1
|
Zhang L, Xu Q, Xia L, Jiang W, Wang K, Cao P, Chen Q, Huang M, García de Arquer FP, Zhou Y. Asymmetrically tailored catalysts towards electrochemical energy conversion with non-precious materials. Chem Soc Rev 2025; 54:5108-5145. [PMID: 40277188 DOI: 10.1039/d4cs00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Electrocatalytic technologies, such as water electrolysis and metal-air batteries, enable a path to sustainable energy storage and conversion into high-value chemicals. These systems rely on electrocatalysts to drive redox reactions that define key performance metrics such as activity and selectivity. However, conventional electrocatalysts face inherent trade-offs between activity, stability, and scalability particularly due to the reliance on noble metals. Asymmetrically tailored electrocatalysts (ATEs) - systems that are being exploited for non-symmetric designs in composition, size, shape, and coordination environments - offer a path to overcome these barriers. Here, we summarize recent developments in ATEs, focusing on asymmetric coupling strategies employed in designing these systems with non-precious transition metal catalysts (TMCs). We explore tailored asymmetries in composition, size, and coordination environments, highlighting their impact on catalytic performance. We analyze the electrocatalytic mechanisms underlying ATEs with an emphasis on their roles in water-splitting and metal-air batteries. Finally, we discuss the challenges and opportunities in advancing the performance of these technologies through rational ATE designs.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Qiaoling Xu
- School of Materials Science and Engineering, Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Wulyu Jiang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Kaiwen Wang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Pengfei Cao
- Forschungszentrum Jülich GmbH, ER-C, 52425 Jülich, Germany
| | - Qiang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain.
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, P. R. China.
| |
Collapse
|
2
|
Gort C, Feliciano GT, Auer AA, Kaiser B, Jaegermann W, Hofmann JP. The role of iron in the electronic configuration of mixed nickel iron oxides for the oxygen evolution reaction. Phys Chem Chem Phys 2025; 27:10043-10056. [PMID: 40326586 DOI: 10.1039/d5cp00386e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Nickel-based oxides are among the best performing catalysts for the alkaline O2 evolution reaction (OER). It has long been recognized that iron enhances the catalytic activity of nickel-based catalysts, though only recently has intensive research been done on the interplay between the two transition metals, leading to the excellent performance, surpassing that of either pure metal. It is still not clear how the electronic configuration in these mixed metal compounds changes to enhance their catalytic activity for the OER. We carried out a systematic study of the electronic configuration of thin film mixed metal oxides Ni(1-x)FexOyHz with varying contents x of iron. In this investigation we employed X-ray absorption and resonant valence photoelectron spectroscopy (XAS and resPES) to gain knowledge on the changes induced in the electronic structure by introduction of iron, both before and after electrochemical activation. Based on density functional theory calculations we found iron species to induce a highly oxidizing environment that facilitates generation of oxo species on iron and neighbouring nickel sites. The reduced electron density around Ni-O bonds creates in-gap states near the Fermi level. The magnitude of these in-gap states scales linearly with the OER performance and thus can be used as an activity descriptor. Contrary to literature, we see the in-gap states even before electrochemical activation and conclude that they are a consequence of Ni-O-Fe motifs already present before anodization. Beyond 50% metal content the number of Ni-O-Fe motifs is decreasing again, resulting in an interval of 10-30% iron metal content to be optimal for the OER.
Collapse
Affiliation(s)
- Christopher Gort
- Surface Science Laboratory, Department of Materials - and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Gustavo T Feliciano
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Bernhard Kaiser
- Surface Science Laboratory, Department of Materials - and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Wolfram Jaegermann
- Surface Science Laboratory, Department of Materials - and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials - and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
3
|
Sugawara Y, Iwase K, Iimura R, Yabu T, Nasu A, Matsui M, Honma I, Yamaguchi T, Kobayashi H. Ultrasmall Manganese Nanospinels Produced via an Alcohol Reduction Method and Their Electrocatalytic Oxygen Evolution Reactivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22487-22497. [PMID: 40190170 PMCID: PMC12012771 DOI: 10.1021/acsami.4c18777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
Green hydrogen production via electrochemical water splitting extensively demands the development of cost-effective and highly efficient electrocatalysts for the anodic oxygen evolution reaction (OER). Nanosized spinel nanoparticles (nanospinels) are potential candidates as electrocatalysts for the OER because of their very high specific surface areas. This work systematically investigated the influence of the A-site metals in the Mn-based nanospinels, i.e., LiMn2O4, MgMn2O4, ZnMn2O4, NiMn2O4, CuMn2O4, and CoMn2O4. Evaluation of their OER activities then indicated that higher OER activities for NiMn2O4 and CoMn2O4 than those of ZnMn2O4, LiMn2O4, CuMn2O4, MgMn2O4, and NiMn2O4 nanospinels possessed the best OER activity among the Mn-based nanospinels. Additionally, the NiMn2O4 nanospinel exhibited a dramatically improved OER performance compared with NiMn2O4 synthesized by the conventional sol-gel process with a much larger particle size, which indicated the advantage of employing nanospinels as an OER electrocatalyst. Also, the NiMn2O4 nanospinel was one of the best OER electrocatalysts among the previously reported bimetal spinel oxides. Finally, operando XAFS measurements using an in-house electrochemical cell unveiled that the surface of the NiMn2O4 nanospinel was electrochemically transformed to Mn-Ni hydroxide under an OER potential, and the generated compound was preferable for the OER process. This work uncovered that nanospinels are promising candidates as OER electrocatalysts and provided a guideline for the selection of metal components for nanospinel design.
Collapse
Affiliation(s)
- Yuuki Sugawara
- Laboratory
for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazuyuki Iwase
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Reona Iimura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takashi Yabu
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Nasu
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Matsui
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Itaru Honma
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takeo Yamaguchi
- Laboratory
for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroaki Kobayashi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
4
|
Wang B, Fukushima T, Minamimoto H, Lyalin A, Murakoshi K, Taketsugu T. Enhancing the oxygen evolution reaction by tuning the electrode-electrolyte interface in nickel-based electrocatalysts. Commun Chem 2025; 8:109. [PMID: 40200081 PMCID: PMC11978989 DOI: 10.1038/s42004-025-01508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
A comprehensive understanding of the electrode-electrolyte interface in energy conversion systems remains challenging due to the complex and multifaceted nature of interfacial processes. This complexity hinders the development of more efficient electrocatalysts. In this work, we propose a hybrid approach to the theoretical description of the OER process on nickel-iron-based oxyhydroxides (γ-Ni1-xFexOOH) electrodes in alkaline media as a model system. Multiple reaction pathways represented by the single- and dual-site mechanisms were investigated by taking into account the realistic structure of the catalyst, the doping, and the solvation effects using a simple and computationally feasible strategy. Accounting for the variable solvation effects considerably affects the predicted overpotential in a roughly linear relationship between overpotential and dielectric constant. By incorporating quantum chemical simulations with kinetic modeling, we demonstrate that tuning the local solvation environment can significantly enhance the OER activity, opening new routine ways for elucidation of the emerging issues of OER processes on transition metal oxide surfaces and design of cost-effective, efficient electrocatalytic systems.
Collapse
Grants
- JPMJGX23H2 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP1122712807 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJGX23H2 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP1122712807 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Research Center for Computational Science, Okazaki, Japan (Project: 24-IMS-C017).
Collapse
Affiliation(s)
- Ben Wang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomohiro Fukushima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hiro Minamimoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Andrey Lyalin
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044, Japan.
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
5
|
Zhang T, Zhao HF, Chen ZJ, Yang Q, Gao N, Li L, Luo N, Zheng J, Bao SD, Peng J, Peng X, Liu XW, Yu HB. High-entropy alloy enables multi-path electron synergism and lattice oxygen activation for enhanced oxygen evolution activity. Nat Commun 2025; 16:3327. [PMID: 40199911 PMCID: PMC11978795 DOI: 10.1038/s41467-025-58648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Electrocatalytic oxygen evolution reaction (OER) is key to several energy technologies but suffers from low activity. Leveraging the lattice oxygen activation mechanism (LOM) is a strategy for boosting its activity. However, this approach faces significant thermodynamic challenges, requiring high-valent oxidation of metal ions without compromising their stability. We reveal that high-entropy alloys (HEAs) can efficiently activate the LOM through synergistic multi-path electron transfer. Specifically, the oxidation of nickel is enhanced by this electron transfer, aided by the integration of weaker Co-O bonds, enabling effective LOM at the Ni-Co dual-site. These insights allow the design of a NiFeCoCrW0.2 HEA that exhibits improved activity, achieving an overpotential of 220 mV at a current density of 10 mA cm-2. It also demonstrates good stability, maintaining the potential with less than 5% variation over 90 days at 100 mA cm-2 current density. This study sheds light on the synergistic effects that confer high activity in HEAs and contribute to the advancement of high-performance OER electrocatalysts.
Collapse
Affiliation(s)
- Tao Zhang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hui-Feng Zhao
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng-Jie Chen
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qun Yang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Niu Gao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Li
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Na Luo
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Zheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shi-Da Bao
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Peng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xu Peng
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Xin-Wang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Hua W, Li Y, Sun H, Wang JG. Synergistic Reconstruction of Defect-Enriched NiFe-LDH Hierarchical Structures toward Large-Current and Stable Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19745-19753. [PMID: 40116847 DOI: 10.1021/acsami.5c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
NiFe layered double hydroxide (LDH) is the benchmark electrocatalyst toward alkaline oxygen evolution reaction (OER), however, it remains a grand challenge to develop NiFe LDH catalysts with higher intrinsic catalytic activity and abundant active sites by a simple and facile method. In this study, a synergistic reconstruction approach is introduced to fabricate defect-enriched NiFe layered double hydroxide (d-NiFe LDH) with three-dimensional (3D) hierarchical structures. Through in situ synergistic reconstruction of molybdates and phytic acid ligands, rapid generation of d-NiFe LDH two-dimensional nanosheets on one-dimensional nanorods is achieved. The d-NiFe LDH displays elevated intrinsic catalytic activity, with the 3D hierarchical structures exposing a greater number of active sites. Leveraging these characteristics, the electrode demonstrates outstanding OER catalytic performance with minimal overpotentials of 204 and 282 mV to reach current densities of 10 and 500 mA cm-2. Notably, this electrode maintains excellent stability for over 350 h at 500 mA cm-2. When coupled with a NiMoN electrode in a two-electrode system, low voltages of 1.47 and 1.73 V are needed to achieve 10 and 500 mA cm-2, respectively. The work paves a fresh doorway for developing defects and 3D structures to construct advanced electrocatalysts toward various catalytic communities beyond OER.
Collapse
Affiliation(s)
- Wei Hua
- School of Engineering, Qinghai Institute of Technology, Xining810016, China
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Lab of Graphene (NPU), Northwestern Polytechnical University, Xi'an710072, China
| | - Yueying Li
- School of Energy and Electrical Engineering, Qinghai University, Xining810016, China
| | - Huanhuan Sun
- School of Engineering, Qinghai Institute of Technology, Xining810016, China
| | - Jian-Gan Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Lab of Graphene (NPU), Northwestern Polytechnical University, Xi'an710072, China
- School of Energy and Electrical Engineering, Qinghai University, Xining810016, China
| |
Collapse
|
7
|
Xiang W, Hernandez S, Hosseini P, Bai F, Hagemann U, Heidelmann M, Li T. Unveiling Surface Species Formed on Ni-Fe Spinel Oxides During the Oxygen Evolution Reaction at the Atomic Scale. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501967. [PMID: 40160187 DOI: 10.1002/advs.202501967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Optimizing electrocatalyst performance requires an atomic-scale understanding of surface state changes and how those changes affect activity and stability during the reaction. This is particularly important for the oxygen evolution reaction (OER) since the electrocatalytically active surfaces undergo substantial reconstruction and transformation. Herein, a multimodal method is employed that combines X-ray photoemission spectroscopy, transmission electron microscopy, atom probe tomography, operando surface-enhanced Raman spectroscopy with electrochemical measurements to examine the surface species formed on NiFe2O4, P-doped NiFe2O4 and Ni1.5Fe1.5O4 upon OER cycling. The activated NiFe2O4 and P-doped NiFe2O4 exhibit a significantly lower Tafel slope (≈40 mV dec-1) than Ni1.5Fe1.5O4 (≈90 mV dec-1), although oxyhydroxides are grown on all three Ni-Fe spinels during OER. This is likely attributed to the formation of a ≈1 nm highly defective layer with a higher oxygen concentration on the activated NiFe2O4 and P-doped NiFe2O4 nanoparticle surfaces (than that in bulk), which improves the charge transfer kinetics toward OER. Such surface species are not formed on Ni1.5Fe1.5O4. Overall, this study provides a mechanistic understanding of the role of Fe, P, and Ni in forming active oxygen species in the Ni-based spinels toward OER.
Collapse
Affiliation(s)
- Weikai Xiang
- Faculty of Mechanical Engineering, Atomic-scale Characterisation, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sheila Hernandez
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Pouya Hosseini
- Max-Planck-Institut für Nachhaltige Materialien GmbH, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Fan Bai
- Faculty of Mechanical Engineering, Atomic-scale Characterisation, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ulrich Hagemann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Tong Li
- Faculty of Mechanical Engineering, Atomic-scale Characterisation, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Sun Y, Xie Y, Chen X, Wu J, Liu P, Wang X, Tian Z, Zheng W, Jiang Z, Kang Z, Zhang Y. Updating the sub-nanometric cognition of reconstructed oxyhydroxide active phase for water oxidation. Nat Commun 2025; 16:3073. [PMID: 40159508 PMCID: PMC11955520 DOI: 10.1038/s41467-025-58424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Unveiling structure-activity correlations at the sub-nanoscale remains an essential challenge in catalysis science. During electrocatalysis, dynamic structural evolution drives the ambiguous entanglement of crystals and electrons degrees of freedom that obscure the activity origin. Here, we track the structural evolution of Ni-based model pre-catalysts (Ni(OH)2, NiS2, NiSe2, NiTe), detailing their catalytically active state during water oxidation via operando techniques and theoretical calculations. We reveal the sub-nanometric structural difference of NiO6 unit with a regular distortion in the reconstructed active phase NiOOH, codetermined by the geometric (bond lengths) and electronic (covalency) structure of the pre-catalysts on both spatial and temporal scales. The symmetry-broken active units induce the delicate balance of the p and d orbitals in NiOOH, further steering the modulation of catalytic intermediate configurations and mechanisms, with improved performance. This work recognizes the fine structural differences of the active phases from the sub-nanometer scale, and quantitatively explains their influence on activity. Our findings provide a more intuitive design framework for high-efficiency materials through targeted symmetry engineering of active units.
Collapse
Affiliation(s)
- Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Peking University, Beijing, PR China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
| | - Xiaoxuan Chen
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
| | - Pengfei Liu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
| | - Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Peking University, Beijing, PR China
| | - Zhen Tian
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
| | - Wenhao Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
| | - Zhouyu Jiang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China.
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China.
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, PR China.
- School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing, PR China.
- School of Materials Science and Engineering, Peking University, Beijing, PR China.
| |
Collapse
|
9
|
El Jamal M, Mouawad I, Shallenberger JR, Halaoui LI. A Dynamic Active Site for OER Catalysis at Nickel-Vanadium-Phosphide Depends on V Surface Position and Fe in Alkaline. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17837-17854. [PMID: 39813364 DOI: 10.1021/acsami.4c13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Enhancing the rate of the oxygen evolution reaction (OER) by doping Ni-based electrocatalysts with guest metals other than Fe (V in this work) and the stability of the metal site should be assessed independent of Fe traces and in relation to the guest metal activity in solution. We examined OER catalysis and its sustainability at vanadium-doped nickel phosphide (NixPy-V) independent of the role of Fe traces in alkaline. V was included in NixPy by codeposition at cathodic bias (termed Vbulk) or postdeposition during the phosphide-to-hydroxide surface transformation at anodic bias in alkaline spiked with VCl3 (termed Vsurface). Doping with Vsurface strongly promoted OER and reduced the Tafel slope in KOH purified of Fe traces (Fe-free KOH), indicating a Vsurface-path lowering of overpotentials independent of and different from the mechanism via Fe surface sites at NiOxHy. A similar effect was not observed with Vbulk inclusion. Sustaining catalysis via Vsurface-sites required maintaining a sufficiently high activity of V in solution. The prominent role of Vsurface sites and the dependence of stability on solution condition are reminiscent of the behavior of Fe surface sites in NiOxHy. This work points to a trend of behavior of active site dynamics at Ni-based OER catalysts in alkaline and presents a question and insight on how to stabilize the guest-metal site at the solid-liquid interface.
Collapse
Affiliation(s)
- May El Jamal
- Department of Chemistry, American University of Beirut, Beirut, 110236, Lebanon
| | - Issaaf Mouawad
- Department of Chemistry, American University of Beirut, Beirut, 110236, Lebanon
| | - Jeffrey R Shallenberger
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lara I Halaoui
- Department of Chemistry, American University of Beirut, Beirut, 110236, Lebanon
| |
Collapse
|
10
|
Wu ZP, Zuo S, Pei Z, Zhang J, Zheng L, Luan D, Zhang H, Lou XW(D. Operando unveiling the activity origin via preferential structural evolution in Ni-Fe (oxy)phosphides for efficient oxygen evolution. SCIENCE ADVANCES 2025; 11:eadu5370. [PMID: 40053602 PMCID: PMC11887844 DOI: 10.1126/sciadv.adu5370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Non-noble metal-based heteroatom compounds demonstrate excellent electrocatalytic activity for the oxygen evolution reaction (OER). However, the origin of this activity, driven by structure evolution effects, remains unclear due to the lack of effective in situ/operando techniques. Herein, we employ the operando quick-scan x-ray absorption fine structure (Q-XAFS) technique coupled with in situ controlled electrochemical potential to establish a structure-activity correlation of the OER catalyst. Using Ni-Fe bimetallic phosphides as a model catalyst, operando Q-XAFS experiments reveal that the structural transformation initiates at the preferential oxidation of Fe sites over Ni sites. The in situ-generated O-Fe-P structure serves as the origin of the enhanced electrocatalytic OER activity of the catalyst, a finding supported by theoretical calculations. This work provides crucial insights into understanding the reaction mechanism of the state-of-the-art Ni-Fe-based OER electrocatalysts, thus advancing the rational design of more efficient OER electrocatalysts.
Collapse
Affiliation(s)
- Zhi-Peng Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shouwei Zuo
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhihao Pei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon 999077, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon 999077, China
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiong Wen (David) Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon 999077, China
| |
Collapse
|
11
|
Li M, Ma D, Feng X, Zhi C, Jia Y, Zhang J, Zhang Y, Chen Y, Shi L, Shi JW. Design and Modification of Layered Double Hydroxides-Based Compounds in Electrocatalytic Water Splitting: a Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412576. [PMID: 39981826 DOI: 10.1002/smll.202412576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Layered double hydroxides (LDHs) exhibit great potential in electrocatalytic water splitting due to the unique 2D feature and an adjustable structure composed of different metal centers. In addition, LDHs have the advantage of being inherently inexpensive compared to other catalysts and have good stability in electrocatalytic water splitting. Up to now, numerous methods have been put forward to improve the activity of LDHs in electrocatalytic water splitting, a comprehensive introduction and comb to the fabrication methods and modification strategies is helpful for the followers to get a clear vein to carry out efficient manipulation to the development of high promising LDHs catalysts. In this review, the basic principles of water electrolysis, and the evaluation indexes are introduced first, and then the basic properties and commonly utilized methods in the fabrication of LDHs are introduced. After that, the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting (OWS) performance of different LDHs-based catalysts and analyze the merits and shortcomings of LDHs in electrocatalytic water splitting is compared. Based on this, the advanced strategies for improving the performance of LDHs is introduced and give a brief prospect for the development of LDHs-based materials in electrocatalysis.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiangbo Feng
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Chuanqi Zhi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yufei Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinfan Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yu Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Le Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
12
|
Mattioli G, Guidoni L. Multiple Reaction Pathways for Oxygen Evolution as a Key Factor for the Catalytic Activity of Nickel-Iron (Oxy)Hydroxides. J Am Chem Soc 2025; 147:6450-6463. [PMID: 39813108 DOI: 10.1021/jacs.4c12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation. After establishing the structural models of NiCat and Fe:NiCat consistent with experimental data, we used them to explore the atomistic mechanism of the oxygen evolution reaction (OER), which is triggered once the applied potential exceeds the overpotential required for water oxidation and oxygen production. We quantitatively compared seven OER pathways applicable to both the adsorbate evolution mechanism (AEM) and the lattice-oxygen-mediated mechanism (LOM) families, elucidating how iron significantly enhances the catalytic activity of Fe:NiCat compared to NiCat. Our findings suggest that simple metal-oxygen-metal motifs, common on the surface of both crystalline and amorphous metal (oxy)hydroxide films, can promote both AEM and LOM mechanisms under typical OER conditions. Furthermore, we propose that the elusive role of iron lies in the distinct behavior of Ni(IV)-O and Fe(IV)-O bonds in key intermediates preceding the formation of the O-O bond, with Fe ions lowering the potential needed to form these intermediates across the investigated pathways.
Collapse
Affiliation(s)
- Giuseppe Mattioli
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Struttura della Materia (ISM), Strada Provinciale, 35d/9, 00010 Montelibretti, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy
| |
Collapse
|
13
|
Li H, Zhang Y, Chen Y, Li Y, Li Z, Yang B, Zhang Q, Lu J, Lei L, Xu ZJ, Hou Y. Leveraging Iron in the Electrolyte to Improve Oxygen Evolution Reaction Performance: Fundamentals, Strategies, and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202423071. [PMID: 39807697 DOI: 10.1002/anie.202423071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element. Although the profound impact of adventitious electrolyte Fen+ species on OER catalysis had been reported forty years ago, recent interest in tailoring the electrode-electrolyte interface has spurred studies on the controlled introduction of Fe ions into the electrolyte to improve OER performance. During the catalytic process, scenarios where the rate of Fen+ deposition on a specific host material outruns that of dissolution pave the way for establishing highly efficient and dynamically stable electrochemical interfaces for long-term steady operation. This review systematically summarizes recent endeavors devoted to elucidating the behaviors of in situ Fe(aq.) incorporation, the role of incorporated Fe sites in the OER, and critical factors influencing the interplay between the electrode surface and Fe ions in the electrolyte environment. Finally, unexplored issues related to comprehensively understanding and leveraging the dynamic exchange of Fen+ at the interface for improved OER catalysis are summarized.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
| | - Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yubo Chen
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qinghua Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| |
Collapse
|
14
|
Najafpour MM. Oxygen Evolution Enhancement of Nickel (Hydr)Oxide via Iron Coordination Compound in Alkaline Conditions. Inorg Chem 2025; 64:3079-3089. [PMID: 39895212 DOI: 10.1021/acs.inorgchem.4c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This study investigates the complex dynamics of the oxygen-evolution reaction (OER) in systems involving Ni(Fe) (hydr)oxides and the iron coordination compound Fe phthalocyanine-4,4',4″,4‴-tetrasulfonate. It offers a novel perspective on the interaction between nickel hydroxide and the Fe compound during the OER process. The Fe complex facilitates the controlled release of trace Fe ions into the Ni (hydr)oxides as it undergoes degradation or demetalation within the Ni(II)/(III) potential range. Once the electrode surface reaches saturation with Fe, additional contributions from Fe have minimal impact on OER activity, and the turnover frequency rapidly reaches its maximum value (approximately 1 s-1) under cyclic voltammetry. In situ Raman spectroscopy reveals that the interaction between the iron complex and the electrode surface, as well as the amount of complex deposited or adsorbed, depends on the applied potential of the electrode. Changes in the electrode's potential influence how the Fe complex binds to the surface, through mechanisms such as electrostatic attraction, chemical bonding, or other interactions. This underscores the critical role of potential control in optimizing electrode surface modifications and enhancing the efficiency of electrochemical processes involving the iron complex.
Collapse
|
15
|
Halldin Stenlid J, Görlin M, Diaz-Morales O, Davies B, Grigorev V, Degerman D, Kalinko A, Börner M, Shipilin M, Bauer M, Gallo A, Abild-Pedersen F, Bajdich M, Nilsson A, Koroidov S. Operando Characterization of Fe in Doped Ni x(Fe 1-x)O yH z Catalysts for Electrochemical Oxygen Evolution. J Am Chem Soc 2025; 147:4120-4134. [PMID: 39862200 PMCID: PMC11803719 DOI: 10.1021/jacs.4c13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Iron-doped nickel oxyhydroxides, Nix(Fe1-x)OyHz, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed operando X-ray spectroscopy studies supported by DFT on Nix(Fe1-x)OyHz electrocatalysts. We probed the reversible changes in the structure and electronic character of Nix(Fe1-x)OyHz as the electrode potential is cycled between the resting (here at 1.10 VRHE) and operational states (1.66 VRHE). DFT calculations and XAS simulations on a library of Fe structures in various NiOyHz environments are in favor of a distorted local octahedral Fe(III)O3(OH)3 configuration at the resting state with the NiOyHz scaffold going from α-Ni(OH)2 to γ-NiOOH as the potential is increased. Under catalytic conditions, EXAFS and HERFD spectra reveal changes in p-d mixing (covalency) relative to the resting state between O/OH ligands and Fe leading to a shift from octahedral to square pyramidal coordination at the Fe site. XES measurements and theoretical simulations further support that the Fe equilibrium structure remains in a formal Fe(III) state under both resting and operational conditions. These spectral changes are attributed to potential dependent structural rearrangements around Fe. The results suggest that ligand dissociation leads to the C4v symmetry as the most stable intermediate of the Fe during OER. This implies that Fe has a weakly coordinated or easily dissociable ligand that could serve to coordinate the O-O bond formation and, tentatively, play an active role in the Nix(Fe1-x)OyHz electrocatalyst.
Collapse
Affiliation(s)
- Joakim Halldin Stenlid
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
- SUNCAT
Center for Interface Science and Catalysis, Department of Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Mikaela Görlin
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Uppsala SE-751 21, Sweden
| | - Oscar Diaz-Morales
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Holst
Centre, Netherlands Organisation for Applied Scientific Research, HighTech Campus 31, Eindhoven, 5656, the Netherlands
| | - Bernadette Davies
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
| | - Vladimir Grigorev
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - David Degerman
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Aleksandr Kalinko
- Department
of Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Strasse 100, Paderborn D-33098, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg D-22607, Germany
| | - Mia Börner
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
| | - Mikhail Shipilin
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
| | - Matthias Bauer
- Department
of Chemistry and Center for Sustainable Systems Design (CSSD), University of Paderborn, Warburger Strasse 100, Paderborn D-33098, Germany
| | - Alessandro Gallo
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
- SUNCAT
Center for Interface Science and Catalysis, Department of Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- Sila
Nanotechnologies, 2470
Mariner Square Loop, Alameda, California 94501, United States
| | - Frank Abild-Pedersen
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
| | - Michal Bajdich
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
| | - Anders Nilsson
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- SUNCAT
Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sandhill Road, Menlo
Park, California 94025, United States
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Sergey Koroidov
- Department
of Physics, Alba Nova Research Center, Stockholm
University, Stockholm SE-106 91 Sweden
- Wallenberg
Initiative Materials Science for Sustainability (WISE), Department
of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
16
|
Akbari N, Shah JH, Hu C, Nandy S, Aleshkevych P, Ge R, Farid S, Dong C, Zhang L, Chae KH, Xie W, Liu T, Wang J, Najafpour MM. A Hypothesis on the Function of High-Valent Fe in NiFe (Hydr)oxide in the Oxygen-Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202418798. [PMID: 39494775 DOI: 10.1002/anie.202418798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
This study investigated the dynamic changes in NiFe (hydr)oxide and identified the role of high-valent Fe in the oxygen-evolution reaction (OER) within alkaline media via in situ techniques. Several high-valent Fe ions were found to remain considerably stable in the absence of potential in NiFe (hydr)oxide, even 96 hours after the OER. For Ni2+ hydroxide treated with 57Fe ions, where Fe sites are introduced onto the surface of Ni2+ hydroxide, no Fe4+ species were detected at the rate-determining step (RDS). The findings of this study suggested that the oxidation of bulk Fe ions, similar to Ni ions, to high valent forms, is charge accumulation without a direct role in OER; these results offered a novel perspective on manipulating Fe states to optimize OER efficacy. The prevailing hypothesis suggested that trace amounts of high-valent Fe ions, notably those on the surface, directly participate in OER.
Collapse
Affiliation(s)
- Nader Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Jafar Hussain Shah
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw, 02-668, Poland
| | - Rile Ge
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sumbal Farid
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changchang Dong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liang Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Taifeng Liu
- National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Junhu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| |
Collapse
|
17
|
Zhang Z, Zhao H, Xi S, Zhao X, Chi X, Bin Yang H, Chen Z, Yu X, Wang YG, Liu B, Chen P. Breaking linear scaling relationships in oxygen evolution via dynamic structural regulation of active sites. Nat Commun 2025; 16:1301. [PMID: 39900893 PMCID: PMC11790916 DOI: 10.1038/s41467-024-55150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The universal linear scaling relationships between the adsorption energies of reactive intermediates limit the performance of catalysts in multi-step catalytic reactions. Here, we show how these scaling relationships can be circumvented in electrochemical oxygen evolution reaction by dynamic structural regulation of active sites. We construct a model Ni-Fe2 molecular catalyst via in situ electrochemical activation, which is able to deliver a notable intrinsic oxygen evolution reaction activity. Theoretical calculations and electrokinetic studies reveal that the dynamic evolution of Ni-adsorbate coordination driven by intramolecular proton transfer can effectively alter the electronic structure of the adjacent Fe active centre during the catalytic cycle. This dynamic dual-site cooperation simultaneously lowers the free energy change associated with O-H bond cleavage and O-O bond formation, thereby disrupting the inherent scaling relationship in oxygen evolution reaction. The present study not only advances the development of molecular water oxidation catalysts, but also provides an unconventional paradigm for breaking the linear scaling relationships in multi-intermediates involved catalysis.
Collapse
Affiliation(s)
- Zheye Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Hongyan Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiao Chi
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
18
|
Zhou Y, Zeng J, Zheng X, Huang W, Dong Y, Zhang J, Deng Y, Wu R. Enhancing the oxygen evolution reaction activity and stability of high-valent CoOOH by switching the catalytic pathway through doping low-valent Cu. J Colloid Interface Sci 2025; 678:536-546. [PMID: 39305621 DOI: 10.1016/j.jcis.2024.09.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Accepted: 09/14/2024] [Indexed: 10/27/2024]
Abstract
The oxygen evolution reaction (OER) is a critical process in electrochemical energy storage and conversion systems. The adsorbate evolution mechanism (AEM) pathway possesses the characteristics of high stability but slow catalytic kinetics. We propose that combining AEM with the lattice oxidation mechanism (LOM) pathway can potentially enhance the OER catalytic activity and stability. However, the triggering of LOM is an important challenge due to the high thermodynamic activation barrier of lattice oxygen. To solve this problem, we performed theoretical calculations and experiments which suggest that the introduction of low-valent Cu in CoOOH (CuxCo1-xOOH) could directionally modulate the local coordination environment of CoO bonds. This approach can activate lattice oxygen and generate oxygen vacancies to enhance the nucleophilic attack of *OH and directly establish OO coupling, thereby facilitating the smoothly switching from AEM to LOM pathway by increasing voltage and thus activating lattice oxygen in CuxCo1-xOOH. The switching of AEM and LOM enables CuxCo1-xOOH showing an outstanding overpotential of only 252 mV (10 mA cm-2) and durability of only 2.80 % degradation after 280h. This work provides a new way for designing efficient and stable electrocatalysts with AEM and LOM pathway switching.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Junhao Zeng
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xuerong Zheng
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Wenjie Huang
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yan Dong
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yida Deng
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Ruizhi Wu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
19
|
Lu S, Zhang Z, Cheng C, Zhang B, Shi Y. Unveiling the Aggregation of M-N-C Single Atoms into Highly Efficient MOOH Nanoclusters during Alkaline Water Oxidation. Angew Chem Int Ed Engl 2025; 64:e202413308. [PMID: 39191657 DOI: 10.1002/anie.202413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
M-N-C-type single-atom catalysts (SACs) are highly efficient for the electrocatalytic oxygen evolution reaction (OER). And the isolated metal atoms are usually considered real active sites. However, the oxidative structural evolution of coordinated N during the OER will probably damage the structure of M-N-C, hence resulting in a completely different reaction mechanism. Here, we reveal the aggregation of M-N-C materials during the alkaline OER. Taking Ni-N-C as an example, multiple characterizations show that the coordinated N on the surface of Ni-N-C is almost completely dissolved in the form of NO3 -, accompanied by the generation of abundant O functional groups on the surface of the carbon support. Accordingly, the Ni-N bonds are broken. Through a dissolution-redeposition mechanism and further oxidation, the isolated Ni atoms are finally converted to NiOOH nanoclusters supported by carbon as the real active sites for the enhanced OER. Fe-N-C and Co-N-C also have similar aggregation mechanism. Our findings provide unique insight into the structural evolution and activity origin of M-N-C-based catalysts under electrooxidative conditions.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Zhipu Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Chuanqi Cheng
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
20
|
Li F, Xu S, Zhao X, Ma G, Niu Z, Zhong X, Li J. Molecular Probing Coupled with Density Functional Theory Calculation to Reveal the Influence of Fe Doping on Fe-NiOOH Electrode for High Current Density of Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2304260. [PMID: 39449545 DOI: 10.1002/smll.202304260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Fe-doped NiOOH electrocatalysts have attracted wide interest for the exceptional oxygen evolution reaction (OER) performance, but the precise role of Fe doping on the improved intrinsic activity remains unclear. Herein, the molecular probe technique combined with density functional theory calculation is used to reveal the influence of the Fe atom on the rate-determining step of the OER reaction, where the pre-catalyst of hierarchical self-supporting NiFe layered double hydroxide [LDH] nanosheets equipped on nickel foam (NiFe LDH/NF) is generated via a facile and industrially well-matched one-pot corrosion method. The physical characterization results reveal the reconstruction of NiFe LDH into Fe-doped NiOOH for promoted OER, which has a lower OH* adsorption energy with fast subsequent steps that help in obtaining an improved charge injection efficiency compared to NiOOH. In addition, more exposed electroactive species and facile delivery of mass/electron inside the catalytic procedure actually have a high-quality contribution to the outstanding catalytic activity. Therefore, the NiFe LDH36/NF electrocatalyst provides high catalytic activities of 241 and 320 mV at 10 mA cm-2 toward the OER and overall water-splitting in 1 m KOH. This work provides a promising avenue for the rational design of durable self-supporting electrodes toward large-scale water splitting.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Shiyuan Xu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Xueru Zhao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Guorui Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Zhulin Niu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xing Zhong
- State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Jing Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| |
Collapse
|
21
|
Li J, Wu C, Wang Z, Meng H, Zhang Q, Tang Y, Zou A, Zhang Y, Xi S, Xue J, Wang X, Wu J. Modification d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ Orbital Electronic States in Nickel-Based Hydroxides Via Cobalt/Iron Co-Doping for High-Efficiency Methanol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406829. [PMID: 39370665 DOI: 10.1002/smll.202406829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Indexed: 10/08/2024]
Abstract
The nickel hydroxide-based (Ni(OH)2) methanol-to-formate electrooxidation reaction (MOR) performance is greatly related to thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Hence, optimizing thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states to achieve enhanced MOR activities are highly desired. Here, cobalt (Co) and iron (Fe) doping are used to modify thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Although both dopants can broaden thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital; however, Co doping leads to an elevation in the energy level ofd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ highest occupied crystal orbital (HOCO), whereas Fe doping results in its reduction. Such a discrepancy in the regulation ofd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states stems from the disparate partial electron transfer mechanisms amongst these transition metal ions, which possess distinct energy level and occupancy of d orbitals. Motivated by this finding, the NiCoFe hydroxide is prepared and exhibited an excellent MOR performance. The results showed that the Co dopants effectively suppress the partial electron transfer from Ni to Fe, combined with thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital broadening induced by NiO6 octahedra distortion, endowing NiCoFe hydroxide with highd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ HOCO and broadd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital. It is believed that the work gives an in-depth understanding ond x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states regulation in Ni(OH)2, which is beneficial for designing Ni(OH)2-based catalysts with high MOR performance.
Collapse
Affiliation(s)
- Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Republic of Singapore
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiming Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Republic of Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
He Y, Yang X, Jiang M, Liu F, Zhang J, Li H, Cui L, Xu J, Ji X, Liu J. Cr-doped NiFe sulfides nanoplate array: Highly efficient and robust bifunctional electrocatalyst for the overall water splitting and seawater electrolysis. J Colloid Interface Sci 2024; 680:1079-1089. [PMID: 39550859 DOI: 10.1016/j.jcis.2024.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
To replace precious metals and reduce production costs for large-scale hydrogen production, developing stable, high-performance transition metal electrocatalysts that can be used in a wide range of environments is desirable yet challenging. Herein, a self-supported hybrid catalyst (NiFeCrSx/NF) with high electrocatalytic activity was designed and constructed using conductive nickel foam as a substrate via manipulation of the cation doping ratio of transition metal compounds. Due to the strong coupling synergy between the metal sulfides NiS2, Fe9S11, and Cr2S3, as well as their interaction with the conductive nickel foam (NF), the energy barrier for catalytic reactions is reduced, and the charge transfer rate is enhanced. This significantly improves the hydrogen evolution reaction (HER) performance of NiFeCrSx/NF, achieving a current density of 10 mA cm-2 with an overpotential of just 66 mV. Furthermore, doping with chromium generates different valence states of Cr during the catalytic process, which can synergize with the high-valent Fe and Ni, promoting the formation of oxygen vacancies and enriching the active sites for the oxygen evolution reaction (OER). Consequently, at a current density of 10 mA cm-2 in 1.0 M KOH, the overpotential for OER is only 223 mV for NiFeCrSx/NF. Additionally, the in situ grown of self-supporting nanoflower structure on NiFe-LDH not only provides a large catalytic surface area but also facilitates electrolyte penetration during the catalytic process, endowing NiFeCrSx/NF with high long-term stability. When used as a bifunctional catalyst for overall water splitting, the NiFeCrSx/NF||NiFeCrSx/NF electrolyzer requires only 1.29 V to deliver a current density of 10 mA cm-2. Simultaneously, Cr doping protects the Fe sites by maintaining stable valence states, ensuring high performance and stability of NiFeCrSx/NF, even when it is utilized for seawater splitting. This strategy offers novel concepts for creating catalysts based on non-precious metals that can be utilized in various application scenarios.
Collapse
Affiliation(s)
- Yujia He
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Xuan Yang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Mingyuan Jiang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Fuguang Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jinming Zhang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Huiying Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Liang Cui
- College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China
| | - Jiangtao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China.
| | - Xuqiang Ji
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China; College of Materials Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
| |
Collapse
|
23
|
Yaseen W, Xie M, Yusuf BA, Meng S, Khan I, Xie J, Xu Y. Anchoring Ni(OH) 2-CeO x Heterostructure on FeOOH-Modified Nickel-Mesh for Efficient Alkaline Water-Splitting Performance with Improved Stability under Quasi-Industrial Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403971. [PMID: 39012083 DOI: 10.1002/smll.202403971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Developing low-cost and industrially viable electrode materials for efficient water-splitting performance and constructing intrinsically active materials with abundant active sites is still challenging. In this study, a self-supported porous network Ni(OH)2-CeOx heterostructure layer on a FeOOH-modified Ni-mesh (NiCe/Fe@NM) electrode is successfully prepared by a facile, scalable two-electrode electrodeposition strategy for overall alkaline water splitting. The optimized NiCe0.05/Fe@NM catalyst reaches a current density of 100 mA cm-2 at an overpotential of 163 and 262 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1.0 m KOH with excellent stability. Additionally, NiCe0.05/Fe@NM demonstrates exceptional HER performance in alkaline seawater, requiring only 148 mV overpotential at 100 mA cm-2. Under real water splitting conditions, NiCe0.05/Fe@NM requires only 1.701 V to achieve 100 mA cm-2 with robust stability over 1000 h in an alkaline medium. The remarkable water-splitting performance and stability of the NiCe0.05/Fe@NM catalyst result from a synergistic combination of factors, including well-optimized surface and electronic structures facilitated by an optimal Ce ratio, rapid reaction kinetics, a superhydrophilic/superaerophobic interface, and enhanced intrinsic catalytic activity. This study presents a simple two-electrode electrodeposition method for the scalable production of self-supported electrocatalysts, paving the way for their practical application in industrial water-splitting processes.
Collapse
Affiliation(s)
- Waleed Yaseen
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Meng Xie
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bashir Adegbemiga Yusuf
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Suci Meng
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jimin Xie
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Jiangke Graphene Research Institure Co., LTD, Jiangsu Jiangke Composite Material Co., LTD, Nanjing, 210094, P. R. China
| | - Yuanguo Xu
- School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
24
|
Song W, Xia C, Zaman S, Chen S, Xiao C. Advances in Stability of NiFe-Based Anodes toward Oxygen Evolution Reaction for Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406075. [PMID: 39314014 DOI: 10.1002/smll.202406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Alkaline electrolysis plays a crucial role in sustainable energy solutions by utilizing electrolytic cells to produce hydrogen gas, providing a clean and efficient method for energy storage and conversion. Efficient, stable, and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential to facilitate alkaline water electrolysis on a commercial scale. Nickel-iron-based (NiFe-based) transition metal electrocatalysts are considered the most promising non-precious metal catalysts for alkaline OER due to their low cost, abundance, and tunable catalytic properties. Nevertheless, the majority of existing NiFe-based catalysts suffer from limited activity and poor stability, posing a significant challenge in meeting industrial applications. This also highlights a common situation where the emphasis on material activity receives significant attention, while the equally critical stability aspect is often underemphasized. Initiating with a comprehensive exploration of the stability of NiFe-based OER materials, this article first summarizes the debate surrounding the determination of active sites in NiFe-based OER electrocatalysts. Subsequently, the degradation mechanisms of recently reported NiFe-based electrocatalysts are outlined, encompassing assessments of both chemical and mechanical endurance, along with essential approaches for enhancing their stability. Finally, suggestions are put forth regarding the essential considerations for the design of NiFe-based OER electrocatalysts, with a focus on heightened stability.
Collapse
Affiliation(s)
- Wenyu Song
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
25
|
Zhang Z, Ren X, Dai W, Zhang H, Sun Z, Ye Z, Hou Y, Liu P, Xu B, Qian L, Liao T, Zhang H, Guo J, Sun Z. In Situ Reconstructing NiFe Oxalate Toward Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408754. [PMID: 39360598 PMCID: PMC11600197 DOI: 10.1002/advs.202408754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Surface reconstruction plays an essential role in electrochemical catalysis. The structures, compositions, and functionalities of the real catalytic species and sites generated by reconstruction, however, are yet to be clearly understood, for the metastable or transit state of most reconstructed structures. Herein, a series of NiFe oxalates (NixFe1- xC2O4, x = 1, 0.9, 0.7, 0.6, 0.5, and 0) are synthesized for overall water splitting electrocatalysis. Whilst NixFe1-xC2O4 shows great hydrogen evolution reaction (HER) activity, the in situ reconstructed NixFe1-xOOH exhibits outstanding oxygen evolution reaction (OER) activity. As identified by the in situ Raman spectroscopy and quasi-in situ X-ray absorption spectroscopy (XAS) techniques, reconstructions from NixFe1-xC2O4 into defective NixFe1-xOOH and finally amorphous NixFe1-xOOH active species (R-NixFe1-xOOH) are confirmed upon cyclic voltammetry processes. Specifically, the fully reconstructed R-Ni0.6Fe0.4OOH demonstrates the best OER activity (179 mV to reach 10 mA cm-2), originating from its abundant real active sites and optimal d-band center. Benefiting from the reconstruction, an alkaline electrolyzer composed of a Ni0.6Fe0.4C2O4 cathode and an in situ reconstructed R-Ni0.6Fe0.4OOH anode achieves a superb overall water splitting performance (1.52 V@10 mA cm-2). This work provides an in-depth structure-property relationship understanding on the reconstruction of catalysts and offers a new pathway to designing novel catalyst.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Wenyuan Dai
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Hang Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Zhengyin Sun
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Zhuang Ye
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science &TechnologyXi'an710021P. R. China
| | - Lihua Qian
- School of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Ting Liao
- School of Mechanical Medical and Process EngineeringQueensland University of TechnologyGeorge StreetBrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane4000Australia
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane4000Australia
| |
Collapse
|
26
|
Khateri M, Najafpour MM. Toward Finding the Role of Surface Iron Ions in Enhancing Oxygen-Evolution Reaction. Inorg Chem 2024; 63:20900-20910. [PMID: 39418579 DOI: 10.1021/acs.inorgchem.4c03779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The oxygen evolution reaction (OER) in alkaline media is crucial for energy conversion technologies, and Fe-based catalysts have garnered significant attention for their efficacy. In this study, we provide an investigation of Fe-based catalysts under OER conditions using some techniques. Our findings reveal minimal structural alterations in the bulk FeHxOy framework during OER, indicating that the bulk structure remains largely intact. Instead, the catalytic activity is primarily localized on the material's surface. This conclusion is corroborated by the measured low electrochemical surface area (ECSA) of FeHxOy, suggesting that its limited OER performance stems from a paucity of active sites rather than low intrinsic activity. The superior efficiency of Fe ions in conductive oxides or on conductive metal substrates (e.g., copper and gold) in OER is attributed to the increased availability of surface-active sites in these systems. To further elucidate this phenomenon, we investigated two additional systems: NiFe and VFe (hydr)oxides. For NiFe (hydr)oxides, we demonstrate that only surface Fe ions contribute actively to OER. In contrast, in VFe (hydr)oxides, the removal of vanadium resulted in a marked increase in ECSA and the generation of defect sites, significantly enhancing OER activity. These findings provide critical insights into the surface-specific role of Fe ions in catalytic activity and could inform future design strategies for more efficient OER catalysts by optimizing the availability and reactivity of surface-active Fe sites.
Collapse
Affiliation(s)
- Mohammad Khateri
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
27
|
Lee S, Ha S. Revealing Enhanced Active Oxygen Formation by Incorporating Chromium into Nickel Hydroxide Nanosheets for Improved Oxygen Evolution Reaction. J Phys Chem Lett 2024; 15:10230-10236. [PMID: 39356703 DOI: 10.1021/acs.jpclett.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Nickel-based oxyhydroxides have emerged as promising catalysts for the oxygen evolution reaction (OER) among Earth-abundant metals. While the incorporation of foreign elements is recognized to enhance catalytic activity, the origin of this enhancement is still debated. We synthesize and examine Ni hydroxide nanosheets, both with and without Cr doping, to elucidate the underlying enhancements. Operando UV-vis and Raman spectroscopy are employed to unravel the behavior of the catalysts. The Cr doping facilitates the oxidation of Ni, resulting in the generation of active oxygen species. The enriched active oxygen species improves OER performance through a lattice oxygen-mediated pathway in Fe-free KOH, and further contribute to the creation and increased activity of FeOxHy sites in the presence of Fe impurities. This work provides a mechanistic understanding of the performance enhancement in Ni-based catalysts through Cr doping and suggests a strategy for the design of more efficient catalysts in the future.
Collapse
Affiliation(s)
- Seunghwa Lee
- Department of Chemical Engineering, Changwon National University, 51140 Changwon, Republic of Korea
| | - Seungjoon Ha
- Department of Chemical Engineering, Changwon National University, 51140 Changwon, Republic of Korea
| |
Collapse
|
28
|
Etxebarria A, Lopez Luna M, Martini A, Hejral U, Rüscher M, Zhan C, Herzog A, Jamshaid A, Kordus D, Bergmann A, Kuhlenbeck H, Roldan Cuenya B. Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. ACS Catal 2024; 14:14219-14232. [PMID: 39324051 PMCID: PMC11421220 DOI: 10.1021/acscatal.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Water splitting has emerged as a promising route for generating hydrogen as an alternative to conventional production methods. Finding affordable and scalable catalysts for the anodic half-reaction, the oxygen evolution reaction (OER), could help with its industrial widespread implementation. Iron-containing Ni-based catalysts have a competitive performance for the use in commercial alkaline electrolyzers. Due to the complexity of studying the catalysts at working conditions, the active phase and the role that iron exerts in conjunction with Ni are still a matter of investigation. Here, we study this topic with NiO(001) and Ni0.75Fe0.25O x (001) thin film model electrocatalysts employing surface-sensitive techniques. We show that iron constrains the growth of the oxyhydroxide phase formed on top of the Ni or NiFe oxide, which is considered the active phase for the OER. Besides, operando Raman and grazing incidence X-ray absorption spectroscopy experiments reveal that the presence of iron affects both, the disorder level of the active phase and the oxidative charge around Ni during OER. The observed compositional, structural, and electronic properties of each system have been correlated with their electrochemical performance.
Collapse
Affiliation(s)
| | | | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Chao Zhan
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Afshan Jamshaid
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - David Kordus
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Helmut Kuhlenbeck
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
29
|
Gupta N, Segre C, Nickel C, Streb C, Gao D, Glusac KD. Catalytic Water Electrolysis by Co-Cu-W Mixed Metal Oxides: Insights from X-ray Absorption Spectroelectrochemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35793-35804. [PMID: 38949083 DOI: 10.1021/acsami.4c06365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mixed metal oxides (MMOs) are a promising class of electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Despite their importance for sustainable energy schemes, our understanding of relevant reaction pathways, catalytically active sites, and synergistic effects is rather limited. Here, we applied synchrotron-based X-ray absorption spectroscopy (XAS) to explore the evolution of the amorphous Co-Cu-W MMO electrocatalyst, shown previously to be an efficient bifunctional OER and HER catalyst for water splitting. Ex situ XAS measurements provided structural environments and the oxidation state of the metals involved, revealing Co2+ (octahedral), Cu+/2+ (tetrahedral/square-planar), and W6+ (octahedral) centers. Operando XAS investigations, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), elucidated the dynamic structural transformations of Co, Cu, and W metal centers during the OER and HER. The experimental results indicate that Co3+ and Cu0 are the active catalytic sites involved in the OER and HER, respectively, while Cu2+ and W6+ play crucial roles as structure stabilizers, suggesting strong synergistic interactions within the Co-Cu-W MMO system. These results, combined with the Tafel slope analysis, revealed that the bottleneck intermediate during the OER is Co3+ hydroperoxide, whose formation is accompanied by changes in the Cu-O bond lengths, pointing to a possible synergistic effect between Co and Cu ions. Our study reveals important structural effects taking place during MMO-driven OER/HER electrocatalysis and provides essential experimental insights into the complex catalytic mechanism of emerging noble-metal-free MMO electrocatalysts for full water splitting.
Collapse
Affiliation(s)
- Nikita Gupta
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Carlo Segre
- Department of Physics & Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Christean Nickel
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Dandan Gao
- Department of Chemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
30
|
Hong Y, Choi J, Lee E, Hwang YJ. Enhanced stability of boron modified NiFe hydroxide for oxygen evolution reaction. NANOSCALE 2024; 16:11564-11574. [PMID: 38855939 DOI: 10.1039/d4nr01186d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The introduction of non-metal elements including boron has been identified as a significant means to enhance oxygen evolution reaction (OER) performance in NiFe-based catalysts. To understand the catalytic activity and stability, recent attention has widened toward the Fe species as a potential contributor, prompting exploration from various perspectives. Here, boron incorporation in NiFe hydroxide achieves significantly enhanced activity and stability compared to the boron-free NiFe hydroxide. The boron inclusion in NiFe hydroxide is found to show exceptionally improved stability from 12 to 100 hours at a high current density (200 mA cm-2). It facilitates the production and redeposition of OER-active, high-valent Fe species in NiFe hydroxide based on the operando Raman, UV-vis, and X-ray absorption spectroscopy analysis. It is proposed that preserving a homogenous distribution of Fe across the boron-containing catalyst surface enhances OER stability, unlike the bare NiFe hydroxide electrocatalyst, which exhibits uneven Fe dissolution, confirmed through elementary mapping analysis. These findings shed light on the potential of anionic regulation to augment the activity of iron, an aspect not previously explored in depth, and thus are expected to aid in designing practical OER electrocatalysts.
Collapse
Affiliation(s)
- Yewon Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| | - Juhyung Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Eunchong Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| | - Yun Jeong Hwang
- Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Lim SS, Sivanantham A, Choi C, Shanmugam S, Lansac Y, Jang YH. Active Sites of Mixed-Metal Core-Shell Oxygen Evolution Reaction Catalysts: FeO 4 Sites on Ni Cores or NiN 4 Sites in C Shells? ACS OMEGA 2024; 9:25748-25755. [PMID: 38911812 PMCID: PMC11190911 DOI: 10.1021/acsomega.3c09920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Water electrolysis for clean hydrogen production requires high-activity, high-stability, and low-cost catalysts for its particularly sluggish half-reaction, the oxygen evolution reaction (OER). Currently, the most promising of such catalysts working in alkaline conditions is a core-shell nanostructure, NiFe@NC, whose Fe-doped Ni (NiFe) nanoparticles are encapsulated and interconnected by N-doped graphitic carbon (NC) layers, but the exact OER mechanism of these catalysts is still unclear, and even the location of the OER active site, either on the core side or on the shell side, is still debated. Therefore, we herein derive a plausible active-site model for each side based on various experimental evidence and density functional theory calculations and then build OER free-energy diagrams on both sides to determine the active-site location. The core-side model is an FeO4-type (rather than NiO4-type) active site where an Fe atom sits on Ni oxide layers grown on top of the core surface during catalyst activation, whose facile dissolution provides an explanation for the activity loss of such catalysts directly exposed to the electrolyte. The shell-side model is a NiN4-type (rather than FeN4-type) active site where a Ni atom is intercalated into the porphyrin-like N4C site of the NC shell during catalyst synthesis. Their OER free-energy diagrams indicate that both sites require similar amounts of overpotentials, despite a complete shift in their potential-determining steps, i.e., the final O2 evolution from the oxophilic Fe on the core and the initial OH adsorption to the hydrophobic shell. We conclude that the major active sites are located on the core, but the NC shell not only protects the vulnerable FeO4 active sites on the core from the electrolyte but also provides independent active sites, owing to the N doping.
Collapse
Affiliation(s)
- Sung Soo Lim
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | | | - Changwon Choi
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | | | - Yves Lansac
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN,
UMR 7347, Université de Tours, CNRS, INSA CVL, 37200 Tours, France
- LPS,
CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| | - Yun Hee Jang
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN,
UMR 7347, Université de Tours, CNRS, INSA CVL, 37200 Tours, France
| |
Collapse
|
32
|
Nguyen TT, Sayler RI, Shoemaker AH, Zhang J, Stoll S, Winkler JR, Britt RD, Hunter BM. Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2024; 146:15019-15026. [PMID: 38743719 DOI: 10.1021/jacs.3c13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O-O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxide─one of the best earth-abundant electrocatalysts to be studied─water oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.
Collapse
Affiliation(s)
- Trisha T Nguyen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Richard I Sayler
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Aaron H Shoemaker
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jibo Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Bryan M Hunter
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Yu C, Ji W, Li X, Yuan S, Zhang P, Pu S. Critical Role of Mineral Fe(IV) Formation in Low Hydroxyl Radical Yields during Fe(II)-Bearing Clay Mineral Oxygenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9669-9678. [PMID: 38771965 DOI: 10.1021/acs.est.3c09986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In subsurface environments, Fe(II)-bearing clay minerals can serve as crucial electron sources for O2 activation, leading to the sequential production of O2•-, H2O2, and •OH. However, the observed •OH yields are notably low, and the underlying mechanism remains unclear. In this study, we investigated the production of oxidants from oxygenation of reduced Fe-rich nontronite NAu-2 and Fe-poor montmorillonite SWy-3. Our results indicated that the •OH yields are dependent on mineral Fe(II) species, with edge-surface Fe(II) exhibiting significantly lower •OH yields compared to those of interior Fe(II). Evidence from in situ Raman and Mössbauer spectra and chemical probe experiments substantiated the formation of structural Fe(IV). Modeling results elucidate that the pathways of Fe(IV) and •OH formation respectively consume 85.9-97.0 and 14.1-3.0% of electrons for H2O2 decomposition during oxygenation, with the Fe(II)edge/Fe(II)total ratio varying from 10 to 90%. Consequently, these findings provide novel insights into the low •OH yields of different Fe(II)-bearing clay minerals. Since Fe(IV) can selectively degrade contaminants (e.g., phenol), the generation of mineral Fe(IV) and •OH should be taken into consideration carefully when assessing the natural attenuation of contaminants in redox-fluctuating environments.
Collapse
Affiliation(s)
- Chenglong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Wenwen Ji
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Xinyi Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, P. R. China
| | - Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, P. R. China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, P. R. China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| |
Collapse
|
34
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
35
|
Song J, Fan H, Wang Y, Li Q, Zhao J, Shao C, Li T, Jin Y, Liu S, Liu W. Multifunctional Iron Selenate Sheath of Fe-Based Anode Achieving High-Rate Capacity-Durability Combination of Aqueous Hybrid Energy Storage Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309097. [PMID: 38183380 DOI: 10.1002/smll.202309097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Indexed: 01/08/2024]
Abstract
The introduction of battery-type cathode has been commonly considered a preferred approach to boost the energy density of aqueous hybrid energy storage devices (AHESDs) in alkalic systems, but AHESDs with both high energy density and power density are rare due to the great challenge in designing battery-type anode materials with high rate and durability comparable to capacitive-type carbon anodes. In this paper, a well-hydrated iron selenate (FeSeO) sheath is constructed around FeOOH nanorods by a facile electrochemical activation, demonstrating the unique multifunction in fasting charge diffusion, promoting the dissociation of H2O, and inhibiting the irreversible phase transition of FeOOH to inert γ-Fe2O3, which endow the hydrated sheath coated Fe-based anodes with an impressive rate capability and superior durability. Thanks to the comprehensive performance of this Fe-based anode, the assembled AHESD delivered a high energy density of 117 Wh kg-1 with the extraordinary durability of almost 100% capacity retention after 40 000 cycles. Even at an ultrahigh power density of 27 000 W kg-1, an impressive energy density of 65 Wh kg-1 can be achieved, which rivals previously reported energy-storage devices.
Collapse
Affiliation(s)
- Jinyue Song
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Hongguang Fan
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Yanpeng Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Qingping Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Chenchen Shao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Tao Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Yongcheng Jin
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Shuang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| | - Wei Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, P. R. China
| |
Collapse
|
36
|
Zuo Y, Mastronardi V, Gamberini A, Zappia MI, Le THH, Prato M, Dante S, Bellani S, Manna L. Stainless Steel Activation for Efficient Alkaline Oxygen Evolution in Advanced Electrolyzers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312071. [PMID: 38377368 DOI: 10.1002/adma.202312071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Designing robust and cost-effective electrocatalysts for efficient alkaline oxygen evolution reaction (OER) is of great significance in the field of water electrolysis. In this study, an electrochemical strategy to activate stainless steel (SS) electrodes for efficient OER is introduced. By cycling the SS electrode within a potential window that encompasses the Fe(II)↔Fe(III) process, its OER activity can be enhanced to a great extent compared to using a potential window that excludes this redox reaction, decreasing the overpotential at current density of 100 mA cm-2 by 40 mV. Electrochemical characterization, Inductively Coupled Plasma - Optical Emission Spectroscopy, and operando Raman measurements demonstrate that the Fe leaching at the SS surface can be accelerated through a Fe → γ-Fe2O3 → Fe3O4 or FeO → Fe2+ (aq.) conversion process, leading to the sustained exposure of Cr and Ni species. While Cr leaching occurs during its oxidation process, Ni species display higher resistance to leaching and gradually accumulate on the SS surface in the form of OER-active Fe-incorporated NiOOH species. Furthermore, a potential-pulse strategy is also introduced to regenerate the OER-activity of 316-type SS for stable OER, both in the three-electrode configuration (without performance decay after 300 h at 350 mA cm-2) and in an alkaline water electrolyzer (≈30 mV cell voltage increase after accelerated stress test-AST). The AST-stabilized cell can still reach 1000 and 4000 mA cm-2 at cell voltages of 1.69 and 2.1 V, which makes it competitive with state-of-the-art electrolyzers based on ion-exchange membrane using Ir-based anodes.
Collapse
Affiliation(s)
- Yong Zuo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | | | - Agnese Gamberini
- BeDimensional S.p.A., Via Lungotorrente Secca, 30R, Genova, 16163, Italy
| | - Marilena I Zappia
- BeDimensional S.p.A., Via Lungotorrente Secca, 30R, Genova, 16163, Italy
| | - Thi-Hong-Hanh Le
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Genova, 16146, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Silvia Dante
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca, 30R, Genova, 16163, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
37
|
Cheraparambil H, Vega-Paredes M, Scheu C, Weidenthaler C. Unraveling the Evolution of Dynamic Active Sites of LaNi xFe 1-xO 3 Catalysts During OER. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21997-22006. [PMID: 38647135 PMCID: PMC11071036 DOI: 10.1021/acsami.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Perovskites have attracted tremendous attention as potential catalysts for the oxygen evolution reaction (OER). It is well-known that the introduction of Fe into rare earth perovskites such as LaNiO3 enhances the intrinsic OER activity. Despite numerous studies on structure-property relationships, the origin of the activity and the nature of the active species are still elusive and unclear. In this work, we study a series of LaNixFe1-xO3 perovskites using in situ electrochemical surface-enhanced Raman spectroscopy and electron energy loss spectroscopy to decipher the surface evolution and formation of active species during OER. While the origin of the activity arises from NiOOH species formed from the active Ni centers in LaNiO3, our work shows that Fe serves as the active center in LaNi0.5Fe0.5O3 and forms Fe-O-Ni and FeOOH species during OER. The OER activity of LaFeO3 originates from FeOOH species, which interact with the soluble Ni species in the electrolyte forming an active electrode-electrolyte interface with high-valent stable surface iron species (Fe4+) and thereby improving the performance. Our work provides deeper insights into the synergistic effects of Ni and Fe on the catalytic activity, which in turn provides new design principles for perovskite catalysts for the OER.
Collapse
Affiliation(s)
- Haritha Cheraparambil
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Miquel Vega-Paredes
- Max-Planck-Institut
für Eisenforschung, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - Christina Scheu
- Max-Planck-Institut
für Eisenforschung, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
38
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
39
|
Che Q, van den Bosch ICG, Le PTP, Lazemi M, van der Minne E, Birkhölzer YA, Nunnenkamp M, Peerlings MLJ, Safonova OV, Nachtegaal M, Koster G, Baeumer C, de Jongh P, de Groot FMF. In Situ X-ray Absorption Spectroscopy of LaFeO 3 and LaFeO 3/LaNiO 3 Thin Films in the Electrocatalytic Oxygen Evolution Reaction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5515-5523. [PMID: 38595773 PMCID: PMC11000219 DOI: 10.1021/acs.jpcc.3c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film.
Collapse
Affiliation(s)
- Qijun Che
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | | | - Phu T. P. Le
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Masoud Lazemi
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Emma van der Minne
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Yorick A. Birkhölzer
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Moritz Nunnenkamp
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Matt L. J. Peerlings
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | | | | | - Gertjan Koster
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Christoph Baeumer
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7500 AE, The Netherlands
| | - Petra de Jongh
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Frank M. F. de Groot
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
40
|
Ali Akbari MS, Nandy S, Chae KH, Najafpour MM. Iron Integration in Nickel Hydroxide Matrix vs Surface for Oxygen-Evolution Reaction: Where the Nernst Equation Does Not Work. J Phys Chem Lett 2024; 15:3591-3602. [PMID: 38527269 DOI: 10.1021/acs.jpclett.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study focuses on the oxygen-evolution reaction (OER) activity comparison between two forms of NiFe (hydr)oxides: compound 1, where Fe ions are applied on the surface of nickel (hydr)oxide, and compound 2, with Fe ions incorporated into the structural matrix of nickel (hydr)oxide. The observed exponential link between Coulombic energy and the total charge of the system points to a direct proportionality between the potential and the concentration of oxidized nickel ions (e.g., V ∝ [oxidized Ni]), diverging from the logarithmic relationship outlined in the Nernst equation or its modifications, which is not evident in this case. Initial visible spectroscopy indicates a notable trend toward oxidation. As, during the oxidation, more Ni is oxidized, a repulsion effect develops, diminishing the likelihood of further oxidation, and a distinct linear correlation emerges between the quantity of oxidized Ni(II) and the applied potentials.
Collapse
Affiliation(s)
- Mohammad Saleh Ali Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
- Department of Chemistry, Sharif University of Technology, Tehran 11365-8639, Iran
| |
Collapse
|
41
|
Wang Z, Qian J, Cao P, Shou H, Wu C, Xu X, Wu X, He Q, Song L. Identification of Synergies in Fe, Co-Coordinated Polyphthalocyanines Scaffolds for Electrochemical CO 2 Reduction Reaction. NANO LETTERS 2024; 24:3249-3256. [PMID: 38477055 DOI: 10.1021/acs.nanolett.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The synergistic interaction between the isolated metal sites promoted the electrocatalytic activity of the catalysts. However, the structural heterogeneity of the isolated sites makes it challenging to evaluate this effect accurately. In this work, metal-coordinated polyphthalocyanine molecules (Fe-PPc, Co-PPc, FeCo-PPc) with long-range ordered and precise coordination structures are used as a platform to study the synergies of different isolated metal sites in the electrochemical CO2 reduction reaction. The combination means of experimental and theoretical calculation clearly reveal that the coexistence of Fe and Co sites in PPc significantly enhances the conjugation effect of the macrocycle. This enhancement subsequently causes the metal sites to lose more electrons, thereby improving their adsorption of CO2 and facilitating the formation of intermediate *COOH on them. As a result, FeCo-PPc achieves a CO partial current density of about 57.4 mA/cm2 with a high turnover frequency of over 49000 site-1 h-1 at -0.9 V (vs RHE).
Collapse
Affiliation(s)
- Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, Free Electron Laser for Innovation Center of Energy Chemistry (FELiChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jun Qian
- High-End Chemicals and Cutting-Edge New Materials Technology Innovation Center of Hefei, East China Engineering Science and Technology Co., LTD., Hefei 230088, P. R. China
| | - Pengcheng Cao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, Free Electron Laser for Innovation Center of Energy Chemistry (FELiChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
- Hefei National Laboratory for Physical Science at the Microscale, Collaborative Innovation of Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuanqiang Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xin Xu
- High-End Chemicals and Cutting-Edge New Materials Technology Innovation Center of Hefei, East China Engineering Science and Technology Co., LTD., Hefei 230088, P. R. China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Science at the Microscale, Collaborative Innovation of Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, Free Electron Laser for Innovation Center of Energy Chemistry (FELiChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, Free Electron Laser for Innovation Center of Energy Chemistry (FELiChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
- Zhejiang Institute of Photonelectronics, Jinhua 321004, P. R. China
| |
Collapse
|
42
|
Haase FT, Ortega E, Saddeler S, Schmidt FP, Cruz D, Scholten F, Rüscher M, Martini A, Jeon HS, Herzog A, Hejral U, Davis EM, Timoshenko J, Knop-Gericke A, Lunkenbein T, Schulz S, Bergmann A, Roldan Cuenya B. Role of Fe decoration on the oxygen evolving state of Co 3O 4 nanocatalysts. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:2046-2058. [PMID: 38449571 PMCID: PMC10913145 DOI: 10.1039/d3ee02809g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline Co3O4 catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization. Here, we employ a variety of operando spectroscopic methods to unveil how Fe decoration increases the catalytic activity of Co3O4 nanocatalysts as well as steer the (near-surface) active state formation. Our study shows a link of the termination-dependent Fe decoration to the activity enhancement and a significantly stronger Co3O4 near-surface (structural) adaptation under the reaction conditions. The near-surface Fe- and Co-O species accumulate an oxidative charge and undergo a reversible bond contraction during the catalytic process. Moreover, our work demonstrates the importance of low coordination surface sites on the Co3O4 host to ensure an efficient Fe-induced activity enhancement, providing another puzzle piece to facilitate optimized catalyst design.
Collapse
Affiliation(s)
- Felix T Haase
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Sascha Saddeler
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen [CENIDE], University of Duisburg-Essen Essen Germany
| | - Franz-Philipp Schmidt
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Fabian Scholten
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Andrea Martini
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Uta Hejral
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Earl M Davis
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Axel Knop-Gericke
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36 45470 Mülheim Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen [CENIDE], University of Duisburg-Essen Essen Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| |
Collapse
|
43
|
Gajapathy H, Bandaranayake S, Hruska E, Vadakkayil A, Bloom BP, Londo S, McClellan J, Guo J, Russell D, de Groot FMF, Yang F, Waldeck DH, Schultze M, Baker LR. Spin polarized electron dynamics enhance water splitting efficiency by yttrium iron garnet photoanodes: a new platform for spin selective photocatalysis. Chem Sci 2024; 15:3300-3310. [PMID: 38425509 PMCID: PMC10901523 DOI: 10.1039/d3sc03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
This work presents a spectroscopic and photocatalytic comparison of water splitting using yttrium iron garnet (Y3Fe5O12, YIG) and hematite (α-Fe2O3) photoanodes. Despite similar electronic structures, YIG significantly outperforms widely studied hematite, displaying more than an order of magnitude increase in photocurrent density. Probing the charge and spin dynamics by ultrafast, surface-sensitive XUV spectroscopy reveals that the enhanced performance arises from (1) reduced polaron formation in YIG compared to hematite and (2) an intrinsic spin polarization of catalytic photocurrents in YIG. Ultrafast XUV measurements show a reduction in the formation of surface electron polarons compared to hematite due to site-dependent electron-phonon coupling. This leads to spin polarized photocurrents in YIG where efficient charge separation occurs on the Td sub-lattice compared to fast trapping and electron/hole pair recombination on the Oh sub-lattice. These lattice-dependent dynamics result in a long-lived spin aligned hole population at the YIG surface, which is directly observed using XUV magnetic circular dichroism. Comparison of the Fe M2,3 and O L1-edges show that spin aligned holes are hybridized between O 2p and Fe 3d valence band states, and these holes are responsible for highly efficient, spin selective water oxidation by YIG. Together, these results point to YIG as a new platform for highly efficient, spin selective photocatalysis.
Collapse
Affiliation(s)
- Harshad Gajapathy
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Emily Hruska
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Aravind Vadakkayil
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Stephen Londo
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jackson McClellan
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jason Guo
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - Daniel Russell
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - Frank M F de Groot
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584CG Utrecht The Netherlands
| | - Fengyuan Yang
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Martin Schultze
- Institute of Experimental Physics, Graz University of Technology Petersgasse 16 Graz 8010 Austria
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
44
|
Li Z, Yang J, Gao R, Xu SM, Kong X, Hua X, Zhao P, Hao H, O'Hare D, Zhao Y. Interplay between Defects and Short-Range Disorder Manipulating the Oxygen Evolution Reaction on a Layered Double Hydroxide Electrocatalyst. J Phys Chem Lett 2024; 15:2006-2014. [PMID: 38349852 DOI: 10.1021/acs.jpclett.3c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Improving the efficiency of the oxygen evolution reaction (OER) is crucial for advancing sustainable and environmentally friendly hydrogen energy. Layered double hydroxides (LDHs) have emerged as promising electrocatalysts for the OER. However, a thorough understanding of the impact of structural disorder and defects on the catalytic activity of LDHs remains limited. In this work, a series of NiAl-LDH models are systematically constructed, and their OER performance is rigorously screened through theoretical density functional theory. The acquired results unequivocally reveal that the energy increase induced by structural disorder is effectively counteracted at the defect surface, indicating the coexistence of defects and disorder. Notably, it is ascertained that the simultaneous presence of defects and disorder synergistically augments the catalytic activity of LDHs in the context of the OER. These theoretical findings offer valuable insights into the design of highly efficient OER catalysts while also shedding light on the efficacy of LDH electrocatalysts.
Collapse
Affiliation(s)
- Zixian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Rui Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021 Hohhot, Inner Mongolia, P. R. China
| | - Si-Min Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry Jiangxi Province, Gannan Normal University, 341000 Ganzhou, Jiangxi, P. R. China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Xiao Hua
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Pu Zhao
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, Jiangsu, P. R. China
| | - Haigang Hao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021 Hohhot, Inner Mongolia, P. R. China
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
- Qingyuan Innovation Laboratory, 362000 Quanzhou, Fujian, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, 324000 Quzhou, Zhejiang, P. R. China
| |
Collapse
|
45
|
Kong Z, Li D, Cai R, Li T, Diao L, Chen X, Wang X, Zheng H, Jia Y, Yang D. Electron-rich palladium regulated by cationic vacancies in CoFe layered double hydroxide boosts electrocatalytic hydrodechlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132964. [PMID: 37951175 DOI: 10.1016/j.jhazmat.2023.132964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023]
Abstract
Palladium (Pd) is regarded as a promising electrocatalytic hydrodechlorination (EHDC) catalyst for the detoxification of halogenated phenols. Nevertheless, its intrinsic EHDC activity is seriously restricted by the hydrogen evolution reaction (HER), consuming the active hydrogen (H*) for EHDC. Here, we report a defect regulation strategy using cationic vacancies rich CoFeV-LDH with coupling ultrafine Pd nanoparticles that induces optimized electron distribution of Pd to promote EHDC. The experimental and theoretical results reveal that superior EHDC performance of Pd@CoFeV-LDH is attributed to the electron-rich Pd regulated by cationic vacancies in CoFeV-LDH support, driving facile adsorption of halogenated phenols, high water activation ability and H* selectivity for EHDC. Our findings provide a versatile defect-regulating strategy to overcome the challenge in efficiency and selectivity of EHDC process.
Collapse
Affiliation(s)
- Zhenyu Kong
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Tao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Lipeng Diao
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaokang Chen
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Huajun Zheng
- Department of Applied Chemistry, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yi Jia
- Department of Applied Chemistry, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Dongjiang Yang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environmental Science and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
46
|
Zhang K, Xie Y, Niu L, Huang X, Yu X, Feng M. Fe(IV)/Fe(V)-mediated polyferric sulfate/periodate system: A novel coagulant/oxidant strategy in promoting micropollutant abatement. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133614. [PMID: 38290329 DOI: 10.1016/j.jhazmat.2024.133614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Strategic modulation of the advanced oxidation processes for the selective oxidation of micropollutants has attracted accumulating attention in water decontamination. This study first reported the combination of the coagulant polyferric sulfate (PFS) and oxidant periodate (PI) to accomplish synergistic abatement of the antibiotic sulfamethoxazole (SMX). The oxidizing performance of SMX by this system was almost unaffected by coexisting water constituents, indicating the great promise of selective oxidation. Different from the current hydroxyl radicals (•OH)-mediated coagulant/oxidant systems (e.g., PFS/H2O2 and PFS/ozone), the dominance of high-valent Fe(IV)/Fe(V) intermediates was unambiguously verified in the PFS/PI treatment. The PFS colloids before and after the oxidation were characterized and the iron speciation was analyzed. The transformation of monomeric iron configurations (Fe(a)) to oligomeric iron configurations (Fe(b)) could maintain the homeostasis of surface-bound Fe(III) and Fe(II). The interaction mechanisms included the production of reactive species and dynamic reaction equilibrium for micropollutant degradation. Finally, the transformation pathways of SMX and carbamazepine (CMZ) in the PFS/PI system were postulated. Overall, this study provided a novel coagulant/oxidant strategy to achieve selective and sustainable water purification.
Collapse
Affiliation(s)
- Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lijun Niu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xiangbin Huang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
47
|
Da Silva ES, Macili A, Bofill R, García-Antón J, Sala X, Francàs L. Boosting the Oxygen Evolution Activity of FeNi Oxides/Hydroxides by Molecular and Atomic Engineering. Chemistry 2024; 30:e202302251. [PMID: 37702295 DOI: 10.1002/chem.202302251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
FeNi oxides/hydroxides are the best performing catalysts for oxidizing water at basic pH. Consequently, their improvement is the cornerstone to develop more efficient artificial photosynthetic systems. During the last 5 years different reports have demonstrated an enhancement of their activity by engineering their structures via: (1) modulation of the number of oxygen, iron and nickel vacancies; (2) single atoms (SAs) doping with metals such as Au, Ir, Ru and Pt; and (3) modification of their surface using organic ligands. All these strategies have led to more active and stable electrocatalysts for oxygen evolution rection (OER). In this Concept, we critically analyze these strategies using the most relevant examples.
Collapse
Affiliation(s)
- Eliana S Da Silva
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Aureliano Macili
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roger Bofill
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jordi García-Antón
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Xavier Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Laia Francàs
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
48
|
Khan MA, Li C, Mei S, Chishti AN, Lu F, Zhou M. Ce Hydroxide-Interfaced NiFe Sulfide Electrocatalyst with Improved Performance for the Oxygen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:696-703. [PMID: 38103257 DOI: 10.1021/acs.langmuir.3c02913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The development of electrochemically inexpensive, durable, and active electrocatalysts for the oxygen evolution reaction (OER) is attracting considerable attention. The heterogeneous interfacing might regulate the electronic structure and further improve the electrochemical activity. Herein, a Ce(OH)3 nanoparticle-interfaced Fe-doped nickel sulfide (Ce(OH)3@Fe-Ni3S2) electrocatalyst was prepared to improve the OER performance. The fabricated electrocatalyst displayed excellent intrinsic activity and long-term stability in 1 M KOH for the OER. The catalyst shows an ultralow overpotential of 195 mV at a current density of 10 mA cm-2 and a Tafel slope of 52 mV dec-1, which are remarkably smaller than those of the control samples. This excellent electrocatalytic activity is attributed to the incorporation of Ce(OH)3 nanoparticles on the surface of the Fe-Ni3S2 nanosheet, which increases the electrochemical activity and enlarges the active surface area of the catalyst. In comparison to previous nonprecious OER electrocatalysts, the prepared Ce(OH)3@Fe-Ni3S2 exhibits greater electrocatalytic activity and longer durability, allowing for the selection of new electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Muhammad Afsar Khan
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Chongzhi Li
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Shaowei Mei
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Aadil Nabi Chishti
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Min Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| |
Collapse
|
49
|
Chen K, Qian J, Xu W, Li TT. Hierarchical Superhydrophilic/Superaerophobic Ni(OH) 2@NiFe-PBA Nanoarray Supported on Nickel Foam for Boosting the Oxygen Evolution Reaction. Inorg Chem 2024; 63:642-652. [PMID: 38131603 DOI: 10.1021/acs.inorgchem.3c03542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The design of hierarchical electrocatalysts with plentiful active sites and high mass transfer efficiency is critical to efficiently and sustainably carrying out the oxygen evolution reaction (OER), which presents a challenging and pressing need. In this study, a hierarchical Ni(OH)2@NiFe-Prussian blue analogue nanoarray grown on nickel foam (NF) [labeled as Ni(OH)2@NiFe-PBA/NF] was synthesized by combining a mild electrodeposition method with an ion-exchange strategy. The resultant Ni(OH)2@NiFe-PBA/NF displays superhydrophilic/superaerophobic properties that optimize the contact with the electrolyte, improve mass transfer efficiency, and expedite detachment of O2 bubbles during the electrocatalytic OER. Specifically, Ni(OH)2@NiFe-PBA/NF exhibits exceptional capability in the OER with low overpotentials of 224 and 240 mV at the current densities of 50 and 100 mA cm-2, respectively, accompanied by a low Tafel slope of 37.1 mV dec-1 and outstanding stability over 100 h at a fixed potential of 1.78 V vs reversible hydrogen electrode (RHE). Furthermore, Ni(OH)2@NiFe-PBA/NF demonstrates remarkable OER performance even in alkaline simulated seawater. During the OER process, active metal-OOH intermediates were formed by the partial self-reconstruction of NiFe-PBA in the heterostructure, as revealed by in situ Raman spectroscopy.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
50
|
Maazallahi M, Nandy S, Aleshkevych P, Chae KH, Najafpour MM. Lead in the Presence of Iron under Alkaline Conditions for the Oxygen-Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16881-16891. [PMID: 37970729 DOI: 10.1021/acs.langmuir.3c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The oxygen-evolution reaction (OER) is a bottleneck in water splitting, which is a critical process for energy storage. In this study, the electrochemistry of Pb in the absence or presence of K2FeO4, as a soluble Fe source, is examined at pH ≈ 13. Our findings indicate that Pb exhibits limited catalytic activity for the OER under alkaline conditions. However, upon the addition of K2FeO4 to the electrolyte, a significant enhancement in the OER activity is observed in the presence of Pb. A notable observation in this study is the formation of stable Fe(IV) species following the OER during chronoamperometry experiments conducted in an alkaline solution. In addition to in situ Raman and visible spectroscopies, the operated electrodes have been characterized by high-resolution transmission electron microscopy, scanning electron microscopy, electron spin resonance spectroscopy, X-ray diffraction, electrochemical methods, electron paramagnetic resonance, and X-ray absorption spectroscopy. Through our experimental investigations, it is consistently observed that the presence of Fe ions on the surface of Pb/PbOx serves as an effective catalyst for the OER. However, it is important to note that this heightened OER activity is only temporary due to the low adhesion of Fe ions on the surface of Pb/PbOx.
Collapse
Affiliation(s)
- Meysam Maazallahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Subhajit Nandy
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences, Warsaw 02-668, Poland
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|