‐printing strategy for Janus photonic crystal microspheres towards smart patterned displays. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guo‐Xing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Xiao‐Wei Qu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Lu‐Wei Hao
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| |
Collapse
|
18
|
Wu W, Liu X, Li W. Progress and challenges in functional nanomaterial‐based suspension array technology for multiplexed biodetection. VIEW 2022. [DOI: 10.1002/viw.20200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Weijie Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| | - Xinyi Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| | - Wanwan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| |
Collapse
|
19
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
21
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
22
|
Wang Y, Chen C, He J, Cao Y, Fang X, Chi X, Yi J, Wu J, Guo Q, Masoomi H, Wu C, Ye J, Gu H, Xu H. Precisely Encoded Barcodes through the Structure-Fluorescence Combinational Strategy: A Flexible, Robust, and Versatile Multiplexed Biodetection Platform with Ultrahigh Encoding Capacities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100315. [PMID: 33817970 DOI: 10.1002/smll.202100315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
With the rapid development of suspension array technology, microbeads-based barcodes as the core element with sufficient encoding capacity are urgently required for high-throughput multiplexed detection. Here, a novel structure-fluorescence combinational encoding strategy is proposed for the first time to establish a barcode library with ultrahigh encoding capacities. Based on the never revealed transformability of the structural parameters (e.g., porosity and matrix component) of mesoporous microbeads into scattering signals in flow cytometry, the enlargement of codes number has been successfully realized in combination with two other fluorescent elements of fluorescein isothiocyanate isomer I (FITC) and quantum dots (QDs). The barcodes are constructed with precise architectures including FITC encapsulated within mesopores and magnetic nanoparticles as well as QDs immobilized on the outer surface to achieve the ultrahigh encoding level of 300 accompanied with superparamagnetism. To the best of knowledge, it is the highest record of single excitation laser-based encoding capacity up to now. Moreover, a ten-plexed tumor markers bioassay based on the tailored-designed barcodes has been evaluated to confirm their feasibility and effectiveness, and the results indicate that the barcodes platform is a promising and robust tool for practical multiplexed biodetection.
Collapse
Affiliation(s)
- Yao Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Cang Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jing He
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yimei Cao
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaoxia Fang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaomei Chi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingwei Yi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiancong Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qingsheng Guo
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hajar Masoomi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chongzhao Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hongchen Gu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hong Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
23
|
Liu H, Li Z, Shen R, Li Z, Yang Y, Yuan Q. Point-of-Care Pathogen Testing Using Photonic Crystals and Machine Vision for Diagnosis of Urinary Tract Infections. NANO LETTERS 2021; 21:2854-2860. [PMID: 33769062 DOI: 10.1021/acs.nanolett.0c04942] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urinary tract infections (UTIs) caused by bacterial invasion can lead to life-threatening complications, posing a significant health threat to more than 150 million people worldwide. As a result, there is need for accurate and rapid diagnosis of UTIs to enable more effective treatment. Described here is an intelligent diagnostic system constructed for bacterial detection using an immunobiosensor, signal-amplification biochip, and image processing algorithm based on machine vision. This prototype can quickly detect bacteria by collection of enhanced luminescence enabled by the photonic crystals integrated into the biochip. By use of a machine vision algorithm, the very small luminescence signals are analyzed to provide a low detection limit and wide dynamic range. This sensor system can offer an affordable, accessible, and user-friendly digital diagnostic solution, possibly suitable for wearable technology, that could improve treatment of this challenging disease.
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Zhihao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhiheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Yanbing Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
24
|
Spectral Reflectometry in Biomedical Imaging and Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33834442 DOI: 10.1007/978-981-33-6064-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Spectral reflectometry is a spectroscopic measurement technique based on thin-film interference, which has been widely applied in industries to measure thicknesses of thin dielectric layers at the nanoscale. Recent advances in the understanding of biological nanostructures have opened a new field of spectral reflectometry in biomedicine from molecular level sensing to biomedical imaging. This chapter comprehensively covers the relevant topics on spectral reflectometry in biomedicine from its principle to applications.
Collapse
|
25
|
Jia XX, Yao ZY, Gao ZX, Fan ZC. The Role of Suspension Array Technology in Rapid Detection of Foodborne Pollutants: Applications and Future Challenges. Crit Rev Anal Chem 2021; 52:1408-1421. [PMID: 33611988 DOI: 10.1080/10408347.2021.1882833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China.,Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
26
|
Gao N, Zhou K, Feng K, Zhang W, Cui J, Wang P, Tian L, Jenkinson-Finch M, Li G. Facile fabrication of self-reporting micellar and vesicular structures based on an etching-ion exchange strategy of photonic composite spheres of poly(ionic liquid). NANOSCALE 2021; 13:1927-1937. [PMID: 33439197 DOI: 10.1039/d0nr07268k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micellar and vesicular structures capable of sensing and reporting the chemical environment as well as facilely introducing user-defined functions make a vital contribution to constructing versatile compartmentalized systems. Herein, by combining poly(ionic liquid)-based photonic spheres and an etching-ion exchange strategy we fabricate micellar and vesicular photonic compartments that can not only mimic the structure and function of conventional micelles and vesicles, but also sense and report the chemical environment as well as introducing user-defined functions. Photonic composite spheres composed of a SiO2 template and poly(ionic liquid) are employed to selectively etch outer-shell SiO2 followed by ion exchange and removal of the residual SiO2 to afford micellar photonic compartments (MPCs). The MPCs can selectively absorb solvents from the oil/water mixtures together with sensing and reporting the adsorbed solvents by the self-reporting optical signal associated with the uniform porous structure of photonic spheres. Vesicular photonic compartments (VPCs) are fabricated via selective infiltration and polymerization of ionic liquids followed by etching of the SiO2 template. Subsequent ion exchange introduces desirable functions to the VPCs. Furthermore, we demonstrate that the thickness and the anisotropic functions of VPCs can be facilely modulated. Overall, we anticipate that the micellar and vesicular photonic compartments with self-reporting optical signals and user-defined functions could serve as novel platforms towards multifunctional compartmentalized systems.
Collapse
Affiliation(s)
- Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Niu W, Wang X, Zheng Y, Wu S, Hua M, Wang Y, Zhang X, Tok AIY, He X, Zhang S. Inorganic Photonic Microspheres with Localized Concentric Ordering for Deep Pattern Encoding and Triple Sensory Microsensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003638. [PMID: 33107169 DOI: 10.1002/smll.202003638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Photonic microspheres offer building units with unique topological structures and specific optical functions for diverse applications. Here, a new class of inorganic photonic microspheres with superior robustness, optical and electrical properties is reported by introducing a unique localized concentric ordering architecture and chemical interaction, which further serve as building blocks for deep pattern encoding and multiple sensory optoelectronic devices. Benefiting from localized concentric ordering architecture, the resultant photonic microspheres demonstrate orientation- and angle-independent structural colors. Notably, the formation of well-combined lamellae inorganic layers by chemical interaction grants the microspheres superior mechanical robustness, excellent solvent resistance, thermal stability, and multiple optoelectronic properties simultaneously, rarely seen in previous reports. Owing to these merits, such microspheres are used to construct diverse encoded photonic patterns for anti-counterfeiting applications. Interestingly, cross-communication among neighboring microspheres creates complex photonic sub-patterns, which provide "fingerprint information" with deep encryption security. Moreover, a single photonic microsphere-based optoelectronic microsensor is demonstrated for the first time, which achieves appealing application for real-time health monitoring and safety warning toward triple environmental stimuli. This work not only provides a new kind of robust, multifunctional photonic material, but also opens a new avenue for their uses as complexed pattern encoding and multi-parametric sensing platforms.
Collapse
Affiliation(s)
- Wenbin Niu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian, 116024, China
| | - Xiao Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian, 116024, China
| | - Yu Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian, 116024, China
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Mutian Hua
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yunpeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian, 116024, China
| | - Xiaohe Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian, 116024, China
| | - Alfred Iing Yoong Tok
- School of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian, 116024, China
| |
Collapse
|
29
|
Shang L, Wang Y, Cai L, Shu Y, Zhao Y. Structural color barcodes for biodiagnostics. VIEW 2020. [DOI: 10.1002/viw2.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luoran Shang
- Zhongshan∼Xuhui Hospital, Institutes of Biomedical SciencesFudan University Shanghai China
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- The Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuetong Wang
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Lijun Cai
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| |
Collapse
|
30
|
Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020; 49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
Collapse
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Bian F, Sun L, Cai L, Wang Y, Wang Y, Zhao Y. Colloidal Crystals from Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903931. [PMID: 31515951 DOI: 10.1002/smll.201903931] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Colloidal crystals are of great interest to researchers because of their excellent optical properties and broad applications in barcodes, sensors, displays, drug delivery, and other fields. Therefore, the preparation of high quality colloidal crystals in large quantities with high speed is worth investigating. After decades of development, microfluidics have been developed that provide new choices for many fields, especially for the generation of functional materials in microscale. Through the design of microfluidic chips, colloidal crystals can be prepared controllably with the advantages of fast speed and low cost. In this Review, research progress on colloidal crystals from microfluidics is discussed. After summarizing the classifications, the generation of colloidal crystals from microfluidics is discussed, including basic colloidal particles preparation, and their assembly inside or outside of microfluidic devices. Then, applications of the achieved colloidal crystals from microfluidics are illustrated. Finally, the future development and prospects of microfluidic-based colloidal crystals are summarized.
Collapse
Affiliation(s)
- Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
32
|
Cui Y, Li Y, Wang K, Deng J, Luo G. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00051-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Liu C, Tong YL, Yu XQ, Shen H, Zhu Z, Li Q, Chen S. MOF-Based Photonic Crystal Film toward Separation of Organic Dyes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2816-2825. [PMID: 31840979 DOI: 10.1021/acsami.9b18012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic framework (MOF)-directed photonic structure materials have inspired great attention for extended and enhanced functions. However, the direct construction of photonic crystals (PCs) with MOF particles as building blocks still remains a challenge. Herein, we designed and synthesized monodisperse polyamidoamine (PAMAM) dendrimer-modified zeolitic imidazolate framework (ZIF-8) particles (PAMAM@ZIF-8) via a postsynthetic method, rendering ZIF-8 with hydrophilicity. It was found that the PAMAM@ZIF-8 particles could directly assemble into a uniform photonic structure and effectively suppressed the coffee-ring effect, forming homogeneous PC films with different structural colors. A PC pattern with angle-dependent colors was also achieved, which might have potential applications in the field of anticounterfeiting printing. More importantly, by taking advantages of a membrane separation-assisted assembly process, a colorful and robust PC film was accomplished on the surface of reduced graphene oxide (rGO). The hierarchal PAMAM@ZIF-8/rGO film demonstrates a superior separation ability toward organic dye solutions, which enriches the function of PC materials. This work gives a new insight into the fabrication of MOF-based functional PC materials, which will extend the application of PCs in the high selective and effective separation field.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Yu-Long Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Xiao-Qing Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Haixia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Zhijie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| |
Collapse
|
34
|
Yang N, Zhu M, Xu G, Liu N, Yu C. A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion. J Mater Chem B 2020; 8:3908-3917. [DOI: 10.1039/d0tb00361a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A multifunctional nanocomposite hydrogel for synergistic antibacterial wound therapy and healing promotion.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Ming Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Guochao Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
35
|
Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in-depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid-related devices, recent developments, as well as present challenges and future prospects are also outlined.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
36
|
Wang L, Wang J. Self-assembly of colloids based on microfluidics. NANOSCALE 2019; 11:16708-16722. [PMID: 31469374 DOI: 10.1039/c9nr06817a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of colloids provides a powerful way for the construction of complex multi-scale materials. Microfluidic techniques possess great potential to precisely control the assembly of micro- and nano-scale building blocks via the rational design of various microfluidic environments. In this review, we first discuss the self-assembly of colloids without templates by using the laminar microfluidic technique. The self-assembly of colloids based on a droplet as a template was subsequently summarized and discussed via droplet microfluidic technique. Moreover, the evaporation-driven self-assembly of colloids in microfluidic channels has been discussed and analysed. Finally, the representative applications in this field have been pointed out. The aim of this review is to summarize the state-of-art on the self-assembly of colloids based on various microfluidic techniques, exhibit their representative applications, and point out the current challenges in this field, hoping to inspire and guide future work.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | |
Collapse
|
37
|
Micromotors from Microfluidics. Chem Asian J 2019; 14:2417-2430. [DOI: 10.1002/asia.201900290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/17/2019] [Indexed: 12/24/2022]
|
38
|
Pan D, Chen Q, Xu L, Yang C, Liu M, Huang W, Li B. Flow patterns of solid in water in oil (S/W/O) compound droplets formation in a microfluidic device with perpendicular shear. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Ji J, Lu W, Zhu Y, Jin H, Yao Y, Zhang H, Zhao Y. Porous Hydrogel-Encapsulated Photonic Barcodes for Multiplex Detection of Cardiovascular Biomarkers. ACS Sens 2019; 4:1384-1390. [PMID: 30985109 DOI: 10.1021/acssensors.9b00352] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early detection of cardiac troponin I (cTnI), B-type natriuretic peptide (BNP), and myoglobin (Myo) is essential for the diagnosis of acute myocardial infarction (AMI) and heart failure (HF). We designed a porous hydrogel-encapsulated photonic crystal (PhC) barcode-based suspension array for multiple cardiovascular marker detection. The hybrid hydrogel was composed of polyethylene glycol diacrylate (PEGDA) and gelatin, resulting in a porous and hydrophilic scaffold which ensured stability of the PhC in aqueous solutions. The encapsulated PhC barcodes had stable diffraction peaks for the corresponding markers. Using a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of cardiovascular biomarkers in a single tube. The immunoassay results we tested on cTnI, BNP, and Myo could be assayed in the ranges of 0.01 to 1000 ng/mL, 0.1 to 10 000 pg/mL, and 1 to 10 000 ng/mL with limits of detection of 0.009 ng/mL, 0.084 pg/mL, and 0.68 ng/mL at 3σ, respectively. This method also showed acceptable accuracy and repeated detection, and the results were consistent with the results of conventional clinical methods for detecting actual clinical samples. Therefore, suspension arrays based on hydrogel-encapsulated PhC barcodes are highly promising for AMI diagnosis.
Collapse
Affiliation(s)
- JingJing Ji
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Wenbin Lu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
| | - Huidan Zhang
- School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yuanjin Zhao
- Department of Cardiology, Zhongda Hospital Affiliated with Southeast University, Nanjing, Jiangsu 210009, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
40
|
Tang G, Xiong R, Lv D, Xu RX, Braeckmans K, Huang C, De Smedt SC. Gas-Shearing Fabrication of Multicompartmental Microspheres: A One-Step and Oil-Free Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802342. [PMID: 31065527 PMCID: PMC6498303 DOI: 10.1002/advs.201802342] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/17/2019] [Indexed: 05/19/2023]
Abstract
Multicompartmental microparticles (MCMs) have attracted considerable attention in biomedical engineering and materials sciences, as they can carry multiple materials in the separated phases of a single particle. However, the robust fabrication of monodisperse, highly compartmental MCMs at the micro- and nanoscales remains challenging. Here, a simple one-step and oil-free process, based on the gas-flow-assisted formation of microdroplets ("gas-shearing"), is established for the scalable production of monodisperse MCMs. By changing the configuration of the needle system and gas flow in the spray ejector device, the oil-free gas-shearing process easily allows the design of microparticles consisting of two, four, six, and even eight compartments with a precise control over the properties of each compartment. As oils and surfactants are not used, the gas-shearing method is highly cytocompatible. The versatile applications of such MCMs are demonstrated by producing a magnetic microrobot and a biocompatible carrier for the coculturing of cells. This research suggests that the oil-free gas-shearing strategy is a reliable, scalable, and biofriendly process for producing MCMs that may become attractive materials for biomedical applications.
Collapse
Affiliation(s)
- Guosheng Tang
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent UniversityOttergemsesteenweg 4609000GhentBelgium
- Department of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230022P. R. China
| | - Dan Lv
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230022P. R. China
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent UniversityOttergemsesteenweg 4609000GhentBelgium
| | - Chaobo Huang
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
| | - Stefaan C. De Smedt
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent UniversityOttergemsesteenweg 4609000GhentBelgium
| |
Collapse
|
41
|
Pan D, Liu M, Chen Q, Huang W, Li B. Effects of channel sizes on traffic of solid in water in oil compound droplets through a vertical channel. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1472013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dawei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, People’s Republic of China
- China Academy of Engineering Physics, Research Center of Laser Fusion, Mianyang, People’s Republic of China
| | - Meifang Liu
- China Academy of Engineering Physics, Research Center of Laser Fusion, Mianyang, People’s Republic of China
| | - Qiang Chen
- China Academy of Engineering Physics, Research Center of Laser Fusion, Mianyang, People’s Republic of China
| | - Weixing Huang
- School of Chemical Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Bo Li
- China Academy of Engineering Physics, Research Center of Laser Fusion, Mianyang, People’s Republic of China
| |
Collapse
|
42
|
Li Z, Yin Y. Stimuli-Responsive Optical Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807061. [PMID: 30773717 DOI: 10.1002/adma.201807061] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Indexed: 05/24/2023]
Abstract
Responsive optical nanomaterials that can sense and translate various external stimuli into optical signals, in the forms of observable changes in appearance and variations in spectral line shapes, are among the most active research topics in nanooptics. They are intensively exploited within the regimes of the four classic optical phenomena-diffraction in photonic crystals, absorption of plasmonic nanostructures, as well as color-switching systems, refraction of assembled birefringent nanostructures, and emission of photoluminescent nanomaterials and molecules. Herein, a comprehensive review of these research activities regarding the fundamental principles and practical strategies is provided. Starting with an overview of their substantial developments during the latest three decades, each subtopic discussion is led with fundamental theories that delineate the correlation between nanostructures and optical properties and the delicate research strategies are elaborated with specific attention focused on working principles and optical performances. The unique advantages and inherent limitations of each responsive optical nanoscale platform are summarized, accompanied by empirical criteria that should be met and perspectives on research opportunities where the developments of next-generation responsive optical nanomaterials might be directed.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
43
|
Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS NANO 2019; 13:2749-2772. [PMID: 30768903 DOI: 10.1021/acsnano.8b09651] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural fiber systems provide inspirations for artificial fiber spinning and applications. Through a long process of trial and error, great progress has been made in recent years. The natural fiber itself, especially silks, and the formation mechanism are better understood, and some of the essential factors are implemented in artificial spinning methods, benefiting from advanced manufacturing technologies. In addition, fiber-based materials produced via bioinspired spinning methods find an increasingly wide range of biomedical, optoelectronic, and environmental engineering applications. This paper reviews recent developments in the spinning and application of bioinspired fiber systems, introduces natural fiber and spinning processes and artificial spinning methods, and discusses applications of artificial fiber materials. Views on remaining challenges and the perspective on future trends are also proposed.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
44
|
Shao C, Chi J, Chen Z, Cai L, Zhao Y. Superwettable colloidal crystal micropatterns on butterfly wing surface for ultrasensitive detection. J Colloid Interface Sci 2019; 546:122-129. [PMID: 30909117 DOI: 10.1016/j.jcis.2019.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
HYPOTHESIS Ultrasensitive detections with enrichment approaches based on hydrophilic-hydrophobic patterns have attracted increasing attention in the early diagnosis and treatment of diseases. However, most of these techniques involve complicated micro-fabrications and chemical modifications to achieve their specific pattern substrate wettability. Hence, the development of a simple and effective approach for the construction of new surface wettability techniques for ultrasensitive detection is with great expectations. EXPERIMENTS We present a simple approach to fabricate the superwettable colloidal crystal (CC) micropatterns on superhydrophobic Morpho butterfly wing surface for the ultrasensitive detection. The superwettable CC micropatterns were easily obtained by infiltrating and self-assembling monodispersed silica colloidal nanoparticles on the plasma treated butterfly wing patterns. The analytes could be enriched onto the hydrophilic CC area due to the wettability difference between the hydrophilic CC area and the superhydrophobic substrate. FINDINGS It was demonstrated that the detection limit of thrombin was down to 1.8 × 10-13 mol L-1 based on the fluorophore-labeled aptamer. Moreover, with two-dimensional position codes of these CC micropatterns for different probes, the multiplex detection capability was also demonstrated with great accuracy. As the elimination of complex instruments and chemical modifications, this proposed platform offers a simple strategy for ultrasensitive multiplex detection in practical applications.
Collapse
Affiliation(s)
- Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junjie Chi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
45
|
Qi F, Yan C, Meng Z, Li S, Xu J, Hu X, Xue M. Acetylcholinesterase-functionalized two-dimensional photonic crystal for the sensing of G-series nerve agents. Anal Bioanal Chem 2019; 411:2577-2585. [PMID: 30847569 DOI: 10.1007/s00216-019-01700-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 01/23/2023]
Abstract
G-series nerve agents, such as sarin, tabun, and soman, would cause tremendous harm in military and terrorist attacks, so it is necessary to develop a simple method for the rapid and efficient detection of these hazardous substances. We have developed a tunable acetylcholinesterase (AChE)-functionalized two-dimensional photonic crystal (2D PhC) for the detection of a real nerve agent, sarin. In accordance with the 2D PhC previously prepared by our group, the AChE-functionalized 2D PhC was optimized by adjustment of the amount of monomer in the hydrogel, which not only increased the sensitivity of the 2D PhC, with the detection limit decreasing by two orders of magnitude, but also ensured the structural color spanned the whole visible region in the detection range. A linear relationship between the logarithm of the sarin concentration and the particle spacing of the AChE-functionalized 2D PhC was observed from 7.1 × 10-17 to 7.1 × 10-4 mol/L. The AChE-functionalized 2D PhC also responded to mimics of G-series nerve agents, including dimethyl methylphosphonate, diisopropyl methylphosphonate, and isodipropyl methylphosphonate, to various degrees. The proposed 2D-PhC hydrogel has potential for low-cost, trace-level, and on-site monitoring of other G-series nerve agents. Graphical abstract.
Collapse
Affiliation(s)
- Fenglian Qi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunxiao Yan
- Institute of NBC Defence, Beijing, 102205, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shuguang Li
- Institute of NBC Defence, Beijing, 102205, China
| | - Jiayu Xu
- Institute of NBC Defence, Beijing, 102205, China
| | - Xiaochun Hu
- Institute of NBC Defence, Beijing, 102205, China
| | - Min Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
46
|
Wang Y, Shang L, Bian F, Zhang X, Wang S, Zhou M, Zhao Y. Hollow Colloid Assembled Photonic Crystal Clusters as Suspension Barcodes for Multiplex Bioassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900056. [PMID: 30828983 DOI: 10.1002/smll.201900056] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/15/2019] [Indexed: 05/25/2023]
Abstract
Barcode particles have a demonstrated value for multiplexed high-throughput bioassays. Here, a novel photonic crystal (PhC) barcode is presented that consists of hollow colloidal nanospheres assembled through microfluidic droplet templates. Due to their gas-filled core, the resultant barcode particles not only show increased refractive index contrast, but also remain in suspension by adjusting the overall density of the PhC to match that of a detection solution. In addition, magnetic nanoparticles can be integrated to give the barcodes a magnetically controllable motion ability. The encoding ability of the barcodes is demonstrated in microRNA detection with high specificity and sensitivity, and the excellent features of the barcodes make them potentially very useful for biomedical applications.
Collapse
Affiliation(s)
- Yu Wang
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- School of Engineering and Applied Sciences, Harvard University Cambridge, MA, 02138, USA
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Mengtao Zhou
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
47
|
Abstract
Barcoded bioassays are ready to promote bioanalysis and biomedicine toward the point of care.
Collapse
Affiliation(s)
- Mingzhu Yang
- Beijing Engineering Research Center for BioNanotechnology
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for NanoScience and Technology
- Beijing
| | - Yong Liu
- Beijing Engineering Research Center for BioNanotechnology
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for NanoScience and Technology
- Beijing
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for NanoScience and Technology
- Beijing
| |
Collapse
|
48
|
Gu X, Liu Y, Chen G, Wang H, Shao C, Chen Z, Lu P, Zhao Y. Mesoporous Colloidal Photonic Crystal Particles for Intelligent Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33936-33944. [PMID: 30215247 DOI: 10.1021/acsami.8b11175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Particle-based delivery systems demonstrate a pregnant value in the fields of drug research and development. Efforts to advance this technology focus on the fabrication of functional particles with enhanced efficiency and performance for drug delivery. Here, we present a new type of mesoporous colloidal photonic crystal particle (MCPCP)-based drug-delivery system with distinct features. As the MCPCPs were constructed by self-assembling monodisperse mesoporous nanoparticles in microfluidic droplet templates, they were composed of hierarchical macro- and mesoporous structures and could provide plenty of nanopores and interconnected nanochannels for synergistic loading of both micro- and macromolecule drugs with large quantity and sustained release. In addition, by integrating the stimuli-responsive poly( N-isopropylacrylamide) hydrogel into the MCPCPs and employing it as a "gating" to control the opening of the macro- and mesopores, the MCPCP delivery systems were imparted with the function of controllable release. More attractively, as the average refractive index of the MCPCPs was decreased during the release of the loaded actives, the photonic band gaps of the MCPCPs blue-shifted correspondingly; this provided a novel stratagem for real-time self-reporting of the therapeutic agent release process of the MCPCPs. Hence, the MCPCPs are ideal for intelligent drug delivery because of these dramatical features.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
- Department of Medical Oncology, Wuxi People's Hospital , Nanjing Medical University , Wuxi 214023 , China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Guopu Chen
- Department of General Surgery, Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital , Nanjing Medical University , Wuxi 214023 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
49
|
Zou M, Wang J, Yu Y, Sun L, Wang H, Xu H, Zhao Y. Composite Multifunctional Micromotors from Droplet Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34618-34624. [PMID: 30212179 DOI: 10.1021/acsami.8b11976] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inspired by natural biological machines, lots of effort has been invested in developing artificially functional micromotors which can convert energy into movement for carrying out tasks in diverse areas. Here, we present a capillary microfluidic system with dual inner injections for one-step generation of composite structured polymer micromotors with two distinct cores of platinum (Pt) nanoparticle-integrated and iron oxide (Fe3O4) nanoparticle-dispersed hydrogels. Because the flow rates of the prepolymerized fluids can be precisely tuned in the microfluidics, the diameters of the micromotors as well as the sizes and numbers of the inner cores can be well tailored to optimize the parameters of the resultant micromotors. When exposed to a hydrogen peroxide (H2O2) medium, the Pt-integrated cores of the micromotors could provide propulsion by expelling bubbles produced from the catalytic decomposition of H2O2, while the Fe3O4-dispersed cores could impart magnetic guidance for the micromotors. Benefiting from the close cooperation of these two types of cores, the micromotors were imparted with a strong propulsion and prominent recyclability for the delivery of both microscale and macroscale objects. These results manifest that this kind of composite micromotor has great diversity in various applications.
Collapse
Affiliation(s)
- Minhan Zou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Jie Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Hua Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
50
|
Sun L, Wang J, Yu Y, Bian F, Zou M, Zhao Y. Graphene oxide hydrogel particles from microfluidics for oil decontamination. J Colloid Interface Sci 2018; 528:372-378. [DOI: 10.1016/j.jcis.2018.05.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|