1
|
Fan W, Fan L, Wang Z, Mei Y, Liu L, Li L, Yang L, Wang Z. Rare ginsenosides: A unique perspective of ginseng research. J Adv Res 2024; 66:303-328. [PMID: 38195040 PMCID: PMC11674801 DOI: 10.1016/j.jare.2024.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Rare ginsenosides (Rg3, Rh2, C-K, etc.) refer to a group of dammarane triterpenoids that exist in low natural abundance, mostly produced by deglycosylation or side chain modification via physicochemical processing or metabolic transformation in gut, and last but not least, exhibited potent biological activity comparing to the primary ginsenosides, which lead to a high concern in both the research and development of ginseng and ginsenoside-related nutraceutical and natural products. Nevertheless, a comprehensive review on these promising compounds is not available yet. AIM OF REVIEW In this review, recent advances of Rare ginsenosides (RGs) were summarized dealing with the structurally diverse characteristics, traditional usage, drug discovery situation, clinical application, pharmacological effects and the underlying mechanisms, structure-activity relationship, toxicity, the stereochemistry properties, and production strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW A total of 144 RGs with diverse skeletons and bioactivities were isolated from Panax species. RGs acted as natural ligands on some specific receptors, such as bile acid receptors, steroid hormone receptors, and adenosine diphosphate (ADP) receptors. The RGs showed promising bioactivities including immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes, and interaction with gut microbiota. Clinical trials indicated the potential of RGs, while high quality data remains inadequate, and no obvious side effects was found. The stereochemistry properties induced by deglycosylation at C (20) were also addressed including pharmacodynamics behaviors, together with the state-of-art analytical strategies for the identification of saponin stereoisomers. Finally, the batch preparation of targeted RGs by designated strategies including heating or acid/ alkaline-assisted processes, and enzymatic biotransformation and biosynthesis were discussed. Hopefully, the present review can provide more clues for the extensive understanding and future in-depth research and development of RGs, originated from the worldwide well recognized ginseng plants.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Basilio-Cortes UA, Ramírez-Rodrigues MM, Ramírez-Rodrigues MA, González-Mendoza D, Tzintzun-Camacho O, Durán-Hernández D, González-Salitre L. Phytochemical, spectroscopic analysis and antifungal activity on bell peppers of hydrothermal bioactive metabolites of Humulus lupulus L. extracts. Nat Prod Res 2024:1-12. [PMID: 39295533 DOI: 10.1080/14786419.2024.2405010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
This study aimed to evaluate the impact of temperature on the potential extraction of bioactive compounds from aqueous hop extract samples. The main bioactive components were characterised and analysed by LC-MS/MS, FT-IR, phenolic compounds and total flavonoids. Antifungal activity was evaluated in vitro and in vivo in bell peppers. LC-MS/MS analysis demonstrated increases and decreases of bioactive compounds in both extracts depending on the extraction temperature of 25 or 65 °C. The bioactive compounds showed significant changes in the bands between 2786 to 3600 cm-1 and 1022 to 1729 cm-1 in the FT-IR spectrum. The highest antifungal activity against the microorganisms was observed in the EkuanotMT extract at an extraction temperature of 65 °C. The in vivo test with bell peppers presented antifungal activity during five days of evaluation under normal environmental conditions without refrigeration, presenting ≤ 52% of the disease due to F. oxysporum and A. solani.
Collapse
Affiliation(s)
- Ulin Antobelli Basilio-Cortes
- Institute of Agricultural Sciences, Academic Area of Biotechnology, Autonomous University of Baja California, Mexicali, Baja CA, Mexico
| | - Milena M Ramírez-Rodrigues
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Daniel González-Mendoza
- Institute of Agricultural Sciences, Academic Area of Biotechnology, Autonomous University of Baja California, Mexicali, Baja CA, Mexico
| | - Olivia Tzintzun-Camacho
- Institute of Agricultural Sciences, Academic Area of Biotechnology, Autonomous University of Baja California, Mexicali, Baja CA, Mexico
| | - Dagoberto Durán-Hernández
- Institute of Agricultural Sciences, Academic Area of Biotechnology, Autonomous University of Baja California, Mexicali, Baja CA, Mexico
| | - Lourdes González-Salitre
- Institute of Basic Sciences and Engineering, Academic Area of Chemistry, City of Knowledge, Autonomous University of the State of Hidalgo, Hidalgo, Mexico
| |
Collapse
|
3
|
Li Y, Peng HQ, Wen ML, Yang LQ. Identify Regioselective Residues of Ginsenoside Hydrolases by Graph-Based Active Learning from Molecular Dynamics. Molecules 2024; 29:3614. [PMID: 39125019 PMCID: PMC11314057 DOI: 10.3390/molecules29153614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Identifying the catalytic regioselectivity of enzymes remains a challenge. Compared to experimental trial-and-error approaches, computational methods like molecular dynamics simulations provide valuable insights into enzyme characteristics. However, the massive data generated by these simulations hinder the extraction of knowledge about enzyme catalytic mechanisms without adequate modeling techniques. Here, we propose a computational framework utilizing graph-based active learning from molecular dynamics to identify the regioselectivity of ginsenoside hydrolases (GHs), which selectively catalyze C6 or C20 positions to obtain rare deglycosylated bioactive compounds from Panax plants. Experimental results reveal that the dynamic-aware graph model can excellently distinguish GH regioselectivity with accuracy as high as 96-98% even when different enzyme-substrate systems exhibit similar dynamic behaviors. The active learning strategy equips our model to work robustly while reducing the reliance on dynamic data, indicating its capacity to mine sufficient knowledge from short multi-replica simulations. Moreover, the model's interpretability identified crucial residues and features associated with regioselectivity. Our findings contribute to the understanding of GH catalytic mechanisms and provide direct assistance for rational design to improve regioselectivity. We presented a general computational framework for modeling enzyme catalytic specificity from simulation data, paving the way for further integration of experimental and computational approaches in enzyme optimization and design.
Collapse
Affiliation(s)
- Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671000, China; (Y.L.); (H.-Q.P.)
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Hong-Qian Peng
- College of Mathematics and Computer Science, Dali University, Dali 671000, China; (Y.L.); (H.-Q.P.)
| | - Meng-Liang Wen
- School of Life Science, Yunnan University, Kunming 650091, China
| | - Li-Quan Yang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| |
Collapse
|
4
|
Kim J, Choi HJ, Seo D, Lee SA, Heo JB, Baek DH, Lee W, Song GY. Steamed Ginseng Berry Powder Ameliorates Skeletal Muscle Atrophy via Myogenic Effects. J Microbiol Biotechnol 2024; 34:157-166. [PMID: 38282410 PMCID: PMC10840479 DOI: 10.4014/jmb.2309.09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
Sarcopenia is an age-related loss of muscle mass and function for which there is no approved pharmacological treatment. We tested direct efficacy by evaluating grip strength improvement in a sarcopenia mouse model rather than drug screening, which inhibits specific molecular mechanisms. Various physiological functions of ginseng berries are beneficial to the human body. The present study aimed to evaluate the efficacy and safety of steamed ginseng berry powder (SGBP). SGBP administration increased myotube diameter and suppressed the mRNA expression of sarcopenia-inducing molecules. SGBP also reduced the levels of inflammatory transcription factors and cytokines that are known to induce sarcopenia. Oral administration of SGBP improved muscle mass and physical performance in a mouse model of sarcopenia. In summary, our data suggest that SGBP is a novel therapeutic candidate for the amelioration of muscle weakness, including sarcopenia.
Collapse
Affiliation(s)
- Jungbum Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Donghyuk Seo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang-Ah Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju national University, Jeju 63243, Republic of Korea
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken 66123, Germany
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Hyuk Baek
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| |
Collapse
|
5
|
Kim ME, Lee JS. The Potential of Korean Bioactive Substances and Functional Foods for Immune Enhancement. Int J Mol Sci 2024; 25:1334. [PMID: 38279334 PMCID: PMC10816026 DOI: 10.3390/ijms25021334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
In this review, we explore the immunomodulatory properties of Korean foods, focusing on ginseng and fermented foods. One notable example is Korean red ginseng, known for its immune system-regulating effects attributed to the active ingredient, ginsenoside. Ginsenoside stimulates immune cells, enhancing immune function and suppressing inflammatory responses. With a long history, Korean red ginseng has demonstrated therapeutic effects against various diseases. Additionally, Korean fermented foods like kimchi, doenjang, chongkukjang, gochujang, vinegar, and jangajji provide diverse nutrients and bioactive substances, contributing to immune system enhancement. Moreover, traditional Korean natural herbs such as Cirsium setidens Nakai, Gomchwi, Beak-Jak-Yak, etc. possess immune-boosting properties and are used in various Korean foods. By incorporating these foods into one's diet, one can strengthen their immune system, positively impacting their overall health and well-being.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Department of Biological Science, Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
6
|
Shen Y, Gao Y, Yang G, Zhao Z, Zhao Y, Gao L, Zhao L, Li S. Transformation of Ginsenosides by Lactiplantibacillus plantarum MB11 Fermentation: Minor Ginsenosides Conversion and Enhancement of Anti-Colorectal Cancer Activity. Molecules 2023; 29:27. [PMID: 38202610 PMCID: PMC10780060 DOI: 10.3390/molecules29010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The present study aimed to increase the content of minor ginsenosides and enhance the anti-colorectal cancer activity of ginsenosides via biotransformation by Lactiplantibacillus plantarum MB11 screened from fermented foods. A subcutaneous transplantation tumor model of murine colorectal cancer CT26 cells was established in mice to study the anticarcinogenic activities and mechanism of fermented total ginsenosides (FTGs). The results showed that L. plantarum MB11 fermentation increased the content of minor ginsenosides and decreased that of major ginsenosides. FTGs reduced the tumor weight and size compared with the model group. Immunofluorescence and TdT-mediated dUTP nick end labeling (TUNEL) analysis showed that FTGs significantly increase the number of caspase-3 cells in tumor tissue and induce cell apoptosis. Mechanically, FTGs activate AMPK/mTOR autophagy pathway and regulate JAK2/STAT3 and Bax/Bcl-2/caspase-3 apoptosis pathway. Overall, fermentation with L. plantarum MB11 enhanced minor ginsenosides in total ginsenosides, and FTGs induced subcutaneous transplantation tumor autophagy and apoptosis in mice.
Collapse
Affiliation(s)
- Yunjiao Shen
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Ge Yang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Lei Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences (Northeast Agriculture Research Center of China), Changchun 130033, China; (Y.S.); (Y.G.); (G.Y.); (Z.Z.); (Y.Z.); (L.G.)
| |
Collapse
|
7
|
Yang M, Hou CY, Lin MC, Chang CK, Patel AK, Dong CD, Chen YA, Wu JT, Hsieh CW. Efficient thermal treatment of radish ( Raphanus sativus) for enhancing its bioactive compounds. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1045-1053. [PMID: 36908344 PMCID: PMC9998766 DOI: 10.1007/s13197-022-05450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
Abstract
Old preserved radish (OPR), a traditional pickled-food of Asia, contains the healthy bioactive compounds, such as phenols and flavonoids. To preserve the phenols levels in radish by thermal treatment, which are decreased due to the polyphenol oxidase activity during long storage. Range of thermal processing evaluated to retain the maximum phenols level in the radish while processed at temperatures of 70 °C, 80 °C and 90 °C for 30 days. In this study, the bioactive compounds and antioxidant activity of thermal processing radish (TPR) were evaluated and compared with commercial products of OPR. Results showed the best condition of thermal processing, 80°C for 30 days, could increase the values of phenols, flavonoids and antioxidant activity that were 2.27, 2.74 and 2.89 times, respectively. When comparing the thermally processed radish or TPR with OPR, TPR has a higher content of phenols and flavonoids, indicating that the thermal processing was effective to increase the content of functional compounds in radish and significantly improved its nutritional values.
Collapse
Affiliation(s)
- Min Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 40227 Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung City, 81157 Taiwan
| | - Ming-Ching Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Section 4, Taichung, 40705 Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 40227 Taiwan
| | - Anil Kumar Patel
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung City, 81157 Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City, 81157 Taiwan
| | - Cheng-Di Dong
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung City, 81157 Taiwan
| | - Yi-An Chen
- College of Biotechnology and Bioresources, Da-Yeh University, 168 University Rd, Dacun, Chang-Hua, 515 Taiwan
| | - Jung-Tsung Wu
- College of Biotechnology and Bioresources, Da-Yeh University, 168 University Rd, Dacun, Chang-Hua, 515 Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 40227 Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City, 404333 Taiwan
| |
Collapse
|
8
|
Wijaya YT, Setiawan T, Sari IN, Park K, Lee CH, Cho KW, Lee YK, Lim JY, Yoon JK, Lee SH, Kwon HY. Ginsenoside Rd ameliorates muscle wasting by suppressing the signal transducer and activator of transcription 3 pathway. J Cachexia Sarcopenia Muscle 2022; 13:3149-3162. [PMID: 36127129 PMCID: PMC9745546 DOI: 10.1002/jcsm.13084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The effects of some drugs, aging, cancers, and other diseases can cause muscle wasting. Currently, there are no effective drugs for treating muscle wasting. In this study, the effects of ginsenoside Rd (GRd) on muscle wasting were studied. METHODS Tumour necrosis factor-alpha (TNF-α)/interferon-gamma (IFN-γ)-induced myotube atrophy in mouse C2C12 and human skeletal myoblasts (HSkM) was evaluated based on cell thickness. Atrophy-related signalling, reactive oxygen species (ROS) level, mitochondrial membrane potential, and mitochondrial number were assessed. GRd (10 mg/kg body weight) was orally administered to aged mice (23-24 months old) and tumour-bearing (Lewis lung carcinoma [LLC1] or CT26) mice for 5 weeks and 16 days, respectively. Body weight, grip strength, inverted hanging time, and muscle weight were assessed. Histological analysis was also performed to assess the effects of GRd. The evolutionary chemical binding similarity (ECBS) approach, molecular docking, Biacore assay, and signal transducer and activator of transcription (STAT) 3 reporter assay were used to identify targets of GRd. RESULTS GRd significantly induced hypertrophy in the C2C12 and HSkM myotubes (average diameter 50.8 ± 2.6% and 49.9% ± 3.7% higher at 100 nM, vs. control, P ≤ 0.001). GRd treatment ameliorated aging- and cancer-induced (LLC1 or CT26) muscle atrophy in mice, which was evidenced by significant increases in grip strength, hanging time, muscle mass, and muscle tissue cross-sectional area (1.3-fold to 4.6-fold, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). STAT3 was found to be a possible target of GRd by the ECBS approach and molecular docking assay. Validation of direct interaction between GRd and STAT3 was confirmed through Biacore analysis. GRd also inhibited STAT3 phosphorylation and STAT3 reporter activity, which led to the inhibition of STAT3 nuclear translocation and the suppression of downstream targets of STAT3, such as atrogin-1, muscle-specific RING finger protein (MuRF-1), and myostatin (MSTN) (29.0 ± 11.2% to 84.3 ± 30.5%, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). Additionally, GRd scavenged ROS (91.7 ± 1.4% reduction at 1 nM, vs. vehicle, P ≤ 0.001), inhibited TNF-α-induced dysregulation of ROS level, and improved mitochondrial integrity (P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). CONCLUSIONS GRd ameliorates aging- and cancer-induced muscle wasting. Our findings suggest that GRd may be a novel therapeutic agent or adjuvant for reversing muscle wasting.
Collapse
Affiliation(s)
- Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jae-Young Lim
- Institute of Aging, Seoul National University, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jeong Kyo Yoon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sae Hwan Lee
- Liver Clinic, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea.,Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
9
|
Zhang H, Zhu H, Luo X, Deng Y, Zhang W, Li S, Liang J, Pang Z. Enzymatic biotransformation of Rb3 from the leaves of Panax notoginseng to ginsenoside rd by a recombinant β-xylosidase from Thermoascus aurantiacus. World J Microbiol Biotechnol 2022; 39:21. [PMID: 36422714 DOI: 10.1007/s11274-022-03472-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Given the important pharmacological activity of ginsenoside Rd but its low content in plants, the production of Rd by enzymatic transformation is of interest. In this study, a β-xylosidase gene Ta-XylQS from Thermoascus aurantiacus was cloned and overexpressed in Komagataella phaffii. Purified recombinant Ta-XylQS specifically hydrolyzes substrates with xylosyl residues at the optimal pH of 3.5 and temperature of 60 °C. This study established a process for producing Rd by transforming ginsenoside Rb3 in the saponins of Panax notoginseng leaves via recombinant Ta-XylQS. After 60 h, 3 g L- 1 of Rb3 was transformed into 1.46 g L- 1 of Rd, and the maximum yield of Rd reached 4.31 g kg- 1 of Panax notoginseng leaves. This study is the first report of the biotransformation of ginsenoside Rb3 to Rd via a β-xylosidase, and the established process could potentially be adopted for the commercial production of Rd from Rb3.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Science and Technology, Guangxi University, 530004, Nanning, China
| | - Hongxi Zhu
- College of Life Science and Technology, Guangxi University, 530004, Nanning, China
| | - Xiuyuan Luo
- College of Life Science and Technology, Guangxi University, 530004, Nanning, China
| | - Yuanzhen Deng
- College of Life Science and Technology, Guangxi University, 530004, Nanning, China
| | - Wei Zhang
- College of Life Science and Technology, Guangxi University, 530004, Nanning, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, 530004, Nanning, China
| | - Jingjuan Liang
- College of Life Science and Technology, Guangxi University, 530004, Nanning, China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, 530004, Nanning, China.
| |
Collapse
|
10
|
Yang M, Hou CY, Hsu HY, Hazeena SH, Santoso SP, Yu CC, Chang CK, Gavahian M, Hsieh CW. Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions. Molecules 2022; 27:8125. [PMID: 36500218 PMCID: PMC9735865 DOI: 10.3390/molecules27238125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production time of 7 days, 10 years, and 20 years) and evaluated the effects of different thermal processes on the formation of radish saponin through kinetics study and mass spectrometry. The results showed that increasing the pickling time enhanced the formation of saponin in commercial pickled radishes (25 °C, 7 days, 6.50 ± 1.46 mg g-1; 3650 days, 23.11 ± 1.22 mg g-1), but these increases were lower than those induced by thermal processing (70 °C 30 days 24.24 ± 1.01 mg g-1). However, it was found that the pickling time of more than 10 years and the processing temperature of more than 80 °C reduce the saponin content. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that the major saponin in untreated radish was Tupistroside G, whereas treated samples contained Asparagoside A and Timosaponin A1. Moreover, this study elucidated the chemical structure of saponins in TPR. The findings indicated that thermal treatment could induce functional saponin conversion in plants, and such a mechanism can also be used to improve the health efficacy of plant-based crops.
Collapse
Affiliation(s)
- Min Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung 81157, Taiwan
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung 81157, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei 10607, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404333, Taiwan
| |
Collapse
|
11
|
Murugesan M, Mathiyalagan R, Boopathi V, Kong BM, Choi SK, Lee CS, Yang DC, Kang SC, Thambi T. Production of Minor Ginsenoside CK from Major Ginsenosides by Biotransformation and Its Advances in Targeted Delivery to Tumor Tissues Using Nanoformulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193427. [PMID: 36234555 PMCID: PMC9565578 DOI: 10.3390/nano12193427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 05/13/2023]
Abstract
For over 2000 years, ginseng (roots of Panax ginseng C.A. Meyer) has been used as a traditional herbal medicine. Ginsenosides are bioactive compounds present in ginseng responsible for the pharmacological effects and curing various acute diseases as well as chronic diseases including cardiovascular disease, cancer and diabetes. Structurally, ginsenosides consist of a hydrophobic aglycone moiety fused with one to four hydrophilic glycoside moieties. Based on the position of sugar units and their abundance, ginsenosides are classified into major and minor ginsenosides. Despite the great potential of ginsenosides, major ginsenosides are poorly absorbed in the blood circulation, resulting in poor bioavailability. Interestingly, owing to their small molecular weight, minor ginsenosides exhibit good permeability across cell membranes and bioavailability. However, extremely small quantities of minor ginsenosides extracted from ginseng plants cannot fulfill the requirement of scientific and clinical studies. Therefore, the production of minor ginsenosides in mass production is a topic of interest. In addition, their poor solubility and lack of targetability to tumor tissues limits their application in cancer therapy. In this review, various methods used for the transformation of major ginsenosides to minor ginsenoside compound K (CK) are summarized. For the production of CK, various transformation methods apply to major ginsenosides. The challenges present in these transformations and future research directions for producing bulk quantities of minor ginsenosides are discussed. Furthermore, attention is also paid to the utilization of nanoformulation technology to improve the bioavailability of minor ginsenoside CK.
Collapse
Affiliation(s)
- Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Sung-Keun Choi
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Chang-Soon Lee
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| |
Collapse
|
12
|
Chang L, Wang D, Kan S, Hao M, Liu H, Yang Z, Xia Q, Liu W. Ginsenoside Rd inhibits migration and invasion of tongue cancer cells through H19/miR-675-5p/CDH1 axis. J Appl Oral Sci 2022; 30:e20220144. [PMID: 36074434 PMCID: PMC9444189 DOI: 10.1590/1678-7757-2022-0144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Tongue squamous cell carcinoma (TSCC) is an oral cancer, with high malignancy and frequent early migration and invasion. Only a few drugs can treat tongue cancer. Ginsenoside Rd is a ginseng extract with anti-cancer effects. Many noncoding RNAs are abnormally expressed in tongue cancer, thus influencing its occurrence and development. H19 and miR-675-5p can promote cancer cell growth. This study aimed to analyze the regulation effect of ginsenoside Rd on H19 and miR-675-5p in tongue cancer. Methodology We used CCK8 and flow cytometry to study the growth and apoptosis. Transwell assay was used to assess invasion; wound-healing assay to assess migration; and colony formation assays to test the ability of cells to form colonies. H19, miR-675-5p, and CDH1 expressions were analyzed by qPCR. E-cadherin expression was detected using western blot. CRISPR/cas9 system was used for CDH1 knockout. Results Ginsenoside Rd inhibited the growth and increased the apoptosis of SCC9 cells. Ginsenoside Rd also inhibited the migration and invasion of SCC9 cells. H19 and miR-675-5p were highly expressed, while CDH1 and E-cadherin expressions were low. H19 and miR-675-5p promoted SCC9 metastasis. In contrast, CDH1 and E-cadherin inhibited the metastasis of SCC9 cells. Bioinformatics analysis showed that miR-675-5p was associated with CDH1. H19 and miR-675-5p expressions decreased after ginsenoside Rd treatment, while CDH1 and E-cadherin expressions increased. Conclusions Ginsenoside Rd inhibits tongue cancer cell migration and invasion via the H19/miR-675-5p/CDH1 axis.
Collapse
Affiliation(s)
- Lu Chang
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China.,Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China.,Jilin University, Hospital of Stomatology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Dongxu Wang
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Shaoning Kan
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Ming Hao
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Huimin Liu
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Zhijing Yang
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| | - Qianyun Xia
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Weiwei Liu
- Jilin University, Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Changchun, China
| |
Collapse
|
13
|
Duan S, Liu JR, Wang X, Sun XM, Gong HS, Jin CW, Eom SH. Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves. Molecules 2022; 27:molecules27154782. [PMID: 35897960 PMCID: PMC9331281 DOI: 10.3390/molecules27154782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Although ginseng leaf is a good source of health-beneficial phytochemicals, such as polyphenols and ginsenosides, few studies have focused on the variation in compounds and bioactivities during leaf thermal processing. The efficiency of far-infrared irradiation (FIR) between 160 °C and 200 °C on the deglycosylation of bioactive compounds in ginseng leaves was analyzed. FIR treatment significantly increased the total polyphenol content (TPC) and kaempferol production from panasenoside conversion. The highest content or conversion ratio was observed at 180 °C (FIR-180). Major ginsenoside contents gradually decreased as the FIR temperature increased, while minor ginsenoside contents significantly increased. FIR exhibited high efficiency to produce dehydrated minor ginsenosides, of which F4, Rg6, Rh4, Rk3, Rk1, and Rg5 increased to their highest levels at FIR-190, by 278-, 149-, 176-, 275-, 64-, and 81-fold, respectively. Moreover, significantly increased antioxidant activities were also observed in FIR-treated leaves, particularly FIR-180, mainly due to the breakage of phenolic polymers to release antioxidants. These results suggest that FIR treatment is a rapid and efficient processing method for producing various health-beneficial bioactive compounds from ginseng leaves. After 30 min of treatment without leaf burning, FIR-190 was the optimum temperature for producing minor ginsenosides, whereas FIR-180 was the optimum temperature for producing polyphenols and kaempferol. In addition, the results suggested that the antioxidant benefits of ginseng leaves are mainly due to polyphenols rather than ginsenosides.
Collapse
Affiliation(s)
- Shucheng Duan
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Jia Rui Liu
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Xin Wang
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Xue Mei Sun
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Han Sheng Gong
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
| | - Cheng Wu Jin
- College of Food Engineering, Ludong University, Yantai 264025, China; (S.D.); (J.R.L.); (X.W.); (X.M.S.); (H.S.G.)
- Correspondence: (C.W.J.); (S.H.E.)
| | - Seok Hyun Eom
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (C.W.J.); (S.H.E.)
| |
Collapse
|
14
|
Li J, Huang Q, Yao Y, Ji P, Mingyao E, Chen J, Zhang Z, Qi H, Liu J, Chen Z, Zhao D, Zhou L, Li X. Biotransformation, Pharmacokinetics, and Pharmacological Activities of Ginsenoside Rd Against Multiple Diseases. Front Pharmacol 2022; 13:909363. [PMID: 35928281 PMCID: PMC9343777 DOI: 10.3389/fphar.2022.909363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng C.A. Mey. has a history of more than 4000 years and is widely used in Asian countries. Modern pharmacological studies have proved that ginsenosides and their compounds have a variety of significant biological activities on specific diseases, including neurodegenerative diseases, certain types of cancer, gastrointestinal disease, and metabolic diseases, in which most of the interest has focused on ginsenoside Rd. The evidentiary basis showed that ginsenoside Rd ameliorates ischemic stroke, nerve injury, cancer, and other diseases involved in apoptosis, inflammation, oxidative stress, mitochondrial damage, and autophagy. In this review, we summarized available reports on the molecular biological mechanisms of ginsenoside Rd in neurological diseases, cancer, metabolic diseases, and other diseases. We also discussed the main biotransformation pathways of ginsenoside Rd obtained by fermentation.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Ji
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - E. Mingyao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| |
Collapse
|
15
|
Tan MM, Chen MH, Han F, Wang JW, Tu YX. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer. Front Pharmacol 2021; 12:738914. [PMID: 34776959 PMCID: PMC8578715 DOI: 10.3389/fphar.2021.738914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.
Collapse
Affiliation(s)
- Ming-Ming Tan
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Min-Hua Chen
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
16
|
Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract. FERMENTATION 2021. [DOI: 10.3390/fermentation7040238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Red ginseng has powerful potential for use as a prebiotic, but its use is limited due to its antibacterial activity. The aim of this study is to present panax ginseng’s endophytic lactic acid bacteria capable to overcome the antibacterial activity of red ginseng and improve their characteristic. Lactobacillus paracasei HY7017 (HY7017) was cultured in a medium supplemented with red ginseng. The probiotic properties and immune-enhancing effects of HY7017 were investigated in vitro and in vivo. HY7017 was proliferated strongly in RGE and had significantly improved properties compared with an L. paracasei type strain ATCC25302. HY7017 cultured in RGE-supplemented medium increased the production of nitric oxide, TNF-α, and IL-6 in macrophages, and increased IL-12 and IFN-γ secretion in splenocytes. Furthermore, HY7017 restored WBC counts, increased the amount of IL-2 and IFN-γ released, and enhanced the cytotoxicity of natural killer cells when orally administered to immunosuppressed mice. Moreover, HY7017 has properties that make it suitable as a probiotic, such as stability in the gastrointestinal tract and adhesion to Caco-2 cells. This study showed that HY7017 cultured with RGE may contribute to the development of probiotics to enhance immunity.
Collapse
|
17
|
Zeng Z, Nian Q, Chen N, Zhao M, Zheng Q, Zhang G, Zhao Z, Chen Y, Wang J, Zeng J, Gong D, Tang J. Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4. Biomed Pharmacother 2021; 145:112086. [PMID: 34799220 DOI: 10.1016/j.biopha.2021.112086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rg3 (GRg3) is a ginsenoside extracted from Panax ginseng. GRg3 displays multiple pharmacological properties, such as antitumor, anti-inflammatory, antioxidative and antifibrotic properties. However, whether GRg3 inhibits angiogenesis in gastric precancerous lesions (GPLs) and the possible mechanisms remain unknown. GRg3 attenuated gastric intestinal metaplasia and gastric dysplasia, the hallmark of GPL pathology, in rats with MNNG-ammonia compound induced GPLs. Increased CD34+ microvessel density and VEGF expression, which indicate the presence of angiogenesis, were evident in the rats with GPLs. GRg3 administration reduced VEGF protein expression and CD34+ microvessel density. In addition, GRg3 was capable of attenuating microvascular abnormalities. Data analysis revealed that enhanced protein expression of GLUT1, GLUT3 and GLUT4 were present in both human and animal GPL specimens. The administration of GRg3 caused significant decreases in the mRNA and protein expression levels of GLUT1 and GLUT4 in the rats with GPLs. However, the GRg3-treated rats with GPLs did not demonstrate regulatory effects on GLUT3, GLUT6, GLUT10, and GLUT12. Consistent with in vitro results, GRg3 administration significantly reduced the protein expression levels of GLUT1 and GLUT4 in both AGS and HGC-27 human gastric cancer cells in vitro. In conclusion, GRg3 can attenuate angiogenesis and temper microvascular abnormalities in rats with GPLs, which may be associated with its inhibition on the aberrant activation of GLUT1 and GLUT4.
Collapse
Affiliation(s)
- Zhongzhen Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Gang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Ziyi Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Jundong Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
18
|
KOŞMAZ K, DURHAN A, ŞENLİKCİ A, SÜLEYMAN M, BOSTANCI MT, PEKCİCİ MR, ŞENEŞ M, ALKAN KUŞABBİ İ, GÖNÜLTAŞ MA, HÜCÜMENOĞLU S, BARLAS AM, BAĞ YM, ERSAK C, ERGÜDER E. Evaluation of the Protective Effect of Red Ginseng on Lipid Profile, Endothelial and Oxidative Damage after Splenectomy in Rats. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2021. [DOI: 10.25000/acem.952140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
19
|
Chopra P, Chhillar H, Kim YJ, Jo IH, Kim ST, Gupta R. Phytochemistry of ginsenosides: Recent advancements and emerging roles. Crit Rev Food Sci Nutr 2021; 63:613-640. [PMID: 34278879 DOI: 10.1080/10408398.2021.1952159] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ginsenosides, a group of tetracyclic saponins, accounts for the nutraceutical and pharmaceutical relevance of the ginseng (Panax sp.) herb. Owing to the associated therapeutic potential of ginsenosides, their demand has been increased significantly in the last two decades. However, a slow growth cycle, low seed production, and long generation time of ginseng have created a gap between the demand and supply of ginsenosides. The biosynthesis of ginsenosides involves an intricate network of pathways with multiple oxidation and glycosylation reactions. However, the exact functions of some of the associated genes/proteins are still not completely deciphered. Moreover, ginsenoside estimation and extraction using analytical techniques are not feasible with high efficiency. The present review is a step forward in recapitulating the comprehensive aspects of ginsenosides including their distribution, structural diversity, biotransformation, and functional attributes in both plants and animals including humans. Moreover, ginsenoside biosynthesis in the potential plant sources and their metabolism in the human body along with major regulators and stimulators affecting ginsenoside biosynthesis have also been discussed. Furthermore, this review consolidates biotechnological interventions to enhance the biosynthesis of ginsenosides in their potential sources and advancements in the development of synthetic biosystems for efficient ginsenoside biosynthesis to meet their rising industrial demands.
Collapse
Affiliation(s)
- Priyanka Chopra
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Himanshu Chhillar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Sciences, Pusan National University, Miryang, South Korea
| | - Ick Hyun Jo
- Department of Herbal Crop Research, Rural Development Administration, Eumseong, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Sciences, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.,Department of Forestry, Environment, and Systems, College of Science and Technology, Kookmin University, Seoul, South Korea
| |
Collapse
|
20
|
Chen C, Lv Q, Li Y, Jin YH. The Anti-Tumor Effect and Underlying Apoptotic Mechanism of Ginsenoside Rk1 and Rg5 in Human Liver Cancer Cells. Molecules 2021; 26:molecules26133926. [PMID: 34199025 PMCID: PMC8271777 DOI: 10.3390/molecules26133926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Ginsenoside Rk1 and Rg5 are minor ginseng saponins that have received more attention recently because of their high oral bioavailability. Each of them can effectively inhibit the survival and proliferation of human liver cancer cells, but the underlying mechanism remains largely unknown. Network pharmacology and bioinformatics analysis demonstrated that G-Rk1 and G-Rg5 yielded 142 potential targets, and shared 44 putative targets associated with hepatocellular carcinoma. Enrichment analysis of the overlapped genes showed that G-Rk1 and G-Rg5 may induce apoptosis of liver cancer cells through inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signal pathways. Methyl thiazolyl tetrazolium (MTT) assay was used to confirm the inhibition of cell viability with G-Rk1 or G-Rg5 in highly metastatic human cancer MHCC-97H cells. We evaluated the apoptosis of MHCC-97H cells by using flow cytometry and 4′,6-diamidino-2-phenylindole (DAPI) staining. The translocation of Bax/Bak led to the depolarization of mitochondrial membrane potential and release of cytochrome c and Smac. A sequential activation of caspase-9 and caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP) were observed after that. The levels of anti-apoptotic proteins were decreased after treatment of G-Rk1 or G-Rg5 in MHCC-97H cells. Taken together, G-Rk1 and G-Rg5 promoted the endogenous apoptotic pathway in MHCC-97H cells by targeting and regulating some critical liver cancer related genes that are involved in the signal pathways associated with cell survival and proliferation.
Collapse
Affiliation(s)
| | | | - Yang Li
- Correspondence: (Y.L.); (Y.-H.J.)
| | | |
Collapse
|
21
|
Bae CH, Kim J, Nam W, Kim H, Kim J, Nam B, Park S, Lee J, Sim J. Fermented Red Ginseng Alleviates Ovalbumin-Induced Inflammation in Mice by Suppressing Interleukin-4 and Immunoglobulin E Expression. J Med Food 2021; 24:569-576. [PMID: 34161163 DOI: 10.1089/jmf.2020.4854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ginseng (the root of Panax ginseng Meyer) has been reported to have many biologic therapeutic effects, including anti-inflammatory properties, and ginsenosides are considered as one of the factors responsible for these therapeutic effects. To improve their therapeutic action, probiotic bacteria are used to ferment and chemically transform ginsenosides in red ginseng (RG). In this study, we aimed to investigate the beneficial effects of RG fermented by probiotic bacteria (FRG) against ovalbumin (OVA)-induced allergic rhinitis in a mouse model. We induced the mouse model via OVA inhalation; experimental results revealed increased immunoglobulin E (IgE) and interleukin (IL)-4 levels, leading to Th2-type cytokine response. The mice with induced allergy were then orally administered RG and FRG over 2 weeks, as a result of which, IL-4 and IgE levels in bronchoalveolar lavage fluid, nasal fluid, and serum were found to be ameliorated more effectively by FRG than by RG, suggesting that FRG has better immune regulatory effects than RG. FRG also downregulated immune cell levels, such as those of eosinophils and basophils, and significantly decreased the thickness of OVA-induced respiratory epithelium compared to RG. Collectively, the results showed that FRG treatment alleviates inflammation, thereby extending a protective effect to mice with OVA-induced inflammatory allergic rhinitis.
Collapse
Affiliation(s)
- Chu Hyun Bae
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Jisoo Kim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Woo Nam
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Hyeonji Kim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Jooyun Kim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Bora Nam
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | - Soodong Park
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| | | | - Jaehun Sim
- R&BD Center, Korea Yakult Co., Ltd., Yongin, Korea
| |
Collapse
|
22
|
Xu XF, Qu WJ, Jia Z, Han T, Liu MN, Bai YY, Wang M, Lin RC, Hua Q, Li XR. Effect of cultivation ages on anti-inflammatory activity of a new type of red ginseng. Biomed Pharmacother 2021; 136:111280. [PMID: 33485063 DOI: 10.1016/j.biopha.2021.111280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Ginseng has been widely applied in clinical practice, but the cultivation age cannot be ignored as it influences the quality of ginseng and its products. In this work, different cultivation ages of fresh ginseng (FG) from four to seven years were analysed by UPLC-Q-TOF-MS/MS. Principal component analysis and supervised orthogonal partial least squared discrimination analysis, which belong to the normal method of multivariate statistical analysis, were applied to discover the characteristic components of FG at different cultivation ages. The components of new type of red ginseng (NRG) derived from FG at different cultivation ages were compared by HPLC analysis. The pharmacological anti-inflammatory activity was evaluated by ELISA and qPCR. The result showed that the characteristic components of both 6- and 7-year-old ginseng were ginsenoside Rb1, mal-ginsenoside Rb1, ginsenoside Rc, mal-ginsenoside Rc, mal-ginsenoside Rb1 isomer, and mal-ginsenoside Rb2. Moreover, the characteristic components of both 4- and 5-year-old ginseng were ADP-glucose and 3-hydroxyhexanoyl CoA. In addition, 6-year-old NRG has higher rare ginsenosides than 4-year-old NRG, which possesses great anti-inflammatory activity in vitro. The results reveal the ginsenoside transformation law of NRG processing and suggest that the cultivation age of FG influences the content of ginsenosides in NRG. Therefore, 6-year-old ginseng is more suitable for red ginseng processing and clinical use.
Collapse
Affiliation(s)
- Xin-Fang Xu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Wen-Jia Qu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Zhe Jia
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Ting Han
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Meng-Nan Liu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Yu-Ying Bai
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Min Wang
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Rui-Chao Lin
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| | - Xiang-Ri Li
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
23
|
Enhanced Intestinal Immune Response in Mice after Oral Administration of Korea Red Ginseng-Derived Polysaccharide. Polymers (Basel) 2020; 12:polym12102186. [PMID: 32987851 PMCID: PMC7600159 DOI: 10.3390/polym12102186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: The immunostimulatory role of the polysaccharide fraction (KRG-P) of Korea red ginseng (KRG) was studied in cells. However, its immunomodulatory activity is unknown. Therefore, we investigated the chemical properties of KRG-P and its intestinal immune responses in vitro and in vivo. (2) Methods: KRG-P monosaccharide composition and molecular weight were determined using high-performance liquid and size-exclusion chromatography systems. Immunoglobulin A (IgA) and α-defensin-1 transcript levels were measured using a SYBR Green qRT-PCR; defensin-1, Granulocyte-macrophage colony-stimulating factor (GM-CSF), and IgA protein levels were determined using Western blotting and ELISA kits. (3) Results: The molecular weight of KRG-P was estimated to be 106 kDa, and it contained neutral sugar (74.3%), uronic acid (24.6%), and proteins (1%). In vitro studies of intestinal immunomodulatory activity of KRG-P indicated that GM-CSF and IgA levels increased in Peyer’s patch cells to higher levels than those obtained with KRG and induced bone marrow cell proliferation. In in vivo study, oral KRG-P administration to mice upregulated the expression of α-defensin-1 and IgA in the small intestinal tissue and that of secreted IgA in the feces. (4) Conclusions: KRG-P contributed to the modulation of intestinal immunity and maintenance of intestinal homeostasis against intestinal infection.
Collapse
|
24
|
Zhong C, Jiang C, Ni S, Wang Q, Cheng L, Wang H, Zhang Q, Liu W, Zhang J, Liu J, Wang M, Jin M, Shen P, Yao X, Wang G, Zhou F. Identification of bioactive anti-angiogenic components targeting tumor endothelial cells in Shenmai injection using multidimensional pharmacokinetics. Acta Pharm Sin B 2020; 10:1694-1708. [PMID: 33088689 PMCID: PMC7564034 DOI: 10.1016/j.apsb.2019.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Shenmai injection (SMI) is a well-defined herbal preparation that is widely and clinically used as an adjuvant therapy for cancer. Previously, we found that SMI synergistically enhanced the activity of chemotherapy on colorectal cancer by promoting the distribution of drugs in xenograft tumors. However, the underlying mechanisms and bioactive constituents remained unknown. In the present work, the regulatory effects of SMI on tumor vasculature were determined, and the potential anti-angiogenic components targeting tumor endothelial cells (TECs) were identified. Multidimensional pharmacokinetic profiles of ginsenosides in plasma, subcutaneous tumors, and TECs were investigated. The results showed that the concentrations of protopanaxadiol-type (PPD) ginsenosides (Rb1, Rb2/Rb3, Rc, and Rd) in both plasma and tumors, were higher than those of protopanaxatriol-type (Rg1 and Re) and oleanane-type (Ro) ginsenosides. Among PPD-type ginsenosides, Rd exhibited the greatest concentrations in tumors and TECs after repeated injection. In vivo bioactivity results showed that Rd suppressed neovascularization in tumors, normalized the structure of tumor vessels, and improved the anti-tumor effect of 5-fluorouracil (5FU) in xenograft mice. Furthermore, Rd inhibited the migration and tube formation capacity of endothelial cells in vitro. In conclusion, Rd may be an important active form to exert the anti-angiogenic effect on tumor after SMI treatment.
Collapse
|
25
|
Yu Q, Fan L, Duan J, Yu N, Li N, Zhu Q, Wang N. Ultrasound and heating treatments improve the antityrosinase ability of polyphenols. Food Chem 2020; 317:126415. [DOI: 10.1016/j.foodchem.2020.126415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 01/11/2023]
|
26
|
Effect of Deglycosylated Rutin by Acid Hydrolysis on Obesity and Hyperlipidemia in High-Fat Diet-Induced Obese Mice. Nutrients 2020; 12:nu12051539. [PMID: 32466230 PMCID: PMC7284422 DOI: 10.3390/nu12051539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
The present study evaluated the effects of acid-treated rutin on hyperlipidemia and obesity in high-fat diet (HFD)-induced obese mice. The mice consumed a HFD with or without acid-treated rutin for 7 weeks. Body weight gain considerably decreased, by approximately 33%, in the acid-treated rutin (AR) and quercetin (Q) groups compared to that in the HFD group. The adipocytes' size in epididymal fat in AR and Q groups was significantly reduced compared to that in the HFD group (p < 0.05). Treatment with AR decreased the levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol compared to the HFD group. In particular, administration of AR significantly decreased serum triglyceride (36.82 mg/dL) by 46% compared to HFD (69.30 mg/dL). The AR group also showed significantly decreased atherogenic indices and cardiac risk factors. These results suggest that deglycosylated rutin generated by acid treatment enhances the anti-obesity and hypolipidemic effects in obese mice, and provides valuable information for improving the functional properties of glycosidic flavonoids.
Collapse
|
27
|
Wang Q, Mu RF, Liu X, Zhou HM, Xu YH, Qin WY, Yang CR, Wang LB, Li HZ, Xiong WY. Steaming Changes the Composition of Saponins of Panax notoginseng (Burk.) F.H. Chen That Function in Treatment of Hyperlipidemia and Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4865-4875. [PMID: 32306731 DOI: 10.1021/acs.jafc.0c00746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Saponins of Panax notoginseng (Burk.) F.H. Chen have been classified as a type of composition in functional foods for numerous diseases. However, its mild effects and other characteristics limited clinical applications in diseases. Inspired by "nine steaming and nine processing" of P. notoginseng in traditional Chinese medicine, we developed a "steaming"-mimic protocol, which significantly changed the composition of saponins of P. notoginseng from the original, R1, Rg1, Re, Rb1, and Rd (raw-PNS), to the products after steaming, 20S/R-Rh1, Rk3, Rh4, 20S/R-Rg3, Rk1, and Rg5 (N-PNS). Surprisingly, N-PNS demonstrated promising activities in improving hyperlipidemia and reducing body weight and weight of white adipose tissue and the inhibition of adipogenesis in obese mice. In accordance with the results in vivo, N-PNS remarkably blunted adipogenesis at the early stage of differentiation dose-dependently in vitro. Moreover, we demonstrated that the activity may involve the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway by promoting phosphorylation of AMPKT172 and downregulating its downstream factors: sterol regulatory element binding protein 1c, stearoyl-CoA desaturase 1, and fatty acid synthase. Taken together, the steaming-induced eight compositions of saponins showed a very promising function in improving hyperlipidemia and obesity both in vivo and in vitro, providing fundamental evidence for future study and application in treatment of hyperlipidemia, obesity, and other lipid-related metabolic syndromes.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rong-Fang Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing Liu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, People's Republic of China
| | - Hui-Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu-Hui Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, People's Republic of China
| | - Wan-Ying Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, People's Republic of China
| | - Li-Bin Wang
- Biochip Research Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, People's Republic of China
| | - Hai-Zhou Li
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, Yunnan 650500, People's Republic of China
| | - Wen-Yong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, Kunming, Yunnan 650500, People's Republic of China
- Biochip Research Center, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, People's Republic of China
| |
Collapse
|
28
|
Kim H, Choi P, Kim T, Kim Y, Song BG, Park YT, Choi SJ, Yoon CH, Lim WC, Ko H, Ham J. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. J Ginseng Res 2020; 45:134-148. [PMID: 33437165 PMCID: PMC7790904 DOI: 10.1016/j.jgr.2020.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 01/10/2023] Open
Abstract
Background Lung cancer has a high incidence worldwide, and most lung cancer-associated deaths are attributable to cancer metastasis. Although several medicinal properties of Panax ginseng Meyer have been reported, the effect of ginsenosides Rk1 and Rg5 on epithelial-mesenchymal transition (EMT) stimulated by transforming growth factor beta 1 (TGF- β1) and self-renewal in A549 cells is relatively unknown. Methods We treated TGF-β1 or alternatively Rk1 and Rg5 in A549 cells. We used western blot analysis, real-time polymerase chain reaction (qPCR), wound healing assay, Matrigel invasion assay, and anoikis assays to determine the effect of Rk1 and Rg5 on TGF-mediated EMT in lung cancer cell. In addition, we performed tumorsphere formation assays and real-time PCR to evaluate the stem-like properties. Results EMT is induced by TGF-β1 in A549 cells causing the development of cancer stem-like features. Expression of E-cadherin, an epithelial marker, decreased and an increase in vimentin expression was noted. Cell mobility, invasiveness, and anoikis resistance were enhanced with TGF-β1 treatment. In addition, the expression of stem cell markers, CD44, and CD133, was also increased. Treatment with Rk1 and Rg5 suppressed EMT by TGF-β1 and the development of stemness in a dose-dependent manner. Additionally, Rk1 and Rg5 markedly suppressed TGF-β1-induced metalloproteinase-2/9 (MMP2/9) activity, and activation of Smad2/3 and nuclear factor kappa B/extra-cellular signal regulated kinases (NF-kB/ERK) pathways in lung cancer cells. Conclusions Rk1 and Rg5 regulate the EMT inducing TGF-β1 by suppressing the Smad and NF-κB/ERK pathways (non-Smad pathway).
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Pilju Choi
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
| | - Taejung Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
| | - Youngseok Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
| | - Bong Geun Song
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
| | - Young-Tae Park
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
| | - Seon-Jun Choi
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
| | - Cheol Hee Yoon
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
| | - Won-Chul Lim
- Traditional Food Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Hyeonseok Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
- Corresponding author. Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, Republic of Korea
| | - Jungyeob Ham
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
- Corresponding author. Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
29
|
Yu Q, Duan J, Yu N, Fan L. Enhancing the antityrosinase activity of saponins and polyphenols from Asparagus by hot air coupled with microwave treatments. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Siddiqi MZ, Im WT. Hankyongella ginsenosidimutans gen. nov., sp. nov., isolated from mineral water with ginsenoside coverting activity. Antonie Van Leeuwenhoek 2020; 113:719-727. [PMID: 31980980 DOI: 10.1007/s10482-020-01385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/09/2020] [Indexed: 11/26/2022]
Abstract
In this study, a novel ginsenoside transforming bacterium, strain W1-2-3T, was isolated from mineral water. The 16S rRNA gene sequence analysis showed that strain W1-2-3T shares 93.7-92.2% sequence similarity with the members of the family Sphingomonadaceae and makes a group with Sphingoaurantiacus capsulatus YLT33T (93.7%) and S. polygranulatus MC 3718T (93.4%). The novel isolate efficiently hydrolyses the ginsenoside Rc to Rd. The genome comprises a single circular 2,880,809, bp chromosome with 3211 genes in total, and 1993 protein coding genes. The isolate was observed to grow at 10-37 °C and at pH 6-10 on R2A agar medium; maximum growth was found to occur at 25 °C and pH 7.0. Strain W1-2-3T was found to contain ubiquinone-10 as the predominant quinone and the fatty acids C16:1, C17:1ω6c, C14:0 2-OH, summed feature 3 (C16:1ω6c/C16:1ω7c) and summed feature 8 (C18:1ω6c/C18:1ω7c). The DNA G+C content was determined to be 65.9 mol%. Strain W1-2-3T can be distinguished from the other members of the family Sphingomonadaceae by a number of chemotaxonomic and phenotypic characteristics. The major polar lipids of strain W1-2-3T were identified as phosphatidylethanolamine, an unidentified glycolipid and an unidentified polar lipid. The major poly amine was found to be homospermidine. Based on polyphasic taxonomic analysis, strain W1-2-3T is concluded to represent a novel species within a new genus, for which the name Hankyongella ginsenosidimutans gen. nov., sp. nov. is proposed. The type strain of Hankyongella ginsenosidimutans is W1-2-3T (= KACC 18307T = LMG 28594T).
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyoung National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
- AceEMzyme Co., Ltd, Academic Industry Cooperation, 327 Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| | - Wan-Taek Im
- Department of Biotechnology, Hankyoung National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea.
- AceEMzyme Co., Ltd, Academic Industry Cooperation, 327 Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea.
| |
Collapse
|
31
|
Siddiqi MZ, Hashmi MS, Oh JM, Chun S, Im WT. Identification of novel glycoside hydrolases via whole genome sequencing of Niabella ginsenosidivorans for production of various minor ginsenosides. 3 Biotech 2019; 9:258. [PMID: 31192083 DOI: 10.1007/s13205-019-1776-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, many bacterial strains were screened for the production of minor ginsenosides, but based on conversion competence among the strains, the strain Niabella ginsenosidivorans BS26T has the good ginsenoside-transforming ability. Therefore, the strain BS26T was selected for complete genome sequence analysis to determine the target (glycoside hydrolase) functional genes. Whole genome analysis of strain BS26T showed 43 glycoside hydrolase genes in total. To determine the target functional gene, 12 sets of six different glycoside hydrolases (3 set of β-glucosidase; 3 set of trehalase; 3 set of arabinofuranosidase; 2 set of xylosidase; and one set of each α-galactosidase and α-fucosidase, respectively) were selected and cloned in E. coli BL21 (DE3) using the pGEX4T-1 vector and were characterized. Among these 12 sets of clones, only one, β-glucosidase (BglNg-767), showed ginsenoside conversion ability. The BglNg-767 comprised 767 amino acids and belonged to glycoside hydrolase family 3 (GH3). The recombinant GST-BglNg-767 was capable of altering the ginsenosides Rb1, Rd, and gypenoside XVII (Gyp-XVII) to F2; Rb2 to C-O; Rb3 to C-Mx1, and Rc to C-Mc1. Besides, complete genome sequence analysis of strain BS26T also indicates 30 endopeptidase genes, which may be responsible for self-hydrolysis of the proteins. Therefore, using SDS-PAGE analysis, we predict that the difference between the molecular weight of the expressed protein (around 90 kDa) and the predicted amino-acid sequence (102.7 kDa) is due to self-hydrolysis of the proteins.
Collapse
|
32
|
Xiao Y, Liu C, Im WT, Chen S, Zuo K, Yu H, Song J, Xu L, Yi TH, Jin F. Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I. J Ginseng Res 2019; 43:186-195. [PMID: 30976159 PMCID: PMC6437641 DOI: 10.1016/j.jgr.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Notoginseng stem-leaf (NGL) ginsenosides have not been well used. To improve their utilization, the biotransformation of NGL ginsenosides was studied using ginsenosidase type-I from Aspergillus niger g.848. METHODS NGL ginsenosides were reacted with a crude enzyme in the RAT-5D bioreactor, and the dynamic changes of multi-ginsenosides of NGL were recognized by HPLC. The reaction products were separated using a silica gel column and identified by HPLC and NMR. RESULTS All the NGL ginsenosides are protopanaxadiol-type ginsenosides; the main ginsenoside contents are 27.1% Rb3, 15.7% C-Mx1, 13.8% Rc, 11.1% Fc, 7.10% Fa, 6.44% C-Mc, 5.08% Rb2, and 4.31% Rb1. In the reaction of NGL ginsenosides with crude enzyme, the main reaction of Rb3 and C-Mx1 occurred through Rb3→C-Mx1→C-Mx; when reacted for 1 h, Rb3 decreased from 27.1% to 9.82 %, C-Mx1 increased from 15.5% to 32.3%, C-Mx was produced to 6.46%, finally into C-Mx and a small amount of C-K. When reacted for 1.5 h, all the Rb1, Rd, and Gyp17 were completely reacted, and the reaction intermediate F2 was produced to 8.25%, finally into C-K. The main reaction of Rc (13.8%) occurred through Rc→C-Mc1→C-Mc→C-K. The enzyme barely hydrolyzed the terminal xyloside on 3-O- or 20-O-sugar-moiety of the substrate; therefore, 9.43 g C-Mx, 6.85 g C-K, 4.50 g R7, and 4.71 g Fc (hardly separating from the substrate) were obtained from 50 g NGL ginsenosides by the crude enzyme reaction. CONCLUSION Four monomer ginsenosides were successfully produced and separated from NGL ginsenosides by the enzyme reaction.
Collapse
Affiliation(s)
- Yongkun Xiao
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Global Campus, Yongin, Republic of Korea
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
- Tianjin Ginkingsen Health Co., Ltd., Tianjin, China
| | - Chunying Liu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Wan-Teak Im
- Department of Biotechnology, Hankyoung National University, Anseong, Republic of Korea
| | - Shuang Chen
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Kangze Zuo
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Hongshan Yu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Jianguo Song
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Longquan Xu
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| | - Tea-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Global Campus, Yongin, Republic of Korea
| | - Fengxie Jin
- College of Biotechnology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
33
|
Choi P, Kim K, Kim T, Park YT, Song BG, Shin MS, Kim YH, Hwang GS, Kang KS, Ham J. Application of microwave-irradiation technique in deglycosylation of ginsenosides for improving apoptosis induction in human melanoma SK-MEL-2 cells. Bioorg Med Chem Lett 2019; 29:400-405. [PMID: 30594431 DOI: 10.1016/j.bmcl.2018.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022]
Abstract
To increase the contents of medicinally effective ginsenosides, we used high-temperature and high-pressure thermal processing of ginseng by exposing it to microwave irradiation. To determine the anti-melanoma effect, the malignant melanoma SK-MEL-2 cell line was treated with an extract of microwave-irradiated ginseng. Microwave irradiation caused changes in the ginsenoside contents: the amounts of ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd were disappeared, while those of less polar ginsenosides, such as Rg3, Rg5, and Rk1, were increased. In particular, the contents of Rk1 and Rg5 markedly increased. Melanoma cells treated with the microwave-irradiated ginseng extract showed markedly increased cell death. The results indicate that the microwave-irradiated ginseng extract induced melanoma cell death via the apoptotic pathway and that the cytotoxic effect of the microwave-irradiated ginseng extract is attributable to the increased contents of specific ginsenosides.
Collapse
Affiliation(s)
- Pilju Choi
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Kwantae Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Taejung Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Young-Tae Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Bong Geun Song
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Yong Ho Kim
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| | - Jungyeob Ham
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
34
|
Semi-Synthesis and Cellular Effects of Three Different Ginsenosides Derived from Re, Rh1, and PPT. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Phi LTH, Sari IN, Wijaya YT, Kim KS, Park K, Cho AE, Kwon HY. Ginsenoside Rd Inhibits the Metastasis of Colorectal Cancer via Epidermal Growth Factor Receptor Signaling Axis. IUBMB Life 2018; 71:601-610. [PMID: 30576064 DOI: 10.1002/iub.1984] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
Ginsenoside Rd is a saponin from ginseng and has been reported to have various biological activities. However, the effect of ginsenoside Rd on the metastasis of colorectal cancer (CRC) remains unknown. Here, we found that ginsenoside Rd decreased the colony-forming ability, migration, invasion, and wound-healing abilities of CRC cells, although it did not affect cell proliferation. In addition, using an inverse-docking assay, we found that ginsenoside Rd bound to epidermal growth factor receptor (EGFR) with a high binding affinity, inducing the downregulation of stemness- and epithelial-mesenchymal transition-related genes; these were partially rescued by either exogenous EGF treatment or ectopic expression of SOX2. Furthermore, ginsenoside Rd significantly decreased the number and size of tumor metastasis nodules in the livers, lungs, and kidneys of mouse model of metastasis. © 2018 IUBMB Life, 71(5):601-610, 2019.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Yoseph Toni Wijaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Kichul Park
- Department of Bioinformatics, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea
| |
Collapse
|
36
|
Yao H, Li J, Song Y, Zhao H, Wei Z, Li X, Jin Y, Yang B, Jiang J. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. Int J Nanomedicine 2018; 13:6249-6264. [PMID: 30349248 PMCID: PMC6188153 DOI: 10.2147/ijn.s176176] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fluorescent carbon-based nanomaterials have promising properties such as biosensing, cell imaging, tracing and drug delivery. However, carbon dots (CDs) with specific inherent biological functions have not been investigated. Ginsenosides are the components with multiple bioactivities found in plants of the genus Panax, which have attracted a lot of attention for their anticancer effect. MATERIALS AND METHODS In this study, we prepared a kind of novel photoluminescent CDs from ginsenoside Re by one-step hydrothermal synthesis method. The conventional methods including transmission electron microscopy, Fourier transform infrared spectroscopy, HPLC and fluorescence spectrum were used for characterization of CDs. In vitro anticancer effect was investigated by cytotoxicity assay, flow cytometry and Western blot analysis. RESULTS The as-prepared Re-CDs had an average diameter of 4.6±0.6 nm and excellent luminescent properties. Cellular uptake of Re-CDs was facilitated by their tiny nanosize, with evidence of their bright excitation-dependent fluorescent images. Compared with ginsenoside Re, the Re-CDs showed greater inhibition efficiency of cancer cell proliferation, with lower toxicity to the normal cells. The anticancer activity of Re-CDs was suggested to be associated with the generation of large amount of ROS and the caspase-3 related cell apoptosis. CONCLUSION Hopefully, the dual functional Re-CDs, which could both exhibit bioimaging and anticancer effect, are expected to have great potential in future clinical applications.
Collapse
Affiliation(s)
- Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China,
| | - Jing Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China,
| | - Yubin Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, P. R. China
| | - Hong Zhao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China,
| | - Zhenhong Wei
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China,
| | - Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China,
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, Jilin, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, P. R. China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P. R. China,
| |
Collapse
|
37
|
Gu B, Wang J, Song Y, Wang Q, Wu Q. The inhibitory effects of ginsenoside Rd on the human glioma U251 cells and its underlying mechanisms. J Cell Biochem 2018; 120:4444-4450. [PMID: 30260020 DOI: 10.1002/jcb.27732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The current study was designed to investigate the inhibitory effects of ginsenoside Rd (Gs-Rd) on human glioma U251 cells in vitro and its possible underlying mechanisms. METHODS The groups included blank control group, low concentration Gs-Rd treatment group (20 μM), mid concentration Gs-Rd treatment group (40 μM), and high concentration Gs-Rd treatment group (80 μM). The proliferative activity of human glioma U251 cells was detected by the MTT assay. Flow cytometry was performed to measure cell apoptosis of human glioma U251 cells. In addition, the ELISA assay was used to measure the telomerase activities in different groups on 24 hours, 48 hours, and 72 hours. Furthermore, real-time quantitative polymerase chain reaction (RT-PCR) and Western blot analysis were performed to measure the expression of Bcl-2, human telomerase catalytic subunit (hTERT), and caspase-3 in different groups on 48 hours at both messenger RNA (mRNA) and protein levels. RESULTS The proliferation of U251 cells was inhibited by Gs-Rd with different concentrations in the dose- and time-dependent manners. In addition, Gs-Rd promoted U251 cell apoptosis rate in a dose-dependent manner. Gs-Rd with different concentrations (20 μM, 40 μM, and 80 μM) significantly enhanced the expression of teleomerase on 24 hours and 48 hours. In addition, Gs-Rd with different concentrations significantly increased caspase-3 and decreased Bcl-2 and hTERT expressions at both mRNA and protein levels. CONCLUSION The Gs-Rd can remarkably inhibit the proliferation and promote cell apoptosis of human glioma U251 cells. The possible underlying mechanisms could be related to inhibiting telomerase activity, downregulating expression of Bcl-2 and hTERT, and upregulating expression of caspase-3 of human glioma U251 cells.
Collapse
Affiliation(s)
- Biao Gu
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jipeng Wang
- Department of Respiratory Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yaqi Song
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qi Wang
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qingquan Wu
- Department of Thoracic Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
38
|
Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, Pandy V. What Has Come out from Phytomedicines and Herbal Edibles for the Treatment of Cancer? ChemMedChem 2018; 13:1854-1872. [PMID: 29927521 DOI: 10.1002/cmdc.201800343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lakshmi Tunki
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mahabalarao Sampath Kumar Halmuthur
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR - Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS, Biotechnology and Cell Signaling, University of Strasbourg, Laboratory of Excellence Medalis, Illkirch, 67400, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, 67000, France
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, Andhra Pradesh, 522034, India
| |
Collapse
|
39
|
Wong FC, Chai TT, Xiao J. The influences of thermal processing on phytochemicals and possible routes to the discovery of new phytochemical conjugates. Crit Rev Food Sci Nutr 2018; 59:947-952. [PMID: 29787299 DOI: 10.1080/10408398.2018.1479681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
Collapse
Affiliation(s)
- Fai-Chu Wong
- a Centre for Biodiversity Research , Universiti Tunku Abdul Rahman , Kampar , Malaysia
- b Biochemistry Program, Department of Chemical Science , Faculty of Science, Universiti Tunku Abdul Rahman , Kampar , Malaysia
| | - Tsun-Thai Chai
- a Centre for Biodiversity Research , Universiti Tunku Abdul Rahman , Kampar , Malaysia
- b Biochemistry Program, Department of Chemical Science , Faculty of Science, Universiti Tunku Abdul Rahman , Kampar , Malaysia
| | - Jianbo Xiao
- c Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade , Taipa , Macau
| |
Collapse
|
40
|
Shin MS, Song JH, Choi P, Lee JH, Kim SY, Shin KS, Ham J, Kang KS. Stimulation of Innate Immune Function by Panax ginseng after Heat Processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4652-4659. [PMID: 29659255 DOI: 10.1021/acs.jafc.8b00152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Panax ginseng Meyer has been used for the treatment of immune diseases and for strengthening the immune function. In this study, we evaluated the innate immune-stimulating functions and action mechanisms of white ginseng (WG) and heat-processed ginseng (HPG) in RAW264.7 cells. According to LC-MS analysis results, WG contained typical ginsenosides, such as Rb1, Rc, Rb2, Rd, and Rg1, whereas HPG contained Rg3, Rk1, and Rg5 as well as typical ginsenosides. HPG, not WG, enhanced NF-κB transcriptional activity, cytokine production (IL-6 and TNF-α), and MHC class I and II expression in RAW264.7 cells. In addition, HPG phosphorylated MAPKs and NF-kB pathways. In experiments with inhibitors, the ERK inhibitor completely suppressed the effect of HPG on IL-6 and TNF-α production. HPG-induced c-Jun activation was suppressed by an ERK inhibitor and partially suppressed by JNK, p38, and IκBα inhibitors. Collectively, these results suggested that HPG containing Rg3, Rg5, and Rk1 increased macrophage activation which was regulated by the ERK/c-Jun pathway in RAW264.7 cells.
Collapse
Affiliation(s)
- Myoung-Sook Shin
- College of Korean Medicine , Gachon University , Seongnam 13120 , Korea
| | - Ji Hoon Song
- Department of Medicine , University of Ulsan College of Medicine , Seoul 05505 , Korea
| | - Pilju Choi
- Institute of Natural Products , Korea Institute of Science and Technology (KIST) , Gangneung 210-340 , Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology , College of Life Science, CHA University , Gyeonggi 443-742 , Korea
| | - Song-Yi Kim
- College of Korean Medicine , Gachon University , Seongnam 13120 , Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology , Kyonggi University , Suwon 443-760 , Korea
| | - Jungyeob Ham
- Institute of Natural Products , Korea Institute of Science and Technology (KIST) , Gangneung 210-340 , Korea
| | - Ki Sung Kang
- College of Korean Medicine , Gachon University , Seongnam 13120 , Korea
| |
Collapse
|
41
|
Ryu J, Yoon J, Ryu S, Kang S, Kang M, Kim BS, Lee YW. CO2-assisted hydrothermal reactions for ginseng extract. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Peng M, Yi YX, Zhang T, Ding Y, Le J. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review. Front Pharmacol 2018; 9:188. [PMID: 29593531 PMCID: PMC5859349 DOI: 10.3389/fphar.2018.00188] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 12/05/2022] Open
Abstract
Panax notoginseng (Sanqi), a traditional Chinese medical drug which has been applied to medical use for over four centuries, contains high content of dammarane-type tetracyclic triterpenoid saponins. A number of stereoisomeric dammarane-type saponins exist in this precious herb, and some are particularly regarded as “biomarkers” in processed notoginseng. Contemporary researches have indicated that some saponin stereoisomers may show stereospecific pharmacological activities, such as anti-tumor, antioxidative, anti-photoaging, anti-inflammatory, antidiabetic, and neuro-protective activities, as well as stereoselective effects on ion channel current regulation, cardiovascular system, and immune system. The current review provides a comprehensive overview of chemical compositions of raw and processed P. notoginseng with a particular emphasis on saponin stereoisomers. Besides, the pharmacological and pharmacokinetic researches, as well as determination and biotechnological preparation methods of stereoisomeric saponins in notoginseng are discussed extensively.
Collapse
Affiliation(s)
- Ming Peng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Ya X Yi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Le
- Department of Chemistry, Shanghai Institute for Food and Drug Control, Shanghai, China.,Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
43
|
Li M, Chen Y, Zhang P, Zhang L, Zhou R, Xu Y, Ding H, Wang Q, Wang Z. Semi-synthesis of Twelve Known 20Z/E Pseudo-Ginsenosides and Their Comparative Study of Antioxidative Activity in Free Radical Induced Hemolysis of Rabbit Erythrocytes. Chem Pharm Bull (Tokyo) 2018. [PMID: 29515052 DOI: 10.1248/cpb.c17-00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twelve pseudo-ginsenosides were synthesized under a mild condition, via a simple three-step called acetylation, elimination-addition and saponification. The inhibitory effects of these twelve pseudo-ginsenosides were screened on the hemolysis of rabbit erythrocytes caused by 2,2'-azobis (2-amidinopropane hydrochloride) (AAPH). It was found that the IC50 values followed the sequence of (20Z) pseudo-protopanaxatriol (pseudo-PPT)<(20Z) pseudo-protopanaxadiol (pseudo-PPD)<(20Z) pseudo-Rh2<(20E) pseudo-PPT<(20E) pseudo-PPD<(20E) pseudo-Rh2<(20Z) pseudo-Rg2<(20E) pseudo-Rg2<Rb1<(20Z) pseudo-Rh1<Rg2<(20E) pseudo-Rh1. These compounds can be divided into three groups: accelerate the hemolysis group (7, 8), weak group (2, 11, 12) and strong group (others). Moreover, we also find that most of the Z configuration has better antioxidative activity than E configuration and the number and type of sugar moieties to the ring of triterpene dammarane influence the antioxidative activity.
Collapse
Affiliation(s)
- Manman Li
- Department of Chemistry, Jilin University
| | | | | | - Ling Zhang
- Department of Chemistry, Jilin University
| | - Ri Zhou
- Department of Chemistry, Jilin University
| | - Yan Xu
- Department of Chemistry, Jilin University
| | | | - Qiujing Wang
- College of Basic Medical Sciences, Jilin University
| | | |
Collapse
|
44
|
Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells. Biochem Pharmacol 2017; 148:64-74. [PMID: 29225132 DOI: 10.1016/j.bcp.2017.12.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023]
Abstract
The use of ginsenosides in cancer therapy has been intensively investigated. The ginsenoside Rh4 (Rh4), a rare saponin obtained from Panax notoginseng, dissolves in water more readily than total saponins, making this compound easier to use in anti-cancer pharmaceutics. Here, we investigated the antiproliferative activity and mechanisms of Rh4 in colorectal cancer, both in vivo and in vitro. A colorectal cancer xenograft model showed that Rh4 significantly inhibited tumor growth with few side effects. CCK-8 assays, flow cytometric analysis, Western blotting and immunohistochemistry revealed that Rh4 effectively suppressed colorectal cancer cell proliferation via inducing G0/G1 phase arrest, caspase-dependent apoptosis and autophagic cell death but was not significantly cytotoxic to normal colon epithelial cells. Furthermore, apoptosis played a dominant role in Rh4-induced cell death, as the pan-caspase inhibitor Z-VAD-FMK blocked cell death to a greater extent than the autophagy inhibitor 3-methyladenine. Moreover, Rh4 increased reactive oxygen species (ROS) accumulation and subsequently activated the JNK-p53 pathway. An ROS scavenger and JNK and p53 inhibitors significantly attenuated Rh4-induced apoptosis and autophagy. Thus, the present study is the first to illustrate that Rh4 triggers apoptosis and autophagy via activating the ROS/JNK/p53 pathway in colorectal cancer cells, providing basic scientific evidence that Rh4 shows great potential as an anti-cancer agent.
Collapse
|
45
|
Elshafay A, Tinh NX, Salman S, Shaheen YS, Othman EB, Elhady MT, Kansakar AR, Tran L, Van L, Hirayama K, Huy NT. Ginsenoside Rk1 bioactivity: a systematic review. PeerJ 2017; 5:e3993. [PMID: 29158964 PMCID: PMC5695252 DOI: 10.7717/peerj.3993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside Rk1 (G-Rk1) is a unique component created by processing the ginseng plant (mainly Sung Ginseng (SG)) at high temperatures. The aim of our study was to systematically review the pharmacological effects of G-Rk1. We utilized and manually searched eight databases to select in vivo and in vitro original studies that provided information about biological, pharmaceutical effects of G-Rk1 and were published up to July 2017 with no restriction on language or study design. Out of the 156 papers identified, we retrieved 28 eligible papers in the first skimming phase of research. Several articles largely described the G-Rk1 anti-cancer activity investigating "cell viability", "cell proliferation inhibition", "apoptotic activity", and "effects of G-Rk1 on G1 phase and autophagy in tumor cells" either alone or in combination with G-Rg5. Others proved that it has antiplatelet aggregation activities, anti-inflammatory effects, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis. In conclusion, G-Rk1 has a significant anti-tumor effect on liver cancer, melanoma, lung cancer, cervical cancer, colon cancer, pancreatic cancer, gastric cancer, and breast adenocarcinoma against in vitro cell lines. In vivo experiments are further warranted to confirm these effects.
Collapse
Affiliation(s)
| | - Ngo Xuan Tinh
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | | | | | | | | | | | - Linh Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Le Van
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
46
|
Jung JS, Lee DH, Seong S, Kim SS. A Case of T Cell Lymphoma Treated by Korean Medicine Therapy Alone. Case Rep Oncol 2017; 10:515-523. [PMID: 28690526 PMCID: PMC5498937 DOI: 10.1159/000472248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
This case report is aimed to investigate the effects of Korean medicine therapy (KMT) alone including oral herbal medicine on treating a patient with atypical peripheral CD4 T cell lymphoma. The oral medicine used is Hyunamdan made of heat-processed ginseng and Hangamdan S. An 87-year-old man who was diagnosed as having atypical peripheral CD4 T cell lymphoma on November 30, 2015 was treated with KMT from December 23, 2015 until October 22, 2016. The effectiveness of therapies was evaluated with PET-CT scan as well as the change of the main sign of lymphoma. The sizes of the right axillar and right external iliac lymph nodes decreased. These results suggest that KMT can be an effective method to treat atypical peripheral CD4 T cell lymphoma.
Collapse
Affiliation(s)
- Jun-Suk Jung
- Soram Korean Medicine Hospital, Seoul, Republic of Korea
| | - Dong-Hyun Lee
- Soram Korean Medicine Hospital, Seoul, Republic of Korea
| | - Shin Seong
- Soram Korean Medicine Hospital, Seoul, Republic of Korea
| | - Sung Su Kim
- Soram Korean Medicine Hospital, Seoul, Republic of Korea
| |
Collapse
|
47
|
Yu S, Zhou X, Li F, Xu C, Zheng F, Li J, Zhao H, Dai Y, Liu S, Feng Y. Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci Rep 2017; 7:138. [PMID: 28273939 PMCID: PMC5428039 DOI: 10.1038/s41598-017-00262-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/16/2017] [Indexed: 11/09/2022] Open
Abstract
Microbial transformation of ginsenosides to increase its pharmaceutical effect is gaining increasing attention in recent years. In this study, Cellulosimicrobium sp. TH-20, which was isolated from soil samples on which ginseng grown, exhibited effective ginsenoside-transforming activity. After protopanaxadiol (PPD)-type ginsenoside (Rb1) and protopanaxatriol (PPT)-type ginsenosides (Re and Rg1) were fed to C. sp. TH20, a total of 12 metabolites, including 6 new intermediate metabolites, were identified. Stepwise deglycosylation and dehydrogenation on the feeding precursors have been observed. The final products were confirmed to be rare ginsenosides Rd, GypXVII, Rg2 and PPT after 96 h transformation with 38–96% yields. The four products showed improved anti-inflammatory activities by using lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages and the xylene-induced acute inflammatory model of mouse ear edema. The results indicated that they could dramatically attenuate the production of TNF-α more effectively than the precursors. Our study would provide an example of a unique and powerful microbial cell factory for efficiently converting both PPD-type and PPT-type ginsenosides to rare natural products, which extends the drug candidates as novel anti-inflammatory remedies.
Collapse
Affiliation(s)
- Shanshan Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiaoli Zhou
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Fan Li
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Chunchun Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Huanxi Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
48
|
Siddiqi MZ, Shafi SM, Im WT. Complete genome sequencing of Arachidicoccus ginsenosidimutans sp. nov., and its application for production of minor ginsenosides by finding a novel ginsenoside-transforming β-glucosidase. RSC Adv 2017. [DOI: 10.1039/c7ra02612a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bacterial strain (BS20T), which has ginsenoside-transforming ability, was whole genome sequenced for the identification of a target gene.
Collapse
Affiliation(s)
- Muhammad Zubair Siddiqi
- Department of Biotechnology
- Hankyong National University
- Anseong-si
- Republic of Korea
- Center for Genetic Information
| | | | - Wan-Taek Im
- Department of Biotechnology
- Hankyong National University
- Anseong-si
- Republic of Korea
- Center for Genetic Information
| |
Collapse
|
49
|
An Integrated Strategy for Global Qualitative and Quantitative Profiling of Traditional Chinese Medicine Formulas: Baoyuan Decoction as a Case. Sci Rep 2016; 6:38379. [PMID: 27924825 PMCID: PMC5141425 DOI: 10.1038/srep38379] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 11/09/2016] [Indexed: 12/24/2022] Open
Abstract
Clarification of the chemical composition of traditional Chinese medicine formulas (TCMFs) is a challenge due to the variety of structures and the complexity of plant matrices. Herein, an integrated strategy was developed by hyphenating ultra-performance liquid chromatography (UPLC), quadrupole time-of-flight (Q-TOF), hybrid triple quadrupole-linear ion trap mass spectrometry (Qtrap-MS), and the novel post-acquisition data processing software UNIFI to achieve automatic, rapid, accurate, and comprehensive qualitative and quantitative analysis of the chemical components in TCMFs. As a proof-of-concept, the chemical profiling of Baoyuan decoction (BYD), which is an ancient TCMF that is clinically used for the treatment of coronary heart disease that consists of Ginseng Radix et Rhizoma, Astragali Radix, Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle, and Cinnamomi Cortex, was performed. As many as 236 compounds were plausibly or unambiguously identified, and 175 compounds were quantified or relatively quantified by the scheduled multiple reaction monitoring (sMRM) method. The findings demonstrate that the strategy integrating the rapidity of UNIFI software, the efficiency of UPLC, the accuracy of Q-TOF-MS, and the sensitivity and quantitation ability of Qtrap-MS provides a method for the efficient and comprehensive chemome characterization and quality control of complex TCMFs.
Collapse
|
50
|
Li M, Wang Z, Zhang P, Xu Y, Ding H, Sui D, Xu H, Chen Y. Two New Triterpenoid Saponins from the Structural Modification of Pseudoginsenoside-F 11 and their Cytotoxic Activities. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two ginsenoside derivatives (1, 2) along with 2 known ginsenosides (3, 4) were isolated from the acid hydrolysis products of pseudoginsenoside-F11. Their structures were elucidated on the basis of spectroscopic analyses, including 1D, 2D NMR and HR-ESI-MS. Among them, (12 R, 20 S, 24 S)-20, 24; 12, 24-diepoxy-dammarane-3β, 6α-diol (1) and (20 R, 24 R)-dammar-20, 24-epoxy-3β, 6α, 12β, 25-tetraol (2) were identified as new triterpenoid saponins. They were subjected to assay for cytotoxic activities against six human tumor cells lines.
Collapse
Affiliation(s)
- Manman Li
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Zhicai Wang
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Pengfei Zhang
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Yan Xu
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Hongda Ding
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Dayuan Sui
- Department of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Huali Xu
- Department of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanping Chen
- Department of Chemistry, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|