1
|
Li D, Li J, Hu J, Tang M, Xiu P, Guo Y, Chen T, Mu N, Wang L, Zhang X, Liang G, Wang H, Fan C. Nanomechanical Profiling of Aβ42 Oligomer-Induced Biological Changes in Single Hippocampus Neurons. ACS NANO 2023; 17:5517-5527. [PMID: 36881017 DOI: 10.1021/acsnano.2c10861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding how Aβ42 oligomers induce changes in neurons from a mechanobiological perspective has important implications in neuronal dysfunction relevant to neurodegenerative diseases. However, it remains challenging to profile the mechanical responses of neurons and correlate the mechanical signatures to the biological properties of neurons given the structural complexity of cells. Here, we quantitatively investigate the nanomechanical properties of primary hippocampus neurons upon exposure to Aβ42 oligomers at the single neuron level by using atomic force microscopy (AFM). We develop a method termed heterogeneity-load-unload nanomechanics (HLUN), which exploits the AFM force spectra in the whole loading-unloading cycle, allowing comprehensive profiling of the mechanical properties of living neurons. We extract four key nanomechanical parameters, including the apparent Young's modulus, cell spring constant, normalized hysteresis, and adhesion work, that serve as the nanomechanical signatures of neurons treated with Aβ42 oligomers. These parameters are well-correlated with neuronal height increase, cortical actin filament strengthening, and calcium concentration elevation. Thus, we establish an HLUN method-based AFM nanomechanical analysis tool for single neuron study and build an effective correlation between the nanomechanical profile of the single neurons and the biological effects triggered by Aβ42 oligomers. Our finding provides useful information on the dysfunction of neurons from the mechanobiological perspective.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jiang Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiao Hu
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Mingjie Tang
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yunchang Guo
- Yihuang (Wuxi) Spectrum Measurement & Control Co., Ltd., Wuxi 214024, Jiangsu, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ning Mu
- Department of Neurosurgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xuehua Zhang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton T6G1H9, Alberta, Canada
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Huabin Wang
- Center of Super-resolution Optics and Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200024, China
| |
Collapse
|
2
|
Steered Molecular Dynamics of Lipid Membrane Indentation by Carbon and Silicon-Carbide Nanotubes-The Impact of Indenting Angle Uncertainty. SENSORS 2021; 21:s21217011. [PMID: 34770317 PMCID: PMC8587279 DOI: 10.3390/s21217011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
Due to the semi-liquid nature and uneven morphologies of biological membranes, indentation may occur in a range of non-ideal conditions. These conditions are relatively unstudied and may alter the physical characteristics of the process. One of the basic challenges in the construction of nanoindenters is to appropriately align the nanotube tip and approach the membrane at a perpendicular angle. To investigate the impact of deviations from this ideal, we performed non-equilibrium steered molecular dynamics simulations of the indentation of phospholipid membranes by homogeneous CNT and non-homogeneous SiCNT indenters. We used various angles, rates, and modes of indentation, and the withdrawal of the relative indenter out of the membrane in corresponding conditions was simulated.
Collapse
|
3
|
Rezaei A, Morsali A, Bozorgmehr MR, Nasrabadi M. Quantum chemical analysis of 5-aminolevulinic acid anticancer drug delivery systems: Carbon nanotube, –COOH functionalized carbon nanotube and iron oxide nanoparticle. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Engineered Nanomaterials for Aviation Industry in COVID-19 Context: A Time-Sensitive Review. COATINGS 2021. [DOI: 10.3390/coatings11040382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Engineered nanomaterials (ENMs) are catalyzing the Industry 4.0 euphoria in a significant way. One prime beneficiary of ENMs is the transportation industry (automotive, aerospace, rail car), where nanostructured multi-materials have ushered the path toward high-strength, ultra-impact-resistant, lightweight, and functionally graded engineered surfaces/components creation. The present paper aims to extrapolate much-needed ENMs knowledge from literature and its usage in the aviation industry, highlighting ENMs contribution to aviation state-of-the-art. Topics such as ENMs classification, manufacturing/synthesis methods, properties, and characteristics derived from their utilization and uniqueness are addressed. The discussion will lead to novel materials’ evolving need to protect aerospace surfaces from unfolding SARS-COVID-19 and other airborne pathogens of a lifetime challenge.
Collapse
|
5
|
Park S, Nguyen DV, Kang L. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine (Lond) 2021; 16:335-349. [PMID: 33533658 DOI: 10.2217/nnm-2020-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid advancements of nanotechnology over the recent years have reformed the methods used for treating human diseases. Nanostructures including nanoneedles, nanorods, nanowires, nanofibers and nanotubes have exhibited their potential roles in drug delivery, biosensing, cancer therapy, regenerative medicine and intracellular surgery. These high aspect ratio structures enhance targeted drug delivery with spatiotemporal control while also demonstrating their role as an efficient intracellular biosensor with minimal invasiveness. This review discusses the history and emergence of these nanostructures and their fabrication methods. This review also provides an overview of the different applications of nanoneedle systems, further highlighting the importance of greater investigation into these nanostructures for future medicine.
Collapse
Affiliation(s)
- Sol Park
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| | - Duc-Viet Nguyen
- Nusmetics Pte. Ltd, i4 building, 3 Research Link, Singapore 117602, Republic of Singapore
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
7
|
Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114089. [PMID: 32062100 DOI: 10.1016/j.envpol.2020.114089] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 05/23/2023]
Abstract
The prevalence of microplastic debris in aquatic ecosystems as a result of anthropogenic activity has received worldwide attention. Although extensive research has reported ubiquitous and directly adverse effects on organisms, only a few published studies have proposed the long-term ecological consequences. The research in this field still lacks a systematic overview of the toxic effects of microplastics and a coherent understanding of the potential ecological consequences. Here, we draw upon cross-disciplinary scientific research from recent decades to 1) seek to understand the correlation between the responses of organisms to microplastics and the potential ecological disturbances, 2) summarize the potential ecological consequences triggered by microplastics in aquatic environments, and 3) discuss the barriers to the understanding of microplastic toxicology. In this paper, the physiochemical characteristics and dynamic distribution of microplastics were related to the toxicological concerns about microplastic bioavailability and environmental perturbation. The extent of the ecological disturbances depends on how the ecotoxicity of microplastics is transferred and proliferated throughout an aquatic environment. Microplastics are prevalent; they interfere with nutrient productivity and cycling, cause physiological stress in organisms (e.g., behavioral alterations, immune responses, abnormal metabolism, and changes to energy budgets), and threaten the ecosystem composition and stability. By integrating the linkages among the toxicities that range from the erosion of individual species to the defective development of biological communities to the collapse of the ecosystem functioning, this review provides a bottom-up framework for future research to address the mechanisms underlying the toxicity of microplastics in aquatic environments and the substantial ecological consequences.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, 401871, Frederiksberg, Denmark
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Sandip Mandal
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
8
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
9
|
Samadian H, Salami MS, Jaymand M, Azarnezhad A, Najafi M, Barabadi H, Ahmadi A. Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108296. [DOI: 10.1016/j.mrrev.2020.108296] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/26/2022]
|
10
|
Yu X, Chen L, Tang M, Yang Z, Fu A, Wang Z, Wang H. Revealing the Effects of Curcumin on SH-SY5Y Neuronal Cells: A Combined Study from Cellular Viability, Morphology, and Biomechanics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4273-4279. [PMID: 30929442 DOI: 10.1021/acs.jafc.9b00314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the effects of curcumin on the viability, morphology, and nanomechanics of SH-SY5Y neuronal cells were investigated using a conventional cell viability test kit (CCK-8) and sophisticated AFM imaging and force measurement techniques. CCK-8 tests show that SH-SY5Y neuronal cells have a dose-response to curcumin in terms of viability that is dependent on the exposure durations. When exposed to a maximum dosage of 32 μg/mL used in the present study for 4 h, 24 h, and 48 h, the cell viability dropped to 73.4 ± 4.5%, 9.1 ± 3.2%, and 2.5 ± 1.2% of the control, correspondingly. AFM studies show that curcumin can induce the disappearance of synapses of the cells and the change of biomechanics. After exposure for 24 h at the concentration of 16 μg/mL, the viscous deformation of the cells decreased from 2.15 ± 0.02 to 1.58 ± 0.03 (×10-15 N·m), the elastic deformation increased from 1.26 ± 0.04 to 1.72 ± 0.07 (×10-15 N·m), and adhesion work decreased from 0.56 ± 0.07 to 0.39 ± 0.04 (×10-16 N·m). The morphological and mechanical changes obtained using AFM can be interpreted from optically observed cellular structural changes. The present study provides insights into the effects of curcumin on neuronal cells from both biological and biophysical aspects, which can help more comprehensively understand the interactions between curcumin and SH-SY5Y cells. The demonstrated techniques can be potentially used to assess the efficacy of bioactive constituents on cells or help screen drugs.
Collapse
Affiliation(s)
- Xiaoting Yu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Ligang Chen
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
- School of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Mingjie Tang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Zhongbo Yang
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Ailing Fu
- School of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Huabin Wang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology & Center of Applied Physics, Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| |
Collapse
|
11
|
Oroskar PA, Jameson CJ, Murad S. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane. Methods Mol Biol 2019; 2000:303-359. [PMID: 31148024 DOI: 10.1007/978-1-4939-9516-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use coarse-grained molecular dynamics simulations to "observe" details of interactions between ligand-covered gold nanoparticles and a lipid bilayer model membrane. In molecular dynamics simulations, one puts the individual atoms and groups of atoms of the physical system to be "observed" into a simulation box, specifies the forms of the potential energies of interactions between them (ultimately quantum based), and lets them individually move classically according to Newton's equations of motion, based on the forces arising from the assumed potential energy forms. The atoms that are chemically bonded to each other stay chemically bonded, following known potentials (force fields) that permit internal degrees of freedom (internal rotation, torsion, vibrations), and the interactions between nonbonded atoms are simplified to Lennard-Jones forms (in our case) and coulombic (where electrical charges are present) in which the parameters are previously optimized to reproduce thermodynamic properties or are based on quantum electronic calculations. The system is started out at a reasonable set of coordinates for all atoms or groups of atoms, and then permitted to develop according to the equations of motion, one small step (usually 10 fs time step) at a time, for millions of steps until the system is at a quasi-equilibrium (usually reached after hundreds of nanoseconds). We then let the system play out its motions further for many nanoseconds to observe the behavior, periodically taking snapshots (saving all positions and energies), and post-processing the snapshots to obtain various average descriptions of the system. Alkanethiols of various lengths serve as examples of hydrophobic ligands and methyl-terminated PEG with various numbers of monomer units serve as examples of hydrophilic ligands. Spherical gold particles of various diameters as well as gold nanorods form the core to which ligands are attached. The nanoparticles are characterized at the molecular level, especially the distributions of ligand configurations and their dependence on ligand length, and surface coverage. Self-assembly of the bilayer from an isotropic solution and observation of membrane properties that correspond well to experimental values validate the simulations. The mechanism of permeation of a gold NP coated with either a hydrophobic or a hydrophilic ligand, and its dependence on surface coverage, ligand length, core diameter, and core shape, is investigated. Lipid response such as lipid flip-flops, lipid extraction, and changes in order parameter of the lipid tails are examined in detail. The mechanism of permeation of a PEGylated nanorod is shown to occur by tilting, lying down, rotating, and straightening up. The nature of the information provided by molecular dynamics simulations permits understanding of the detailed behavior of gold nanoparticles interacting with lipid membranes which in turn helps to understand why some known systems work better than others and aids the design of new particles and improvement of methods for preparing existing ones.
Collapse
Affiliation(s)
- Priyanka A Oroskar
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Cynthia J Jameson
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sohail Murad
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|
12
|
Chen G, Wu Y, Yu D, Li R, Luo W, Ma G, Zhang C. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis. J Biomater Appl 2018; 33:989-996. [PMID: 30509120 DOI: 10.1177/0885328218814988] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poor blood circulation makes it difficult for antitubercular drugs to achieve effective bactericidal concentration at tuberculose focus. The residual Mycobacterium tuberculosis around surgical wound would multiply, resulting in nonunion or sinus formation. Carbon nanotubes have strong tissue penetration and can cross many kinds of physiological barriers. Here, we constructed a chitosan/carbon nanotubes nanoparticles to control slow release of isoniazid. Transmission electron microscopy and nanoparticle tracking and analysis results showed that the diameter of chitosan/carbon nanotubes nanoparticles was between 150 and 250 nm. Chitosan/carbon nanotubes nanoparticles significantly prolonged the release time of isoniazid, and the release rate was more uniform, no sudden release was observed. In vitro experiments showed that chitosan/carbon nanotubes nanoparticles did not destroy biological function of isoniazid, but could reduce its cytotoxicity and inflammation. We further constructed animal model of tuberculous ulcer. The results showed that isoniazid/chitosan/carbon nanotubes nanoparticles promoted the healing of tuberculosis ulcer. Compared with isoniazid group and isoniazid/carbon nanotubes group, the area of wounds decreased by 94.6% and 89.8%, respectively. Immunohistochemistry showed that CD3+ and CD4+ T cell number decreased significantly in isoniazid/chitosan/carbon nanotubes group. In conclusion, we constructed a kind of isoniazid/chitosan/carbon nanotubes nanoparticles, which can significantly promote the healing of tuberculosis ulcer. Our study provided an effective way for the treatment of secondary wound healing of bone tuberculosis.
Collapse
Affiliation(s)
- Gangquan Chen
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yaling Wu
- 2 Nursing faculty, Jiangxi Health Vocational college, Nanchang 330006, China
| | - Dongping Yu
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Rubing Li
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenyuan Luo
- 3 Department of orthopedics, Gansu Provincial People's Hospital, Lanzhou, Gansu Province, China
| | - Guifu Ma
- 3 Department of orthopedics, Gansu Provincial People's Hospital, Lanzhou, Gansu Province, China
| | - Chao Zhang
- 1 Department of burn, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
13
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
14
|
Jiang X, Lu C, Tang M, Yang Z, Jia W, Ma Y, Jia P, Pei D, Wang H. Nanotoxicity of Silver Nanoparticles on HEK293T Cells: A Combined Study Using Biomechanical and Biological Techniques. ACS OMEGA 2018; 3:6770-6778. [PMID: 30023959 PMCID: PMC6044977 DOI: 10.1021/acsomega.8b00608] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/06/2018] [Indexed: 05/06/2023]
Abstract
Human embryonic kidney 293T cells (HEK293T cells) before and after treatment with silver nanoparticles (AgNPs) were measured using advanced atomic force microscopy (AFM) force measurement technique, and the biomechanical property of cells was analyzed using a theoretical model. The biomechanical results showed that the factor of viscosity of untreated HEK293T cells reduced from 0.65 to 0.40 for cells exposure to 40 μg/mL of AgNPs. Comet assay indicated that significant DNA damage occurred in the treated cells, measured as tail DNA% and tail moment. Furthermore, gene expression analysis showed that for the cells treated with 40 μg/mL of AgNPs, the antiapoptosis genes Bcl2-t and Bclw were, respectively, downregulated to 0.65- and 0.66-fold of control, and that the proapoptosis gene Bid was upregulated to 1.55-fold of control, which indicates that apoptosis occurred in cells exposed to AgNPs. Interestingly, excellent negative correlations were found between the factor of viscosity and tail DNA%, and tail moment, which suggest that the biomechanical property can be correlated with genotoxicity of nanoparticles on the cells. Based on the above results, we conclude that (1) AgNPs can lead to biomechanical changes in HEK293T cells, concomitantly with biological changes including cell viability, DNA damage, and cell apoptosis; (2) the factor of viscosity can be exploited as a promising label-free biomechanical marker to assess the nanotoxicity of nanoparticles on the cells; and (3) the combination of AFM-based mechanical technique with conventional biological methods can provide more comprehensive understanding of the nanotoxicity of nanoparticles than merely by using the biological techniques.
Collapse
Affiliation(s)
- Xuefeng Jiang
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Chongqing
Engineering Research Center of High-Resolution and Three-Dimensional
Dynamic Imaging Technology, Chongqing 400714, China
| | - Chunjiao Lu
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Tang
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing
Engineering Research Center of High-Resolution and Three-Dimensional
Dynamic Imaging Technology, Chongqing 400714, China
| | - Zhongbo Yang
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing
Engineering Research Center of High-Resolution and Three-Dimensional
Dynamic Imaging Technology, Chongqing 400714, China
| | - Weijiao Jia
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Chongqing
Engineering Research Center of High-Resolution and Three-Dimensional
Dynamic Imaging Technology, Chongqing 400714, China
| | - Yanbo Ma
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Panpan Jia
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Desheng Pei
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- E-mail: (D.P.)
| | - Huabin Wang
- Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Chongqing
Engineering Research Center of High-Resolution and Three-Dimensional
Dynamic Imaging Technology, Chongqing 400714, China
- E-mail: (H.W.)
| |
Collapse
|
15
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
16
|
Al-Qattan MN, Deb PK, Tekade RK. Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. Drug Discov Today 2017; 23:235-250. [PMID: 29031623 DOI: 10.1016/j.drudis.2017.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
The carbon nanotube (CNT)-based target-specific delivery of drugs, or other molecular cargo, has emerged as one of the most promising biomedical applications of nanotechnology. To achieve efficient CNT-based drug delivery, the interactions between the drug, CNT and biomolecular target need to be properly optimized. Recent advances in the computer-aided molecular design tools, in particular molecular dynamics (MD) simulation studies, offer an appropriate low-cost approach for such optimization. This review highlights the various potential MD approaches for the simulation of CNT interactions with cell membranes while emphasizing various methods of cellular internalization and toxicities of CNTs to build new strategies for designing rational CNT-based targeted drug delivery to circumvent the limitations associated with the various clinically available nonspecific therapeutic agents.
Collapse
Affiliation(s)
- Mohammed N Al-Qattan
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O. Box (1), Philadelphia University (19392), Jordan
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O. Box (1), Philadelphia University (19392), Jordan.
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, (An Institute of National Importance, Government of India), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
17
|
Romano-Feinholz S, Salazar-Ramiro A, Muñoz-Sandoval E, Magaña-Maldonado R, Hernández Pedro N, Rangel López E, González Aguilar A, Sánchez García A, Sotelo J, Pérez de la Cruz V, Pineda B. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma. Int J Nanomedicine 2017; 12:6005-6026. [PMID: 28860763 PMCID: PMC5573058 DOI: 10.2147/ijn.s139004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite multiple advances in the diagnosis of brain tumors, there is no effective treatment for glioblastoma. Multiwalled carbon nanotubes (MWCNTs), which were previously used as a diagnostic and drug delivery tool, have now been explored as a possible therapy against neoplasms. However, although the toxicity profile of nanotubes is dependent on the physicochemical characteristics of specific particles, there are no studies exploring how the effectivity of the carbon nanotubes (CNTs) is affected by different methods of production. In this study, we characterize the structure and biocompatibility of four different types of MWCNTs in rat astrocytes and in RG2 glioma cells as well as the induction of cell lysis and possible additive effect of the combination of MWCNTs with temozolomide. We used undoped MWCNTs (labeled simply as MWCNTs) and nitrogen-doped MWCNTs (labeled as N-MWCNTs). The average diameter of both pristine MWCNTs and pristine N-MWCNTs was ~22 and ~35 nm, respectively. In vitro and in vivo results suggested that these CNTs can be used as adjuvant therapy along with the standard treatment to increase the survival of rats implanted with malignant glioma.
Collapse
Affiliation(s)
| | - Alelí Salazar-Ramiro
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery (NINN), Mexico City
| | | | - Roxana Magaña-Maldonado
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery (NINN), Mexico City
| | | | | | | | | | - Julio Sotelo
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery (NINN), Mexico City
| | | | - Benjamín Pineda
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery (NINN), Mexico City
| |
Collapse
|
18
|
Perez Ruiz de Garibay A, Spinato C, Klippstein R, Bourgognon M, Martincic M, Pach E, Ballesteros B, Ménard-Moyon C, Al-Jamal KT, Tobias G, Bianco A. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Sci Rep 2017; 7:42605. [PMID: 28198410 PMCID: PMC5309841 DOI: 10.1038/srep42605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/11/2017] [Indexed: 11/22/2022] Open
Abstract
This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.
Collapse
Affiliation(s)
- Aritz Perez Ruiz de Garibay
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Cinzia Spinato
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK
| | - Maxime Bourgognon
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK
| | - Markus Martincic
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Elzbieta Pach
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Cécilia Ménard-Moyon
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Khuloud T. Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK
| | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| |
Collapse
|
19
|
Yun X, Tang M, Yang Z, Wilksch JJ, Xiu P, Gao H, Zhang F, Wang H. Interrogation of drug effects on HeLa cells by exploiting new AFM mechanical biomarkers. RSC Adv 2017. [DOI: 10.1039/c7ra06233h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New AFM mechanical biomarkers including cell brush length, adhesion work and the factor of viscosity are discovered for drug assays.
Collapse
Affiliation(s)
- Xiaoling Yun
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
| | - Mingjie Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| | - Zhongbo Yang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| | - Jonathan J. Wilksch
- Department of Microbiology and Immunology
- University of Melbourne
- Parkville
- Australia
| | - Peng Xiu
- Department of Engineering Mechanics
- Soft Matter Research Center
- Zhejiang University
- Hangzhou 310027
- China
| | - Haiyang Gao
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
- Department of Biomedical Engineering
| | - Feng Zhang
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - Huabin Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| |
Collapse
|
20
|
Mhashal AR, Roy S. Free Energy of Bare and Capped Gold Nanoparticles Permeating through a Lipid Bilayer. Chemphyschem 2016; 17:3504-3514. [DOI: 10.1002/cphc.201600690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/31/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Anil R. Mhashal
- Physical Chemistry Division; CSIR-National Chemical Laboratory; Pune 411008 India
- Chemistry Department; Bar Ilan University; Israel
| | - Sudip Roy
- Physical Chemistry Division; CSIR-National Chemical Laboratory; Pune 411008 India
| |
Collapse
|
21
|
Micro- and Nanoscale Technologies for Delivery into Adherent Cells. Trends Biotechnol 2016; 34:665-678. [PMID: 27287927 DOI: 10.1016/j.tibtech.2016.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
Several recent micro- and nanotechnologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle but effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. We review here recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss the major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, for example non-destructive sampling and analysis of intracellular molecules.
Collapse
|
22
|
Angle MR, Wang A, Thomas A, Schaefer AT, Melosh NA. Penetration of cell membranes and synthetic lipid bilayers by nanoprobes. Biophys J 2015; 107:2091-100. [PMID: 25418094 DOI: 10.1016/j.bpj.2014.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/08/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022] Open
Abstract
Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50-500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes.
Collapse
Affiliation(s)
- Matthew R Angle
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Andrew Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Aman Thomas
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Andreas T Schaefer
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, California.
| |
Collapse
|
23
|
Zhang L, Becton M, Wang X. Designing Nanoparticle Translocation through Cell Membranes by Varying Amphiphilic Polymer Coatings. J Phys Chem B 2015; 119:3786-94. [DOI: 10.1021/acs.jpcb.5b00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liuyang Zhang
- College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew Becton
- College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602, United States
| | - Xianqiao Wang
- College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Quan Q, Zhang Y. Lab-on-a-Tip (LOT): Where Nanotechnology Can Revolutionize Fibre Optics. Nanobiomedicine (Rij) 2015; 2:3. [PMID: 29942369 PMCID: PMC5997371 DOI: 10.5772/60518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Recently developed lab-on-a-chip technologies integrate multiple traditional assays on a single chip with higher sensitivity, faster assay time, and more streamlined sample operation. We discuss the prospects of the lab-on-a-tip platform, where assays can be integrated on a miniaturized tip for in situ and in vivo analysis. It will resolve some of the limitations of available lab-on-a-chip platforms and enable next generation multifunctional in vivo sensors, as well as analytical techniques at the single cell or even sub-cellular levels.
Collapse
Affiliation(s)
- Qimin Quan
- Rowland Institute at Harvard University, Cambridge, MA, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
25
|
Baowan D, Cox BJ, Hill JM. Instability of carbon nanoparticles interacting with lipid bilayers. RSC Adv 2015. [DOI: 10.1039/c4ra13496f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For nanoparticles penetrating biological tissue, modelling indicates that without external forces, carbon nanoparticles will remain trapped in lipid bilayers.
Collapse
Affiliation(s)
- Duangkamon Baowan
- Department of Mathematics
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Barry J. Cox
- Nanomechanics Group
- School of Mathematical Sciences
- The University of Adelaide
- Australia
| | - James M. Hill
- Nanomechanics Group
- School of Mathematical Sciences
- The University of Adelaide
- Australia
| |
Collapse
|
26
|
Mi Li, Lianqing Liu, Ning Xi, Yuechao Wang, Xiubin Xiao, Weijing Zhang. Quantitative Analysis of Drug-Induced Complement-Mediated Cytotoxic Effect on Single Tumor Cells Using Atomic Force Microscopy and Fluorescence Microscopy. IEEE Trans Nanobioscience 2015; 14:84-94. [DOI: 10.1109/tnb.2014.2370759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Lopez-Ayon GM, Liu HY, Xing S, Maria OM, LeDue JM, Bourque H, Grutter P, Komarova SV. Local membrane deformation and micro-injury lead to qualitatively different responses in osteoblasts. F1000Res 2014; 3:162. [PMID: 25254108 PMCID: PMC4168753 DOI: 10.12688/f1000research.4448.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/24/2022] Open
Abstract
Micro-damage of bone tissue is known to regulate bone turnover. However, it is unknown if individual bone cells can differentiate between membrane deformation and micro-injury. We generated osteoblasts from mouse bone marrow or bone morphogenetic protein 2-transfected C2C12 cells. Single cells were mechanically stimulated by indentation with the atomic force microscopy probe with variable force load either resulting in membrane deformation only, or leading to membrane penetration and micro-injury. Changes in the cytosolic free calcium concentration ([Ca (2+)] i) in fluo4-AM loaded cells were analyzed. When deformation only was induced, it resulted in an immediate elevation of [Ca (2+)] i which was localized to the probe periphery. Multiple consecutive local Ca (2+) responses were induced by sequential application of low level forces, with characteristic recovery time of ~2 s. The duration of [Ca (2+)] i elevations was directly proportional to the tip-cell contact time. In contrast, cell micro-injury resulted in transient global elevations of [Ca (2+)] i, the magnitude of which was independent of the tip-cell contact time. Sequential micro-injury of the same cell did not induce Ca (2+) response within 30 s of the first stimulation. Both local and global Ca (2+)elevations were blocked in Ca (2+)-free media or in the presence of stretch-activated channel blocker Gd (3+). In addition, amount of Ca (2+) released during global responses was significantly reduced in the presence of PLC inhibitor Et-18-OCH 3. Thus, we found qualitative differences in calcium responses to mechanical forces inducing only membrane deformation or deformation leading to micro-injury.
Collapse
Affiliation(s)
- G Monserratt Lopez-Ayon
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Heng-Yen Liu
- Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada ; Shriners Hospital for Children - Canada, 1529 Cedar Ave, Montreal, Quebec, H3G IA6, Canada
| | - Shu Xing
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada ; Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada
| | - Osama M Maria
- Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada
| | - Jeffrey M LeDue
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Helene Bourque
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Peter Grutter
- Center for the Physics of Materials and the Department of Physics, McGill University, 3600 University, Montreal, Quebec, H3A 2T8, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, 3640 University, Montreal, Quebec, H3A 0C7, Canada ; Shriners Hospital for Children - Canada, 1529 Cedar Ave, Montreal, Quebec, H3G IA6, Canada
| |
Collapse
|
28
|
Lee N, Jo W, Lee BK, Jung WK. Observation of adhesive force and energy of adsorbents on rubber substrates by atomic force microscopy. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nuri Lee
- Department of Physics; Ewha Womans University; Seoul 120-750 Korea
| | - W. Jo
- Department of Physics; Ewha Womans University; Seoul 120-750 Korea
| | - B. K. Lee
- Division of Home Appliances; Samsung Electronics Co., Ltd.; Suwon 443-742 Korea
| | - W. K. Jung
- Division of Home Appliances; Samsung Electronics Co., Ltd.; Suwon 443-742 Korea
| |
Collapse
|
29
|
Serrano MC, Gutiérrez MC, del Monte F. Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Xing YF, Yang CL, Mo YF, Wang MS, Ma XG. Spontaneous nanoinjection with carbon nanotubes: a molecular dynamics simulation study. J Mater Chem B 2014; 2:859-867. [DOI: 10.1039/c3tb21468k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 2013; 65:2045-60. [PMID: 23933617 DOI: 10.1016/j.addr.2013.08.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/17/2023]
Abstract
Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single- and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs.
Collapse
|
32
|
Lee J, Choi S, Bae SJ, Yoon SM, Choi JS, Yoon M. Visible light-sensitive APTES-bound ZnO nanowire toward a potent nanoinjector sensing biomolecules in a living cell. NANOSCALE 2013; 5:10275-82. [PMID: 24056748 DOI: 10.1039/c3nr03042c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes.
Collapse
Affiliation(s)
- Jooran Lee
- Molecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon 305-764, South Korea.
| | | | | | | | | | | |
Collapse
|
33
|
Dutt M, Kuksenok O, Balazs AC. Nano-pipette directed transport of nanotube transmembrane channels and hybrid vesicles. NANOSCALE 2013; 5:9773-9784. [PMID: 23963614 DOI: 10.1039/c3nr33991b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using computational modeling, we simulate the interactions between a nanopipette and transmembrane, end-functionalized nanotubes that are localized within flat bilayers or nanoscopic vesicles. The functional groups (hairs) provide a "handle" for the moving pipette to controllably pick up and move the nanotubes to specific locations in the flat membrane, or the hybrid vesicle to specified regions on a surface. The ability to localize these hybrid vesicles on surfaces paves the way for creating nanoreactor arrays in fluidic devices.
Collapse
Affiliation(s)
- Meenakshi Dutt
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
34
|
Haase K, Pelling AE. Resiliency of the plasma membrane and actin cortex to large-scale deformation. Cytoskeleton (Hoboken) 2013; 70:494-514. [PMID: 23929821 DOI: 10.1002/cm.21129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
The tight coupling between the plasma membrane and actin cortex allows cells to rapidly change shape in response to mechanical cues and during physiological processes. Mechanical properties of the membrane are critical for organizing the actin cortex, which ultimately governs the conversion of mechanical information into signaling. The cortex has been shown to rapidly remodel on timescales of seconds to minutes, facilitating localized deformations and bundling dynamics that arise during the exertion of mechanical forces and cellular deformations. Here, we directly visualized and quantified the time-dependent deformation and recovery of the membrane and actin cortex of HeLa cells in response to externally applied loads both on- and off-nucleus using simultaneous confocal and atomic force microscopy. The local creep-like deformation of the membrane and actin cortex depends on both load magnitude and duration and does not appear to depend on cell confluency. The membrane and actin cortex rapidly recover their initial shape after prolonged loading (up to 10 min) with large forces (up to 20 nN) and high aspect ratio deformations. Cytoplasmic regions surrounding the nucleus are shown to be more resistant to long-term creep than nuclear regions. These dynamics are highly regulated by actomyosin contractility and an intact actin cytoskeleton. Results suggest that in response to local deformations, the nucleus does not appear to provide significant resistance or play a major role in cell shape recovery. The membrane and actin cortex clearly possess remarkable mechanical stability, critical for the transduction of mechanical deformation into long term biochemical signals and cellular remodeling.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada
| | | |
Collapse
|
35
|
Beard JD, Guy RH, Gordeev SN. Mechanical Tomography of Human Corneocytes with a Nanoneedle. J Invest Dermatol 2013; 133:1565-71. [DOI: 10.1038/jid.2012.465] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Xie X, Xu AM, Angle MR, Tayebi N, Verma P, Melosh NA. Mechanical model of vertical nanowire cell penetration. NANO LETTERS 2013; 13:6002-8. [PMID: 24237230 DOI: 10.1021/nl403201a] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Direct access into cells' interiors is essential for biomolecular delivery, gene transfection, and electrical recordings yet is challenging due to the cell membrane barrier. Recently, molecular delivery using vertical nanowires (NWs) has been demonstrated for introducing biomolecules into a large number of cells in parallel. However, the microscopic understanding of how and when the nanowires penetrate cell membranes is still lacking, and the degree to which actual membrane penetration occurs is controversial. Here we present results from a mechanical continuum model of elastic cell membrane penetration through two mechanisms, namely through "impaling" as cells land onto a bed of nanowires, and through "adhesion-mediated" penetration, which occurs as cells spread on the substrate and generate adhesion force. Our results reveal that penetration is much more effective through the adhesion mechanism, with NW geometry and cell stiffness being critically important. Stiffer cells have higher penetration efficiency, but are more sensitive to NW geometry. These results provide a guide to designing nanowires for applications in cell membrane penetration.
Collapse
Affiliation(s)
- Xi Xie
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | |
Collapse
|
37
|
Yick S, Han ZJ, Ostrikov K(K. Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. Chem Commun (Camb) 2013; 49:2861-3. [DOI: 10.1039/c3cc00282a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Shi X, Zhang X, Xia T, Fang X. Living cell study at the single-molecule and single-cell levels by atomic force microscopy. Nanomedicine (Lond) 2012; 7:1625-37. [DOI: 10.2217/nnm.12.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atomic force microscopy (AFM) has been emerging as a multifunctional molecular tool in nanobiology and nanomedicine. This review summarizes the recent advances in AFM study of living mammalian cells at the single-molecule and single-cell levels. Besides nanoscale imaging of cell membrane structure, AFM-based force measurements on living cells are mainly discussed. These include the development and application of single-molecule force spectroscopy to investigate ligand–receptor binding strength and dissociation dynamics, and the characterization of cell mechanical properties in a physiological environment. Molecular manipulation of cells by AFM to change the cellular process is also described. Living-cell AFM study offers a new approach to understand the molecular mechanisms of cell function, disease development and drug effect, as well as to develop new strategies to achieve single-cell-based diagnosis.
Collapse
Affiliation(s)
- Xiaoli Shi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Xuejie Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Tie Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| |
Collapse
|
39
|
Song B, Yuan H, Jameson CJ, Murad S. Role of surface ligands in nanoparticle permeation through a model membrane: a coarse-grained molecular dynamics simulations study. Mol Phys 2012. [DOI: 10.1080/00268976.2012.668964] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Peer E, Artzy-Schnirman A, Gepstein L, Sivan U. Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS NANO 2012; 6:4940-4946. [PMID: 22632128 DOI: 10.1021/nn300443h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a novel hollow nanoneedle array (NNA) device capable of simultaneously delivering diverse cargo into a group of cells in a culture over prolonged periods. The silica needles are fed by a common reservoir whose content can be replenished and modified in real time while maintaining contact with the same cells. The NNA, albeit its submicrometer features, is fabricated in a silicon-on-insulator wafer using conventional, large scale, silicon technology. 3T3-NIH fibroblast cells and HEK293 human embryonic kidney cells are shown to grow and proliferate successfully on the NNAs. Cargo delivery from the reservoir through the needles to a group of HEK293 cells in the culture is demonstrated by repeated administration of fluorescently labeled dextran to the same cells and transfection with DNA coding for red fluorescent protein. The capabilities demonstrated by the NNA device open the door to large scale studies of the effect of selected cells on their environment as encountered, for instance, in the study of cell-fate decisions, the role of cell-autonomous versus nonautonomous mechanisms in developmental biology, and in the study of excitable cell-networks.
Collapse
Affiliation(s)
- Elad Peer
- Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
41
|
Skandani AA, Zeineldin R, Al-Haik M. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7872-7879. [PMID: 22545729 DOI: 10.1021/la3011162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability of carbon nanotubes to enter the cell membrane acting as drug-delivery vehicles has yielded a plethora of experimental investigations, mostly with inconclusive results because of the wide spectra of carbon nanotube structures. Because of the virtual impossibility of synthesizing CNTs with distinct chirality, we report a parametric study on the use of molecular dynamics to provide better insight into the effect of the carbon nanotube chirality and the aspect ratio on the interaction with a lipid bilayer membrane. The simulation results indicated that a single-walled carbon nanotube utilizes different time-evolving mechanisms to facilitate their internalization within the membrane. These mechanisms comprise both penetration and endocytosis. It was observed that carbon nanotubes with higher aspect ratios penetrate the membrane faster whereas shorter nanotubes undergo significant rotation during the final stages of endocytosis. Furthermore, nanotubes with lower chiral indices developed significant adhesion with the membrane. This adhesion is hypothesized to consume some of the carbon nanotube energy, thus resulting in longer times for the nanotube to translocate through the membrane.
Collapse
Affiliation(s)
- A Alipour Skandani
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
42
|
|
43
|
Hilder TA, Gordon D, Chung SH. Computational modeling of transport in synthetic nanotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:702-9. [DOI: 10.1016/j.nano.2011.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/12/2011] [Accepted: 02/21/2011] [Indexed: 01/06/2023]
|
44
|
Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A 2011; 108:E1330-8. [PMID: 22084097 DOI: 10.1073/pnas.1110013108] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) have the potential for widespread applications in engineering and materials science. However, because of their needle-like shape and high durability, concerns have been raised that MWCNTs may induce asbestos-like pathogenicity. Although recent studies have demonstrated that MWCNTs induce various types of reactivities, the physicochemical features of MWCNTs that determine their cytotoxicity and carcinogenicity in mesothelial cells remain unclear. Here, we showed that the deleterious effects of nonfunctionalized MWCNTs on human mesothelial cells were associated with their diameter-dependent piercing of the cell membrane. Thin MWCNTs (diameter ∼ 50 nm) with high crystallinity showed mesothelial cell membrane piercing and cytotoxicity in vitro and subsequent inflammogenicity and mesotheliomagenicity in vivo. In contrast, thick (diameter ∼ 150 nm) or tangled (diameter ∼ 2-20 nm) MWCNTs were less toxic, inflammogenic, and carcinogenic. Thin and thick MWCNTs similarly affected macrophages. Mesotheliomas induced by MWCNTs shared homozygous deletion of Cdkn2a/2b tumor suppressor genes, similar to mesotheliomas induced by asbestos. Thus, we propose that different degrees of direct mesothelial injury by thin and thick MWCNTs are responsible for the extent of inflammogenicity and carcinogenicity. This work suggests that control of the diameter of MWCNTs could reduce the potential hazard to human health.
Collapse
|
45
|
Yaron PN, Holt BD, Short PA, Lösche M, Islam MF, Dahl KN. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J Nanobiotechnology 2011; 9:45. [PMID: 21961562 PMCID: PMC3195092 DOI: 10.1186/1477-3155-9-45] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/30/2011] [Indexed: 11/25/2022] Open
Abstract
Background Carbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We investigated cellular uptake of Pluronic copolymer-stabilized, purified ~145 nm long single wall carbon nanotubes (SWCNTs) through a series of complementary cellular, cell-mimetic, and in vitro model membrane experiments. Results SWCNTs localized within fluorescently labeled endosomes, and confocal Raman spectroscopy showed a dramatic reduction in SWCNT uptake into cells at 4°C compared with 37°C. These data suggest energy-dependent endocytosis, as shown previously. We also examined the possibility for non-specific physical penetration of SWCNTs through the plasma membrane. Electrochemical impedance spectroscopy and Langmuir monolayer film balance measurements showed that Pluronic-stabilized SWCNTs associated with membranes but did not possess sufficient insertion energy to penetrate through the membrane. SWCNTs associated with vesicles made from plasma membranes but did not rupture the vesicles. Conclusions These measurements, combined, demonstrate that Pluronic-stabilized SWCNTs only enter cells via energy-dependent endocytosis, and association of SWCNTs to membrane likely increases uptake.
Collapse
Affiliation(s)
- Peter N Yaron
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Orynbayeva Z, Singhal R, Vitol EA, Schrlau MG, Papazoglou E, Friedman G, Gogotsi Y. Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:590-8. [PMID: 21889477 DOI: 10.1016/j.nano.2011.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/05/2011] [Accepted: 08/12/2011] [Indexed: 12/18/2022]
Abstract
UNLABELLED New-generation nanoscale devices for single-cell study are intensively being developed. As has been shown, nanodevices are minimally invasive because of their order-of-magnitude smaller size in comparison to conventional glass pipettes. However, in most studies the evaluation of the nanodevice impact on cell health has not extended to their effects on cell metabolic integrity. In this work we evaluated the degree to which the insertion of a carbon-based nanotube endoscope into a cell induces mechanical and biochemical stress, and affects cellular key metabolic systems. The effects of insertion of the nanotube endoscope on cell morphological and physiological modulations were monitored and compared to those of glass micropipettes. We report that nanotube endoscope insertion does not significantly modulate the plasma membrane and actin network. The cell metabolic mechanisms such as energy production and inositol 1,4,5-trisphosphate-dependent calcium signaling remain preserved for prolonged endoscope presence within a cell. FROM THE CLINICAL EDITOR In this basic science study, the effects of insertion of carbon nanotube endoscope on cell morphological and physiological modulations were monitored and compared to those of glass micropipettes. Nanotube endoscope insertion is truly minimally invasive: it does not significantly modulate the plasma membrane and actin network; the energy production and inositol 1,4,5-trisphosphate-dependent calcium signaling also remain preserved during prolonged endoscope presence within a cell.
Collapse
Affiliation(s)
- Zulfiya Orynbayeva
- Department of Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Milstein JN, Meiners JC. On the role of DNA biomechanics in the regulation of gene expression. J R Soc Interface 2011; 8:1673-81. [PMID: 21865249 PMCID: PMC3203490 DOI: 10.1098/rsif.2011.0371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA is traditionally seen as a linear sequence of instructions for cellular functions that are expressed through biochemical processes. Cellular DNA, however, is also organized as a complex hierarchical structure with a mosaic of mechanical features, and a growing body of evidence is now emerging to imply that these mechanical features are connected to genetic function. Mechanical tension, for instance, which must be felt by DNA within the heavily constrained and continually fluctuating cellular environment, can affect a number of regulatory processes implicating a role for biomechanics in gene expression complementary to that of biochemical regulation. In this article, we review evidence for such mechanical pathways of genetic regulation.
Collapse
Affiliation(s)
- J N Milstein
- Departments of Physics and Biophysics, University of Michigan, Ann Arbor, USA.
| | | |
Collapse
|
48
|
|
49
|
An T, Choi W, Lee E, Kim IT, Moon W, Lim G. Fabrication of functional micro- and nanoneedle electrodes using a carbon nanotube template and electrodeposition. NANOSCALE RESEARCH LETTERS 2011; 6:306. [PMID: 21711831 PMCID: PMC3211392 DOI: 10.1186/1556-276x-6-306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 04/07/2011] [Indexed: 05/31/2023]
Abstract
Carbon nanotube (CNT) is an attractive material for needle-like conducting electrodes because it has high electrical conductivity and mechanical strength. However, CNTs cannot provide the desired properties in certain applications. To obtain micro- and nanoneedles having the desired properties, it is necessary to fabricate functional needles using various other materials. In this study, functional micro- and nanoneedle electrodes were fabricated using a tungsten tip and an atomic force microscope probe with a CNT needle template and electrodeposition. To prepare the conductive needle templates, a single-wall nanotube nanoneedle was attached onto the conductive tip using dielectrophoresis and surface tension. Through electrodeposition, Au, Ni, and polypyrrole were each coated successfully onto CNT nanoneedle electrodes to obtain the desired properties.
Collapse
Affiliation(s)
- Taechang An
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - WooSeok Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Eunjoo Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - In-tae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Wonkyu Moon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
50
|
Yum K, Yu MF, Wang N, Xiang YK. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:330-8. [PMID: 20580773 PMCID: PMC2948073 DOI: 10.1016/j.bbagen.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/04/2010] [Accepted: 05/17/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND Accessing the interior of live cells with minimal intrusiveness for visualizing, probing, and interrogating biological processes has been the ultimate goal of much of the biological experimental development. SCOPE OF REVIEW The recent development and use of the biofunctionalized nanoneedles for local and spatially controlled intracellular delivery brings in exciting new opportunities in accessing the interior of living cells. Here we review the technical aspect of this relatively new intracellular delivery method and the related demonstrations and studies and provide our perspectives on the potential wide applications of this new nanotechnology-based tool in the biological field, especially on its use for high-resolution studies of biological processes in living cells. MAJOR CONCLUSIONS Different from the traditional micropipette-based needles for intracellular injection, a nanoneedle deploys a sub-100-nm-diameter solid nanowire as a needle to penetrate a cell membrane and to transfer and deliver the biological cargo conjugated onto its surface to the target regions inside a cell. Although the traditional micropipette-based needles can be more efficient in delivery biological cargoes, a nanoneedle-based delivery system offers an efficient introduction of biomolecules into living cells with high spatiotemporal resolution but minimal intrusion and damage. It offers a potential solution to quantitatively address biological processes at the nanoscale. GENERAL SIGNIFICANCE The nanoneedle-based cell delivery system provides new possibilities for efficient, specific, and precise introduction of biomolecules into living cells for high-resolution studies of biological processes, and it has potential application in addressing broad biological questions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Kyungsuk Yum
- Department of Mechanical Engineering, and Department of Molecular and Integrative Physiology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Min-Feng Yu
- Department of Mechanical Engineering, and Department of Molecular and Integrative Physiology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ning Wang
- Department of Mechanical Engineering, and Department of Molecular and Integrative Physiology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang K. Xiang
- Department of Mechanical Engineering, and Department of Molecular and Integrative Physiology and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|