1
|
Boruah A, Afzal NU, Saha S, Mazumdar A, Ozah D, Bora T, Prabhakaran P, Manna P, Roy A. Enhanced glucose regulation potential of C-peptide mimics. Org Biomol Chem 2025; 23:5163-5173. [PMID: 40309967 DOI: 10.1039/d5ob00318k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The connecting peptide (C-peptide), once relegated as an epiphenomenon in insulin biosynthesis, has now been recognized for its capacity to instigate molecular effects along with important physiological functions. These findings suggest that C-peptide is a hormonally active molecule responsible for controlling a number of diabetes-related complications, in addition to proinsulin processing. Notably, it demonstrates cellular responsiveness and acts as a robust biomarker for beta cell functions, with a half-life longer than that of insulin. Herein, we investigated the effect of some synthetic C-peptide mimics on glucose homeostasis, specifically focusing on glucose uptake, GLUT4 translocation and associated membrane trafficking processes. The glucose utilization potential of some of the C-peptide mimics in L6 muscle myotubes was significantly better than that of the human C-peptide. One of the synthesized C-peptide mimics, CP8, showed glucose metabolism akin to insulin, including potential for Akt phosphorylation and IRβ autophosphorylation. Also, it showed the ability to mitigate intramolecular reactive oxygen species production. The results obtained here highlight the potential of C-peptide mimics on glucose metabolism, as well as interaction with Akt and IRβ, positioning them as promising candidates for future diabetes research.
Collapse
Affiliation(s)
- Alpana Boruah
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nazim Uddin Afzal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Center for Infectious Diseases, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Sayari Saha
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Anusmrita Mazumdar
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Dibyajyoti Ozah
- Clinical Center, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India
| | - Thaneswar Bora
- Clinical Center, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Center for Infectious Diseases, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Arup Roy
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Hashimoto K, Ito C, Takahashi E, Nishio R, Tsurigami R, Kato N, Miyazaki S, Miyazaki JI, Shimizu M, Kato M, Tan HTW, Murata T. Involvement of glucagon-like peptide-1 receptor in fisetin tetramethyl ether-enhanced insulin secretion in MIN6 cells. Eur J Pharmacol 2025; 1000:177722. [PMID: 40348320 DOI: 10.1016/j.ejphar.2025.177722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Pongamia pinnata (L.) Pierre, long used as a traditional medicine to treat diabetes and metabolic disorders, shows an insulinotropic effect. OBJECTIVE This study aimed to determine the insulinotropic property and underlying mechanism of a constituent of Pongamia pinnata, fisetin tetramethyl ether (FTM). METHODS The insulinotropic property of FTM was investigated using pancreatic beta cell line MIN6, while secreted insulin and residual insulin were detected by an insulin assay. Furthermore, the underlying mechanism was examined with use of an ATP assay, Ca2+ flux assay, and immunoblot analysis, as well as the insulin assay with pharmacological inhibitors. RESULTS FTM increased insulin secretion in a dose-dependent manner. In addition, 10 mM or more of glucose increased insulin secretion regardless of the presence of FTM. Nimodipine, a voltage-dependent Ca channel antagonist, completely eliminated insulin secretion induced by glucose and FTM. However, FTM treatment had minimal effects on ATP and intracellular Ca2+ levels, suggesting its enhancement of glucose-stimulated insulin secretion (GSIS) independent of glucose metabolism. Additionally, a newly developed glucagon-like peptide-1 (GLP-1) receptor antagonist, VU0650991, reduced FTM-enhanced GSIS. Moreover, FTM-enhanced GSIS was reduced by barbadin, an inhibitor of the β-arrestins-mediated signaling pathway, as well as GSK215, a degrader of focal adhesion kinase (FAK), though not by HJC0350, an inhibitor of exchange protein activated by cAMP 2 involved in insulin granule exocytosis. CONCLUSION The GLP-1 receptor-β-arrestins/FAK pathway is involved in FTM-enhanced GSIS. This study showed that FTM, a constituent of Pongamia pinnata, is an insulinotropic phytochemical possessing biased GLP-1 receptor agonistic potential.
Collapse
Affiliation(s)
- Kazunori Hashimoto
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan; Center for Preventive Food Science, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan
| | - Chihiro Ito
- Center for Preventive Food Science, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan; Laboratory of Natural Products Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan.
| | - Eka Takahashi
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan
| | - Rico Nishio
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan
| | - Ryoga Tsurigami
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tenpaku Ward, Nagoya, Aichi, 468-8502, Japan
| | - Naoto Kato
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan
| | - Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Miyazaki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Motoyuki Shimizu
- Center for Preventive Food Science, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan; Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tenpaku Ward, Nagoya, Aichi, 468-8502, Japan
| | - Masashi Kato
- Center for Preventive Food Science, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan; Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tenpaku Ward, Nagoya, Aichi, 468-8502, Japan
| | - Hugh T-W Tan
- Department of Botany, National University of Singapore, 10 Kent Ridge Crescent, 0511, Singapore
| | - Tomiyasu Murata
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan; Center for Preventive Food Science, Meijo University, 150 Yagotoyama, Tempaku Ward, Nagoya, Aichi, 468-8503, Japan.
| |
Collapse
|
3
|
Cary BP, Hager MV, Mariam Z, Morris RK, Belousoff MJ, Deganutti G, Sexton PM, Wootten D, Gellman SH. Prolonged signaling of backbone-modified glucagon-like peptide- 1 analogues with diverse receptor trafficking. Proc Natl Acad Sci U S A 2025; 122:e2407574122. [PMID: 40168114 PMCID: PMC12002026 DOI: 10.1073/pnas.2407574122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
Signal duration and subcellular location are emerging as important facets of G protein-coupled receptor (GPCR) function. The glucagon-like peptide-1 receptor (GLP-1R), a clinically relevant class B1 GPCR, stimulates production of the second messenger cyclic adenosine monophosphate (cAMP) upon activation by the native hormone, GLP-1. cAMP production continues after the hormone-receptor complex has been internalized via endocytosis. Here, we report GLP-1 analogues that induce prolonged signaling relative to GLP-1. A single β-amino acid substitution at position 18, with the residue derived from (S,S)-trans-2-aminocyclopentanecarboxylic acid (ACPC), enhances signaling duration with retention of receptor endocytosis. Pairing ACPC at position 18 with a second substitution, α-aminoisobutyric acid (Aib) at position 16, abrogates endocytosis, but prolonged signaling is maintained. Prolonged signaling is sensitive to the structure of the β residue at position 18. Cryoelectron microscopy structures of two GLP-1 analogues bound to the GLP-1R:Gs complex suggest substantial alterations to bound peptide structure and dynamics compared to the GLP-1:GLP-1R:Gs complex. These structural findings strengthen an emerging view that agonist dynamics in the receptor-bound state influence signaling profiles. Our results advance understanding of the structural underpinnings of receptor activation and introduce tools for exploring the impact of spatiotemporal signaling profiles following GLP-1R activation.
Collapse
Affiliation(s)
- Brian P. Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Marlies V. Hager
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Rylie K. Morris
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Giuseppe Deganutti
- Centre for Health and Life Sciences, Coventry University, CoventryCV1 5FB, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
4
|
Dinsmore TC, Liu J, Miao J, Ünsal Ö, Sürmeli D, Beinborn M, Lin YS, Kumar K. Potent and Protease Resistant Azapeptide Agonists of the GLP-1 and GIP Receptors. Angew Chem Int Ed Engl 2024; 63:e202410237. [PMID: 39151024 DOI: 10.1002/anie.202410237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/18/2024]
Abstract
The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important physiological roles including glucose homeostasis and appetite suppression. Stabilized agonists of the GLP-1 receptor (GLP-1R) and dual agonists of GLP-1R and GIP receptor (GIPR) for the management of type 2 diabetes and obesity have generated widespread enthusiasm and have become blockbuster drugs. These therapeutics are refractory to the action of dipeptidyl peptidase-4 (DPP4), that catalyzes rapid removal of the two N-terminal residues of the native peptides, in turn severely diminishing their activity profiles. Here we report that a single atom change from carbon to nitrogen in the backbone of the entire peptide makes them refractory to DPP4 action while still retaining full potency and efficacy at their respective receptors. This was accomplished by use of aza-amino acids, that are bioisosteric replacements for α-amino acids that perturb the structural backbone and local side chain conformations. Molecular dynamics simulations reveal that aza-amino acid can populate the same conformational space that GLP-1 adopts when bound to the GLP-1R. The insertion of an aza-amino acid at the second position from the N-terminus in semaglutide and in a dual agonist of GLP-1R and GIPR further demonstrates its capability as a viable alternative to current DPP4 resistance strategies while offering additional structural variation that may influence downstream signaling.
Collapse
Affiliation(s)
- Tristan C Dinsmore
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
| | - Jamie Liu
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
| | - Özge Ünsal
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
| | - Damla Sürmeli
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
| | - Martin Beinborn
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
- Molecular Pharmacology Research Center, Tufts Medical Center, 02111, Boston, Massachusetts, USA
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
| | - Krishna Kumar
- Department of Chemistry, Tufts University, 02155, Medford, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, 02155, Medford, Massachusetts, USA
- Cancer Center, Tufts Medical Center, 02111, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zhao X, Zeng Q, Yu S, Zhu X, Bin Hu, Deng L, Zhang Y, Liu Y. GLP-1R mediates idebenone-reduced blood glucose in mice. Biomed Pharmacother 2024; 178:117202. [PMID: 39053424 DOI: 10.1016/j.biopha.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
GLP-1 receptor agonists (GLP-1RAs) are an innovative class of drugs with significant therapeutic value for type 2 diabetes mellitus (T2DM). The GLP-1RAs currently available on the market are biologic macromolecular peptide agents that are expensive to treat and not easy to take orally. Therefore, the development of small molecule GLP-1RAs is becoming one of the most sought-after research targets for hypoglycemic drugs. In this study, we sought to find a potential oral small molecule GLP-1RA and to evaluate its effect on insulin secretion in rat pancreatic β cells and on blood glucose in mice. We downloaded the mRNA expression profiles of GSE102194 and GSE37936 from the Gene Expression Omnibus database. Subsequently, the small molecule compound idebenone was screened through the connectivity map database. The results of molecular docking, biolayer interferometry, and cellular thermal shift assay indicated that idebenone could bind potently with GLP-1R. Furthermore, ibebenone elevated intracellular cAMP levels. The radioimmunoassay data showed that idebenone enhanced glucose-stimulated insulin secretion via agonism of GLP-1R. Moreover, the results of oral glucose tolerance tests in C57BL/6, Glp-1r-/-, and hGlp-1r mice demonstrated that the glucose-lowering effects of idebenone were mediated by GLP-1R and that there were no species differences in the agonistic effect of idebenone on GLP-1R. In summary, idebenone reduces blood glucose in mice by promoting insulin release through agonism of GLP-1R, suggesting that idebenone is probably a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qingxuan Zeng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Siting Yu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Hu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
6
|
Bauri R, Bele S, Edelli J, Reddy NC, Kurukuti S, Devasia T, Ibrahim A, Rai V, Mitra P. Reduced incretin receptor trafficking upon activation enhances glycemic control and reverses obesity in diet-induced obese mice. Am J Physiol Cell Physiol 2024; 327:C74-C96. [PMID: 38738303 DOI: 10.1152/ajpcell.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic β cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.
Collapse
Affiliation(s)
- Rathin Bauri
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jhansi Edelli
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Ahamed Ibrahim
- Division of Lipid Chemistry, National Institute of Nutrition Hyderabad, Hyderabad, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Institute of Transformative Molecular medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
7
|
Lei S, Meng Q, Liu Y, Liu Q, Dai A, Cai X, Wang MW, Zhou Q, Zhou H, Yang D. Distinct roles of the extracellular surface residues of glucagon-like peptide-1 receptor in β-arrestin 1/2 signaling. Eur J Pharmacol 2024; 968:176419. [PMID: 38360293 DOI: 10.1016/j.ejphar.2024.176419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with β-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in β-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated β-arrestin 1/2 recruitment for diverse ligands, and β-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased β-arrestin 1 recruitment but increased β-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected β-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in β-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive β-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in β-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in β-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on β-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without β-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and β-arrestins. Our study offers valuable information about ligand induced β-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.
Collapse
Affiliation(s)
- Saifei Lei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Meng
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanyun Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan; School of Pharmacy, Hainan Medical University, Haikou, 570228, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hu Zhou
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| |
Collapse
|
8
|
Bailey CJ, Flatt PR. Duodenal enteroendocrine cells and GIP as treatment targets for obesity and type 2 diabetes. Peptides 2024; 174:171168. [PMID: 38320643 DOI: 10.1016/j.peptides.2024.171168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.
Collapse
Affiliation(s)
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA Northern Ireland, UK
| |
Collapse
|
9
|
McNeill SM, Lu J, Marion C Carino C, Inoue A, Zhao P, Sexton PM, Wootten D. The role of G protein-coupled receptor kinases in GLP-1R β-arrestin recruitment and internalisation. Biochem Pharmacol 2024; 222:116119. [PMID: 38461904 DOI: 10.1016/j.bcp.2024.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) is a validated clinical target for the treatment of type 2 diabetes and obesity. Unlike most G protein-coupled receptors (GPCRs), the GLP-1R undergoes an atypical mode of internalisation that does not require β-arrestins. While differences in GLP-1R trafficking and β-arrestin recruitment have been observed between clinically used GLP-1R agonists, the role of G protein-coupled receptor kinases (GRKs) in affecting these pathways has not been comprehensively assessed. In this study, we quantified the contribution of GRKs to agonist-mediated GLP-1R internalisation and β-arrestin recruitment profiles using cells where endogenous β-arrestins, or non-visual GRKs were knocked out using CRISPR/Cas9 genome editing. Our results confirm the previously established atypical β-arrestin-independent mode of GLP-1R internalisation and revealed that GLP-1R internalisation is dependent on the expression of GRKs. Interestingly, agonist-mediated GLP-1R β-arrestin 1 and β-arrestin 2 recruitment were differentially affected by endogenous GRK knockout with β-arrestin 1 recruitment more sensitive to GRK knockout than β-arrestin 2 recruitment. Moreover, individual overexpression of GRK2, GRK3, GRK5 or GRK6 in a newly generated GRK2/3/4/5/6 HEK293 cells, rescued agonist-mediated β-arrestin 1 recruitment and internalisation profiles to similar levels, suggesting that there is no specific GRK isoform that drives these pathways. This study advances mechanistic understanding of agonist-mediated GLP-1R internalisation and provides novel insights into how GRKs may fine-tune GLP-1R signalling.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Jessica Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tokohu University, Sendai, Miyagi 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tokohu University, Sendai, Miyagi 980-8578, Japan
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| |
Collapse
|
10
|
Brown KA, Morris R, Eckhardt SJ, Ge Y, Gellman SH. Phosphorylation Sites of the Gastric Inhibitory Polypeptide Receptor (GIPR) Revealed by Trapped-Ion-Mobility Spectrometry Coupled to Time-of-Flight Mass Spectrometry (TIMS-TOF MS). J Am Chem Soc 2023; 145:28030-28037. [PMID: 38091482 PMCID: PMC10842860 DOI: 10.1021/jacs.3c09078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The gastric inhibitory polypeptide receptor (GIPR), a G protein-coupled receptor (GPCR) that regulates glucose metabolism and insulin secretion, is a target for the development of therapeutic agents to address type 2 diabetes and obesity. Signal transduction processes mediated by GPCR activation typically result in receptor phosphorylation, but very little is known about GIPR phosphorylation. Mass spectrometry (MS) is a powerful tool for detecting phosphorylation and other post-translational modifications of proteins and for identifying modification sites. However, applying MS methods to GPCRs is challenging because the native expression levels are low and the hydrophobicity of these proteins complicates isolation and enrichment. Here we use a widely available technique, trapped-ion-mobility spectrometry coupled to time-of-flight mass spectrometry (TIMS-TOF MS), to characterize the phosphorylation status of the GIPR. We identified eight serine residues that are phosphorylated, one in an intracellular loop and the remainder in the C-terminal domain. Stimulation with the native agonist GIP enhanced phosphorylation at four of these sites. For comparison, we evaluated tirzepatide (TZP), a dual agonist of the glucagon-like peptide-1 (GLP-1) receptor and the GIPR that has recently been approved for the treatment of type 2 diabetes. Stimulation with TZP enhanced phosphorylation at the same four sites that were enhanced with GIP; however, TZP also enhanced phosphorylation at a fifth site that is unique to this synthetic agonist. This work establishes an important and accessible tool for the characterization of signal transduction via the GIPR and reveals an unanticipated functional difference between GIP and TZP.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Rylie Morris
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Samantha J. Eckhardt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
11
|
Brown KA, Gellman SH. Effects of Replacing a Central Glycine Residue in GLP-1 on Receptor Affinity and Signaling Profile. Chembiochem 2023; 24:e202300504. [PMID: 37624685 PMCID: PMC10666649 DOI: 10.1002/cbic.202300504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Agonists of the glucagon-like peptide-1 receptor (GLP-1R) are used to treat diabetes and obesity. Cryo-EM structures indicate that GLP-1 is completely α-helical when bound to the GLP-1R. The mature form of this hormone, GLP-1(7-36), contains a glycine residue near the center (Gly22). Since glycine has the second-lowest α-helix propensity among the proteinogenic α-amino acid residues, and Gly22 does not appear to make direct contact with the receptor, we were motivated to explore the impact on agonist activity of altering the α-helix propensity at this position. We examined GLP-1 analogues in which Gly22 was replaced with L-Ala, D-Ala, or β-amino acid residues with varying helix propensities. The results suggest that the receptor is reasonably tolerant of variations in helix propensity, and that the functional receptor-agonist complex may comprise a conformational spectrum rather than a single fixed structure.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Gibadullin R, Kim TW, Tran LML, Gellman SH. Hormone Analogues with Unique Signaling Profiles from Replacement of α-Residue Triads with β/γ Diads. J Am Chem Soc 2023; 145:20539-20550. [PMID: 37697685 PMCID: PMC10588032 DOI: 10.1021/jacs.3c06703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a β-amino acid residue and a γ-amino acid residue. The β/γ diad retains the number of backbone atoms in the ααα triad. Because the β and γ residue each bear a single side chain, we implemented ααα→βγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/β/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→βγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tae Wook Kim
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Chen K, Zhang C, Lin S, Yan X, Cai H, Yi C, Ma L, Chu X, Liu Y, Zhu Y, Han S, Zhao Q, Wu B. Tail engagement of arrestin at the glucagon receptor. Nature 2023; 620:904-910. [PMID: 37558880 PMCID: PMC10447241 DOI: 10.1038/s41586-023-06420-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Arrestins have pivotal roles in regulating G protein-coupled receptor (GPCR) signalling by desensitizing G protein activation and mediating receptor internalization1,2. It has been proposed that the arrestin binds to the receptor in two different conformations, 'tail' and 'core', which were suggested to govern distinct processes of receptor signalling and trafficking3,4. However, little structural information is available for the tail engagement of the arrestins. Here we report two structures of the glucagon receptor (GCGR) bound to β-arrestin 1 (βarr1) in glucagon-bound and ligand-free states. These structures reveal a receptor tail-engaged binding mode of βarr1 with many unique features, to our knowledge, not previously observed. Helix VIII, instead of the receptor core, has a major role in accommodating βarr1 by forming extensive interactions with the central crest of βarr1. The tail-binding pose is further defined by a close proximity between the βarr1 C-edge and the receptor helical bundle, and stabilized by a phosphoinositide derivative that bridges βarr1 with helices I and VIII of GCGR. Lacking any contact with the arrestin, the receptor core is in an inactive state and loosely binds to glucagon. Further functional studies suggest that the tail conformation of GCGR-βarr governs βarr recruitment at the plasma membrane and endocytosis of GCGR, and provides a molecular basis for the receptor forming a super-complex simultaneously with G protein and βarr to promote sustained signalling within endosomes. These findings extend our knowledge about the arrestin-mediated modulation of GPCR functionalities.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhui Zhang
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuling Lin
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Yan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Cai
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Cuiying Yi
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Limin Ma
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Chu
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuchen Liu
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya Zhu
- Lingang Laboratory, Shanghai, China
| | - Shuo Han
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Qiang Zhao
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| | - Beili Wu
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
14
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
15
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
16
|
α/Sulfono-γ-AA peptide hybrids agonist of GLP-1R with prolonged action both in vitro and in vivo. Acta Pharm Sin B 2022; 13:1648-1659. [PMID: 37139407 PMCID: PMC10149899 DOI: 10.1016/j.apsb.2022.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/01/2022] Open
Abstract
Peptides are increasingly important resources for biological and therapeutic development, however, their intrinsic susceptibility to proteolytic degradation represents a big hurdle. As a natural agonist for GLP-1R, glucagon-like peptide 1 (GLP-1) is of significant clinical interest for the treatment of type-2 diabetes mellitus, but its in vivo instability and short half-life have largely prevented its therapeutic application. Here, we describe the rational design of a series of α/sulfono-γ-AA peptide hybrid analogues of GLP-1 as the GLP-1R agonists. Certain GLP-1 hybrid analogues exhibited enhanced stability (t 1/2 > 14 days) compared to t 1/2 (<1 day) of GLP-1 in the blood plasma and in vivo. These newly developed peptide hybrids may be viable alternative of semaglutide for type-2 diabetes treatment. Additionally, our findings suggest that sulfono-γ-AA residues could be adopted to substitute canonical amino acids residues to improve the pharmacological activity of peptide-based drugs.
Collapse
|
17
|
Yang Z, Cheng J, Shang P, Sun JP, Yu X. Emerging roles of olfactory receptors in glucose metabolism. Trends Cell Biol 2022; 33:463-476. [PMID: 36229334 DOI: 10.1016/j.tcb.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Olfactory receptors (ORs) are widely expressed in extra-nasal tissues, where they participate in the regulation of divergent physiological processes. An increasing body of evidence over the past decade has revealed important regulatory roles for extra-nasal ORs in glucose metabolism. Recently, nonodorant endogenous ligands of ORs with metabolic significance have been identified, implying the therapeutic potential of ORs in the treatment of metabolic diseases, such as diabetes and obesity. In this review, we summarize current understanding of the expression patterns and functions of ORs in key tissues involved in glucose metabolism modulation, describe odorant and endogenous OR ligands, explain the biased signaling downstream of ORs, and outline OR therapeutic potential.
Collapse
|
18
|
El Eid L, Reynolds CA, Tomas A, Ben Jones. Biased Agonism and Polymorphic Variation at the GLP-1 Receptor: Implications for the Development of Personalised Therapeutics. Pharmacol Res 2022; 184:106411. [PMID: 36007775 DOI: 10.1016/j.phrs.2022.106411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a well-studied incretin hormone receptor and target of several therapeutic drugs for type 2 diabetes (T2D), obesity and, more recently, cardiovascular disease. Some signalling pathways downstream of GLP-1R may be responsible for drug adverse effects such as nausea, while others mediate therapeutic outcomes of incretin-based T2D therapeutics. Understanding the interplay between different factors that alter signalling, trafficking, and receptor activity, including biased agonism, single nucleotide polymorphisms and structural modifications is key to develop the next-generation of personalised GLP-1R agonists. However, these interactions remain poorly described, especially for novel therapeutics such as dual and tri-agonists that target more than one incretin receptor. Comparison of GLP-1R structures in complex with G proteins and different peptide and non-peptide agonists has revealed novel insights into important agonist-residue interactions and networks crucial for receptor activation, recruitment of G proteins and engagement of specific signalling pathways. Here, we review the latest knowledge on GLP-1R structure and activation, providing structural evidence for biased agonism and delineating important networks associated with this phenomenon. We survey current biased agonists and multi-agonists at different stages of development, highlighting possible challenges in their translational potential. Lastly, we discuss findings related to non-synonymous genomic variants of GLP1R and the functional importance of specific residues involved in GLP-1R function. We propose that studies of GLP-1R polymorphisms, and specifically their effect on receptor dynamics and pharmacology in response to biased agonists, could have a significant impact in delineating precision medicine approaches and development of novel therapeutics.
Collapse
Affiliation(s)
- Liliane El Eid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Sang P, Shi Y, Wei L, Cai J. Helical sulfono-γ-AApeptides with predictable functions in protein recognition. RSC Chem Biol 2022; 3:805-814. [PMID: 35866163 PMCID: PMC9257604 DOI: 10.1039/d2cb00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Sulfono-γ-AApeptides are a subset of possible sequence-specific foldamers that might be considered for the design of biomimetic drug molecular structures. Although they have been studied for a relatively short period of time, a number of structures and functions have been designed or discovered within this class of unnatural peptides. Examples of utilizing these sulfono-γ-AApeptides have demonstrated the potential that sulfono-γ-AApeptides can offer, however, to date, their application in biomedical sciences yet remains unexplored. This review mainly summarizes the helical folding conformations of sulfono-γ-AApeptides and their biological application as helical mimetics in medicinally relevant protein-protein interactions (PPIs) and assesses their potential for the mimicry of other α-helices for protein recognition in the future.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Yan Shi
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Lulu Wei
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave. Tampa FL 33620 USA
| |
Collapse
|
20
|
Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nat Chem Biol 2022; 18:256-263. [PMID: 34937906 PMCID: PMC8950777 DOI: 10.1038/s41589-021-00945-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.
Collapse
|
21
|
Hao Y, Wei M, Zhang N, Zhang X. Novel glucagon-like peptide-1 analogue exhibits potency-driven G-protein biased agonism with promising effects on diabetes and diabetic dry eye syndrome. Bioengineered 2022; 13:5467-5479. [PMID: 35184645 PMCID: PMC8975272 DOI: 10.1080/21655979.2022.2031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are considered as effective treatments for type 2 diabetes. Here, we describe the in vitro characteristics and in vivo anti-diabetic efficacies of a novel GLP-1RA, termed SM102. The in vitro functions of SM102, including GLP-1R kinetic binding parameter, cAMP activation, endocytosis and recycling, were all evaluated using the INS-1 832/13 cells expressing human GLP-1R. Chronic efficacies study was performed to evaluate the effects of SM102 on the glycemic benefits, body weight loss and other diabetic complications in db/db mice. As a result, SM102 exhibited enhanced binding affinity and potency-driven bias in favor of cAMP over GLP-1R endocytosis and β-Arrestin 2 recruitment, as well as comparable insulin secretory response compared with Semaglutide. In addition, chronic treatment of SM102 led to more promising therapeutical effects on hyperglycemia, weight control and insulin resistance as well as dry eye syndrome (DES) than Semaglutide. Furthermore, SM102 could ameliorate diabetic DES via improving antioxidant properties, inflammatory factors and inhibiting MAPKs pathway in diabetic mice. In conclusion, SM102 is a G protein-biased agonist serving as a promising new GLP-1RA for treating diabetes and diabetic complications.
Collapse
Affiliation(s)
- Yongna Hao
- Corneal Department, Handan City Eye Hospital, Handan, PR China
| | - Min Wei
- Corneal Department, Handan City Eye Hospital, Handan, PR China
| | - Ning Zhang
- Corneal Department, Handan City Eye Hospital, Handan, PR China
| | - Xinying Zhang
- Infection Control Office, Affiliated Hospital of Hebei University, Baoding, PR China
| |
Collapse
|
22
|
Jones B. The therapeutic potential of GLP-1 receptor biased agonism. Br J Pharmacol 2022; 179:492-510. [PMID: 33880754 PMCID: PMC8820210 DOI: 10.1111/bph.15497] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments for type 2 diabetes as they stimulate insulin release and promote weight loss through appetite suppression. Their main side effect is nausea. All approved GLP-1 agonists are full agonists across multiple signalling pathways. However, selective engagement with specific intracellular effectors, or biased agonism, has been touted as a means to improve GLP-1 agonists therapeutic efficacy. In this review, I critically examine how GLP-1 receptor-mediated intracellular signalling is linked to physiological responses and discuss the implications of recent studies investigating the metabolic effects of biased GLP-1 agonists. Overall, there is little conclusive evidence that beneficial and adverse effects of GLP-1 agonists are attributable to distinct, nonoverlapping signalling pathways. Instead, G protein-biased GLP-1 agonists appear to achieve enhanced anti-hyperglycaemic efficacy by avoiding GLP-1 receptor desensitisation and downregulation, partly via reduced β-arrestin recruitment. This effect seemingly applies more to insulin release than to appetite regulation and nausea, possible reasons for which are discussed. At present, most evidence derives from cellular and animal studies, and more human data are required to determine whether this approach represents a genuine therapeutic advance. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
23
|
Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nat Commun 2022; 13:92. [PMID: 35013280 PMCID: PMC8748714 DOI: 10.1038/s41467-021-27760-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists. The glucagon-like peptide-1 receptor (GLP-1R) can be targeted in the treatment of diabetes, obesity and other metabolic disorders. Here, the authors assess the molecular mechanisms of peptide agonists binding to GLP-1R and the responses elucidated by these ligands, including distinct kinetics of G protein activation.
Collapse
|
24
|
Sang P, Zeng H, Lee C, Shi Y, Wang M, Pan C, Wei L, Huang C, Wu M, Shen W, Li X, Cai J. α/Sulfono-γ-AApeptide Hybrid Analogues of Glucagon with Enhanced Stability and Prolonged In Vivo Activity. J Med Chem 2021; 64:13893-13901. [PMID: 34506138 PMCID: PMC8903076 DOI: 10.1021/acs.jmedchem.1c01289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Peptide drugs have the advantages of target specificity and good drugability and have become one of the most increasingly important hotspots in new drug research in biomedical sciences. However, peptide drugs generally have low bioavailability and metabolic stability, and therefore, the modification of existing peptide drugs for the purpose of improving stability and retaining activity is of viable importance. It is known that glucagon is an effective therapy for treating severe hypoglycemia, but its short half-life prevents its wide therapeutic use. Herein, we report that combined unnatural residues and long fatty acid conjugation afford potent α/sulfono-γ-AApeptide hybrid analogues of Glucagon with enhanced stability and prolonged in vivo activity. This strategy could be adopted to develop stabilized analogues of other short-acting bioactive peptides.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Hongxiang Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Candy Lee
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Yan Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Cong Pan
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chenglong Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Weijun Shen
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
25
|
Wu Q, Chen S, Zhu H, Xu N, Yang Q, Yao W, Gao X. Biased agonists with less glucagon-like peptide-1 receptor-mediated endocytosis prolong hypoglycaemic effects. Eur J Pharmacol 2021; 907:174203. [PMID: 34048741 DOI: 10.1016/j.ejphar.2021.174203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Receptor endocytic trafficking entails targeting receptors and ligands to endocytic sites, followed by internalization and sorting to recycling or degradative compartments. Thus, membrane receptor-mediated signalling pathways not only contribute to the efficacy of the drugs but also play a crucial role in the metabolic elimination of peptide drugs. Glucagon-like peptide-1 (GLP-1) receptor is the crucial target for type 2 diabetes mellitus. We mainly focused on the characteristics, early evaluation of GLP-1 receptor endocytosis and effects of optimization for endocytosis on druggability. The GLP-1 receptor endocytosis characteristics of agonists were analysed by a multifunction microplate reader, flow cytometer and confocal microscope. The intracellular cyclic adenosine monophosphate (cAMP) activation of agonists was analysed based on a reporter gene assay, and intracellular β-arrestin recruitment detection was detected based on a Tango assay. We established quantitative evaluation methods of endocytosis based on fluorescently labelled agonist and receptor trafficking and used them to screen agonists with less endocytosis. Sprague-Dawley rats were used for pharmacokinetic analyses, and the hypoglycaemic activity was evaluated by intraperitoneal glucose tolerance tests (IPGTT). Our results showed that GLP-1 receptor-mediated endocytosis, as a manner of elimination, was clathrin-dependent. More importantly, we found that agonists biased towards the G protein pathway were less endocytosed by GLP-1 receptor. We screened an analogue of Exendin-4 M4, which was biased toward the G protein pathway with less endocytosis by the GLP-1 receptor. M4, which shows prolonged hypoglycaemic activities and a long half-life, can be used as a lead compound for type 2 diabetes mellitus treatment.
Collapse
Affiliation(s)
- Qiang Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Hanchen Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Na Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qianhua Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
26
|
Suchankova A, Harris M, Ladds G. Measuring the rapid kinetics of receptor-ligand interactions in live cells using NanoBRET. Methods Cell Biol 2021; 166:1-14. [PMID: 34752328 DOI: 10.1016/bs.mcb.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The importance of receptor-ligand binding kinetics has often been overlooked during drug development, however, over the past decade it has become increasingly clear that a better understanding of the kinetic parameters is crucial for fully evaluating pharmacological effects of a drug. One technique enabling us to measure the real-time kinetics of receptor-ligand interactions in live cells is NanoBRET, which is a bioluminescence resonance energy transfer (BRET)-based assay that uses Nano luciferase. The assay described here allows the measurement of kinetic parameters of a fluorescent ligand and an unlabeled ligand binding to the same place at the receptor, as well as monitoring the effects of another compound like an allosteric modulator on the ligand binding.
Collapse
Affiliation(s)
- Anna Suchankova
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
27
|
Gibadullin R, Randall CJ, Sidney J, Sette A, Gellman SH. Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. J Am Chem Soc 2021; 143:6470-6481. [PMID: 33881854 DOI: 10.1021/jacs.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous β-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-β backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/β-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/β-peptides could be a source of potent and proteolytically stable variants of native antigens.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caleb J Randall
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States.,Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Sicinski K, Montanari V, Raman VS, Doyle JR, Harwood BN, Song YC, Fagan MP, Rios M, Haines DR, Kopin AS, Beinborn M, Kumar K. A Non-Perturbative Molecular Grafting Strategy for Stable and Potent Therapeutic Peptide Ligands. ACS CENTRAL SCIENCE 2021; 7:454-466. [PMID: 33791428 PMCID: PMC8006168 DOI: 10.1021/acscentsci.0c01237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 06/12/2023]
Abstract
The gut-derived incretin hormone, glucagon-like peptide-1 (GLP1), plays an important physiological role in attenuating post-prandial blood glucose excursions in part by amplifying pancreatic insulin secretion. Native GLP1 is rapidly degraded by the serine protease, dipeptidyl peptidase-4 (DPP4); however, enzyme-resistant analogues of this 30-amino-acid peptide provide an effective therapy for type 2 diabetes (T2D) and can curb obesity via complementary functions in the brain. In addition to its medical relevance, the incretin system provides a fertile arena for exploring how to better separate agonist function at cognate receptors versus susceptibility of peptides to DPP4-induced degradation. We have discovered that novel chemical decorations can make GLP1 and its analogues completely DPP4 resistant while fully preserving GLP1 receptor activity. This strategy is also applicable to other therapeutic ligands, namely, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-2 (GLP2), targeting the secretin family of receptors. The versatility of the approach offers hundreds of active compounds based on any template that target these receptors. These observations should allow for rapid optimization of pharmacological properties and because the appendages are in a position crucial to receptor stimulation, they proffer the possibility of conferring "biased" signaling and in turn minimizing side effects.
Collapse
Affiliation(s)
- Kathleen
M. Sicinski
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkata S. Raman
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jamie R. Doyle
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Benjamin N. Harwood
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Yi Chi Song
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Micaella P. Fagan
- Department
of Neuroscience, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
| | - Maribel Rios
- Department
of Neuroscience, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
| | - David R. Haines
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Alan S. Kopin
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular
Cardiology Research Institute, Tufts Medical
Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
29
|
Jiang Y, Yan M, Wang C, Wang Q, Chen X, Zhang R, Wan L, Ji B, Dong B, Wang H, Chen J. The Effects of Apelin and Elabela Ligands on Apelin Receptor Distinct Signaling Profiles. Front Pharmacol 2021; 12:630548. [PMID: 33746758 PMCID: PMC7970304 DOI: 10.3389/fphar.2021.630548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Apelin and Elabela are endogenous peptide ligands for Apelin receptor (APJ), a widely expressed G protein-coupled receptor. They constitute a spatiotemporal dual ligand system to control APJ signal transduction and function. We investigated the effects of Apelin-13, pGlu1-apelin-13, Apelin-17, Apelin-36, Elabela-21 and Elabela-32 peptides on APJ signal transduction. Whether different ligands are biased to different APJ mediated signal transduction pathways was studied. We observed the different changes of G protein dependent and β-arrestin dependent signaling pathways after APJ was activated by six peptide ligands. We demonstrated that stimulation with APJ ligands resulted in dose-dependent increases in both G protein dependent [cyclic AMP (cAMP), Ca2+ mobilization, and the early phase extracellular related kinase (ERK) activation] and β-arrestin dependent [GRKs, β-arrestin 1, β-arrestin 2, and β2 subunit of the clathrin adaptor AP2] signaling pathways. However, the ligands exhibited distinct signaling profiles. Elabela-32 showed a >1000-fold bias to the β-statin-dependent signaling pathway. These data provide that Apelin-17 was biased toward β-arrestin dependent signaling. Eabela-21 and pGlu1-Apelin-13 exhibited very distinct activities on the G protein dependent pathway. The activity profiles of these ligands could be valuable for the development of drugs with high selectivity for specific APJ downstream signaling pathways.
Collapse
Affiliation(s)
- Yunlu Jiang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Shandong, China
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University, Shandong, China
| | - Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Lei Wan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huiyun Wang
- School of Pharmacy, Jining Medical University, Shandong, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
30
|
Mbianda J, Bakail M, André C, Moal G, Perrin ME, Pinna G, Guerois R, Becher F, Legrand P, Traoré S, Douat C, Guichard G, Ochsenbein F. Optimal anchoring of a foldamer inhibitor of ASF1 histone chaperone through backbone plasticity. SCIENCE ADVANCES 2021; 7:7/12/eabd9153. [PMID: 33741589 PMCID: PMC7978421 DOI: 10.1126/sciadv.abd9153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 05/08/2023]
Abstract
Sequence-specific oligomers with predictable folding patterns, i.e., foldamers, provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may notably contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a notable plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with nonpeptide oligourea segments is the resistance to proteolysis in human plasma, which was highly improved compared to the cognate α-helical peptide.
Collapse
Affiliation(s)
- Johanne Mbianda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - May Bakail
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christophe André
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gwenaëlle Moal
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie E Perrin
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Guillaume Pinna
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Raphaël Guerois
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Francois Becher
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, F91190 Gif-sur-Yvette, France
| | - Seydou Traoré
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Céline Douat
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France.
| | - Françoise Ochsenbein
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France.
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
31
|
Manchanda Y, Bitsi S, Kang Y, Jones B, Tomas A. Spatiotemporal control of GLP-1 receptor activity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.coemr.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Wu Y, Williams J, Calder EDD, Walport LJ. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chem Biol 2021; 2:151-165. [PMID: 34458778 PMCID: PMC8341444 DOI: 10.1039/d0cb00167h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Jack Williams
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| |
Collapse
|
33
|
Jones B, McGlone ER, Fang Z, Pickford P, Corrêa IR, Oishi A, Jockers R, Inoue A, Kumar S, Görlitz F, Dunsby C, French PMW, Rutter GA, Tan T, Tomas A, Bloom SR. Genetic and biased agonist-mediated reductions in β-arrestin recruitment prolong cAMP signaling at glucagon family receptors. J Biol Chem 2021; 296:100133. [PMID: 33268378 PMCID: PMC7948418 DOI: 10.1074/jbc.ra120.016334] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/20/2023] Open
Abstract
Receptors for the peptide hormones glucagon-like peptide-1 (GLP-1R), glucose-dependent insulinotropic polypeptide (GIPR), and glucagon (GCGR) are important regulators of insulin secretion and energy metabolism. GLP-1R agonists have been successfully deployed for the treatment of type 2 diabetes, but it has been suggested that their efficacy is limited by target receptor desensitization and downregulation due to recruitment of β-arrestins. Indeed, recently described GLP-1R agonists with reduced β-arrestin-2 recruitment have delivered promising results in preclinical and clinical studies. We therefore aimed to determine if the same phenomenon could apply to the closely related GIPR and GCGR. In HEK293 cells depleted of both β-arrestin isoforms the duration of G protein-dependent cAMP/PKA signaling was increased in response to the endogenous ligand for each receptor. Moreover, in wildtype cells, "biased" GLP-1, GCG, and GIP analogs with selective reductions in β-arrestin-2 recruitment led to reduced receptor endocytosis and increased insulin secretion over a prolonged stimulation period, although the latter effect was only seen at high agonist concentrations. Biased GCG analogs increased the duration of cAMP signaling, but this did not lead to increased glucose output from hepatocytes. Our study provides a rationale for the development of GLP-1R, GIPR, and GCGR agonists with reduced β-arrestin recruitment, but further work is needed to maximally exploit this strategy for therapeutic purposes.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| | - Emma Rose McGlone
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Phil Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | | | - Atsuro Oishi
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sunil Kumar
- Department of Physics, Imperial College London, London, United Kingdom
| | - Frederik Görlitz
- Department of Physics, Imperial College London, London, United Kingdom
| | - Chris Dunsby
- Department of Physics, Imperial College London, London, United Kingdom
| | - Paul M W French
- Department of Physics, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Systematic ‘foldamerization’ of peptide inhibiting p53-MDM2/X interactions by the incorporation of trans- or cis-2-aminocyclopentanecarboxylic acid residues. Eur J Med Chem 2020; 208:112814. [DOI: 10.1016/j.ejmech.2020.112814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
|
35
|
Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects. Future Med Chem 2020; 12:1865-1884. [PMID: 33040605 DOI: 10.4155/fmc-2019-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent decades, obesity has become a pandemic disease and appears to be an ultimate medical and social problem. Existing antiobesity drugs show low efficiency and a wide variety of side effects. In this review, we discuss possible mechanisms underlying brain-gut-adipose tissue axis, as well as molecular biochemical characteristics of various neurochemical regulators of body weight and appetite. Multiple brain regions are responsible for eating behavior, hedonic eating and food addiction. The existing pharmacological targets for treatment of obesity were reviewed as well.
Collapse
|
36
|
Zhang X, Belousoff MJ, Zhao P, Kooistra AJ, Truong TT, Ang SY, Underwood CR, Egebjerg T, Šenel P, Stewart GD, Liang YL, Glukhova A, Venugopal H, Christopoulos A, Furness SGB, Miller LJ, Reedtz-Runge S, Langmead CJ, Gloriam DE, Danev R, Sexton PM, Wootten D. Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Mol Cell 2020; 80:485-500.e7. [PMID: 33027691 DOI: 10.1016/j.molcel.2020.09.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.
Collapse
Affiliation(s)
- Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tin T Truong
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sheng Yu Ang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | | | - Petr Šenel
- Apigenex, Poděbradská 173/5, Prague 9 190 00, Czech Republic
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3168, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
37
|
Darbalaei S, Yuliantie E, Dai A, Chang R, Zhao P, Yang D, Wang MW, Sexton PM, Wootten D. Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochem Pharmacol 2020; 180:114150. [DOI: 10.1016/j.bcp.2020.114150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
|
38
|
Turalić A, Đeđibegović J, Hegedüs Z, Martinek TA. DPP-4 Cleaves α/β-Peptide Bonds: Substrate Specificity and Half-Lives. Chembiochem 2020; 21:2060-2066. [PMID: 32180303 DOI: 10.1002/cbic.202000050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Indexed: 11/07/2022]
Abstract
The incorporation of β-amino acids into a peptide sequence has gained particular attention as β- and α/β-peptides have shown remarkable proteolytic stability, even after a single homologation at the scissile bond. Several peptidases have been shown to cleave such bonds with high specificity but at a much slower rate compared to α-peptide bonds. In this study, a series of analogs of dipeptidyl peptidase-4 (DPP-4) substrate inhibitors were synthesized in order to investigate whether β-amino acid homologation at the scissile bond could be a valid approach to improving peptide stability towards DPP-4 degradation. DPP-4 cleaved the α/β-peptide bond after the N-terminal penultimate Pro with a broad specificity and retained full activity regardless of the β3 -amino acid side chain and peptide length. Significantly improved half-lives were observed for β3 Ile-containing peptides. Replacing the penultimate Pro with a conformationally constrained Pro mimetic led to proteolytic resistance. DPP-4 cleavage of α/β-peptide bonds with a broad promiscuity represents a new insight into the stability of peptide analogs containing β-amino acids as such analogs were thought to be stable towards enzymatic degradation.
Collapse
Affiliation(s)
- Amila Turalić
- Department of Pharmaceutical Analysis, University of Sarajevo, Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Đeđibegović
- Department of Pharmaceutical Analysis, University of Sarajevo, Faculty of Pharmacy, Zmaja od Bosne 8, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged, Faculty of Medicine, 8 Dóm tér, 6720, Szeged, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Faculty of Medicine, 8 Dóm tér, 6720, Szeged, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, Szeged, 6720, Hungary
| |
Collapse
|
39
|
Glotfelty EJ, Olson L, Karlsson TE, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson's disease. Expert Opin Investig Drugs 2020; 29:595-602. [PMID: 32412796 PMCID: PMC10477949 DOI: 10.1080/13543784.2020.1764534] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Accumulating evidence supports the evaluation of glucagon-like peptide-1 (GLP-1) receptor (R) agonists for the treatment of the underlying pathology causing Parkinson's Disease (PD). Not only are these effects evident in models of PD and other neurodegenerative disorders but recently in a randomized, double-blind, placebo-controlled clinical trial, a GLP-1R agonist has provided improved cognition motor functions in humans with moderate PD. AREAS COVERED In this mini-review, we describe the development of GLP-1R agonists and their potential therapeutic value in treating PD. Many GLP-1R agonists are FDA approved for the treatment of metabolic disorders, and hence can be rapidly repositioned for PD. Furthermore, we present preclinical data offering insights into the use of monomeric dual- and tri-agonist incretin-based mimetics for neurodegenerative disorders. These drugs combine active regions of GLP-1 with those of glucose-dependent insulinotropic peptide (GIP) and/or glucagon (Gcg). EXPERT OPINION GLP-1Ragonists offer a complementary and enhanced therapeutic value to other drugs used to treat PD. Moreover, the use of the dual- or tri-agonist GLP-1-based mimetics may provide combinatory effects that are even more powerful than GLP-1R agonism alone. We advocate for further investigations into the repurposing of GLP-1R agonists and the development of classes of multi-agonists for PD treatment.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
40
|
Sang P, Zhou Z, Shi Y, Lee C, Amso Z, Huang D, Odom T, Nguyen-Tran VT, Shen W, Cai J. The activity of sulfono-γ-AApeptide helical foldamers that mimic GLP-1. SCIENCE ADVANCES 2020; 6:eaaz4988. [PMID: 32440547 PMCID: PMC7228743 DOI: 10.1126/sciadv.aaz4988] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Existing long α-helix mimicking necessitates the retention of most natural amino acid residues to maintain their biological activity. Here, we report the exploration of helical sulfono-γ-AApeptides with entire unnatural backbones for their ability to structurally and functionally mimic glucagon-like peptide 1 (GLP-1). Our findings suggest that efficient construction of novel GLP-1 receptor (GLP-1R) agonists could be achieved with nanomolar potencies. In addition, the resulting sulfono-γ-AApeptides were also proved to display remarkable stability against enzymatic degradation compared to GLP-1, augmenting their biological potential. This alternative strategy of α-helix mimicking, as a proof of concept, could provide a new paradigm to prepare GLP-1R agonists.
Collapse
Affiliation(s)
- Peng Sang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Zhihong Zhou
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Candy Lee
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Zaid Amso
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - David Huang
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Timothy Odom
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | | | - Weijun Shen
- Calibr at Scripps Research, 11119 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
41
|
Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochem Pharmacol 2020; 177:114001. [PMID: 32360365 DOI: 10.1016/j.bcp.2020.114001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is an incretin hormone with physiological roles in adipose tissue, the central nervous system and bone metabolism. While selective ligands for GIP receptor (GIPR) have not been advanced for disease treatment, dual and triple agonists of GIPR, in conjunction with that of glucagon-like peptide-1 (GLP-1) and glucagon receptors, are currently in clinical trials, with an expectation of enhanced efficacy beyond that of GLP-1 receptor (GLP-1R) agonist monotherapy for diabetic patients. Consequently, it is important to understand the pharmacological behavior of such drugs. In this study, we have explored signaling pathway specificity and the potential for biased agonism of mono-, dual- and tri-agonists of GIPR using human embryonic kidney 293 (HEK293) cells recombinantly expressing human GIPR or GLP-1R. Compared to GIP(1-42), the GIPR mono-agonists Pro3GIP and Lys3GIP are biased towards ERK1/2 phosphorylation (pERK1/2) relative to cAMP accumulation at GIPR, whereas the triple agonist at GLP-1R/GCGR/GIPR is biased towards pERK1/2 relative to β-arrestin2 recruitment. Moreover, the dual GIPR/GLP-1R agonist, LY3298176, is biased towards pERK1/2 relative to cAMP accumulation at both GIPR and GLP-1R compared to their respective endogenous ligands. These data reveal novel pharmacological properties of potential therapeutic agents that may impact on diversity in clinical responses.
Collapse
|
42
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
43
|
Lucey M, Pickford P, Bitsi S, Minnion J, Ungewiss J, Schoeneberg K, Rutter GA, Bloom SR, Tomas A, Jones B. Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists. Mol Metab 2020; 37:100991. [PMID: 32278079 PMCID: PMC7262448 DOI: 10.1016/j.molmet.2020.100991] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Objective The objective of this study was to determine how pharmacokinetically advantageous acylation impacts on glucagon-like peptide-1 receptor (GLP-1R) signal bias, trafficking, anti-hyperglycaemic efficacy, and appetite suppression. Methods In vitro signalling responses were measured using biochemical and biosensor assays. GLP-1R trafficking was determined by confocal microscopy and diffusion-enhanced resonance energy transfer. Pharmacokinetics, glucoregulatory effects, and appetite suppression were measured in acute, sub-chronic, and chronic settings in mice. Results A C-terminally acylated ligand, [F1,G40,K41.C16 diacid]exendin-4, was identified that showed undetectable β-arrestin recruitment and GLP-1R internalisation. Depending on the cellular system used, this molecule was up to 1000-fold less potent than the comparator [D3,G40,K41.C16 diacid]exendin-4 for cyclic AMP signalling, yet was considerably more effective in vivo, particularly for glucose regulation. Conclusions C-terminal acylation of biased GLP-1R agonists increases their degree of signal bias in favour of cAMP production and improves their therapeutic potential. Programming of GLP-1R agonists for selective signalling. Signal bias allows “low efficacy” agonists to be highly effective in vivo. GLP-1R endocytosis does not affect pharmacokinetics.
Collapse
Affiliation(s)
- Maria Lucey
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Philip Pickford
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, United Kingdom
| | - James Minnion
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, United Kingdom
| | - Stephen R Bloom
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, United Kingdom.
| | - Ben Jones
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
44
|
Drug discovery approaches targeting the incretin pathway. Bioorg Chem 2020; 99:103810. [PMID: 32325333 DOI: 10.1016/j.bioorg.2020.103810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/20/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022]
Abstract
Incretin pathway plays an important role in the development of diabetes medications. Interventions in DPP-4 and GLP-1 receptor have shown remarkable efficacy in experimental and clinical studies and imperatively become one of the most promising therapeutic approaches in the T2DM drug discovery pipeline. Herein, we analyzed the actionmechanismsof DPP-4 and GLP-1 receptor targeting the incretin pathway in T2DM treatment. We gave an insight into the structural requirements for the potent DPP-4 inhibitors and revealed a classification of DPP-4 inhibitors by stressing on the binding modes of these ligands to the enzyme. We then reviewed the drug discovery strategies for the development of peptide and non-peptide GLP-1 receptor agonists (GLP-1 RAs). Furthermore, the drug design strategies for DPP-4 inhibitors and GLP-1R agonists were detailed accurately. This review might provide an efficient evidence for the highly potent and selective DPP-4 inhibitors and the GLP-1 RAs, as novel medicines for patients suffering from T2DM.
Collapse
|
45
|
Davenport AP, Scully CCG, de Graaf C, Brown AJH, Maguire JJ. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 2020; 19:389-413. [PMID: 32494050 DOI: 10.1038/s41573-020-0062-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) - nearly 50 GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first-in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, to both introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to allow biasing ligands to activate specific downstream signalling pathways, in order to optimize efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma half-life have been revolutionary. Here, we discuss the current status of the peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Wang M, Yao P, Gao M, Jin J, Yu Y. Novel fatty chain-modified GLP-1R G-protein biased agonist exerts prolonged anti-diabetic effects through targeting receptor binding sites. RSC Adv 2020; 10:8044-8053. [PMID: 35497855 PMCID: PMC9049875 DOI: 10.1039/c9ra10593j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/05/2023] Open
Abstract
Here, we design and evaluate novel long-lasting GLP-1R G-protein-biased agonists with promising pharmacological virtues. Firstly, six GLP-1R G-protein-biased peptides (named PX01-PX06), screened by using a previous reported high-throughput autocrine-based method, were fused to the N-terminus of GLP-1(9-37) to generate six fusion peptides (PX07-PX012). In vitro surface plasmon resonance (SPR) measurements showed that PX09 exerts the highest binding affinity for both human and mouse GLP-1R extracellular domains (ECD). We further used the PX09 as a starting point to conduct site-specific modifications yielding twelve lysine-modified conjugates, termed PX13-PX24. Of these conjugates, PX17 retained relatively better in vitro GLP-1R activation potency and plasma stability compared with other ones. Preclinical studies in db/db mice demonstrated that acute treatment of PX17 exerts enhanced hypoglycemic and insulinotropic activities in a dosage dependent model within the range of 0.1-0.9 mg kg-1. Similarly, prolonged glucose-lowering abilities were exhibited in modified multiple oral glucose tolerance tests (OGTTs) and a hypoglycemic duration test. Apparently prolonged in vivo half-lives of ∼96 and ∼141 h were observed after a single subcutaneous administration of PX17 at 0.1 and 0.3 mg kg-1, respectively, in healthy cynomolgus monkeys. In addition, twice-weekly treatment of PX17 in db/db mice for 8 weeks obviously improved the hemoglobin A1C (HbA1C), and was more effective at improving the insulin resistance, glucose tolerance as well as function of pancreatic beta cells compared with Semaglutide. Furthermore, subcutaneously dosed PX17 in diet induced obese (DIO) mice achieved long-term beneficial effects on food intake and body weight control, HbA1C and inflammation-related factor level lowering. The above results indicate that PX17, as a novel GLP-1R G-protein-biased agonist, may be a promising candidate for antidiabetic therapies.
Collapse
Affiliation(s)
- Maorong Wang
- Department of Endocrinology, West China Hospital, Sichuan University Chengdu Sichuan China 610041
- Department of Endocrinology, Affiliated Hospital of Hubei University for Nationalities Enshi 445000 Hubei China
| | - Ping Yao
- Department of Endocrinology, Affiliated Hospital of Hubei University for Nationalities Enshi 445000 Hubei China
| | - Minpeng Gao
- China Pharmaceutical University Nanjing Jiangsu 210009 P. R. China
| | - Jian Jin
- Jiangnan University Wuxi Jiangsu 214062 P. R. China
| | - Yerong Yu
- Department of Endocrinology, West China Hospital, Sichuan University Chengdu Sichuan China 610041
- Jiangnan University Wuxi Jiangsu 214062 P. R. China
| |
Collapse
|
47
|
Cary BP, Hager MV, Gellman SH. Impact of Substitution Registry on the Receptor-Activation Profiles of Backbone-Modified Glucagon-like Peptide-1 Analogues. Chembiochem 2019; 20:2834-2840. [PMID: 31172641 PMCID: PMC6861653 DOI: 10.1002/cbic.201900300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Family B G protein-coupled receptors play important physiological roles and possess large extracellular domains (ECDs) that aid in binding the long polypeptide hormones that are their natural agonists. We have previously shown that agonist analogues in which subsets of native α-amino acid residues are replaced with β-amino acid residues can retain activity while avoiding proteolytic degradation. This study focuses on eight new α/β analogues of glucagon-like peptide 1 (GLP-1) that each contain five α-to-β replacements in the C-terminal half of the peptide. This portion of GLP-1 is known to adopt an α-helical conformation and contact the ECD. All four registries of the αααβ backbone pattern were evaluated; previous work has shown that the αααβ pattern supports adoption of an α-helix-like conformation. Two α-to-β replacement formats were employed, one involving β3 homologues of the native residues replaced and the other involving a cyclic β residue. GLP-1R response was characterized in terms of stimulation of cAMP production and β-arrestin recruitment. Some of the backbone-modified GLP-1 analogues display biased agonism of the GLP-1R. This study helps to establish the scope of the α→β backbone modification strategy.
Collapse
Affiliation(s)
- Brian P. Cary
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 United States
| | - Marlies V. Hager
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 United States
| |
Collapse
|
48
|
Fremaux J, Venin C, Mauran L, Zimmer R, Koensgen F, Rognan D, Bitsi S, Lucey MA, Jones B, Tomas A, Guichard G, Goudreau SR. Ureidopeptide GLP-1 analogues with prolonged activity in vivo via signal bias and altered receptor trafficking. Chem Sci 2019; 10:9872-9879. [PMID: 32015811 PMCID: PMC6977461 DOI: 10.1039/c9sc02079a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
The high demand of the pharmaceutical industry for new modalities to address the diversification of biological targets with large surfaces of interaction led us to investigate the replacement of α-amino acid residues with ureido units at selected positions in peptides to improve potency and generate effective incretin mimics. Based on molecular dynamics simulations, N-terminally modified GLP-1 analogues with a ureido residue replacement at position 2 were synthesized and showed preservation of agonist activity while exhibiting a substantial increase in stability. This enabling platform was applied to exenatide and lixisenatide analogues to generate two new ureidopeptides with antidiabetic properties and longer duration of action. Further analyses demonstrated that the improvement was due mainly to differences in signal bias and trafficking of the GLP-1 receptor. This study demonstrates the efficacy of single α-amino acid substitution with ureido residues to design long lasting peptides.
Collapse
Affiliation(s)
- Juliette Fremaux
- UREkA - ImmuPharma Group , 2 rue Robert Escarpit , 33607 Pessac , France .
| | - Claire Venin
- UREkA - ImmuPharma Group , 2 rue Robert Escarpit , 33607 Pessac , France .
| | - Laura Mauran
- UREkA - ImmuPharma Group , 2 rue Robert Escarpit , 33607 Pessac , France .
| | - Robert Zimmer
- UREkA - ImmuPharma Group , 2 rue Robert Escarpit , 33607 Pessac , France .
| | - Florian Koensgen
- Laboratoire d'Innovation Thérapeutique , UMR7200 CNRS-Université de Strasbourg , 74 route du Rhin , 67400 Illkirch , France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique , UMR7200 CNRS-Université de Strasbourg , 74 route du Rhin , 67400 Illkirch , France
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics , Imperial College London , London W12 0NN , UK
| | - Maria A Lucey
- Section of Investigative Medicine , Imperial College London , London W12 0NN , UK
| | - Ben Jones
- Section of Investigative Medicine , Imperial College London , London W12 0NN , UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics , Imperial College London , London W12 0NN , UK
| | - Gilles Guichard
- Univ. Bordeaux , CNRS , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33607 Pessac , France .
| | | |
Collapse
|
49
|
Liu S, Jean-Alphonse FG, White AD, Wootten D, Sexton PM, Gardella TJ, Vilardaga JP, Gellman SH. Use of Backbone Modification To Enlarge the Spatiotemporal Diversity of Parathyroid Hormone Receptor-1 Signaling via Biased Agonism. J Am Chem Soc 2019; 141:14486-14490. [PMID: 31496241 PMCID: PMC6930011 DOI: 10.1021/jacs.9b04179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type-1 parathyroid hormone receptor (PTHR1), which regulates calcium homeostasis and tissue development, has two native agonists, parathyroid hormone (PTH) and PTH-related protein (PTHrP). PTH forms a complex with the PTHR1 that is rapidly internalized and induces prolonged cAMP production from endosomes. In contrast, PTHrP induces only transient cAMP production, which primarily arises from receptors on the cell surface. We show that backbone modification of PTH(1-34)-NH2 and abaloparatide (a PTHrP derivative) with a single homologous β-amino acid residue can generate biased agonists that induce prolonged cAMP production from receptors at the cell surface. This unique spatiotemporal profile could be useful for distinguishing effects associated with the duration of cAMP production from effects associated with the site of cAMP production.
Collapse
Affiliation(s)
- Shi Liu
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | | | | | - Denise Wootten
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology , Monash University , Parkville , VIC 3052 , Australia
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology , Monash University , Parkville , VIC 3052 , Australia
| | - Thomas J Gardella
- Endocrine Unit , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | | | - Samuel H Gellman
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
50
|
Levine PM, Balana AT, Sturchler E, Koole C, Noda H, Zarzycka B, Daley EJ, Truong TT, Katritch V, Gardella TJ, Wootten D, Sexton PM, McDonald P, Pratt MR. O-GlcNAc Engineering of GPCR Peptide-Agonists Improves Their Stability and in Vivo Activity. J Am Chem Soc 2019; 141:14210-14219. [PMID: 31418572 PMCID: PMC6860926 DOI: 10.1021/jacs.9b05365] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide agonists of GPCRs and other receptors are powerful signaling molecules with high potential as biological tools and therapeutics, but they are typically plagued by instability and short half-lives in vivo. Nature uses protein glycosylation to increase the serum stability of secreted proteins. However, these extracellular modifications are complex and heterogeneous in structure, making them an impractical solution. In contrast, intracellular proteins are subjected to a simple version of glycosylation termed O-GlcNAc modification. In our studies of this modification, we found that O-GlcNAcylation inhibits proteolysis, and strikingly, this stabilization occurs despite large distances in primary sequence (10-15 amino acids) between the O-GlcNAc and the site of cleavage. We therefore hypothesized that this "remote stabilization" concept could be useful to engineer the stability and potentially additional properties of peptide or protein therapeutics. Here, we describe the application of O-GlcNAcylation to two clinically important peptides: glucagon-like peptide-1 (GLP-1) and the parathyroid hormone (PTH), which respectively help control glucose and calcium levels in the blood. For both peptides, we found O-GlcNAcylated analogs that are equipotent to unmodified peptide in cell-based activation assays, while several GLP-1 analogs were biased agonists relative to GLP-1. As we predicted, O-GlcNAcylation can improve the stability of both GLP-1 and PTH in serum despite the fact that the O-GlcNAc can be quite remote from characterized sites of peptide cleavage. The O-GlcNAcylated GLP-1 and PTH also displayed significantly improved in vivo activity. Finally, we employed structure-based molecular modeling and receptor mutagenesis to predict how O-GlcNAcylation can be accommodated by the receptors and the potential interactions that contribute to peptide activity. This approach demonstrates the potential of O-GlcNAcylation for generating analogs of therapeutic peptides with enhanced proteolytic stability.
Collapse
Affiliation(s)
| | | | - Emmanuel Sturchler
- Department of Molecular Medicine The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Cassandra Koole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology , Monash University , Parkville , VIC 3052 , Australia
| | - Hiroshi Noda
- Endocrine Unit , Massachusetts General Hospital, and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | | | - Eileen J Daley
- Endocrine Unit , Massachusetts General Hospital, and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Tin T Truong
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology , Monash University , Parkville , VIC 3052 , Australia
| | - Vsevolod Katritch
- Bridge Institute , University of Southern California , Los Angeles , California 90089 , United States
| | - Thomas J Gardella
- Endocrine Unit , Massachusetts General Hospital, and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology , Monash University , Parkville , VIC 3052 , Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology , Monash University , Parkville , VIC 3052 , Australia
| | - Patricia McDonald
- Department of Molecular Medicine The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Matthew R Pratt
- Bridge Institute , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|