1
|
Pluetrattanabha N, Direksunthorn T, Ahmad I, Jyothi SR, Shit D, Singh AK, Chauhan AS. Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value. Arch Dermatol Res 2025; 317:258. [PMID: 39820618 DOI: 10.1007/s00403-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers. As a critical inflammatory mechanism, it contributes to the development of melanoma. These mechanisms may be triggered via various internal and external stimuli, causing the induction of specific enzymes such as caspase-1, caspase-11, or caspase-8. This, in turn, leads to the release of interleukin (IL)-1β and IL-18 and cell death by apoptosis and pyroptosis. Proper inflammasome stimulation is crucial for the host to deal with invading pathogens or tissue injury. However, inappropriate inflammasome stimulation can result in unregulated tissue reactions, thus easing many diseases, including melanoma. Hence, keeping a delicate equilibrium between the stimulation and prohibition of inflammasomes is crucial, necessitating meticulous control of the assembly and functional aspects of inflammasomes. This review examines the latest advancements in inflammasome studies, specifically focusing on the molecular processes that control inflammasome formation, signalling, and modulation in melanoma.
Collapse
Affiliation(s)
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, JAIN (Deemed to be University) School of Sciences, Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Vitacolonna M, Bruch R, Schneider R, Jabs J, Hafner M, Reischl M, Rudolf R. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer 2024; 24:1542. [PMID: 39696122 DOI: 10.1186/s12885-024-13329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures. METHODS Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density. RESULTS This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures. CONCLUSION In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | | | - Julia Jabs
- Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University, Mannheim University of Applied Sciences, 68167, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| |
Collapse
|
3
|
Hostler AC, Hahn WW, Hu MS, Rennert R, Fischer KS, Barrera JA, Duscher D, Januszyk M, Henn D, Sivaraj D, Yasmeh JP, Kussie HC, Granoski MB, Padmanabhan J, Vial IN, Riegler J, Wu JC, Longaker MT, Chen K, Maan ZN, Gurtner GC. Endothelial-specific CXCL12 regulates neovascularization during tissue repair and tumor progression. FASEB J 2024; 38:e70210. [PMID: 39698751 DOI: 10.1096/fj.202401307r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
C-X-C motif chemokine ligand 12 (CXCL12; Stromal Cell-Derived Factor 1 [SDF-1]), most notably known for its role in embryogenesis and hematopoiesis, has been implicated in tumor pathophysiology and neovascularization. However, its cell-specific role and mechanism of action have not been well characterized. Previous work by our group has demonstrated that hypoxia-inducible factor (HIF)-1 modulates downstream CXCL12 expression following ischemic tissue injury. By utilizing a conditional CXCL12 knockout murine model, we demonstrate that endothelial-specific deletion of CXCL12 (eKO) modulates ischemic tissue survival, altering tissue repair and tumor progression without affecting embryogenesis and morphogenesis. Loss of endothelial-specific CXCL12 disrupts critical endothelial-fibroblast crosstalk necessary for stromal growth and vascularization. Using murine parabiosis with novel transcriptomic technologies, we demonstrate that endothelial-specific CXCL12 signaling results in downstream recruitment of non-inflammatory circulating cells, defined by neovascularization modulating genes. These findings indicate an essential role for endothelial-specific CXCL12 expression during the neovascular response in tissue injury and tumor progression.
Collapse
Affiliation(s)
- Andrew C Hostler
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - William W Hahn
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Michael S Hu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert Rennert
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Katharina S Fischer
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Janos A Barrera
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dominik Duscher
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Dharshan Sivaraj
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jonathan P Yasmeh
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hudson C Kussie
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Maia B Granoski
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ivan N Vial
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Johannes Riegler
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kellen Chen
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zeshaan N Maan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Geoffrey C Gurtner
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
4
|
Kewitz‐Hempel S, Windisch N, Hause G, Müller L, Sunderkötter C, Gerloff D. Extracellular vesicles derived from melanoma cells induce carcinoma-associated fibroblasts via miR-92b-3p mediated downregulation of PTEN. J Extracell Vesicles 2024; 13:e12509. [PMID: 39315679 PMCID: PMC11420832 DOI: 10.1002/jev2.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
In melanoma, carcinoma-associated fibroblasts (CAFs) are important cellular components in the tumour microenvironment due to their potential to promote tumour growth and metastatic spread of malignant cells. Melanoma cells have the ability to affect non-tumour cells in the microenvironment by releasing extracellular vesicles (EVs). The mechanisms responsible for reprogramming normal dermal fibroblasts (NHDFs) into CAFs remain incompletely understood. However, it is likely thought to be mediated by melanoma-specific miRNAs, which are transported by EVs derived from melanoma cells. Therefore, we wondered if one of the most enriched miRNAs in EVs secreted by melanoma cells, miR-92b-3p, is involved in the conversion of normal fibroblasts into CAFs. We observed that melanoma cell-derived EVs indeed delivered miR-92b-3p into NHDFs and that its accumulation correlated with CAF formation, as demonstrated by enhanced expression of CAF marker genes and increased proliferation and migration. Overexpression of miR-92b-3p in NHDFs revealed similar results, while EVs deficient of miR-92b-3p did not induce a CAF phenotype. As a target we identified PTEN, whose repression led to increased expression of CAF markers. We thus provide a novel pathway of intercellular communication by which melanoma cells control the transformation of CAFs by virtue of EV-transported miRNAs.
Collapse
Affiliation(s)
- Stefanie Kewitz‐Hempel
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Nicola Windisch
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Gerd Hause
- BiocenterMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Lutz Müller
- Department of Internal Medicine IVHematology and Oncology, Martin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Cord Sunderkötter
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Dennis Gerloff
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
5
|
Li H, Wang P, Hu M, Xu S, Li X, Xu D, Feng K, Zhou Q, Chang M, Yao S. Echistatin/BYL-719 impedes epithelial-mesenchymal transition in pulmonary fibrosis induced by silica through modulation of the Integrin β1/ILK/PI3K signaling pathway. Int Immunopharmacol 2024; 136:112368. [PMID: 38823175 DOI: 10.1016/j.intimp.2024.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Silicosis is a chronic fibroproliferative lung disease caused by long-term inhalation of crystalline silica dust, characterized by the proliferation of fibroblasts and pulmonary interstitial fibrosis. Currently, there are no effective treatments available. Recent research suggests that the Integrin β1/ILK/PI3K signaling pathway may be associated with the pathogenesis of silicosis fibrosis. In this study, we investigated the effects of Echistatin (Integrin β1 inhibitor) and BYL-719 (PI3K inhibitor) on silicosis rats at 28 and 56 days after silica exposure. Histopathological analysis of rat lung tissue was performed using H&E staining and Masson staining. Immunohistochemistry, Western blotting, and qRT-PCR were employed to assess the expression of markers associated with epithelial-mesenchymal transition (EMT), fibrosis, and the Integrin β1/ILK/PI3K pathway in lung tissue. The results showed that Echistatin, BYL 719 or their combination up-regulated the expression of E-cadherin and down-regulated the expression of Vimentin and extracellular matrix (ECM) components, including type I and type III collagen. The increase of Snail, AKT and β-catenin in the downstream Integrin β1/ILK/PI3K pathway was inhibited. These results indicate that Echistatin and BYL 719 can inhibit EMT and pulmonary fibrosis by blocking different stages of Integrinβ1 /ILK/PI3K signaling pathway. This indicates that the Integrin β1/ILK/PI3K signaling pathway is associated with silica-induced EMT and may serve as a potential therapeutic target for silicosis.
Collapse
Affiliation(s)
- Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Penghao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Meng Hu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shushuo Xu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xinxiao Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Deliang Xu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Kaihao Feng
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
6
|
Yan F, Mutembei B, Valerio T, Gunay G, Ha JH, Zhang Q, Wang C, Selvaraj Mercyshalinie ER, Alhajeri ZA, Zhang F, Dockery LE, Li X, Liu R, Dhanasekaran DN, Acar H, Chen WR, Tang Q. Optical coherence tomography for multicellular tumor spheroid category recognition and drug screening classification via multi-spatial-superficial-parameter and machine learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:2014-2047. [PMID: 38633082 PMCID: PMC11019711 DOI: 10.1364/boe.514079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Optical coherence tomography (OCT) is an ideal imaging technique for noninvasive and longitudinal monitoring of multicellular tumor spheroids (MCTS). However, the internal structure features within MCTS from OCT images are still not fully utilized. In this study, we developed cross-statistical, cross-screening, and composite-hyperparameter feature processing methods in conjunction with 12 machine learning models to assess changes within the MCTS internal structure. Our results indicated that the effective features combined with supervised learning models successfully classify OVCAR-8 MCTS culturing with 5,000 and 50,000 cell numbers, MCTS with pancreatic tumor cells (Panc02-H7) culturing with the ratio of 0%, 33%, 50%, and 67% of fibroblasts, and OVCAR-4 MCTS treated by 2-methoxyestradiol, AZD1208, and R-ketorolac with concentrations of 1, 10, and 25 µM. This approach holds promise for obtaining multi-dimensional physiological and functional evaluations for using OCT and MCTS in anticancer studies.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Bornface Mutembei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Trisha Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ji-Hee Ha
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qinghao Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | | | - Zaid A. Alhajeri
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Fan Zhang
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lauren E. Dockery
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xinwei Li
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ronghao Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250100, China
| | - Danny N. Dhanasekaran
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| |
Collapse
|
7
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Cen X, Li M, Yao A, Zheng Y, Lai W. Immune infiltration and clinical significance analyses of the cancer-associated fibroblast-related signature in skin cutaneous melanoma. J Gene Med 2024; 26:e3614. [PMID: 37847069 DOI: 10.1002/jgm.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive cancers with high mortality rates. Cancer-associated fibroblasts (CAFs) play essential roles in tumor growth, metastasis and the establishment of a pro-tumor microenvironment. This study aimed to establish a CAF-related signature for providing a new perspective for indicating prognosis and guiding therapeutic regimens of SKCM patients. METHODS In this study, the CAF-related genes were screened out based on melanoma-associated fibroblast markers identified from single-cell transcriptome analysis in the Gene Expression Omnibus (GEO) database and a CAF-related module identified from weighted gene co-expression analysis using The Cancer Genome Atlas (TCGA) dataset. We extracted these gene expression data of SKCM samples from TCGA and constructed a prognostic CAF-related signature. The prediction abilities of the signature for survival prognosis, tumor immune landscape and responses to chemo-/immunotherapies were evaluated in the TCGA-SKCM cohort. RESULTS We suggested that CAFs were significantly involved in the clinical outcomes of SKCM. A 10-gene CAF-related model was constructed, and the high-CAF risk group exhibited immunosuppressive features and worse prognosis. Patients with high CAF score were more likely to not respond to immune checkpoint inhibitors but were more sensitive to some chemotherapeutic agents, suggesting a potential approach of chemotherapy/anti-CAF combination treatment to improve the SKCM patient response rate of current immunotherapies. CONCLUSIONS The CAF-related risk score could serve as a robust prognostic indicator and personal assessment of this score could uncover the degree of immunosuppression and provide treatment strategies to improve outcomes in clinical decision-making in SKCM patients.
Collapse
Affiliation(s)
- Xintao Cen
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengna Li
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Amin Yao
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Zheng
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Anajafi S, Paryan M, Khoshnazar A, Soleimani M, Mohammadi-Yeganeh S. miRNAs Delivery for Cancer-associated Fibroblasts' Activation and Drug Resistance in Cancer Microenvironment. Endocr Metab Immune Disord Drug Targets 2024; 24:333-347. [PMID: 37612874 DOI: 10.2174/1871530323666230823094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Spoerri L, Beaumont KA, Anfosso A, Murphy RJ, Browning AP, Gunasingh G, Haass NK. Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma, Quantitative Analysis, Optical Clearing, and Mathematical Modeling. Methods Mol Biol 2024; 2764:291-310. [PMID: 38393602 DOI: 10.1007/978-1-0716-3674-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.
Collapse
Affiliation(s)
- Loredana Spoerri
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, Sydney, NSW, Australia
- Uniquest, The University of Queensland, Brisbane, QLD, Australia
| | | | - Ryan J Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alexander P Browning
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia.
- The Centenary Institute, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Murphy RJ, Gunasingh G, Haass NK, Simpson MJ. Formation and Growth of Co-Culture Tumour Spheroids: New Compartment-Based Mathematical Models and Experiments. Bull Math Biol 2023; 86:8. [PMID: 38091169 DOI: 10.1007/s11538-023-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Co-culture tumour spheroid experiments are routinely performed to investigate cancer progression and test anti-cancer therapies. Therefore, methods to quantitatively characterise and interpret co-culture spheroid growth are of great interest. However, co-culture spheroid growth is complex. Multiple biological processes occur on overlapping timescales and different cell types within the spheroid may have different characteristics, such as differing proliferation rates or responses to nutrient availability. At present there is no standard, widely-accepted mathematical model of such complex spatio-temporal growth processes. Typical approaches to analyse these experiments focus on the late-time temporal evolution of spheroid size and overlook early-time spheroid formation, spheroid structure and geometry. Here, using a range of ordinary differential equation-based mathematical models and parameter estimation, we interpret new co-culture experimental data. We provide new biological insights about spheroid formation, growth, and structure. As part of this analysis we connect Greenspan's seminal mathematical model to co-culture data for the first time. Furthermore, we generalise a class of compartment-based spheroid mathematical models that have previously been restricted to one population so they can be applied to multiple populations. As special cases of the general model, we explore multiple natural two population extensions to Greenspan's seminal model and reveal biological mechanisms that can describe the internal dynamics of growing co-culture spheroids and those that cannot. This mathematical and statistical modelling-based framework is well-suited to analyse spheroids grown with multiple different cell types and the new class of mathematical models provide opportunities for further mathematical and biological insights.
Collapse
Affiliation(s)
- Ryan J Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, Australia
| | - Matthew J Simpson
- Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
12
|
Nomdedeu-Sancho G, Gorkun A, Mahajan N, Willson K, Schaaf CR, Votanopoulos KI, Atala A, Soker S. In Vitro Three-Dimensional (3D) Models for Melanoma Immunotherapy. Cancers (Basel) 2023; 15:5779. [PMID: 38136325 PMCID: PMC10741426 DOI: 10.3390/cancers15245779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Melanoma is responsible for the majority of skin cancer-related fatalities. Immune checkpoint inhibitor (ICI) treatments have revolutionized the management of the disease by significantly increasing patient survival rates. However, a considerable number of tumors treated with these drugs fail to respond or may develop resistance over time. Tumor growth and its response to therapies are critically influenced by the tumor microenvironment (TME); it directly supports cancer cell growth and influences the behavior of surrounding immune cells, which can become tumor-permissive, thereby rendering immunotherapies ineffective. Ex vivo modeling of melanomas and their response to treatment could significantly advance our understanding and predictions of therapy outcomes. Efforts have been directed toward developing reliable models that accurately mimic melanoma in its appropriate tissue environment, including tumor organoids, bioprinted tissue constructs, and microfluidic devices. However, incorporating and modeling the melanoma TME and immune component remains a significant challenge. Here, we review recent literature regarding the generation of in vitro 3D models of normal skin and melanoma and the approaches used to incorporate the immune compartment in such models. We discuss how these constructs could be combined and used to test immunotherapies and elucidate treatment resistance mechanisms. The development of 3D in vitro melanoma models that faithfully replicate the complexity of the TME and its interaction with the immune system will provide us with the technical tools to better understand ICI resistance and increase its efficacy, thereby improving personalized melanoma therapy.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
| | - Anastasiya Gorkun
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
| | - Naresh Mahajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
| | - Kelsey Willson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
| | - Cecilia R. Schaaf
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
- Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC 27101, USA
- Pathology Section, Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Konstantinos I. Votanopoulos
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
- Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC 27101, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Department of Surgery, Division of Surgical Oncology, Wake Forest Baptist Health, Winston Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
- Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC 27101, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (G.N.-S.); (A.G.); (N.M.); (K.W.); (C.R.S.); (K.I.V.); (A.A.)
- Wake Forest Organoid Research Center (WFORCE), Winston-Salem, NC 27101, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
13
|
Dai X, Zhu K. Cold atmospheric plasma: Novel opportunities for tumor microenvironment targeting. Cancer Med 2023; 12:7189-7206. [PMID: 36762766 PMCID: PMC10067048 DOI: 10.1002/cam4.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 02/11/2023] Open
Abstract
With mounting preclinical and clinical evidences on the prominent roles of the tumor microenvironment (TME) played during carcinogenesis, the TME has been recognized and used as an important onco-therapeutic target during the past decade. Delineating our current knowledge on TME components and their functionalities can help us recognize novel onco-therapeutic opportunities and establish treatment modalities towards desirable anti-cancer outcome. By identifying and focusing on primary cellular components in the TME, that is, tumor-infiltrating lymphocytes, tumor-associated macrophages, cancer-associated fibroblasts and mesenchymal stem cells, we decomposed their primary functionalities during carcinogenesis, categorized current therapeutic approaches utilizing traits of these components, and forecasted possible benefits that cold atmospheric plasma, a redox modulating tool with selectivity against cancer cells, may convey by targeting the TME. Our insights may open a novel therapeutic avenue for cancer control taking advantages of redox homeostasis and immunostasis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kaiyuan Zhu
- Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Zhou S, Lu J, Liu S, Shao J, Liu Z, Li J, Xiao W. Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors. Front Cell Dev Biol 2023; 11:1166916. [PMID: 37152280 PMCID: PMC10154581 DOI: 10.3389/fcell.2023.1166916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Malignant melanoma (MM) is the most metastatic and aggressive form of skin cancer, and carries a high risk of death. Immune-checkpoint inhibitor therapy and molecular-targeted therapy can prolong the survival of patients with advanced MM significantly. However, the low response rate and inevitable drug resistance prevent further improvements in efficacy, which is closely related to the tumor microenvironment (TME). The TME refers to the tumor stroma, including fibroblasts, keratinocytes, immune cells, soluble molecules, and extracellular matrix (ECM). The dynamic interaction between the TME and tumor cells is very important for the growth, local invasion, and metastatic spread of tumor cells. A patient-derived organoid (PDO) model involves isolation of tumor tissue from patients with MM and culturing it in vitro in a three-dimensional pattern. Compared with traditional cultivation methods, the PDO model preserves the heterogeneity of the tissue structure of MM and demonstrates the interaction between MM cells and the TME. It can reproduce the characteristics of proliferation, migration, and invasion of MM cells, and better simulate the structural function of MM in vivo. This review explores the role of each TME component in development of the PDO model. This review will provide a reference for research on the drug screening and targeted treatment using PDOs, particularly for the immunotherapy of MM.
Collapse
|
15
|
Michielon E, de Gruijl TD, Gibbs S. From simplicity to complexity in current melanoma models. Exp Dermatol 2022; 31:1818-1836. [PMID: 36103206 PMCID: PMC10092692 DOI: 10.1111/exd.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Despite the recent impressive clinical success of immunotherapy against melanoma, development of primary and adaptive resistance against immune checkpoint inhibitors remains a major issue in a large number of treated patients. This highlights the need for melanoma models that replicate the tumor's intricate dynamics in the tumor microenvironment (TME) and associated immune suppression to study possible resistance mechanisms in order to improve current and test novel therapeutics. While two-dimensional melanoma cell cultures have been widely used to perform functional genomics screens in a high-throughput fashion, they are not suitable to answer more complex scientific questions. Melanoma models have also been established in a variety of experimental (humanized) animals. However, due to differences in physiology, such models do not fully represent human melanoma development. Therefore, fully human three-dimensional in vitro models mimicking melanoma cell interactions with the TME are being developed to address this need for more physiologically relevant models. Such models include melanoma organoids, spheroids, and reconstructed human melanoma-in-skin cultures. Still, while major advances have been made to complement and replace animals, these in vitro systems have yet to fully recapitulate human tumor complexity. Lastly, technical advancements have been made in the organ-on-chip field to replicate functions and microstructures of in vivo human tissues and organs. This review summarizes advancements made in understanding and treating melanoma and specifically aims to discuss the progress made towards developing melanoma models, their applications, limitations, and the advances still needed to further facilitate the development of therapeutics.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Cho W, Ahn M, Kim BS, Cho D. Blood-Lymphatic Integrated System with Heterogeneous Melanoma Spheroids via In-Bath Three-Dimensional Bioprinting for Modelling of Combinational Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202093. [PMID: 36026581 PMCID: PMC9561777 DOI: 10.1002/advs.202202093] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/15/2022] [Indexed: 05/19/2023]
Abstract
Although metastatic melanoma can be managed with chemotherapy, its heterogeneity and resistance to therapy remain poorly understood. In addition to the spread of melanoma in the bloodstream, melanoma-stroma interaction and the lymphatic system play active roles in said heterogeneity and resistance, leading to its progression and metastasis. Reproducing the complexities of the melanoma microenvironment in vitro will help understanding its progression and enhance the translatability of potential cancer therapeutics. A blood-lymphatic integrated system with heterogeneous melanoma spheroids (BLISH) using the in-bath bioprinting process is developed. The process uniformly prints size-controllable metastatic melanoma spheroids along with biomimetic blood and lymphatic vessels (LVs). The system reproduces hallmark events of metastatic melanoma, such as tumor stroma interaction, melanoma invasion, and intravasation. The application of the system to investigate the anticancer effect of combinational targeted therapy suggests that it can be used to study the pathophysiology of melanoma and improve the accuracy of drug response monitoring in skin cancer.
Collapse
Affiliation(s)
- Won‐Woo Cho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk37673Republic of Korea
| | - Minjun Ahn
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk37673Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence EngineeringPusan National UniversityYangsanKyungnam50612Republic of Korea
| | - Dong‐Woo Cho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)PohangKyungbuk37673Republic of Korea
- Institute for Convergence Research and Education in Advanced TechnologyYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
17
|
Coggan H, Page KM. The role of evolutionary game theory in spatial and non-spatial models of the survival of cooperation in cancer: a review. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220346. [PMID: 35975562 PMCID: PMC9382458 DOI: 10.1098/rsif.2022.0346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolutionary game theory (EGT) is a branch of mathematics which considers populations of individuals interacting with each other to receive pay-offs. An individual’s pay-off is dependent on the strategy of its opponent(s) as well as on its own, and the higher its pay-off, the higher its reproductive fitness. Its offspring generally inherit its interaction strategy, subject to random mutation. Over time, the composition of the population shifts as different strategies spread or are driven extinct. In the last 25 years there has been a flood of interest in applying EGT to cancer modelling, with the aim of explaining how cancerous mutations spread through healthy tissue and how intercellular cooperation persists in tumour-cell populations. This review traces this body of work from theoretical analyses of well-mixed infinite populations through to more realistic spatial models of the development of cooperation between epithelial cells. We also consider work in which EGT has been used to make experimental predictions about the evolution of cancer, and discuss work that remains to be done before EGT can make large-scale contributions to clinical treatment and patient outcomes.
Collapse
Affiliation(s)
- Helena Coggan
- Department of Mathematics, University College London, London, UK
| | - Karen M Page
- Department of Mathematics, University College London, London, UK
| |
Collapse
|
18
|
In vitro 3D malignant melanoma model for the evaluation of hypericin-loaded oil-in-water microemulsion in photodynamic therapy. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
20
|
Bête Noire of Chemotherapy and Targeted Therapy: CAF-Mediated Resistance. Cancers (Basel) 2022; 14:cancers14061519. [PMID: 35326670 PMCID: PMC8946545 DOI: 10.3390/cancers14061519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Tumor cells struggle to survive following treatment. The struggle ends in either of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs, which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable component of resistance to the treatment, are one of the most logical targets within tumors that eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts in the development of drug resistance in solid tumors. In the future, we will establish the specific mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-fibroblast-inclusive personalized therapy. Abstract In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized by these transformed tumor cells. Cancer cells undergo several reprogramming events towards adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy involves changes within the transformed tumors cells as well as in their neighboring non-transformed extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts (CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs interact in unison with both tumor cells and all other components of the TME towards the progression of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome of the disease is their participation in the development of resistance to treatment. CAFs resist therapy in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy. Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with their role in orchestrating the development of resistance to different chemotherapies and targeted therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in light of their dialogue with tumor cells and the two components of the TME, the immune component, and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development of treatment resistance will impact our future strategies and ability to design improved therapies inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
Collapse
|
21
|
Corrales E, Levit-Zerdoun E, Metzger P, Kowar S, Ku M, Brummer T, Boerries M. Dynamic transcriptome analysis reveals signatures of paradoxical effect of vemurafenib on human dermal fibroblasts. Cell Commun Signal 2021; 19:123. [PMID: 34930313 PMCID: PMC8686565 DOI: 10.1186/s12964-021-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vemurafenib (PLX4032) is one of the most frequently used treatments for late-stage melanoma patients with the BRAFV600E mutation; however, acquired resistance to the drug poses as a major challenge. It remains to be determined whether off-target effects of vemurafenib on normal stroma components could reshape the tumor microenvironment in a way that contributes to cancer progression and drug resistance. METHODS By using temporally-resolved RNA- and ATAC-seq, we studied the early molecular changes induced by vemurafenib in human dermal fibroblast (HDF), a main stromal component in melanoma and other tumors with high prevalence of BRAFV600 mutations. RESULTS Transcriptomics analyses revealed a stepwise up-regulation of proliferation signatures, together with a down-regulation of autophagy and proteolytic processes. The gene expression changes in HDF strongly correlated in an inverse way with those in BRAFV600E mutant malignant melanoma (MaMel) cell lines, consistent with the observation of a paradoxical effect of vemurafenib, leading to hyperphosphorylation of MEK1/2 and ERK1/2. The transcriptional changes in HDF were not strongly determined by alterations in chromatin accessibility; rather, an already permissive chromatin landscape seemed to facilitate the early accessibility to MAPK/ERK-regulated transcription factor binding sites. Combinatorial treatment with the MEK inhibitor trametinib did not preclude the paradoxical activation of MAPK/ERK signaling in HDF. When administered together, vemurafenib partially compensated for the reduction of cell viability and proliferation induced by trametinib. These paradoxical changes were restrained by using the third generation BRAF inhibitor PLX8394, a so-called paradox breaker compound. However, the advantageous effects on HDF during combination therapies were also lost. CONCLUSIONS Vemurafenib induces paradoxical changes in HDF, enabled by a permissive chromatin landscape. These changes might provide an advantage during combination therapies, by compensating for the toxicity induced in stromal cells by less specific MAPK/ERK inhibitors. Our results highlight the relevance of evaluating the effects of the drugs on non-transformed stromal components, carefully considering the implications of their administration either as mono- or combination therapies. Video Abstract.
Collapse
Affiliation(s)
- Eyleen Corrales
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Silke Kowar
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
23
|
Wang J, Delfarah A, Gelbach PE, Fong E, Macklin P, Mumenthaler SM, Graham NA, Finley SD. Elucidating tumor-stromal metabolic crosstalk in colorectal cancer through integration of constraint-based models and LC-MS metabolomics. Metab Eng 2021; 69:175-187. [PMID: 34838998 PMCID: PMC8818109 DOI: 10.1016/j.ymben.2021.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality in the United States. Tumor-stromal metabolic crosstalk in the tumor microenvironment promotes CRC development and progression, but exactly how stromal cells, in particular cancer-associated fibroblasts (CAFs), affect the metabolism of tumor cells remains unknown. Here we take a data-driven approach to investigate the metabolic interactions between CRC cells and CAFs, integrating constraint-based modeling and metabolomic profiling. Using metabolomics data, we perform unsteady-state parsimonious flux balance analysis to infer flux distributions for central carbon metabolism in CRC cells treated with or without CAF-conditioned media. We find that CAFs reprogram CRC metabolism through stimulation of glycolysis, the oxidative arm of the pentose phosphate pathway (PPP), and glutaminolysis, as well as inhibition of the tricarboxylic acid cycle. To identify potential therapeutic targets, we simulate enzyme knockouts and find that CAF-treated CRC cells are especially sensitive to inhibitions of hexokinase and glucose-6-phosphate, the rate limiting steps of glycolysis and oxidative PPP. Our work gives mechanistic insights into the metabolic interactions between CRC cells and CAFs and provides a framework for testing hypotheses towards CRC-targeted therapies.
Collapse
Affiliation(s)
- Junmin Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Alireza Delfarah
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Patrick E Gelbach
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emma Fong
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, 90064, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 46202, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, 90064, USA; Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
24
|
Spoerri L, Gunasingh G, Haass NK. Fluorescence-Based Quantitative and Spatial Analysis of Tumour Spheroids: A Proposed Tool to Predict Patient-Specific Therapy Response. Front Digit Health 2021; 3:668390. [PMID: 34713141 PMCID: PMC8521823 DOI: 10.3389/fdgth.2021.668390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Tumour spheroids are widely used to pre-clinically assess anti-cancer treatments. They are an excellent compromise between the lack of microenvironment encountered in adherent cell culture conditions and the great complexity of in vivo animal models. Spheroids recapitulate intra-tumour microenvironment-driven heterogeneity, a pivotal aspect for therapy outcome that is, however, often overlooked. Likely due to their ease, most assays measure overall spheroid size and/or cell death as a readout. However, as different tumour cell subpopulations may show a different biology and therapy response, it is paramount to obtain information from these distinct regions within the spheroid. We describe here a methodology to quantitatively and spatially assess fluorescence-based microscopy spheroid images by semi-automated software-based analysis. This provides a fast assay that accounts for spatial biological differences that are driven by the tumour microenvironment. We outline the methodology using detection of hypoxia, cell death and PBMC infiltration as examples, and we propose this procedure as an exploratory approach to assist therapy response prediction for personalised medicine.
Collapse
Affiliation(s)
- Loredana Spoerri
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gency Gunasingh
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Fu Y, Saraswat A, Wei Z, Agrawal MY, Dukhande VV, Reznik SE, Patel K. Development of Dual ARV-825 and Nintedanib-Loaded PEGylated Nano-Liposomes for Synergistic Efficacy in Vemurafnib-Resistant Melanoma. Pharmaceutics 2021; 13:pharmaceutics13071005. [PMID: 34371697 PMCID: PMC8308940 DOI: 10.3390/pharmaceutics13071005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
A novel treatment strategy by co-targeting c-Myc and tumor stroma was explored in vemurafenib-resistant melanoma. BRD4 proteolysis targeting chimera (ARV-825) and nintedanib co-loaded PEGylated nanoliposomes (ARNIPL) were developed to incorporate a synergistic cytotoxic ratio. Both the molecules have extremely poor aqueous solubility. A modified hydration method with citric acid was used to improve the loading of both the molecules in liposomes. ARNIPL with mean particle size 111.1 ± 6.55 nm exhibited more than 90% encapsulation efficiency for both the drugs and was found to be physically stable for a month at 4 °C. Both the molecules and ARNIPL showed significantly higher cytotoxicity, apoptosis and down-regulation of target proteins BRD4 and c-Myc in vemurafenib-resistant cell line (A375R). Vasculogenic mimicry and clonogenic potential of A375R were significantly inhibited by ARNIPL. Tumor growth inhibition in 3D spheroids with reduction of TGF-β1 was observed with ARNIPL treatment. Therefore, ARNIPL could be a promising therapeutic approach for the treatment of vemurafenib-resistant melanoma.
Collapse
|
26
|
Rare variants regulate expression of nearby individual genes in multiple tissues. PLoS Genet 2021; 17:e1009596. [PMID: 34061836 PMCID: PMC8195400 DOI: 10.1371/journal.pgen.1009596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/11/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
The rapid decrease in sequencing cost has enabled genetic studies to discover rare variants associated with complex diseases and traits. Once this association is identified, the next step is to understand the genetic mechanism of rare variants on how the variants influence diseases. Similar to the hypothesis of common variants, rare variants may affect diseases by regulating gene expression, and recently, several studies have identified the effects of rare variants on gene expression using heritability and expression outlier analyses. However, identifying individual genes whose expression is regulated by rare variants has been challenging due to the relatively small sample size of expression quantitative trait loci studies and statistical approaches not optimized to detect the effects of rare variants. In this study, we analyze whole-genome sequencing and RNA-seq data of 681 European individuals collected for the Genotype-Tissue Expression (GTEx) project (v8) to identify individual genes in 49 human tissues whose expression is regulated by rare variants. To improve statistical power, we develop an approach based on a likelihood ratio test that combines effects of multiple rare variants in a nonlinear manner and has higher power than previous approaches. Using GTEx data, we identify many genes regulated by rare variants, and some of them are only regulated by rare variants and not by common variants. We also find that genes regulated by rare variants are enriched for expression outliers and disease-causing genes. These results suggest the regulatory effects of rare variants, which would be important in interpreting associations of rare variants with complex traits. It has been shown that rare variants may affect many diseases including both rare and common diseases with the advent of next-generation sequencing technology. An important question is how rare variants affect diseases or traits, especially whether or how they regulate gene expression as they may affect diseases through gene regulation. However, it is challenging to identify the regulatory effects of rare variants because it often requires large sample sizes and the existing statistical approaches are not optimized for it. Here, we develop a novel method, LRT-q, based on a likelihood ratio test that aggregates the effects of multiple rare variants nonlinearly to achieve higher statistical power than previous rare variant association methods. We apply LRT-q to the latest GTEx v8 dataset and identify regulatory effect of rare variants on individual genes. We also observe that genes regulated by rare variants are likely to be disease-causing genes. These results demonstrate the functional effects of rare variants, especially on gene expression, which provides important biological insights in understanding the genetic mechanism of rare variants in complex traits and diseases.
Collapse
|
27
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
28
|
Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int J Mol Sci 2021; 22:5283. [PMID: 34067929 PMCID: PMC8157224 DOI: 10.3390/ijms22105283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Immacolata Belviso
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Alessandro Venuta
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| |
Collapse
|
29
|
Ayuso JM, Sadangi S, Lares M, Rehman S, Humayun M, Denecke KM, Skala MC, Beebe DJ, Setaluri V. Microfluidic model with air-walls reveals fibroblasts and keratinocytes modulate melanoma cell phenotype, migration, and metabolism. LAB ON A CHIP 2021; 21:1139-1149. [PMID: 33533390 PMCID: PMC7990711 DOI: 10.1039/d0lc00988a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Melanoma evolution is a complex process. The role epidermal keratinocytes and dermal fibroblasts play in this process and the mechanisms involved in tumor-stroma interactions remain poorly understood. Here, we used a microfluidic platform to evaluate the cross-talk between human primary melanoma cells, keratinocytes and dermal fibroblasts. The microfluidic device included multiple circular chambers separated by a series of narrow connection channels. The microdevice design allowed us to develop a new cell patterning method based on air-walls, removing the need for hydrogel barriers, porous membranes, or external equipment. Using this method, we co-cultured melanoma cells in the presence of keratinocytes and/or dermal fibroblasts. The results demonstrated that the presence of dermal fibroblasts and keratinocytes led to changes in melanoma cell morphology and growth pattern. Molecular analysis revealed changes in the chemokine secretion pattern, identifying multiple secreted factors involved in tumor progression. Finally, optical metabolic imaging showed that melanoma cells, fibroblasts, and keratinocytes exhibited different metabolic features. Additionally, the presence of stromal cells led to a metabolic shift in melanoma cells, highlighting the role the skin microenvironment on melanoma evolution.
Collapse
Affiliation(s)
- Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Marcos Lares
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Mouhita Humayun
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Kathryn M Denecke
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Melissa C Skala
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
30
|
Somasundaram R, Connelly T, Choi R, Choi H, Samarkina A, Li L, Gregorio E, Chen Y, Thakur R, Abdel-Mohsen M, Beqiri M, Kiernan M, Perego M, Wang F, Xiao M, Brafford P, Yang X, Xu X, Secreto A, Danet-Desnoyers G, Traum D, Kaestner KH, Huang AC, Hristova D, Wang J, Fukunaga-Kalabis M, Krepler C, Ping-Chen F, Zhou X, Gutierrez A, Rebecca VW, Vonteddu P, Dotiwala F, Bala S, Majumdar S, Dweep H, Wickramasinghe J, Kossenkov AV, Reyes-Arbujas J, Santiago K, Nguyen T, Griss J, Keeney F, Hayden J, Gavin BJ, Weiner D, Montaner LJ, Liu Q, Peiffer L, Becker J, Burton EM, Davies MA, Tetzlaff MT, Muthumani K, Wargo JA, Gabrilovich D, Herlyn M. Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nat Commun 2021; 12:346. [PMID: 33436641 PMCID: PMC7804257 DOI: 10.1038/s41467-020-20600-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Anti-PD-1 therapy is used as a front-line treatment for many cancers, but mechanistic insight into this therapy resistance is still lacking. Here we generate a humanized (Hu)-mouse melanoma model by injecting fetal liver-derived CD34+ cells and implanting autologous thymus in immune-deficient NOD-scid IL2Rγnull (NSG) mice. Reconstituted Hu-mice are challenged with HLA-matched melanomas and treated with anti-PD-1, which results in restricted tumor growth but not complete regression. Tumor RNA-seq, multiplexed imaging and immunohistology staining show high expression of chemokines, as well as recruitment of FOXP3+ Treg and mast cells, in selective tumor regions. Reduced HLA-class I expression and CD8+/Granz B+ T cells homeostasis are observed in tumor regions where FOXP3+ Treg and mast cells co-localize, with such features associated with resistance to anti-PD-1 treatment. Combining anti-PD-1 with sunitinib or imatinib results in the depletion of mast cells and complete regression of tumors. Our results thus implicate mast cell depletion for improving the efficacy of anti-PD-1 therapy. Immune checkpoint therapies (ICT) are promising for treating various cancers, but response rates vary. Here the authors show, in mouse models, that tumor-infiltrating mast cells colocalize with regulatory T cells, coincide with local reduction of MHC-I and CD8 T cells, and is associated with resistance to ICT, which can be reversed by c-kit inhibitor treatment.
Collapse
Affiliation(s)
| | | | - Robin Choi
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Ling Li
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Rohit Thakur
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | - Fang Wang
- The Wistar Institute, Philadelphia, PA, USA
| | - Min Xiao
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Xue Yang
- The Wistar Institute, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony Secreto
- Department of Medicine, Stem Cell and Xenograft Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwenn Danet-Desnoyers
- Department of Medicine, Stem Cell and Xenograft Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Traum
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Department of Pathology and Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Johannes Griss
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Elizabeth M Burton
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of California, San Francisco, CA, USA
| | - Michael T Tetzlaff
- Department of Pathology and Dermatology, University of California, San Francisco, CA, USA
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, PA, USA.,GeneOne Life Science Inc., Fort Washington, PA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
31
|
Shelton M, Anene CA, Nsengimana J, Roberts W, Newton-Bishop J, Boyne JR. The role of CAF derived exosomal microRNAs in the tumour microenvironment of melanoma. Biochim Biophys Acta Rev Cancer 2021; 1875:188456. [PMID: 33153973 DOI: 10.1016/j.bbcan.2020.188456] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Exosomes play a crucial role in the crosstalk between cancer associated fibroblasts (CAFs) and cancer cells, contributing to carcinogenesis and the tumour microenvironment. Recent studies have revealed that CAFs, normal fibroblasts and cancer cells all secrete exosomes that contain miRNA, establishing a cell-cell communication network within the tumour microenvironment. For example, miRNA dysregulation in melanoma has been shown to promote CAF activation via induction of epithelial-mesenchymal transition (EMT), which in turn alters the secretory phenotype of CAFs in the stroma. This review assesses the roles of melanoma exosomal miRNAs in CAF formation and how CAF exosome-mediated feedback signalling to melanoma lead to tumour progression and metastasis. Moreover, efforts to exploit exosomal miRNA-mediated network communication between tumour cells and their microenvironment, and their potential as prognostic biomarkers or novel therapeutic targets in melanoma will also be considered.
Collapse
Affiliation(s)
- M Shelton
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH. United Kingdom
| | - C A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - J Nsengimana
- Population Health Sciences, Institute Faculty of Medical Sciences, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - W Roberts
- School of Clinical and Applied Science, Leeds Beckett University, Leeds LS1 3HE, United Kingdom
| | | | - J R Boyne
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH. United Kingdom.
| |
Collapse
|
32
|
Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers (Basel) 2020; 12:cancers12102870. [PMID: 33036192 PMCID: PMC7601592 DOI: 10.3390/cancers12102870] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The response to pharmacological treatments is deeply influenced by the tight interactions between the tumor cells and the microenvironment. In this review we describe, for melanoma, the most important mechanisms of resistance to targeted therapy and immunotherapy mediated by the components of the microenvironment. In addition, we briefly describe the most recent therapeutic advances for this pathology. The knowledge of molecular mechanisms, which are underlying of drug resistance, is fundamental for the development of new therapeutic approaches for the treatment of melanoma patients. Abstract Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase kinase (MEK), v-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.
Collapse
|
33
|
Lu G, Zhou B, He Y, Liu H, Luo S, Amos CI, Lee JE, Yang K, Qureshi A, Han J, Wei Q. Novel genetic variants of PIP5K1C and MVB12B of the endosome-related pathway predict cutaneous melanoma-specific survival. Am J Cancer Res 2020; 10:3382-3394. [PMID: 33163277 PMCID: PMC7642651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023] Open
Abstract
Endosomes regulate cell polarity, adhesion, signaling, immunity, and tumor progression, which may influence cancer outcomes. Here we evaluated associations between 36,068 genetic variants of 228 endosome-related pathway genes and cutaneous melanoma disease-specific survival (CMSS) using genotyping data from two previously published genome-wide association studies. The discovery dataset included 858 CM patients with 95 deaths from The University of Texas MD Anderson Cancer Center, and the replication dataset included 409 CM patients with 48 deaths from the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). In multivariate Cox proportional hazards regression analysis, we found that two novel SNPs (PIP5K1C rs11666894 A>C and MVB12B rs12376285 C>T) predicted CMSS, with adjusted hazards ratios of 1.47 (95% confidence interval = 1.15-1.89 and P = 0.002) and 1.73 (1.30-2.31 and 0.0002), respectively. Combined analysis of risk genotypes of these two SNPs revealed a dose-dependent decrease in CMSS associated with an increased number of risk genotypes (P trend = 0.0002). Subsequent expression quantitative trait loci (eQTL) analysis revealed that PIP5K1C rs11666894 was associated with mRNA expression levels in lymphoblastoid cell lines from 373 European descendants (P<0.0001) and that MVB12B rs12376285 was associated with mRNA expression levels in cultured fibroblasts from 605 European-Americans (P<0.0001). Our findings suggest that novel genetic variants of PIP5K1C and MVB12B in the endosome-related pathway genes may be promising prognostic biomarkers for CMSS, but these results need to be validated in future larger studies.
Collapse
Affiliation(s)
- Guiqing Lu
- Department of Dermatology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing 210019, Jiangsu, China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Bingrong Zhou
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Yuanmin He
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHouston, TX 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer CenterHouston, TX 77030, USA
| | - Keming Yang
- Department of Nutrition, Harvard T.H. Chan School of Public HealthBoston, MA, USA
| | - Abrar Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Jiali Han
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s HospitalBoston, MA 02115, USA
- Department of Epidemiology, Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
| |
Collapse
|
34
|
Sala M, Ros M, Saltel F. A Complex and Evolutive Character: Two Face Aspects of ECM in Tumor Progression. Front Oncol 2020; 10:1620. [PMID: 32984031 PMCID: PMC7485352 DOI: 10.3389/fonc.2020.01620] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment, including extracellular matrix (ECM) and stromal cells, is a key player during tumor development, from initiation, growth and progression to metastasis. During all of these steps, remodeling of matrix components occurs, changing its biochemical and physical properties. The global and basic cancer ECM model is that tumors are surrounded by activated stromal cells, that remodel physiological ECM to evolve into a stiffer and more crosslinked ECM than in normal conditions, thereby increasing invasive capacities of cancer cells. In this review, we show that this too simple model does not consider the complexity, specificity and heterogeneity of each organ and tumor. First, we describe the general ECM in context of cancer. Then, we go through five invasive and most frequent cancers from different origins (breast, liver, pancreas, colon, and skin), and show that each cancer has its own specific matrix, with different stromal cells, ECM components, biochemical properties and activated signaling pathways. Furthermore, in these five cancers, we describe the dual role of tumor ECM: as a protective barrier against tumor cell proliferation and invasion, and as a major player in tumor progression. Indeed, crosstalk between tumor and stromal cells induce changes in matrix organization by remodeling ECM through invadosome formation in order to degrade it, promoting tumor progression and cell invasion. To sum up, in this review, we highlight the specificities of matrix composition in five cancers and the necessity not to consider the ECM as one general and simple entity, but one complex, dynamic and specific entity for each cancer type and subtype.
Collapse
|
35
|
Fibroblast Heterogeneity in and Its Implications for Plastic and Reconstructive Surgery: A Basic Science Review. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2927. [PMID: 32766071 PMCID: PMC7339369 DOI: 10.1097/gox.0000000000002927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Fibroblasts’ integral role in tissue development, maintenance, and disease represents a fast-growing field of basic science research. Although fibroblasts were long thought to be a homogeneous cell population, recent research has illuminated the unforeseen complexity of these cells, giving rise to the rapidly expanding research field of “fibroblast heterogeneity.” Fibroblasts play a critical role in states of tissue fibrosis such as skin scarring, which affects hundreds of millions of patients annually and causes severe aesthetic, developmental, and functional morbidity. Beyond scarring, major organ fibrosis is an enormous public health concern responsible for nearly half of all deaths in the United States. Because fibrosis is a conserved response to tissue damage in all organs, the study of fibroblasts throughout the body may help us to understand their role in the conditions most relevant to plastic and reconstructive surgery—for instance, skin scarring (eg, from burns, traumatic lacerations, or surgical incisions), “pathological” scarring (hypertrophic scars, keloids), and capsular contracture. Here, we present a basic science review of fibroblast heterogeneity in wound healing, cancer, organ fibrosis, and human dermal architecture. The field of fibroblast heterogeneity is young, and many of the insights discussed have yet to be translated clinically. However, plastic surgeons stand in a unique position to bridge these discoveries into clinical realities. We hope this information can spur readers to consider both what questions in plastic surgery can be studied from the lens of fibroblast heterogeneity, and how these preclinical insights can be translated to improving care of our patients.
Collapse
|
36
|
Federico A, Steinfass T, Larribère L, Novak D, Morís F, Núñez LE, Umansky V, Utikal J. Mithramycin A and Mithralog EC-8042 Inhibit SETDB1 Expression and Its Oncogenic Activity in Malignant Melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:83-99. [PMID: 32637583 PMCID: PMC7327877 DOI: 10.1016/j.omto.2020.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
Malignant melanoma is the most deadly skin cancer, associated with rising incidence and mortality rates. Most of the patients with melanoma, treated with current targeted therapies, develop a drug resistance, causing tumor relapse. The attainment of a better understanding of novel cancer-promoting molecular mechanisms driving melanoma progression is essential for the development of more effective targeted therapeutic approaches. Recent studies, including the research previously conducted in our laboratory, reported that the histone methyltransferase SETDB1 contributes to melanoma pathogenesis. In this follow-up study, we further elucidated the role of SETDB1 in melanoma, showing that SETDB1 modulated relevant transcriptomic effects in melanoma, in particular, as activator of cancer-related secreted (CRS) factors and as repressor of melanocyte-lineage differentiation (MLD) and metabolic enzymes. Next, we investigated the effects of SETDB1 inhibition via compounds belonging to the mithramycin family, mithramycin A and mithramycin analog (mithralog) EC-8042: melanoma cells showed strong sensitivity to these drugs, which effectively suppressed the expression of SETDB1 and induced changes at the transcriptomic, morphological, and functional level. Moreover, SETDB1 inhibitors enhanced the efficacy of mitogen-activated protein kinase (MAPK) inhibitor-based therapies against melanoma. Taken together, this work highlights the key regulatory role of SETDB1 in melanoma and supports the development of SETDB1-targeting therapeutic strategies for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Tamara Steinfass
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Luz-Elena Núñez
- EntreChem SL, Vivero Ciencias de la Salud, 33011 Oviedo, Spain
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, 68135 Baden Württemberg, Germany
| |
Collapse
|
37
|
Frankenstein Z, Basanta D, Franco OE, Gao Y, Javier RA, Strand DW, Lee M, Hayward SW, Ayala G, Anderson ARA. Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression. Nat Ecol Evol 2020; 4:870-884. [PMID: 32393869 PMCID: PMC11000594 DOI: 10.1038/s41559-020-1157-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/19/2020] [Indexed: 01/19/2023]
Abstract
Prostate cancer (PCa) progression is a complex eco-evolutionary process driven by the feedback between evolving tumour cell phenotypes and microenvironmentally driven selection. To better understand this relationship, we used a multiscale mathematical model that integrates data from biology and pathology on the microenvironmental regulation of PCa cell behaviour. Our data indicate that the interactions between tumour cells and their environment shape the evolutionary dynamics of PCa cells and explain overall tumour aggressiveness. A key environmental determinant of this aggressiveness is the stromal ecology, which can be either inhibitory, highly reactive (supportive) or non-reactive (neutral). Our results show that stromal ecology correlates directly with tumour growth but inversely modulates tumour evolution. This suggests that aggressive, environmentally independent PCa may be a result of poor stromal ecology, supporting the concept that purely tumour epithelium-centric metrics of aggressiveness may be incomplete and that incorporating markers of stromal ecology would improve prognosis.
Collapse
Affiliation(s)
- Ziv Frankenstein
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Independent Researcher, New York, NY, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Yan Gao
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Rodrigo A Javier
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - MinJae Lee
- Biostatistics/Epidemiology/Research Design Core, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Gustavo Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
38
|
Albrecht M, Lucarelli P, Kulms D, Sauter T. Computational models of melanoma. Theor Biol Med Model 2020; 17:8. [PMID: 32410672 PMCID: PMC7222475 DOI: 10.1186/s12976-020-00126-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Genes, proteins, or cells influence each other and consequently create patterns, which can be increasingly better observed by experimental biology and medicine. Thereby, descriptive methods of statistics and bioinformatics sharpen and structure our perception. However, additionally considering the interconnectivity between biological elements promises a deeper and more coherent understanding of melanoma. For instance, integrative network-based tools and well-grounded inductive in silico research reveal disease mechanisms, stratify patients, and support treatment individualization. This review gives an overview of different modeling techniques beyond statistics, shows how different strategies align with the respective medical biology, and identifies possible areas of new computational melanoma research.
Collapse
Affiliation(s)
- Marco Albrecht
- Systems Biology Group, Life Science Research Unit, University of Luxembourg, 6, avenue du Swing, Belval, 4367 Luxembourg
| | - Philippe Lucarelli
- Systems Biology Group, Life Science Research Unit, University of Luxembourg, 6, avenue du Swing, Belval, 4367 Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Dresden University of Technology, Fetscherstraße 105, Dresden, 01307 Germany
| | - Thomas Sauter
- Systems Biology Group, Life Science Research Unit, University of Luxembourg, 6, avenue du Swing, Belval, 4367 Luxembourg
| |
Collapse
|
39
|
Fong EJ, Strelez C, Mumenthaler SM. A Perspective on Expanding Our Understanding of Cancer Treatments by Integrating Approaches from the Biological and Physical Sciences. SLAS DISCOVERY 2020; 25:672-683. [PMID: 32297829 PMCID: PMC7372587 DOI: 10.1177/2472555220915830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular systems such as cancer suffer from immense complexity. It is imperative to capture the heterogeneity of these systems across scales to achieve a deeper understanding of the underlying biology and develop effective treatment strategies. In this perspective article, we will discuss how recent technologies and approaches from the biological and physical sciences have transformed traditional ways of measuring, interpreting, and treating cancer. During the SLAS 2019 Annual Meeting, SBI2 hosted a Special Interest Group (SIG) on this topic. Academic and industry leaders engaged in discussions surrounding what biological model systems are appropriate to study cancer complexity, what assays are necessary to interrogate this complexity, and how physical sciences approaches may be useful to detangle this complexity. In particular, we examined the utility of mathematical models in predicting cancer progression and treatment response when tightly integrated with reproducible, quantitative, and dynamic biological measurements achieved using high-content imaging and analysis. The dialogue centered around the impetus for convergent biosciences, bringing new perspectives to cancer research to further understand this complex adaptive system and successfully intervene therapeutically.
Collapse
Affiliation(s)
- Emma J Fong
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
40
|
Rebecca VW, Herlyn M. Nongenetic Mechanisms of Drug Resistance in Melanoma. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Resistance to targeted and immune-based therapies limits cures in patients with metastatic melanoma. A growing number of reports have identified nongenetic primary resistance mechanisms including intrinsic microenvironment- and lineage plasticity–mediated processes serving critical functions in the persistence of disease throughout therapy. There is a temporally shifting spectrum of cellular identities fluidly occupied by therapy-persisting melanoma cells responsible for driving therapeutic resistance and metastasis. The key epigenetic, metabolic, and phenotypic reprogramming events requisite for the manifestation and maintenance of so-called persister melanoma populations remain poorly understood and underscore the need to comprehensively investigate actionable vulnerabilities. Here we attempt to integrate the field's observations on nongenetic mechanisms of drug resistance in melanoma. We postulate that the future design of therapeutic strategies specifically addressing therapy-persisting subpopulations of melanoma will improve the curative potential of therapy for patients with metastatic disease.
Collapse
Affiliation(s)
- Vito W. Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
41
|
Liu T, Zhou L, Yang K, Iwasawa K, Kadekaro AL, Takebe T, Andl T, Zhang Y. The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts. Signal Transduct Target Ther 2019; 4:63. [PMID: 31885878 PMCID: PMC6928146 DOI: 10.1038/s41392-019-0100-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
β-catenin is a multifunctional protein that plays crucial roles in embryonic development, physiological homeostasis, and a wide variety of human cancers. Previously, we showed that in vivo targeted ablation of β-catenin in melanoma-associated fibroblasts after melanoma formation significantly suppressed tumor growth. However, when the expression of β-catenin was ablated in melanoma-associated fibroblasts before tumor initiation, melanoma development was surprisingly accelerated. How stromal β-catenin deficiency leads to opposite biological effects in melanoma progression is not completely understood. Here, we report that β-catenin is indispensable for the activation of primary human stromal fibroblasts and the mediation of fibroblast-melanoma cell interactions. Using coimmunoprecipitation and proximity ligation assays, we identified Yes-associated protein (YAP) as an important β-catenin-interacting partner in stromal fibroblasts. YAP is highly expressed in the nuclei of cancer-associated fibroblasts (CAFs) in both human and murine melanomas. Mechanistic investigation revealed that YAP nuclear translocation is significantly modulated by Wnt/β-catenin activity in fibroblasts. Blocking Wnt/β-catenin signaling in stromal fibroblasts inhibited YAP nuclear translocation. In the absence of YAP, the ability of stromal fibroblasts to remodel the extracellular matrix (ECM) was inhibited, which is consistent with the phenotype observed in cells with β-catenin deficiency. Further studies showed that the expression of ECM proteins and enzymes required for remodeling the ECM was suppressed in stromal fibroblasts after YAP ablation. Collectively, our data provide a new paradigm in which the β-catenin-YAP signaling axis regulates the activation and tumor-promoting function of stromal fibroblasts.
Collapse
Affiliation(s)
- Tianyi Liu
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Kun Yang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039 USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039 USA
| | - Ana Luisa Kadekaro
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039 USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039 USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039 USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039 USA
- Institute of Research, Tokyo Medical and Dental University 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan
| | - Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL 32816 USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 USA
| |
Collapse
|
42
|
Mangukiya HB, Negi H, Merugu SB, Sehar Q, Mashausi DS, Yunus FUN, Wu Z, Li D. Paracrine signalling of AGR2 stimulates RhoA function in fibroblasts and modulates cell elongation and migration. Cell Adh Migr 2019; 13:332-344. [PMID: 31710263 PMCID: PMC6844563 DOI: 10.1080/19336918.2019.1685928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The most prominent cancer-associated fibroblasts (CAFs) in tumor stroma is known to form a protective structure to support tumor growth. Anterior gradient-2 (AGR2), a tumor secretory protein is believed to play a pivotal role during tumor microenvironment (TME) development. Here, we report that extracellular AGR2 enhances fibroblasts elongation and migration significantly. The early stimulation of RhoA showed the association of AGR2 by upregulation of G1-S phase-regulatory protein cyclin D1 and FAK phosphorylation through fibroblasts growth factor receptor (FGFR) and vascular endothelial growth factor receptor (VEGFR). Our finding indicates that secretory AGR2 alters fibroblasts elongation, migration, and organization suggesting the secretory AGR2 as a potential molecular target that might be responsible to alter fibroblasts infiltration to support tumor growth.
Collapse
Affiliation(s)
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | - Qudsia Sehar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Tumour, but not Age-associated, Increase of Senescence Markers γH2AX and p21 in the Canine Eye. J Comp Pathol 2019; 173:41-48. [PMID: 31812172 DOI: 10.1016/j.jcpa.2019.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023]
Abstract
Senescent cells display an irreversible cell cycle arrest with resistance to apoptosis. They are known to accumulate with age in mice, monkeys and man, and are suspected to drive the development and progression of neoplasia. Eyes develop age-associated changes, most commonly in the retina, cornea and lens. The aim of this study was to test whether senescent cells increase with age in the canine eye in general and in the microenvironment of ocular tumours in particular. The senescence markers γH2AX and p21 were tested in young (n = 10, age ≤2 years) versus old (n = 9, age range 9.5-12.4 years) canine eyes, as well as in the microenvironment of intraocular tumours, namely uveal melanocytomas (n = 13) and ciliary body adenomas (n = 9). To consider a potential association of senescence with biological behaviour, we compared the expression of both markers in tumour cells of benign uveal melanocytomas (n = 13) versus malignant conjunctival melanomas (n = 7). Canine eyes showed no age-dependent changes in senescent cells. However, a significant increase of the percentage of γH2AX- or p21-labelled cells was found in the retina, uvea and lens of tumour-bearing eyes. Tumour cells in conjunctival melanomas had a significantly increased percentage of p21-expressing cells compared with uveal melanocytomas. We conclude, that senescent cells do not accumulate with age in otherwise normal canine eyes and that a senescent microenvironment of intraocular tumours is unlikely to be age driven. In addition, as in man, the percentage of p21-positive cells was increased in melanomas, supporting the theory that malignant tumours may override the senescence-associated cell cycle arrest.
Collapse
|
44
|
Bai X, Fisher DE, Flaherty KT. Cell-state dynamics and therapeutic resistance in melanoma from the perspective of MITF and IFNγ pathways. Nat Rev Clin Oncol 2019; 16:549-562. [PMID: 30967646 PMCID: PMC7185899 DOI: 10.1038/s41571-019-0204-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted therapy and immunotherapy have greatly improved the prognosis of patients with metastatic melanoma, but resistance to these therapeutic modalities limits the percentage of patients with long-lasting responses. Accumulating evidence indicates that a persisting subpopulation of melanoma cells contributes to resistance to targeted therapy or immunotherapy, even in patients who initially have a therapeutic response; however, the root mechanism of resistance remains elusive. To address this problem, we propose a new model, in which dynamic fluctuations of protein expression at the single-cell level and longitudinal reshaping of the cellular state at the cell-population level explain the whole process of therapeutic resistance development. Conceptually, we focused on two different pivotal signalling pathways (mediated by microphthalmia-associated transcription factor (MITF) and IFNγ) to construct the evolving trajectories of melanoma and described each of the cell states. Accordingly, the development of therapeutic resistance could be divided into three main phases: early survival of cell populations, reversal of senescence, and the establishment of new homeostatic states and development of irreversible resistance. On the basis of existing data, we propose future directions in both translational research and the design of therapeutic strategies that incorporate this emerging understanding of resistance.
Collapse
Affiliation(s)
- Xue Bai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - David E Fisher
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Osrodek M, Hartman ML, Czyz M. Physiologically Relevant Oxygen Concentration (6% O 2) as an Important Component of the Microenvironment Impacting Melanoma Phenotype and Melanoma Response to Targeted Therapeutics In Vitro. Int J Mol Sci 2019; 20:ijms20174203. [PMID: 31461993 PMCID: PMC6747123 DOI: 10.3390/ijms20174203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer cell phenotype largely depends on oxygen availability. The atmospheric oxygen concentration (21%) used in in vitro studies is much higher than in any human tissue. Using well-characterized patient-derived melanoma cell lines, we compared: (i) activities of several signaling pathways, and (ii) the effects of vemurafenib and trametinib in hyperoxia (21% O2), normoxia (6% O2) and hypoxia (1% O2). A high plasticity of melanoma cells in response to changes in oxygen supplementation and drug treatment was observed, and the transcriptional reprograming and phenotypic changes varied between cell lines. Normoxia enhanced the expression of vascular endothelial growth factor (VEGF), glucose metabolism/transport-related genes, and changed percentages of NGFR- and MITF-positive cells in cell line-dependent manner. Increased protein stability might be responsible for high PGC1α level in MITFlow melanoma cells. Vemurafenib and trametinib while targeting the activity of MAPK/ERK pathway irrespective of oxygen concentration, were less effective in normoxia than hyperoxia in reducing levels of VEGF, PGC1α, SLC7A11 and Ki-67-positive cells in cell line-dependent manner. In conclusion, in vitro studies performed in atmospheric oxygen concentration provide different information on melanoma cell phenotype and response to drugs than performed in normoxia, which might partially explain the discrepancies between results obtained in vitro and in clinical settings.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
46
|
Stavrovskaya AA, Rybalkina EY. Recent Advances in the Studies of Molecular Mechanisms Regulating Multidrug Resistance in Cancer Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:779-786. [PMID: 30200862 DOI: 10.1134/s0006297918070015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present new approaches to better understanding multidrug resistance (MDR) development in cancer cells, such as identification of components of a complex process of MDR evolution. Recent advances in the studies of MDR are discussed: 1) chemotherapy agents might be involved in the selection of cancer stem cells resulting in the elevated drug resistance and enhanced tumorigenicity; 2) cell-cell interactions have a great effect on the MDR emergence and evolution; 3) mechanotransduction is an important signaling mechanism in cell-cell interactions; 4) proteins of the ABC transporter family which are often involved in MDR might be transferred between cells via microvesicles (epigenetic MDR regulation); 5) proteins providing cell-to-cell transfer of functional P-glycoprotein (MDR1 protein) via microvesicles have been investigated; 6) P-glycoprotein may serve to regulate apoptosis, as well as transcription and translation of target genes/proteins. Although proving once again that MDR is a complex multi-faceted process, these data open new approaches to overcoming it.
Collapse
Affiliation(s)
- A A Stavrovskaya
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E Yu Rybalkina
- Blokhin Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
47
|
Hyaluronic Acid Layer-By-Layer (LbL) Nanoparticles for Synergistic Chemo-Phototherapy. Pharm Res 2018; 35:196. [PMID: 30143878 DOI: 10.1007/s11095-018-2480-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/11/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to design hyaluronic acid (HA) layer-by-layer (LbL) nanoparticles, which carried paclitaxel (PTX) and Indocyanine green (ICG) to both tumor cells and tumor associated cells to achieve synergistic chemo-photothermal therapeutic effect. METHODS The LbL-engineered nanoparticles (PDIH) were prepared by dopamine self-polymerization on PTX nanocrystal to form thin, surface-adherent polydopamine (PDA) films, which subsequently absorbed ICG and HA. The tumor cell and tumor associated cell targeting and antitumor efficacy of PDIH were investigated both in vitro an in vivo using 4 T1 murine mammary cancer cell lines and mice bearing orthotopic 4 T1 breast tumor. RESULTS PDIH presented a long-rod shape in TEM and showed enhanced photothermal effect and cytotoxicity upon NIR laser irradiation both in vitro and in vivo. PDIH also displayed high target ability to CD44 overexpressed tumor cells and tumor associated cells mediated by HA. In vivo antitumor study indicated that PDIH therapeutic strategy could achieve remarkable antitumor efficacy. CONCLUSION PDIH showed excellent tumor-targeting property and chemo-photothermal therapeutic efficacy.
Collapse
|
48
|
Chekhonin IV, Chistiakov DA, Grinenko NF, Gurina OI. Glioma Cell and Astrocyte Co-cultures As a Model to Study Tumor-Tissue Interactions: A Review of Methods. Cell Mol Neurobiol 2018; 38:1179-1195. [PMID: 29744691 PMCID: PMC11481938 DOI: 10.1007/s10571-018-0588-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
Astrocytes are a dominant cell type that envelopes the glioma bed. Typically, that is followed by formation of contacts between astrocytes and glioma cells and accompanied by change in astrocyte phenotype, a phenomenon known as a 'reactive astrogliosis.' Generally considered glioma-promoting, astrocytes have many controversial peculiarities in communication with tumor cells, which need thorough examination in vitro. This review is devoted to in vitro co-culture studies of glioma cells and astrocytes. Firstly, we list several fundamental works which allow understanding the modalities of co-culturing. Cell-to-cell interactions between astrocytes and glioma cells, the roles of astrocytes in tumor metabolism, and glioma-related angiogenesis are reviewed. In the review, we also discuss communications between glioma stem cells and astrocytes. Co-cultures of glioma cells and astrocytes are used for studying anti-glioma treatment approaches. We also enumerate surgical, chemotherapeutic, and radiotherapeutic methods assessed in co-culture experiments. In conclusion, we underline collisions in the field and point out the role of the co-cultures for neurobiological studies.
Collapse
Affiliation(s)
- Ivan V Chekhonin
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation.
| | - Dimitry A Chistiakov
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation
| | - Nadezhda F Grinenko
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation
| | - Olga I Gurina
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation
| |
Collapse
|
49
|
Fane ME, Chhabra Y, Smith AG, Sturm RA. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res 2018; 32:9-24. [PMID: 29781575 DOI: 10.1111/pcmr.12710] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
The POU domain family of transcription factors play a central role in embryogenesis and are highly expressed in neural crest cells and the developing brain. BRN2 is a class III POU domain protein that is a key mediator of neuroendocrine and melanocytic development and differentiation. While BRN2 is a central regulator in numerous developmental programs, it has also emerged as a major player in the biology of tumourigenesis. In melanoma, BRN2 has been implicated as one of the master regulators of the acquisition of invasive behaviour within the phenotype switching model of progression. As a mediator of melanoma cell phenotype switching, it coordinates the transition to a dedifferentiated, slow cycling and highly motile cell type. Its inverse expression relationship with MITF is believed to mediate tumour progression and metastasis within this model. Recent evidence has now outlined a potential epigenetic switching mechanism in melanoma cells driven by BRN2 expression that induces melanoma cell invasion. We summarize the role of BRN2 in tumour cell dissemination and metastasis in melanoma, while also examining it as a potential metastatic regulator in other tumour models.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J, Wellbrock C. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene 2018; 37:3166-3182. [PMID: 29545604 PMCID: PMC5992128 DOI: 10.1038/s41388-018-0209-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 01/15/2023]
Abstract
Despite the general focus on an invasive and de-differentiated phenotype as main driver of cancer metastasis, in melanoma patients many metastatic lesions display a high degree of pigmentation, indicative for a differentiated phenotype. Indeed, studies in mice and fish show that melanoma cells switch to a differentiated phenotype at secondary sites, possibly because in melanoma differentiation is closely linked to proliferation through the lineage-specific transcriptional master regulator MITF. Importantly, while a lot of effort has gone into identifying factors that induce the de-differentiated/invasive phenotype, it is not well understood how the switch to the differentiated/proliferative phenotype is controlled. We identify collagen as a contributor to this switch. We demonstrate that collagen stiffness induces melanoma differentiation through a YAP/PAX3/MITF axis and show that in melanoma patients increased collagen abundance correlates with nuclear YAP localization. However, the interrogation of large patient datasets revealed that in the context of the tumour microenvironment, YAP function is more complex. In the absence of fibroblasts, YAP/PAX3-mediated transcription prevails, but in the presence of fibroblasts tumour growth factor-β suppresses YAP/PAX3-mediated MITF expression and induces YAP/TEAD/SMAD-driven transcription and a de-differentiated phenotype. Intriguingly, while high collagen expression is correlated with poorer patient survival, the worst prognosis is seen in patients with high collagen expression, who also express MITF target genes such as the differentiation markers TRPM1, TYR and TYRP1, as well as CDK4. In summary, we reveal a distinct lineage-specific route of YAP signalling that contributes to the regulation of melanoma pigmentation and uncovers a set of potential biomarkers predictive for poor survival.
Collapse
Affiliation(s)
- Zsofia Miskolczi
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jorge Barriuso
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|