1
|
Deng K, Shen L, Xue Z, Li BY, Tang J, Zhao H, Xu F, Miao Z, Cai X, Hu W, Fu Y, Jiang Z, Liang X, Xiao C, Shuai M, Gou W, Yue L, Xie Y, Sun TY, Guo T, Chen YM, Zheng JS. Association of the EAT-Lancet diet, serial measures of serum proteome and gut microbiome, and cardiometabolic health: a prospective study of Chinese middle-aged and elderly adults. Am J Clin Nutr 2024:S0002-9165(24)00818-9. [PMID: 39719725 DOI: 10.1016/j.ajcnut.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND The EAT-Lancet diet was reported to be mutually beneficial for the human cardiometabolic system and planetary health. However, mechanistic evidence linking the EAT-Lancet diet and human cardiometabolic health is lacking. OBJECTIVES We aimed to investigate the role of blood proteins in the association between the EAT-Lancet diet and cardiometabolic health and explore the underlying gut microbiota-blood protein interplay. METHODS Our study was based on a prospective cohort including 3742 Chinese participants enrolled from 2008-2013 with serum proteome data repeatedly measured ≤3 times (Nproteome = 7514) and 1195 with gut metagenomic data measured ≤2 times over 9 y (Nmicrobiota = 1695). Least absolute shrinkage and selection operator and multivariable linear regression were used to explore the associations of the EAT-Lancet diet (assessed by semi-quantitative food frequency questionnaire) with serum proteins and gut microbes. Linear mixed-effect model and logistic regression were used to examine the associations of selected proteins with 11 cardiometabolic risk factors and 4 cardiometabolic diseases, respectively. Mediation analysis was used to identify potential mediation effects. Multiple comparisons were adjusted using the Benjamini-Hochberg method. RESULTS The mean (standard deviation) age of enrolled participants was 58.4 (6.1) y (31.6% men). The EAT-Lancet diet was prospectively associated with 4 core proteins, including α-2-macroglobulin (A2M) (pooled β: 0.12; 95% confidence interval [CI]: 0.05, 0.2), retinol-binding protein 4 (pooled β: -0.14; 95% CI: -0.24, -0.04), TBC1 domain family member 31 (pooled β: -0.11; 95% CI: -0.22, 0), and adenylate kinase 4 (pooled β: -0.19; 95% CI: -0.3, -0.08). The identified proteins were prospectively associated with cardiometabolic diseases (pooled odds ratio ranged from 0.8-1.18) and risk factors (pooled β ranged from -0.1 to 0.12), mediating the association between the EAT-Lancet diet and blood triglycerides. We then identified 5 gut microbial biomarkers of the EAT-Lancet diet, and discovered a potential gut microbiota-blood protein interplay (EAT-Lancet diet→Rothia mucilaginosa→A2M) underlying the EAT-Lancet diet-cardiometabolic health association. CONCLUSIONS Our study presents key molecular evidence to support the role of EAT-Lancet diet adherence in promoting cardiometabolic health.
Collapse
Affiliation(s)
- Kui Deng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Luqi Shen
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Hui Zhao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fengzhe Xu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanqing Fu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Zengliang Jiang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xinxiu Liang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Congmei Xiao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Menglei Shuai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wanglong Gou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Liang Yue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ting-Yu Sun
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Li X, Chen L, Wen H, Wang X, Peng D, Zhang J, Liu Y, Jiang M, Dong L, Huang F, Tian J. Muscle metabolism in response to oxidized fish oil feed in juvenile Nile tilapia. WATER BIOLOGY AND SECURITY 2024:100321. [DOI: 10.1016/j.watbs.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Zhang S, Zhang D, Al-Wraikat M, Jiao Y, Liu Y. A comprehensive multi-omics analysis, integrating proteomics and metabolomics, was employed to elucidate tea-induced stewed beef quality change mechanisms. Food Res Int 2024; 182:114151. [PMID: 38519162 DOI: 10.1016/j.foodres.2024.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
To better understand the functional mechanism of four types of tea (green tea, black tea, jasmine tea, and dark tea) on the quality of stewed beef, changes in quality characteristics, proteomics, and metabolomics were investigated. Adding these four tea types decreased the pH value, L* value, shear force, and hardness of the stewed beef. Among these groups, black tea (BT) significantly improved the tenderness of the stewed beef. They have substantially impacted pathways related to protein oxidative phosphorylation, fatty acid degradation, amino acid degradation, and peroxisomes in stewed beef. The study identified that Myosin-2, Starch binding domain 1, Heat shock protein beta-6, and Myosin heavy chain four are significantly correlated with the quality characteristics of tea-treated stewed beef, making them potential biomarkers. Green tea (GT), black tea (BT), jasmine tea (JT), and dark tea (DT) led to the downregulation of 20, 36, 38, and 31 metabolites, respectively, which are lipids and lipid-like molecules in the stewed beef. The co-analysis of proteomics and metabolomics revealed that differential proteins significantly impacted metabolites associated with carbohydrates, amino acids, lipids, and other nutrients. This study determined the effects of four types of tea on the quality of stewed beef and their underlying mechanisms, providing valuable insights for applying of tea in meat products. At the same time, it can offer new ideas for developing fresh meat products.
Collapse
Affiliation(s)
- Shiquan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Duoduo Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yang Jiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
4
|
Kussmann M. Mass spectrometry as a lens into molecular human nutrition and health. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:370-379. [PMID: 37587732 DOI: 10.1177/14690667231193555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Mass spectrometry (MS) has developed over the last decades into the most informative and versatile analytical technology in molecular and structural biology (). The platform enables discovery, identification, and characterisation of non-volatile biomolecules, such as proteins, peptides, DNA, RNA, nutrients, metabolites, and lipids at both speed and scale and can elucidate their interactions and effects. The versatility, robustness, and throughput have rendered MS a major research and development platform in molecular human health and biomedical science. More recently, MS has also been established as the central tool for 'Molecular Nutrition', enabling comprehensive and rapid identification and characterisation of macro- and micronutrients, bioactives, and other food compounds. 'Molecular Nutrition' thereby helps understand bioaccessibility, bioavailability, and bioefficacy of macro- and micronutrients and related health effects. Hence, MS provides a lens through which the fate of nutrients can be monitored along digestion via absorption to metabolism. This in turn provides the bioanalytical foundation for 'Personalised Nutrition' or 'Precision Nutrition' in which design and development of diets and nutritional products is tailored towards consumer and patient groups sharing similar genetic and environmental predisposition, health/disease conditions and lifestyles, and/or objectives of performance and wellbeing. The next level of integrated nutrition science is now being built as 'Systems Nutrition' where public and personal health data are correlated with life condition and lifestyle factors, to establish directional relationships between nutrition, lifestyle, environment, and health, eventually translating into science-based public and personal heath recommendations and actions. This account provides a condensed summary of the contributions of MS to a precise, quantitative, and comprehensive nutrition and health science and sketches an outlook on its future role in this fascinating and relevant field.
Collapse
Affiliation(s)
- Martin Kussmann
- Abteilung Wissenschaft, Kompetenzzentrum für Ernährung (KErn), Germany
- Kussmann Biotech GmbH, Germany
| |
Collapse
|
5
|
Pandita D, Pandita A. Omics Technology for the Promotion of Nutraceuticals and Functional Foods. Front Physiol 2022; 13:817247. [PMID: 35634143 PMCID: PMC9136416 DOI: 10.3389/fphys.2022.817247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of nutrition and environment on human health has been known for ages. Phytonutrients (7,000 flavonoids and phenolic compounds; 600 carotenoids) and pro-health nutrients—nutraceuticals positively add to human health and may prevent disorders such as cancer, diabetes, obesity, cardiovascular diseases, and dementia. Plant-derived bioactive metabolites have acquired an imperative function in human diet and nutrition. Natural phytochemicals affect genome expression (nutrigenomics and transcriptomics) and signaling pathways and act as epigenetic modulators of the epigenome (nutri epigenomics). Transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics are some of the main platforms of complete omics analyses, finding use in functional food and nutraceuticals. Now the recent advancement in the integrated omics approach, which is an amalgamation of multiple omics platforms, is practiced comprehensively to comprehend food functionality in food science.
Collapse
Affiliation(s)
- Deepu Pandita
- Government Department of School Education, Jammu, India
- *Correspondence: Deepu Pandita,
| | | |
Collapse
|
6
|
Keddy KH, Saha S, Okeke IN, Kalule JB, Qamar FN, Kariuki S. Combating Childhood Infections in LMICs: evaluating the contribution of Big Data Big data, biomarkers and proteomics: informing childhood diarrhoeal disease management in Low- and Middle-Income Countries. EBioMedicine 2021; 73:103668. [PMID: 34742129 PMCID: PMC8579132 DOI: 10.1016/j.ebiom.2021.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023] Open
Abstract
Despite efforts to reduce the global burden of childhood diarrhoea, 50% of all cases globally occur in children under five years in Low–Income and Middle- Income Countries (LMICs) and knowledge gaps remain regarding the aetiological diagnosis, introduction of diarrhoeal vaccines, and the role of environmental enteric dysfunction and severe acute malnutrition. Biomarkers may assist in understanding disease processes, from diagnostics, to management of childhood diarrhoea and the sequelae to vaccine development. Proteomics has the potential to assist in the identification of new biomarkers to understand the processes in the development of childhood diarrhoea and to aid in developing new vaccines. Centralised repositories that enable mining of large data sets to better characterise risk factors, the proteome of both the patient and the different diarrhoeal pathogens, and the environment, could inform patient management and vaccine development, providing a systems biological approach to address the burden of childhood diarrhoea in LMICs.
Collapse
Affiliation(s)
- Karen H Keddy
- Tuberculosis Platform, South African Medical Research Council, 1 Soutpansberg Rd, Pretoria, 0001, South Africa.
| | - Senjuti Saha
- Child Health Research Foundation, 23/2 Khilji Road, Mohammadpur, Dhaka 1207, Bangladesh
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - John Bosco Kalule
- Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Uganda
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health. Aga Khan University, Stadoum road Karachi, Pakistan 74800
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, Nairobi, Kenya
| |
Collapse
|
7
|
de Barros TT, Venancio VDP, Hernandes LC, Antunes LMG, Hillesheim E, Salomão RG, Mathias MG, Coelho-Landell CA, Toffano RBD, Almada MORDV, Camelo-Junior JS, Moco S, Cominetti O, Ued FDV, Kaput J, Monteiro JP. DNA Damage, n-3 Long-Chain PUFA Levels and Proteomic Profile in Brazilian Children and Adolescents. Nutrients 2021; 13:nu13082483. [PMID: 34444642 PMCID: PMC8401971 DOI: 10.3390/nu13082483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
Fatty acids play a significant role in maintaining cellular and DNA protection and we previously found an inverse relationship between blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DNA damage. The aim of this study was to explore differences in proteomic profiles, for 117 pro-inflammatory proteins, in two previously defined groups of individuals with different DNA damage and EPA and DHA levels. Healthy children and adolescents (n = 140) aged 9 to 13 years old in an urban area of Brazil were divided by k-means cluster test into two clusters of DNA damage (tail intensity) using the comet assay (cluster 1 = 5.9% ± 1.2 and cluster 2 = 13.8% ± 3.1) in our previous study. The cluster with higher DNA damage and lower levels of DHA (6.2 ± 1.6 mg/dL; 5.4 ± 1.3 mg/dL, p = 0.003) and EPA (0.6 ± 0.2 mg/dL; 0.5 ± 0.1 mg/dL, p < 0.001) presented increased expression of the proteins CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB, which are involved in pro-inflammatory pathways. Our findings support the hypothesis that low levels of n-3 long-chain PUFA may have a less protective role against DNA damage through expression of pro-inflammatory proteins, such as CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB.
Collapse
Affiliation(s)
- Tamiris Trevisan de Barros
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
- Correspondence:
| | - Vinicius de Paula Venancio
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (V.d.P.V.); (L.M.G.A.)
| | - Lívia Cristina Hernandes
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (V.d.P.V.); (L.M.G.A.)
| | - Lusania Maria Greggi Antunes
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (V.d.P.V.); (L.M.G.A.)
| | - Elaine Hillesheim
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| | - Roberta Garcia Salomão
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| | - Mariana Giaretta Mathias
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| | - Carolina Almeida Coelho-Landell
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| | - Roseli Borges Donegá Toffano
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| | - Maria Olimpia Ribeiro do Vale Almada
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| | - José Simon Camelo-Junior
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| | - Sofia Moco
- Nestlé Research, Société des Produits Nestlé SA, EPFL Innovation Park, CH1015 Lausanne, Switzerland; (S.M.); (O.C.); (J.K.)
| | - Ornella Cominetti
- Nestlé Research, Société des Produits Nestlé SA, EPFL Innovation Park, CH1015 Lausanne, Switzerland; (S.M.); (O.C.); (J.K.)
| | - Fábio da Veiga Ued
- Department of Health Sciences, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil;
| | - Jim Kaput
- Nestlé Research, Société des Produits Nestlé SA, EPFL Innovation Park, CH1015 Lausanne, Switzerland; (S.M.); (O.C.); (J.K.)
| | - Jacqueline Pontes Monteiro
- Department of Pediatrics, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo 14049-900, Brazil; (E.H.); (R.G.S.); (M.G.M.); (C.A.C.-L.); (R.B.D.T.); (M.O.R.d.V.A.); (J.S.C.-J.); (J.P.M.)
| |
Collapse
|
8
|
Sikalidis AK. From Food for Survival to Food for Personalized Optimal Health: A Historical Perspective of How Food and Nutrition Gave Rise to Nutrigenomics. J Am Coll Nutr 2018; 38:84-95. [PMID: 30280996 DOI: 10.1080/07315724.2018.1481797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human nutrition has progressed impressively from the hunter-gatherer mode to that of promising personalized nutrition for health optimization through advanced and sophisticated omics technologies. The contemporary major diseases, while having strong genetic components, do not conform to Mendelian genetics; hence, their expression/manifestation is not controlled by a single gene. Noncommunicable diseases such as obesity, cancer, type 2 diabetes mellitus, and cardiovascular disease are attributed to a series of chronic anomalies closely related to dietary, among other, environmental factors, and consistent deregulation of one or more groups of genes (polygenic). Collectively, these diseases constitute the main cause of death globally and pose tremendous financial burden on healthcare systems. Dietary interventions offer significant possibilities for cost-effective strategies to reduce risk of a series of metabolic diseases and/or improve the outcome of prognosis. In recent decades, the ability of particular nutrients to influence certain cellular functions as well as the regulation of several metabolic pathways via genomic interplay has been demonstrated. Nutrients can influence cellular responses and hence exert an effect on health parameters and outcomes. Several nutrients have been documented to extend their regulatory capacity at various levels including gene expression profile signatures' modulation. In addition, specific nutrients can modulate expression/activation of genes that encode regulatory hormones, which in turn are signaling agents strongly affecting metabolism and subsequently risk levels for certain metabolic diseases. The field of nutrigenomics attempts to revolutionize modern thinking on diet, food, and health; whether it will deliver is still an open matter of debate Key teaching points: A brief, yet comprehensive account on how food and nutrition evolved to give rise to nutrigenomics. Discusses potential of nutrigenomics for public health contribution in noncommunicable diseases. Debates credibility of nutrigenomics' commercial products versus the bio-hype in the field. Presents experts' and stakeholders' opinions for future directions of nutrigenomics.
Collapse
Affiliation(s)
- Angelos K Sikalidis
- a Department of Nutrition and Dietetics, Faculty of Health Sciences , Istanbul Yeni Yuzyil University , Istanbul , Turkey
| |
Collapse
|
9
|
Dragsted LO, Gao Q, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJM, Praticò G. Validation of biomarkers of food intake-critical assessment of candidate biomarkers. GENES & NUTRITION 2018; 13:14. [PMID: 29861790 PMCID: PMC5975465 DOI: 10.1186/s12263-018-0603-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
Biomarkers of food intake (BFIs) are a promising tool for limiting misclassification in nutrition research where more subjective dietary assessment instruments are used. They may also be used to assess compliance to dietary guidelines or to a dietary intervention. Biomarkers therefore hold promise for direct and objective measurement of food intake. However, the number of comprehensively validated biomarkers of food intake is limited to just a few. Many new candidate biomarkers emerge from metabolic profiling studies and from advances in food chemistry. Furthermore, candidate food intake biomarkers may also be identified based on extensive literature reviews such as described in the guidelines for Biomarker of Food Intake Reviews (BFIRev). To systematically and critically assess the validity of candidate biomarkers of food intake, it is necessary to outline and streamline an optimal and reproducible validation process. A consensus-based procedure was used to provide and evaluate a set of the most important criteria for systematic validation of BFIs. As a result, a validation procedure was developed including eight criteria, plausibility, dose-response, time-response, robustness, reliability, stability, analytical performance, and inter-laboratory reproducibility. The validation has a dual purpose: (1) to estimate the current level of validation of candidate biomarkers of food intake based on an objective and systematic approach and (2) to pinpoint which additional studies are needed to provide full validation of each candidate biomarker of food intake. This position paper on biomarker of food intake validation outlines the second step of the BFIRev procedure but may also be used as such for validation of new candidate biomarkers identified, e.g., in food metabolomic studies.
Collapse
Affiliation(s)
- L. O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Q. Gao
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - A. Scalbert
- International Agency for Research on Cancer (IARC), Nutrition and Metabolism Section, Biomarkers Group, Lyon, France
| | - G. Vergères
- Agroscope, Federal Office of Agriculture, Berne, Switzerland
| | | | - C. Manach
- INRA, Human Nutrition Unit, Université Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - L. Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - L. A. Afman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - D. S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - C. Andres Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - M. Garcia-Aloy
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - H. Verhagen
- European Food Safety Authority (EFSA), Parma, Italy
- University of Ulster, Coleraine, NIR UK
| | - E. J. M. Feskens
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - G. Praticò
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T, Kussmann M. "Exosomics"-A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. Front Genet 2018; 9:92. [PMID: 29636770 PMCID: PMC5881086 DOI: 10.3389/fgene.2018.00092] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes are biomolecular nanostructures released from cells. They carry specific biomolecular information and are mainly researched for their exquisite properties as a biomarker source and delivery system. We introduce exosomes in the context of other extracellular vesicles, describe their biophysical isolation and characterisation and discuss their biochemical profiling. Motivated by our interest in early-life nutrition and health, and corresponding studies enrolling lactating mothers and their infants, we zoom into exosomes derived from human breast milk. We argue that these should be more extensively studied at proteomic and micronutrient profiling level, because breast milk exosomes provide a more specific window into breast milk quality from an immunological (proteomics) and nutritional (micronutrient) perspective. Such enhanced breast milk exosome profiling would thereby complement and enrich the more classical whole breast milk analysis and is expected to deliver more functional insights than the rather descriptive analysis of human milk, or larger fractions thereof, such as milk fat globule membrane. We substantiate our arguments by a bioinformatic analysis of two published proteomic data sets of human breast milk exosomes.
Collapse
Affiliation(s)
| | - Renee V. Goreham
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Joan J. Bech Serra
- Proteomics Unit, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Thomas Nann
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Martin Kussmann
- Liggins Institute, University of Auckland, Auckland, New Zealand
- National Science Challenge “High-Value Nutrition”, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Jiang H, Bian F, Zhou H, Wang X, Wang K, Mai K, He G. Nutrient sensing and metabolic changes after methionine deprivation in primary muscle cells of turbot (Scophthalmus maximus L.). J Nutr Biochem 2017; 50:74-82. [PMID: 29040838 DOI: 10.1016/j.jnutbio.2017.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
The low methionine content in plant-based diets is a major limiting factor for feed utilization by animals. However, the molecular consequences triggered by methionine deficiency have not been well characterized, especially in fish species, whose metabolism is unique in many aspects and important for aquaculture industry. In the present study, the primary muscle cells of turbot (Scophthalmus maximus L.) were isolated and treated with or without methionine for 12 h in culture. The responses of nutrient sensing pathways, the proteomic profiling of metabolic processes, and the expressions of key metabolic molecules were systematically examined. Methionine deprivation (MD) suppressed target of rapamycin (TOR) signaling, activated AMP-activated protein kinase (AMPK) and amino acid response (AAR) pathways. Reduced cellular protein synthesis and increased protein degradation by MD led to increased intracellular free amino acid levels and degradations. MD also reduced glycolysis and lipogenesis while stimulated lipolysis, thus resulted in decreased intracellular lipid pool. MD significantly enhanced energy expenditure through stimulated tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Collectively, our results identified a comprehensive set of transcriptional, proteomic, and signaling responses generated by MD and provided the molecular insight into the integration of cell homeostasis and metabolic controls in fish species.
Collapse
Affiliation(s)
- Haowen Jiang
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Fuyun Bian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huihui Zhou
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xuan Wang
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kaidi Wang
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Gen He
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
12
|
Bioactive Nutrients and Nutrigenomics in Age-Related Diseases. Molecules 2017; 22:molecules22010105. [PMID: 28075340 PMCID: PMC6155887 DOI: 10.3390/molecules22010105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.
Collapse
|
13
|
Al-Daghri NM, Alokail MS, Manousopoulou A, Heinson A, Al-Attas O, Al-Saleh Y, Sabico S, Yakout S, Woelk CH, Chrousos GP, Garbis SD. Sex-specific vitamin D effects on blood coagulation among overweight adults. Eur J Clin Invest 2016; 46:1031-1040. [PMID: 27727459 DOI: 10.1111/eci.12688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Overweight adults are at increased risk for cardiovascular disease and vitamin D deficiency, whereas an important feature to vitamin D physiology is its sex dependence. The aim of this study was to examine whether vitamin D status improvement exerts a sexually dimorphic effect on serum proteins associated with cardiovascular risk among overweight adults. MATERIALS AND METHODS Unprocessed serum from age- and BMI-matched men (n = 26) and premenopausal women (n = 24) with vitamin D deficiency and after they achieved sufficiency through a 12-month nutritional intervention was analysed using our previously published depletion-free quantitative proteomics method. Key findings were verified with ELISA. Differentially expressed proteins were subjected to in silico bioinformatics assessment using principal component analysis, hierarchical clustering and Metacore™ pathway analysis. All mass spectrometry proteomic data are available via ProteomeXchange (identifier: PXD003663). RESULTS A total of 282 proteins were differentially expressed after the intervention between men and women (P-value ≤ 0·05), in which the blood coagulation pathway was significantly enriched. In agreement with the proteomics findings, ELISA measurements showed vitamin K-dependent protein C, von Willebrand factor, fibrinogen gamma chain and multimerin-1 proteins, of relevance to blood coagulation, to be differentially affected (P-value ≤ 0·05) between sexes after vitamin D status correction. CONCLUSIONS This study identified novel protein-level molecular indicators on the sexually dimorphic effect of vitamin D status correction associated with blood coagulation among overweight adults. These sex-mediated vitamin D effects should be factored in the design and interpretation of vitamin D observational and interventional studies testing cardiometabolic outcomes.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Antigoni Manousopoulou
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.,Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Ashley Heinson
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Omar Al-Attas
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Yousef Al-Saleh
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Sobhy Yakout
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - George P Chrousos
- First Department of Pediatrics, University of Athens, Athens, Greece
| | - Spiros D Garbis
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.,Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK.,Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Odriozola L, Corrales FJ. Discovery of nutritional biomarkers: future directions based on omics technologies. Int J Food Sci Nutr 2016; 66 Suppl 1:S31-40. [PMID: 26241009 DOI: 10.3109/09637486.2015.1038224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the interactions between food and human biology is of utmost importance to facilitate the development of more efficient nutritional interventions that might improve our wellness status and future health outcomes by reducing risk factors for non-transmittable chronic diseases, such as cardiovascular diseases, cancer, obesity and metabolic syndrome. Dissection of the molecular mechanisms that mediate the physiological effects of diets and bioactive compounds is one of the main goals of current nutritional investigation and the food industry as might lead to the discovery of novel biomarkers. It is widely recognized that the availability of robust nutritional biomarkers represents a bottleneck that delays the innovation process of the food industry. In this regard, omics sciences have opened up new avenues of research and opportunities in nutrition. Advances in mass spectrometry, nuclear magnetic resonance, next generation sequencing and microarray technologies allow massive genome, gene expression, proteomic and metabolomic profiling, obtaining a global and in-depth analysis of physiological/pathological scenarios. For this reason, omics platforms are most suitable for the discovery and characterization of novel nutritional markers that will define the nutritional status of both individuals and populations in the near future, and to identify the nutritional bioactive compounds responsible for the health outcomes.
Collapse
Affiliation(s)
- Leticia Odriozola
- Proteomics Laboratory, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | | |
Collapse
|
15
|
Orange proteomic fingerprinting: From fruit to commercial juices. Food Chem 2016; 196:739-49. [DOI: 10.1016/j.foodchem.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022]
|
16
|
Tsurumaki M, Kotake M, Iwasaki M, Saito M, Tanaka K, Aw W, Fukuda S, Tomita M. The application of omics technologies in the functional evaluation of inulin and inulin-containing prebiotics dietary supplementation. Nutr Diabetes 2015; 5:e185. [PMID: 26619369 PMCID: PMC4672356 DOI: 10.1038/nutd.2015.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 12/25/2022] Open
Abstract
Inulin, a natural renewable polysaccharide resource produced by various plants in nature, has been reported to possess a significant number of diverse pharmaceutical and food applications. Recently, there has been rapid progress in high-throughput technologies and platforms to assay global mRNA, proteins, metabolites and gut microbiota. In this review, we will describe the current status of utilizing omics technologies of elucidating the impact of inulin and inulin-containing prebiotics at the transcriptome, proteome, metabolome and gut microbiome levels. Although many studies in this review have addressed the impact of inulin comprehensively, these omics technologies only enable us to understand physiological information at each different stage of mRNA, protein, metabolite and gut microbe. We believe that a synergistic approach is vital in order to fully illustrate the intricate beauty behind the relatively modest influence of food factors like inulin on host health.
Collapse
Affiliation(s)
- M Tsurumaki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - M Kotake
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - M Iwasaki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - M Saito
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - K Tanaka
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - W Aw
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - S Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - M Tomita
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
17
|
|
18
|
Raiten DJ, Sakr Ashour FA, Ross AC, Meydani SN, Dawson HD, Stephensen CB, Brabin BJ, Suchdev PS, van Ommen B. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). J Nutr 2015; 145:1039S-1108S. [PMID: 25833893 PMCID: PMC4448820 DOI: 10.3945/jn.114.194571] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/08/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations.
Collapse
Affiliation(s)
- Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| | - Fayrouz A Sakr Ashour
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - A Catharine Ross
- Departments of Nutritional Sciences and Veterinary and Biomedical Science and Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA
| | - Simin N Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Harry D Dawson
- USDA-Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD
| | - Charles B Stephensen
- Agricultural Research Service, Western Human Nutrition Research Center, USDA, Davis, CA
| | - Bernard J Brabin
- Child and Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Global Child Health Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Parminder S Suchdev
- Department of Pediatrics and Global Health, Emory University, Atlanta, GA; and
| | | |
Collapse
|
19
|
Sauer S, Luge T. Nutriproteomics: Facts, concepts, and perspectives. Proteomics 2015; 15:997-1013. [DOI: 10.1002/pmic.201400383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/03/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sascha Sauer
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Toni Luge
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| |
Collapse
|
20
|
|
21
|
Kato H, Takahashi S, Saito K. Omics and integrated omics for the promotion of food and nutrition science. J Tradit Complement Med 2014; 1:25-30. [PMID: 24716102 PMCID: PMC3942997 DOI: 10.1016/s2225-4110(16)30053-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcriptomics, proteomics, and metabolomics are three major platforms of comprehensive omics analysis in the science of food and complementary medicine. Other omics disciplines, including those of epigenetics and microRNA, are matters of increasing concern. The increased use of the omics approach in food science owes much to the recent advancement of technology and bioinformatic methodologies. Moreover, many researchers now put the combination of multiple omics analysis (integrated omics) into practice to exhaustively understand the functionality of food components. However, data analysis of integrated omics requires huge amount of work and high skill of data handling. A database of nutritional omics data was constructed by the authors, which should help food scientists to analyze their own omics data more effectively. In addition, a novel tool for the easy visualization of omics data was developed by the authors’ group. The tool enables one to overview the changes of multiple omics in the KEGG pathway. Research in traditional and complementary medicine will be further facilitated by promoting the integrated omics research of food functionality. Such integrated research will only be possible with the effective collaboration of scientists with different backgrounds.
Collapse
Affiliation(s)
- Hisanori Kato
- Food for Life, Organization for Interdisciplinary Research Projects, The University of Tokyo
- Correspondence to: Dr. Hisanori Kato, Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan, Tel: +81-3-5841-1607, Fax: +81-3-5841-1607, E-mail:
| | - Shoko Takahashi
- Food for Life, Organization for Interdisciplinary Research Projects, The University of Tokyo
| | - Kenji Saito
- Food for Life, Organization for Interdisciplinary Research Projects, The University of Tokyo
| |
Collapse
|
22
|
Righetti PG, Fasoli E, D'Amato A, Boschetti E. The "Dark Side" of Food Stuff Proteomics: The CPLL-Marshals Investigate. Foods 2014; 3:217-237. [PMID: 28234315 PMCID: PMC5302364 DOI: 10.3390/foods3020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022] Open
Abstract
The present review deals with analysis of the proteome of animal and plant-derived food stuff, as well as of non-alcoholic and alcoholic beverages. The survey is limited to those systems investigated with the help of combinatorial peptide ligand libraries, a most powerful technique allowing access to low- to very-low-abundance proteins, i.e., to those proteins that might characterize univocally a given biological system and, in the case of commercial food preparations, attest their genuineness or adulteration. Among animal foods the analysis of cow's and donkey's milk is reported, together with the proteomic composition of egg white and yolk, as well as of honey, considered as a hybrid between floral and animal origin. In terms of plant and fruits, a survey is offered of spinach, artichoke, banana, avocado, mango and lemon proteomics, considered as recalcitrant tissues in that small amounts of proteins are dispersed into a large body of plant polymers and metabolites. As examples of non-alcoholic beverages, ginger ale, coconut milk, a cola drink, almond milk and orgeat syrup are analyzed. Finally, the trace proteome of white and red wines, beer and aperitifs is reported, with the aim of tracing the industrial manipulations and herbal usage prior to their commercialization.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | - Alfonsina D'Amato
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | | |
Collapse
|
23
|
Baum F, Fedorova M, Ebner J, Hoffmann R, Pischetsrieder M. Analysis of the Endogenous Peptide Profile of Milk: Identification of 248 Mainly Casein-Derived Peptides. J Proteome Res 2013; 12:5447-62. [DOI: 10.1021/pr4003273] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Baum
- Department
of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Maria Fedorova
- Center
for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz
5, 04103 Leipzig, Germany
| | - Jennifer Ebner
- Department
of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Ralf Hoffmann
- Center
for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz
5, 04103 Leipzig, Germany
| | - Monika Pischetsrieder
- Department
of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|
24
|
Carvalho SM, Vasconcelos MW. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Agrawal GK, Timperio AM, Zolla L, Bansal V, Shukla R, Rakwal R. Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics. J Proteomics 2013; 93:74-92. [PMID: 23619387 DOI: 10.1016/j.jprot.2013.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022]
Abstract
Foods and beverages have been at the heart of our society for centuries, sustaining humankind - health, life, and the pleasures that go with it. The more we grow and develop as a civilization, the more we feel the need to know about the food we eat and beverages we drink. Moreover, with an ever increasing demand for food due to the growing human population food security remains a major concern. Food safety is another growing concern as the consumers prefer varied foods and beverages that are not only traded nationally but also globally. The 21st century science and technology is at a new high, especially in the field of biological sciences. The availability of genome sequences and associated high-throughput sensitive technologies means that foods are being analyzed at various levels. For example and in particular, high-throughput omics approaches are being applied to develop suitable biomarkers for foods and beverages and their applications in addressing quality, technology, authenticity, and safety issues. Proteomics are one of those technologies that are increasingly being utilized to profile expressed proteins in different foods and beverages. Acquired knowledge and protein information have now been translated to address safety of foods and beverages. Very recently, the power of proteomic technology has been integrated with another highly sensitive and miniaturized technology called nanotechnology, yielding a new term nanoproteomics. Nanoproteomics offer a real-time multiplexed analysis performed in a miniaturized assay, with low-sample consumption and high sensitivity. To name a few, nanomaterials - quantum dots, gold nanoparticles, carbon nanotubes, and nanowires - have demonstrated potential to overcome the challenges of sensitivity faced by proteomics for biomarker detection, discovery, and application. In this review, we will discuss the importance of biomarker discovery and applications for foods and beverages, the contribution of proteomic technology in this process, and a shift towards nanoproteomics to suitably address associated issues. This article is part of a Special Issue entitled: Translational plant proteomics.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | |
Collapse
|
26
|
Norheim F, Gjelstad IMF, Hjorth M, Vinknes KJ, Langleite TM, Holen T, Jensen J, Dalen KT, Karlsen AS, Kielland A, Rustan AC, Drevon CA. Molecular nutrition research: the modern way of performing nutritional science. Nutrients 2012. [PMID: 23208524 PMCID: PMC3546614 DOI: 10.3390/nu4121898] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In spite of amazing progress in food supply and nutritional science, and a striking increase in life expectancy of approximately 2.5 months per year in many countries during the previous 150 years, modern nutritional research has a great potential of still contributing to improved health for future generations, granted that the revolutions in molecular and systems technologies are applied to nutritional questions. Descriptive and mechanistic studies using state of the art epidemiology, food intake registration, genomics with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, challenge tests (meals, exercise, etc.), and integration of all data by systems biology, will provide insight on a much higher level than today in a field we may name molecular nutrition research. To take advantage of all the new technologies scientists should develop international collaboration and gather data in large open access databases like the suggested Nutritional Phenotype database (dbNP). This collaboration will promote standardization of procedures (SOP), and provide a possibility to use collected data in future research projects. The ultimate goals of future nutritional research are to understand the detailed mechanisms of action for how nutrients/foods interact with the body and thereby enhance health and treat diet-related diseases.
Collapse
Affiliation(s)
- Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Ingrid M. F. Gjelstad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Torgrim M. Langleite
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Science, P.O. Box 4014, Ullevål Stadion, N-0806 Oslo, Norway; Jorgen.
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Anette S. Karlsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Anders Kielland
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway;
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0317 Oslo, Norway; (F.N.); (I.M.F.G.); (M.H.); (K.J.V.); (T.M.L.); (T.H.); (K.T.D.); (A.S.K.); (A.K.)
- Author to whom correspondence should be addressed; ; Tel.: +47-22851392; Fax: +47-22851393
| |
Collapse
|
27
|
Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. FOOD ENGINEERING REVIEWS 2012. [DOI: 10.1007/s12393-012-9058-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Abstract
Personalized nutrition has been traditionally based on the adjustment of food and diet according to individual needs and preferences. At present, this concept is being reinforced through the application of state-of-the-art high-throughput technologies to help understand the molecular mechanisms underlying a healthy state. This knowledge could enable the adjustment of general dietary recommendations to match the needs of specific population groups based on their molecular profiles. The optimal development of evidence-based nutritional guidance to promote health requires an adequate assessment of nutrient bioavailability, bioactivity, and bioefficacy. To achieve this, reliable information about exposure to nutrients, their intake, and functional effects is required; thus, the identification of valid biomarkers using standardized analytical procedures is necessary. Although some nutritional biomarkers are now successfully used (eg, serum retinol, zinc, ferritin, and folate), a comprehensive set to assess the nutritional status and metabolic conditions of nutritional relevance is not yet available. Also, there is very limited knowledge on how the extensive human genetic variability influences the interpretation of these biomarkers. In this context, nutrigenomics seems to be a promising approach to identify new biomarkers in nutrition, through an integrative application of transcriptomics, proteomics, metabolomics, epigenomics, and nutrigenetics in human nutritional research.
Collapse
|
29
|
Translational plant proteomics: a perspective. J Proteomics 2012; 75:4588-601. [PMID: 22516432 DOI: 10.1016/j.jprot.2012.03.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 02/25/2012] [Accepted: 03/25/2012] [Indexed: 11/21/2022]
Abstract
Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
|
30
|
Sun H, Zhang A, Wang X. Potential role of metabolomic approaches for Chinese medicine syndromes and herbal medicine. Phytother Res 2012; 26:1466-71. [PMID: 22422429 DOI: 10.1002/ptr.4613] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 12/21/2022]
Abstract
Systems biology has significantly increased in recent years. Its method and design resemble those of traditional Chinese medicine (TCM), which is a unique medical system that assisted the ancient Chinese in dealing with disease. The technology platforms of systems biology, especially metabolomics, could provide more rapid, direct, concise and effective methods for disease research. In particular, metabolomics could provide useful tools for exploring the essence of Chinese medicine syndromes (CMS) disease, facilitating personalized TCM. Moreover, metabolomics has the potential to enable mapping of early biochemical changes in disease and hence provide an opportunity to develop predictive biomarkers that can trigger earlier interventions. A future hope for the metabonomic approach is the identification of biomarkers that are able to highlight individuals likely to suffer from disease and enable early diagnosis of the disease or the identification of those at risk, and it will help to understand CMS and modernize TCM. In this review, we focus on the key role of robust metabolomic approaches as an aid for traditional herbal medicine; particular attention will be paid to the past successes in applications of metabonomics to contribute to low-molecular-weight metabolites (biomarkers) discovery in TCM research.
Collapse
Affiliation(s)
- Hui Sun
- National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | |
Collapse
|
31
|
Abstract
Crohn's disease is a chronic relapsing condition that has no certain cure. Both genetic susceptibility and nutrition have key roles, but their level of involvement varies between patients. Interacting gene pathways influence the probability of disease development, but these are affected by stress and various environmental factors, including diet. In addition, the role of the gut microbiome must not be underestimated, as it is substantially altered in patients with Crohn's disease. Although an elemental diet might lead to disease remission, reintroducing real foods and sustainable diets in patients with Crohn's disease is currently difficult, and would benefit from the sensitivity and rapid feedback provided by the field of nutrigenomics. Nutrigenomics utilizes high-throughput genomics technologies to reveal changes in gene and protein expression that are modulated by the patient's nutrition. The most widely used technique thus far is transcriptomics, which permits measurement of changes in the expression of thousands of genes simultaneously in one sample. Given the volume of numbers generated in such studies, data-basing and bioinformatics are essential to ensure the correct application of nutrigenomics at the population level. These methods have been successfully applied to animal models of Crohn's disease, and the time is right to move them to human studies.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
32
|
Cortez E, Neves FA, Bernardo AF, Stumbo AC, Carvalho L, Garcia-Souza E, Sichieri R, Moura AS. Lymphocytes mitochondrial physiology as biomarker of energy metabolism during fasted and fed conditions. ScientificWorldJournal 2012; 2012:629326. [PMID: 22489196 PMCID: PMC3317758 DOI: 10.1100/2012/629326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/11/2011] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central coordinators of energy metabolism, and changes of their physiology have long been associated with metabolic disorders. Thus, observations of energy dynamics in different cell types are of utmost importance. Therefore, tools with quick and easy handling are needed for consistent evaluations of such interventions. In this paper, our main hypothesis is that during different nutritional situations lymphocytes mitochondrial physiology could be associated with the metabolism of other cell types, such as cardiomyocytes, and consequently be used as metabolic biomarker. Blood lymphocytes and heart muscle fibers were obtained from both fed and 24 h-fasted mice, and mitochondrial analysis was assessed by high-resolution respirometry and western blotting. Carbohydrate-linked oxidation and fatty acid oxidation were significantly higher after fasting. Carnitine palmitoil transferase 1 and uncouple protein 2 contents were increased in the fasted group, while the glucose transporters 1 and 4 and the ratio phosphorylated AMP-activated protein kinase/AMPK did not change between groups. In summary, under a nutritional status modification, mitochondria demonstrated earlier adaptive capacity than other metabolic sensors such as glucose transporters and AMPK, suggesting the accuracy of mitochondria physiology of lymphocytes as biomarker for metabolic changes.
Collapse
Affiliation(s)
- Erika Cortez
- Laboratory of Physiology of Nutrition and Development, Department of Physiological Sciences, Institute of Biology, Rio de Janeiro State University, Avenue 28 de Setembro 87, 5th Floor, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lopes LV, Kussmann M. Proteomics at the interface of psychology, gut physiology and dysfunction: an underexploited approach that deserves expansion. Expert Rev Proteomics 2012; 8:605-14. [PMID: 21999831 DOI: 10.1586/epr.11.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gut functions such as digestion and absorption are essential to life and the emerging insights into the gut-brain axis - that is, the cross talk between the enteric and CNS - point towards critical links between (eating) behavior, psychology, whole body and gut physiology, and digestive and overall health. While proteomics is ideally positioned to shed more light on these interactions, be it applied to the periphery (e.g., blood) or the locus of action (i.e., the gut), it is to date largely underexploited, mainly because of challenging sampling and tissue complexity. In view of the contrast between potential and current delivery of proteomics in the context of intestinal health, this article briefs the reader on the state-of-the-art of molecular intestinal research, reviews current proteomic studies (explicitly focusing on the most recent ones that target inflammatory bowel disease patient samples) and argues for an expansion of this research field.
Collapse
Affiliation(s)
- Luísa V Lopes
- Neurosciences Unit, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1640-028 Lisboa, Portugal.
| | | |
Collapse
|
34
|
Bertram HC, Larsen LB, Chen X, Jeppesen PB. Impact of high-fat and high-carbohydrate diets on liver metabolism studied in a rat model with a systems biology approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:676-684. [PMID: 22224854 DOI: 10.1021/jf203994k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to investigate the use of an integrated metabolomics and proteomics approach in the elucidation of diet-induced effects on hepatic metabolism in a rat model. Nuclear magnetic resonance (NMR)-based metabolomics of liver extracts revealed a pronounced effect of a high-fat diet on the hepatic betaine content, whereas a carbohydrate-rich diet induced increases in hepatic glucose. In addition, the metabolomic investigations revealed that the high-fat diet was associated with increased hepatic lipid levels, which was not evident with the carbohydrate-rich diet. The proteomic investigations revealed strong high-fat diet effects on the expression of 186 proteins in the liver including malate dehydrogenase. Comparison of malate dehydrogenase expression determined by proteomics and NMR metabolite profiles revealed correlations between malate dehydrogenase and lactate, glucose, and glutamine/glutamate signals, thereby demonstrating a diet-induced regulation that was evident at both proteomic and metabolomic levels.
Collapse
|
35
|
Chou CJ, Affolter M, Kussmann M. A Nutrigenomics View of Protein Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:51-74. [DOI: 10.1016/b978-0-12-398397-8.00003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
|
37
|
Panchaud A, Affolter M, Kussmann M. Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. J Proteomics 2011; 75:3546-59. [PMID: 22227401 DOI: 10.1016/j.jprot.2011.12.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 01/24/2023]
Abstract
We describe nutritional peptidomics for discovery and validation of bioactive food peptide and their health effects. Understanding nature and bioactivity of nutritional peptides means comprehending an important level of environmental regulation of the human genome, because diet is the environmental factor with the most profound life-long influence on health. We approach the theme from three angles, namely the analysis, the discovery and the biology perspective. Food peptides derive from parent food proteins via in vitro hydrolysis (processing) or in vivo digestion by various unspecific and specific proteases, as opposed to the tryptic peptides typically generated in biomarker proteomics. A food bioactive peptide may be rare or unique in terms of sequence and modification, and many food genomes are less well annotated than e.g. the human genome. Bioactive peptides can be discovered either empirically or by prediction: we explain both the classical hydrolysis strategy and the bioinformatics-driven reversed genome engineering. In order to exert bioactivity, food peptides must be either ingested and then reach the intestine in their intact form or be liberated in situ from their parent proteins to act locally, that is in the gut, or even systemically, i.e. through the blood stream. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Alexandre Panchaud
- Functional Genomics Group, Nestlé Research Centre, Lausanne, Switzerland
| | | | | |
Collapse
|
38
|
Cox J, M.A.Heeren R, James P, Jorrin-Novo JV, Kolker E, Levander F, Morrice N, Picotti P, Righetti PG, Sánchez JC, Turck CW, Zubarev R, Alexandre BM, Corrales FJ, Marko-Varga G, O'Donovan S, O'Neil S, Prechl J, Simões T, Weckwerth W, Penque D. Facing challenges in Proteomics today and in the coming decade: Report of Roundtable Discussions at the 4th EuPA Scientific Meeting, Portugal, Estoril 2010. J Proteomics 2011; 75:4-17. [PMID: 21571109 DOI: 10.1016/j.jprot.2011.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 12/17/2022]
|
39
|
A systems biology approach to nutritional immunology - focus on innate immunity. Mol Aspects Med 2011; 33:14-25. [PMID: 22061966 DOI: 10.1016/j.mam.2011.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
Innate immunity and nutrient metabolism are complex biological systems that must work in concert to sustain and preserve life. The effector cells of the innate immune system rely on essential nutrients to generate energy, produce metabolic precursors for macromolecule biosynthesis and tune their responses to infectious agents. Thus disruptions to nutritional status have a substantial impact on immune competence and can result in increased susceptibility to infection in the case of nutrient deficiency, or chronic inflammation in the case of over-nutrition. The traditional, reductionist methods used in the study of nutritional immunology are incapable of exploring the extremely complex interactions between nutrient metabolism and innate immunity. Here, we review a relatively new analytical approach, systems biology, and highlight how it can be applied to nutritional immunology to provide a comprehensive view of the mechanisms behind nutritional regulation of the innate immune system.
Collapse
|
40
|
Rubio-Aliaga I, Marvin-Guy LF, Wang P, Wagniere S, Mansourian R, Fuerholz A, Saris WHM, Astrup A, Mariman ECM, Kussmann M. Mechanisms of weight maintenance under high- and low-protein, low-glycaemic index diets. Mol Nutr Food Res 2011; 55:1603-12. [PMID: 21957032 DOI: 10.1002/mnfr.201100081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/06/2011] [Accepted: 07/09/2011] [Indexed: 01/19/2023]
Abstract
SCOPE Weight maintenance after intended weight loss is a challenge in an obesogenic environment. In a large multicentre dietary intervention study (DiOGenes), it has recently been demonstrated that a high-protein/low-glycaemic index (HP/LGI) diet was slightly more efficient in maintaining weight loss than low-protein/LGI or high-GI (LP/LGI or HGI) diets. Here, we use a proteomic approach to assess the molecular mechanisms behind this positive effect. METHODS AND RESULTS A subset of the most successful (weight loser, n=12) and unsuccessful (weight re-gainer, n=12) individuals consuming the LGI diets with either high- or low-protein content (HP or LP/LGI), following an initial calorie deficit run-in weight loss phase, were analyzed at the plasma protein level. Proteomic analysis revealed 18 proteins regulated after 6 months of the dietary weight maintenance phase. Furthermore, 12 proteins were significantly regulated as a function of success rate under an HP diet, arising as candidate biomarkers of mechanisms of successful weight maintenance under an HP/LGI diet. Pregnancy-zone protein (PZP) and protein S (PROS1) were revealed as novel biomarkers of weight maintenance showing opposite effects. CONCLUSION Semantic network analysis of the 12 regulated proteins revealed that under an HP/LGI an anti-atherogenic effect and alterations of fat metabolism were associated with the success of maintaining the initial weight loss.
Collapse
Affiliation(s)
- Isabel Rubio-Aliaga
- Functional Genomics Group, Department of Bioanalytical Sciences, Nestlé Research Center, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Moore JB, Weeks ME. Proteomics and systems biology: current and future applications in the nutritional sciences. Adv Nutr 2011; 2:355-64. [PMID: 22332076 PMCID: PMC3125684 DOI: 10.3945/an.111.000554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences.
Collapse
Affiliation(s)
- J. Bernadette Moore
- Nutritional Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK,To whom correspondence should be addressed. E-mail:
| | - Mark E. Weeks
- Veterinary Laboratories Agency, New Haw, KT15 3NB, UK
| |
Collapse
|
42
|
Nutriproteomics: technologies and applications for identification and quantification of biomarkers and ingredients. Proc Nutr Soc 2011; 70:351-64. [DOI: 10.1017/s0029665111000528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nutrition refers to the process by which a living organism ingests and digests food and uses the nutrients therein for growth, tissue maintenance and all other functions essential to life. Food components interact with our body at molecular, cellular, organ and system level. Nutrients come in complex mixtures, in which the presence and concentration of single compounds as well as their interactions with other compounds and the food matrix influence their bioavailability and bioefficacy. Traditionally, nutrition research mainly concentrated on supplying nutrients of quality to nourish populations and on preventing specific nutrient deficiencies. More recently, it investigates health-related aspects of individual ingredients or of complete diets, in view of health promotion, performance optimisation, disease prevention and risk assessment. This review focuses on proteins and peptides, their role as nutrients and biomarkers and on the technologies developed for their analysis. In the first part of this review, we provide insights into the way proteins are currently characterised and analysed using classical and emerging proteomic approaches. The scope of the second part is to review major applications of proteomics to nutrition, from characterisation of food proteins and peptides, via investigation of health-related food benefits to understanding disease-related mechanisms.
Collapse
|
43
|
Kussmann M, Van Bladeren PJ. The Extended Nutrigenomics - Understanding the Interplay between the Genomes of Food, Gut Microbes, and Human Host. Front Genet 2011; 2:21. [PMID: 22303317 PMCID: PMC3268576 DOI: 10.3389/fgene.2011.00021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 12/28/2022] Open
Abstract
Comprehensive investigation of nutritional health effects at the molecular level requires the understanding of the interplay between three genomes, the food, the gut microbial, and the human host genome. Food genomes are researched for discovery and exploitation of macro- and micronutrients as well as specific bioactives, with those genes coding for bioactive proteins and peptides being of central interest. The human gut microbiota encompasses a complex ecosystem in the intestine with profound impact on host metabolism. It is being studied at genomic and, more recently, also at proteomic and metabonomic level. Humans are being characterized at the level of genetic pre-disposition and inter-individual variability in terms of (i) response to nutritional interventions and direction of health trajectories; (ii) epigenetic, metabolic programming at certain life stages with health consequences later in life and even for subsequent generations; and (iii) acute genomic expression as a holistic response to diet, monitored at gene transcript, protein and metabolite level. Modern nutrition science explores health-related aspects of bioactive food components, thereby promoting health, preventing, or delaying the onset of disease, optimizing performance and assessing benefits and risks in individuals and subpopulations. Personalized nutrition means adapting food to individual needs, depending on the human host's life stage, -style, and -situation. Traditionally, nutrigenomics and nutri(epi)genetics are seen as the key sciences to understand human variability in preferences and requirements for diet as well as responses to nutrition. This article puts the three nutrition and health-relevant genomes into perspective, namely the food, the gut microbial and the human host's genome, and calls for an "extended nutrigenomics" approach in order to build the future tools for personalized nutrition, health maintenance, and disease prevention. We discuss examples of these genomes, proteomes, transcriptomes, and metabolomes under the definition of genomics as the overarching term covering essentially all Omics rather than the sole study of DNA and RNA.
Collapse
Affiliation(s)
- Martin Kussmann
- Nestlé Institute of Health SciencesLausanne, Switzerland
- Faculty of Science, Aarhus UniversityDenmark
| | | |
Collapse
|
44
|
Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H. Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives. Mol Nutr Food Res 2011; 55:341-58. [DOI: 10.1002/mnfr.201000512] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/08/2022]
|