1
|
Cheng H, Cui C, Lu S, Xia B, Li X, Xu P, Xue M. Identification and analysis of hub genes and networks related to hypoxia preconditioning in mice (No 035215). Oncotarget 2017; 9:11889-11904. [PMID: 29552280 PMCID: PMC5844716 DOI: 10.18632/oncotarget.23555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia preconditioning is an effective strategy of intrinsic cell protection. An acute repetitive hypoxic mice model was developed. High-throughput microarray analysis was performed to explore the integrative alterations of gene expression in repetitive hypoxic mice. Data obtained was analyzed via multiple bioinformatics approaches to identify the hub genes, pathways and biological processes related to hypoxia preconditioning. The current study, for the first time, provides insights into the gene expression profiles in repetitive hypoxic mice. It was found that a total of 1175 genes expressed differentially between the hypoxic mice and normal mice. Overall, 113 significantly up-regulated and 138 significantly down-regulated functions were identified from the differentially expressed genes in repetitive hypoxic brains. Among them, at least fourteen of these genes were very associated with hypoxia preconditioning. The change trends of these genes were validated by reverse-transcription polymerase chain reaction and were found to be consistent with the microarray data. Combined the results of pathway and gene co-expression networks, we defined Plcb1, Cacna2d1, Atp2b4, Grin2a, Grin2b and Glra1 as the main hub genes tightly related with hypoxia preconditioning. The differential functions mainly included the mitogen-activated protein kinase pathway and ion or neurotransmitter transport. The multiple reactions in cell could be initiated by activating MAPK pathway to prevent hypoxia damage. Plcb1 was an important and hub gene and node in the hypoxia preconditioning signal networks. The findings in the hub genes and integrated gene networks provide very useful information for further exploring the molecular mechanisms of hypoxia preconditioning.
Collapse
Affiliation(s)
- Haiting Cheng
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Department of Pharmacy, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Can Cui
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shousi Lu
- China Rehabilitation Research Center, Beijing 100068, China
| | - Binbin Xia
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pinxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Wang SK, Jiang MJ, Lin SR, Chen MY, Wang HH, Duh CY. Calpains mediate the proteolytic modification of human cytomegalovirus UL112-113 proteins. J Gen Virol 2015; 96:1115-1126. [DOI: 10.1099/vir.0.000040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/03/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shang-Kwei Wang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meei Jyh Jiang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Rung Lin
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Yin Chen
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsueh Wang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Yih Duh
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Mode of action of S-methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO) as a novel therapy for stroke in a rat model. Mol Neurobiol 2014; 50:655-72. [PMID: 24573692 DOI: 10.1007/s12035-014-8658-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
One approach for protecting neurons from excitotoxic damage in stroke is to attenuate receptor activity with specific antagonists. S-Methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO), the active metabolite of disulfiram, has been shown to be a partial antagonist of glutamate receptors and effective in reducing seizure. First, we investigated neuroprotective effect of DETC-MeSO on primary cortical neuronal culture under hypoxia/reoxygenation condition in vitro. Then, DETC-MeSO was administered subcutaneously for 4 and 8 days with the first injection occurring 1 h before or 24 h after reperfusion in the rat middle cerebral artery occlusion stroke model. Rats were subjected to the neuroscore test, and the brain was analyzed for infarct size. Monitoring neurotransmitter release was carried out by microdialysis. Heat shock proteins, key proteins involved in apoptosis and endoplasmic reticulum (ER) stress, were analyzed by immunoblotting. DETC-MeSO greatly reduced both cell death following hypoxia/reoxygenation and brain infarct size. It improved performance on the neuroscore test and attenuated proteolysis of αII-spectrin. The level of pro-apoptotic proteins declined, and anti-apoptotic and HSP27 protein expressions were markedly increased. Levels of the ER stress protein markers p-PERK, p-eIF2α, ATF4, JNK, XBP-1, GADD34, and CHOP significantly declined after DETC-MeSO administration. Microdialysis data showed that DETC-MeSO increased high potassium-induced striatal dopamine release indicating that more neurons were protected and survived under ischemic insult in the presence of DETC-MeSO. We also showed that DETC-MeSO can prevent gliosis. DETC-MeSO elicits neuroprotection through the preservation of ER resulting in reduction of apoptosis by increase of anti-apoptotic proteins and decrease of pro-apoptotic proteins.
Collapse
|
4
|
Yu CG, Li Y, Raza K, Yu XX, Ghoshal S, Geddes JW. Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats. J Neurotrauma 2013; 30:427-33. [PMID: 23102374 PMCID: PMC4169127 DOI: 10.1089/neu.2012.2561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To evaluate the hypothesis that calpain 1 knockdown would reduce pathological damage and functional deficits after spinal cord injury (SCI), we developed lentiviral vectors encoding calpain 1 shRNA and eGFP as a reporter (LV-CAPN1 shRNA). The ability of LV-CAPN1 shRNA to knockdown calpain 1 was confirmed in rat NRK cells using Northern and Western blot analysis. To investigate the effects on spinal cord injury, LV-CAPN1shRNA or LV-mismatch control shRNA (LV-control shRNA) were administered by convection enhanced diffusion at spinal cord level T10 in Long-Evans female rats (200-250 g) 1 week before contusion SCI, 180 kdyn force, or sham surgery at the same thoracic level. Intraspinal administration of the lentiviral particles resulted in transgene expression, visualized by eGFP, in spinal tissue at 2 weeks after infection. Calpain 1 protein levels were reduced by 54% at T10 2 weeks after shRNA-mediated knockdown (p<0.05, compared with the LV-control group, n=3 per group) while calpain 2 levels were unchanged. Intraspinal administration of LV-CAPN1shRNA 1 week before contusion SCI resulted in a significant improvement in locomotor function over 6 weeks postinjury, compared with LV-control administration (p<0.05, n=10 per group). Histological analysis of spinal cord sections indicated that pre-injury intraspinal administration of LV-CAPN1shRNA significantly reduced spinal lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing (p<0.05, n=10 per group). Together, results support the hypothesis that calpain 1 activation contributes to the tissue damage and impaired locomotor function after SCI, and that calpain1 represents a potential therapeutic target.
Collapse
Affiliation(s)
- Chen Guang Yu
- Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Guingab-Cagmat JD, Newsom K, Vakulenko A, Cagmat EB, Kobeissy FH, Zoltewicz S, Wang KK, Anagli J. In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis 2012; 33:3786-97. [DOI: 10.1002/elps.201200326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/06/2012] [Accepted: 09/27/2012] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | | | | | | | - Kevin K. Wang
- Department of Psychiatry; University of Florida; Evelyn F. and William L. McKnight Brain Institute; Newell Drive; Gainesville; FL; USA
| | | |
Collapse
|
6
|
Kassa R, Monterroso V, Wentzell J, Ramos A, Couchi E, Lecomte MC, Iordanov M, Kretzschmar D, Nicolas G, Tshala-Katumbay D. Proximal giant neurofilamentous axonopathy in mice genetically engineered to resist calpain and caspase cleavage of α-II spectrin. J Mol Neurosci 2012; 47:631-8. [PMID: 22212489 PMCID: PMC3360998 DOI: 10.1007/s12031-011-9699-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/21/2011] [Indexed: 11/27/2022]
Abstract
We use 1,2-diacetylbenzene (1,2-DAB) to probe molecular mechanisms of proximal giant neurofilamentous axonopathy (PGNA), a pathological hallmark of amyotrophic lateral sclerosis. The spinal cord proteome of rodents displaying 1,2-DAB PGNA suggests a reduction in the abundance of α-II spectrin (Spna2), a key protein in the maintenance of axonal integrity. Protein immunoblotting indicates that this reduction is due to Spna2 degradation. We investigated the importance of such degradation in 1,2-DAB PGNA. Spna2 mutant mice lacking a calpain- and/or caspase-sensitive domain (CSD), thus hypothetically resistant to 1,2-DAB, and wild-type littermates, were treated with 1,2-DAB, 35 mg/kg/day, or saline control, for 3 weeks. 1,2-DAB induced motor weakness and PGNA, irrespective of the genotype. Spna2-calpain breakdown products were not detected in mutant mice, which displayed a normal structure of the nervous system under saline treatment. Intriguingly, treatment with 1,2-DAB reduced the abundance of the caspase-specific 120-kDa Spna2 breakdown products. Our findings indicate that degradation of Spna2 by calpain- and/or caspase is not central to the pathogenesis of 1,2-DAB axonopathy. In addition, the Spna2-CSD seems to be not required for the maintenance of the cytoskeleton integrity. Our conceptual framework offers opportunities to study the role of calpain-caspase cross talk, including that of the protease degradomics, in models of axonal degeneration.
Collapse
Affiliation(s)
- R. Kassa
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - V. Monterroso
- Department of Comparative Medicine, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - J. Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - A.L. Ramos
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - E. Couchi
- UFR de Médecine site Bichat, Institut Claude Bernard, Université Paris Diderot, Paris 7, France
| | - MC Lecomte
- INSERM, U665, Paris; Institut National de la Transfusion Sanguine, Paris, F-75015; Université Denis Diderot, Paris 7, France
| | - M Iordanov
- Department of Cell and Developmental Biology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - D. Kretzschmar
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - G. Nicolas
- Institut Cochin, Université Paris-Descartes, CNRS (UMR 8104) & INSERM, U1016, Paris, France
| | - D. Tshala-Katumbay
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
7
|
Role of Cytoskeleton Proteins in the Morphological Changes During Apoptotic Cell Death of Cerebellar Granule Neurons. Neurochem Res 2010; 36:93-102. [DOI: 10.1007/s11064-010-0269-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
|
8
|
Abstract
After intracerebral hemorrhage (ICH), the brain parenchyma is exposed to blood containing red blood cells (RBCs) and consequently to its lysis products. Iron-rich hemoglobin (Hb) is the most abundant protein in RBCs. When released into the brain parenchyma during hemolysis, Hb becomes a central mediator of cytotoxicity. Our study indicates that haptoglobin (Hp), an acute-phase response protein primarily synthesized in the liver and known to bind and neutralize Hb in the bloodstream, is also expressed in brain in which it plays an important role in defending neurons from damage induced by hemolytic products after ICH. We demonstrate that the Hb-induced hypohaptoglobinemia aggravates ICH-induced brain damage while pharmacologic intervention with sulforaphane to induce brain Hp is linked to a reduction in brain damage. In agreement with these findings, Hp deficiency worsens whereas Hp overexpression alleviates ICH-mediated brain injury. We also identified that oligodendroglia are the primary source of brain-derived Hp among brain cells and that oligodendroglia-released Hp plays protective roles against Hb-mediated toxicity to neurons and oligodendrocytes. We conclude that Hp, particularly the brain-derived Hp, plays cytoprotective roles and represents a potential therapeutic target for ICH treatment.
Collapse
|
9
|
Wang Y, Weiss MT, Yin J, Frew R, Tenn C, Nelson PP, Vair C, Sawyer TW. Role of the sodium hydrogen exchanger in maitotoxin-induced cell death in cultured rat cortical neurons. Toxicon 2009; 54:95-102. [PMID: 19328212 DOI: 10.1016/j.toxicon.2009.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/04/2009] [Accepted: 03/12/2009] [Indexed: 11/18/2022]
Abstract
Maitotoxin (MTX) is one of the most potent toxins known to date. It causes massive calcium (Ca(2+)) influx and necrotic cell death in various tissues. However, the exact mechanism(s) underlying its cellular toxicity is not fully understood. In the present study, the role of the sodium hydrogen exchanger (NHE) in MTX-induced increases in intracellular Ca(2+) and subsequent cell death were investigated in cultured rat cortical neurons. Intracellular Ca(2+) concentrations ([Ca(2+)](i)) were measured fluorimetrically using FURA-2 as the fluorescence indicator. Cell death was measured with the alamarBlue cell viability assay and the vital dye ethidium bromide (EB) uptake assay. Results showed that MTX increased, in a concentration dependent manner, both [Ca(2+)](i) and cell death in cortical neurons. Decreasing the pH of the treatment medium from 7.5 to 6.0 diminished MTX-induced cell death. The protection offered by lowering extracellular pH was not due to MTX degradation, because it was still effective even if the cells were treated with MTX in normal pH and then switched to a lower pH. Pretreatment of cells with the specific NHE inhibitor, 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), prevented MTX-induced increases in [Ca(2+)](i), as well as cell death in a concentration dependent manner. Furthermore, knockdown of NHE1 by SiRNA transfection suppressed MTX-induced cell death in human embryonic kidney (HEK) cells. Together, these results suggest that NHE1 plays a major role in MTX-induced neurotoxicity.
Collapse
Affiliation(s)
- Yushan Wang
- Defence Research & Development Canada-Suffield, Medicine Hat, Alberta T1A 8K6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Shepherd TM, Flint JJ, Thelwall PE, Stanisz GJ, Mareci TH, Yachnis AT, Blackband SJ. Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue--implications for MRI studies of human autopsy samples. Neuroimage 2008; 44:820-6. [PMID: 18996206 DOI: 10.1016/j.neuroimage.2008.09.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/21/2008] [Accepted: 09/28/2008] [Indexed: 10/21/2022] Open
Abstract
High-resolution imaging of human autopsy tissues may improve our understanding of in vivo MRI findings, but interpretation is complicated because samples are obtained by immersion fixation following a postmortem interval (PMI). This study tested the hypotheses that immersion fixation and PMI's from 0-24 h would alter the water relaxation and diffusion properties in rat cortical slice and spinal cord models of human nervous tissue. Diffusion data collected from rat cortical slices at multiple diffusion times (10-60 ms) and b-values (7-15,000 s/mm(2)) were analyzed using a two-compartment model with exchange. Rat spinal cords were characterized with standard diffusion tensor imaging (21 directions, b=1250 s/mm(2)). Switching from perfusion- to immersion-fixation at 0 h PMI altered most MRI properties of rat cortical slices and spinal cords, including a 22% decrease in fractional anisotropy (P<0.001). After 4 h PMI, cortical slice T(1) and T(2) increased 22% and 65% respectively (P<0.001), transmembrane water exchange decreased 23% (P<0.001) and intracellular proton fraction increased 25% (P=0.002). After 6 h PMI, spinal cord white matter fractional anisotropy had decreased 38% (P<0.001). MRI property changes were observed for PMIs up to 24 h. The MRI changes correlated with protease activity and histopathological signs of autolysis. Thus, immersion fixation and/or even short PMIs (4-6 h) altered the MRI properties of rat nervous tissue. This suggests comparisons between in vivo clinical MRI and MRI data from human autopsy tissues should be interpreted with caution.
Collapse
Affiliation(s)
- Timothy M Shepherd
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143-0628, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kobeissy FH, Sadasivan S, Oli MW, Robinson G, Larner SF, Zhang Z, Hayes RL, Wang KKW. Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Proteomics Clin Appl 2008; 2:1467-83. [DOI: 10.1002/prca.200800011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Indexed: 01/24/2023]
|
12
|
Ting JPY, Willingham SB, Bergstralh DT. NLRs at the intersection of cell death and immunity. Nat Rev Immunol 2008; 8:372-9. [PMID: 18362948 DOI: 10.1038/nri2296] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation is a crucial element of the host response to cellular insult. Pathogen-induced inflammation includes a molecular pathway which proceeds through activation of the protease caspase-1 to the release of the inflammatory cytokines interleukin-1 (IL-1) and IL-18. Importantly, pathogens may also induce forms of cell death that have inherently pro-inflammatory features. Here, we review recent evidence demonstrating that NLR (nucleotide-binding domain, leucine-rich repeat containing) family proteins serve as a common component of both caspase-1-activated apoptotic pathways and caspase-independent necrotic pathways. Parallels are drawn between NLR protein function and the activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 (apoptotic-protease-activating factor 1) and the plant disease resistance NBS-LRR (nucleotide-binding site leucine-rich repeats) proteins.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | |
Collapse
|
13
|
Attenuation of maitotoxin-induced cytotoxicity in rat aortic smooth muscle cells by inhibitors of Na+/Ca2+ exchange, and calpain activation. Toxicon 2008; 51:1400-8. [PMID: 18460413 DOI: 10.1016/j.toxicon.2008.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/24/2022]
Abstract
The highly potent marine toxin maitotoxin (MTX) evoked an increase in cytosolic Ca(2+) levels in fura-2 loaded rat aortic smooth muscle cells, which was dependent on extracellular Ca(2+). This increase was almost fully inhibited by KB-R7943, a potent selective inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger (NCX). Cell viability was assessed using ethidium bromide uptake and the alamarBlue cytotoxicity assay. In both assays MTX-induced toxicity was attenuated by KB-R7943, as well as by MDL 28170, a membrane permeable calpain inhibitor. Maitotoxin-evoked contractions of rat aortic strip preparations in vitro, which persist following washout of the toxin, were relaxed by subsequent addition of KB-R7943 or MDL 28170, either in the presence of, or following washout of MTX. These results suggest that MTX targets the Na(+)/Ca(2+) exchanger and causes it to operate in reverse mode (Na(+) efflux/Ca(2+) influx), thus leading to calpain activation, NCX cleavage, secondary Ca(2+) overload and cell death.
Collapse
|
14
|
Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KK, Morrow JS. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 2007; 46:502-13. [PMID: 17209560 PMCID: PMC2825692 DOI: 10.1021/bi061504y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calpain-catalyzed proteolysis of II-spectrin is a regulated event associated with neuronal long-term potentiation, platelet and leukocyte activation, and other processes. Calpain proteolysis is also linked to apoptotic and nonapoptotic cell death following excessive glutamate exposure, hypoxia, HIV-gp120/160 exposure, or toxic injury. The molecular basis for these divergent consequences of calpain action, and their relationship to spectrin proteolysis, is unclear. Calpain preferentially cleaves II spectrin in vitro in repeat 11 between residues Y1176 and G1177. Unless stimulated by Ca++ and calmodulin (CaM), betaII spectrin proteolysis in vitro is much slower. We identify additional unrecognized sites in spectrin targeted by calpain in vitro and in vivo. Bound CaM induces a second II spectrin cleavage at G1230*S1231. BetaII spectrin is cleaved at four sites. One cleavage only occurs in the absence of CaM at high enzyme-to-substrate ratios near the betaII spectrin COOH-terminus. CaM promotes II spectrin cleavages at Q1440*S1441, S1447*Q1448, and L1482*A1483. These sites are also cleaved in the absence of CaM in recombinant II spectrin fusion peptides, indicating that they are probably shielded in the spectrin heterotetramer and become exposed only after CaM binds alphaII spectrin. Using epitope-specific antibodies prepared to the calpain cleavage sites in both alphaII and betaII spectrin, we find in cultured rat cortical neurons that brief glutamate exposure (a physiologic ligand) rapidly stimulates alphaII spectrin cleavage only at Y1176*G1177, while II spectrin remains intact. In cultured SH-SY5Y cells that lack an NMDA receptor, glutamate is without effect. Conversely, when stimulated by calcium influx (via maitotoxin), there is rapid and sequential cleavage of alphaII and then betaII spectrin, coinciding with the onset of nonapoptotic cell death. These results identify (i) novel calpain target sites in both alphaII and betaII spectrin; (ii) trans-regulation of proteolytic susceptibility between the spectrin subunits in vivo; and (iii) the preferential cleavage of alphaII spectrin vs betaII spectrin when responsive cells are stimulated by engagement of the NMDA receptor. We postulate that calpain proteolysis of spectrin can activate two physiologically distinct responses: one that enhances skeletal plasticity without destroying the spectrin-actin skeleton, characterized by preservation of betaII spectrin; or an alternative response closely correlated with nonapoptotic cell death and characterized by proteolysis of betaII spectrin and complete dissolution of the spectrin skeleton.
Collapse
Affiliation(s)
| | | | - Rathna Iyer
- CNS Biology, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105
| | | | - Kevin K.W. Wang
- Departments of Psychiatry and Neuroscience, McKnight Brain Institute of the University of Florida, (P.O.Box100256), Gainesville, FL 32610, USA
| | - Jon S. Morrow
- * To whom correspondence should be addressed. tel: 203-785-3624 Fax 203-785-7037 E-mail:
| |
Collapse
|
15
|
Aikman J, O'Steen B, Silver X, Torres R, Boslaugh S, Blackband S, Padgett K, Wang KKW, Hayes R, Pineda J. Alpha-II-spectrin after controlled cortical impact in the immature rat brain. Dev Neurosci 2006; 28:457-65. [PMID: 16943668 DOI: 10.1159/000094171] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/10/2006] [Indexed: 01/12/2023] Open
Abstract
Proteolytic processing plays an important role in regulating a wide range of important cellular functions, including processing of cytoskeletal proteins. Loss of cytoskeletal proteins such as spectrin is an important characteristic in a variety of acute central nervous system injuries including ischemia, spinal cord injury and traumatic brain injury (TBI). The literature contains extensive information on the proteolytic degradation of alpha-II-spectrin after TBI in the adult brain. By contrast, there is limited knowledge on the characteristics and relevance of these important processes in the immature brain. The present experiments examine TBI-induced proteolytic processing of alpha-II-spectrin after TBI in the immature rat brain. Distinct proteolytic products resulting from the degradation of the cytoskeletal protein alpha-II-spectrin by calpain and caspase 3 were readily detectable in cortical brain parenchyma and cerebrospinal fluid after TBI in immature rats.
Collapse
Affiliation(s)
- J Aikman
- Center for Traumatic Brain Injury Studies, Evelyn F. & William L. McKnight Brain Institute of the University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pignol B, Auvin S, Carré D, Marin JG, Chabrier PE. Calpain inhibitors and antioxidants act synergistically to prevent cell necrosis: effects of the novel dual inhibitors (cysteine protease inhibitor and antioxidant) BN 82204 and its pro-drug BN 82270. J Neurochem 2006; 98:1217-28. [PMID: 16895584 DOI: 10.1111/j.1471-4159.2006.03952.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell death is a common feature observed in neurodegenerative disorders, and is often associated with calpain activation and overproduction of reactive oxygen species (ROS). This study investigated the use of calpain inhibitors and antioxidants in combination to protect cells against necrosis. Maitotoxin (MTX), which induces a massive influx of calcium, was used to provoke neuronal cell death. This toxin increased, in a concentration-dependent manner, both calpain activity and ROS formation. Calpain inhibitors or antioxidants inhibited MTX-induced necrosis only marginally (below 20%), whereas their association protected against cell death by 40-66% in a synergistic manner. BN 82204, which possesses both calpain-cathepsin L inhibitory and antioxidant properties, and its acetylated pro-drug BN 82270, totally protected cells at 100 microm. The pro-drug BN 82270, which had better cell penetration, was twice as effective as the active principle BN 82204 in protecting glioma C6 or neuroblastoma SHSY5Y cells against death. These results suggest the potential therapeutic relevance of using a single molecule with multiple activities (cysteine protease inhibitor/antioxidant), and warrant further in vivo investigations in models of neuronal disorders.
Collapse
Affiliation(s)
- Bernadette Pignol
- Department of Neurobiology, Ipsen Research Laboratories, Les Ulis, France.
| | | | | | | | | |
Collapse
|
17
|
Zhang Y, Bhavnani BR. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci 2006; 7:49. [PMID: 16776830 PMCID: PMC1526740 DOI: 10.1186/1471-2202-7-49] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 06/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF) and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. RESULTS Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17beta-estradiol and Delta8,17beta-estradiol with the latter being more potent. CONCLUSION Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate that glutamate- induced changes of these proteins can be inhibited by estrogens, with Delta8,17beta-estradiol, a novel equine estrogen being more potent than 17beta-estradiol. To our knowledge, this is the first demonstration that glutamate-induced apoptosis involves regulation of multiple apoptotic effectors that can be inhibited by estrogens. Whether these observations can help in the development of novel therapeutic approaches for the prevention of neurodegenerative diseases with estrogens and calpain inhibitors remains to be investigated.
Collapse
Affiliation(s)
- YueMei Zhang
- Department of Obstetrics and Gynecology, University of Toronto, Institute of Medical Sciences, University of Toronto, Department of Obstetrics and Gynecology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto, Institute of Medical Sciences, University of Toronto, Department of Obstetrics and Gynecology, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Büki A, Povlishock JT. All roads lead to disconnection?--Traumatic axonal injury revisited. Acta Neurochir (Wien) 2006; 148:181-93; discussion 193-4. [PMID: 16362181 DOI: 10.1007/s00701-005-0674-4] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
Traumatic brain injury (TBI) evokes widespread/diffuse axonal injury (TAI) significantly contributing to its morbidity and mortality. While classic theories suggest that traumatically injured axons are mechanically torn at the moment of injury, studies in the last two decades have not supported this premise in the majority of injured axons. Rather, current thought considers TAI a progressive process evoked by the tensile forces of injury, gradually evolving from focal axonal alteration to ultimate disconnection. Recent observations have demonstrated that traumatically induced focal axolemmal permeability leads to local influx of Ca2+ with the subsequent activation of the cysteine proteases, calpain and caspase, that then play a pivotal role in the ensuing pathogenesis of TAI via proteolytic digestion of brain spectrin, a major constituent of the subaxolemmal cytoskeletal network, the "membrane skeleton". In this pathological progression this local Ca2+ overloading with the activation of calpains also initiates mitochondrial injury that results in the release of cytochrome-c, with the activation of caspase. Both the activated calpain and caspases then participate in the degradation of the local axonal cytoskeleton causing local axonal failure and disconnection. In this review, we summarize contemporary thought on the pathogenesis of TAI, while discussing the potential diversity of pathological processes observed within various injured fiber types. The anterograde and retrograde consequences of TAI are also considered together with a discussion of various experimental therapeutic approaches capable of attenuating TAI.
Collapse
Affiliation(s)
- A Büki
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
19
|
|
20
|
Abstract
Methamphetamine (METH) is a widely abused psychostimulant. Multiple high doses of METH cause long-term toxicity to dopamine (DA) and serotonin (5-HT) nerve terminals in the brain, as evidenced by decreases in DA and 5-HT content, decreases in tyrosine and tryptophan hydroxylase activities, decreases in DA and 5-HT re-uptake sites, and nerve terminal degeneration. Multiple high doses of METH are known to elicit a rapid increase in DA release and hyperthermia. Although METH also produces a delayed and sustained rise in glutamate, no studies have shown whether METH produces structural evidence of excitotoxicity in striatum, or identified the receptors that mediate this toxicity directly, independent of alterations in METH-induced hyperthermia. These experiments investigated whether METH can cause excitotoxicity as evidenced by cytoskeletal protein breakdown in a glutamate receptor-dependent manner. METH increased calpain-mediated spectrin proteolysis in the rat striatum 5 and 7 days after METH administration without affecting caspase 3-dependent spectrin breakdown. This effect was completely blocked with the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, GYKI 52466, but not the NMDA receptor antagonist, MK-801. However, AMPA or NMDA receptor antagonism did not attenuate the METH-induced depletions of the dopamine transporter (DAT). Independent mechanisms involved in mediating spectrin proteolysis and DAT protein loss are discussed.
Collapse
Affiliation(s)
- Robert D Staszewski
- Laboratory of Neurochemistry, Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
21
|
Lundy PM, Nelson P, Mi L, Frew R, Minaker S, Vair C, Sawyer TW. Pharmacological differentiation of the P2X7 receptor and the maitotoxin-activated cationic channel. Eur J Pharmacol 2004; 487:17-28. [PMID: 15033372 DOI: 10.1016/j.ejphar.2004.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/05/2004] [Accepted: 01/13/2004] [Indexed: 10/26/2022]
Abstract
The ATP-P2X(7) receptor subtype and a maitotoxin-activated ion channel were studied to determine factors which identify them as separate entities in the control of a cytotolytic pore. Activation of ATP-P2X(7) receptors with 2'-3'-O-(benzylbenzyl) ATP (BzATP) or maitotoxin ion channels resulted in influx of ethidium bromide and cell death. Maitotoxin (25-250 pM)-induced ethidium bromide uptake and cell death was sensitive to extracellular Ca(2+), the ionic composition of the buffer, reduced by the calmodulin inhibitor W7, (N-(s-aminohexyl)-5-chloro-1-naphthalenesulfonamide), (10-100 microM) but unaffected by the ATP-P2X(7) receptor antagonist oxidized ATP, (adenosine 5'-triphosphate periodate oxidized sodium salt) (oATP). BzATP (10-200 microM)-induced ethidium bromide uptake and cell death were inhibited by oATP, unaffected by W7, inhibited by high ionic concentrations but only slightly dependant on external Ca(2+). These results are consistent with the existence of a pharmacological mechanism for controlling cell death consisting of an ATP-P2X(7) receptor, a maitotoxin-activated ion channel and a cytolytic pore.
Collapse
Affiliation(s)
- Paul M Lundy
- Medical Therapy Group, Chemical Biological Defence Section, Defence R&D Canada-Suffield, Box 4000, Medicine Hat, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ringger NC, Tolentino PJ, McKinsey DM, Pike BR, Wang KKW, Hayes RL. Effects of Injury Severity on Regional and Temporal mRNA Expression Levels of Calpains and Caspases after Traumatic Brain Injury in Rats. J Neurotrauma 2004; 21:829-41. [PMID: 15307896 DOI: 10.1089/0897715041526177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite a preponderance of studies demonstrating gene expression and/or enzymatic activation of calpain and caspase proteases after traumatic brain injury (TBI), no studies have examined the effects of injury magnitude on expression levels of these cell death effectors after TBI. Determination of the degree to which injury severity affects specific expression profiles is critical to understanding the relevant pathways contributing to post-trauma pathology and for developing targeted therapeutics. This investigation tested the hypothesis that different injury magnitudes (1.0, 1.2, and 1.6 mm) cause alterations in the regional and temporal patterns of mRNA expression of calpain-related (calpain-1 and -2, calpastatin) and caspase-related (caspases -3, -8, -9, BID) gene products after cortical impact in rats. Quantitative RT-PCR was used to compare effects of injury severity on mRNA levels in ipsilateral (injured) cortex and hippocampus, 6 h to 5 days post-injury. TBI caused increases in mRNA expression of all proteins examined, with the highest expression detected in the cortex. Generally, injury magnitude and levels of gene expression were positively correlated. High levels of gene induction were observed with BID, caspase-3, and -8, while caspase-9 mRNA had the lowest level of induction. Interestingly, although calpains are activated within minutes of TBI, calpain mRNA expression was highest 72 h to 5 days post-TBI. This study is the first analysis of the regional and temporal expression of calpains and caspases after TBI. These data provide insight into the inter-relationship of these two protease families and on the distinct but overlapping cascades of cell death after TBI.
Collapse
Affiliation(s)
- N C Ringger
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute of the University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Pike BR, Flint J, Dave JR, Lu XCM, Wang KKK, Tortella FC, Hayes RL. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 2004; 24:98-106. [PMID: 14688621 DOI: 10.1097/01.wcb.0000098520.11962.37] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preclinical studies have identified numerous neuroprotective drugs that attenuate brain damage and improve functional outcome after cerebral ischemia. Despite this success in animal models, neuroprotective therapies in the clinical setting have been unsuccessful. Identification of biochemical markers common to preclinical and clinical cerebral ischemia will provide a more sensitive and objective measure of injury severity and outcome to facilitate clinical management and treatment. However, there are currently no effective biomarkers available for assessment of stroke. Nonerythroid alphaII-spectrin is a cytoskeletal protein that is cleaved by calpain and caspase-3 proteases to signature alphaII-spectrin breakdown products (alphaII-SBDPs) after cerebral ischemia in rodents. This investigation examined accumulation of calpain- and caspase-3-cleaved alphaII-SBDPs in cerebrospinal fluid (CSF) of rodents subjected to 2 hours of transient focal cerebral ischemia produced by middle cerebral artery occlusion (MCAO) followed by reperfusion. After MCAO injury, full-length alphaII-spectrin protein was decreased in brain tissue and increased in CSF from 24 to 72 hours after injury. Whereas alphaII-SBDPs were undetectable in sham-injured control animals, calpain but not caspase-3 specific alphaII-SBDPs were significantly increased in CSF after injury. However, caspase-3 alphaII-SBDPS were observed in CSF of some injured animals. These results indicate that alphaII-SBDPs detected in CSF after injury, particularly those mediated by calpain, may be useful diagnostic indicators of cerebral infarction that can provide important information about specific neurochemical events that have occurred in the brain after acute stroke.
Collapse
Affiliation(s)
- Brian R Pike
- Department of Neuroscience, Center for Traumatic Brain Injury Studies, E.F. and W.L. McKnight Brain Institute of the University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Shepherd TM, Thelwall PE, Blackband SJ, Pike BR, Hayes RL, Wirth ED. Diffusion magnetic resonance imaging study of a rat hippocampal slice model for acute brain injury. J Cereb Blood Flow Metab 2003; 23:1461-70. [PMID: 14663342 DOI: 10.1097/01.wcb.0000100852.67976.c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diffusion magnetic resonance imaging (MRI) provides a surrogate marker of acute brain pathology, yet few studies have resolved the evolution of water diffusion changes during the first 8 hours after acute injury, a critical period for therapeutic intervention. To characterize this early period, this study used a 17.6-T wide-bore magnet to measure multicomponent water diffusion at high b-values (7 to 8,080 s/mm(2)) for rat hippocampal slices at baseline and serially for 8 hours after treatment with the calcium ionophore A23187. The mean fast diffusing water fraction (Ffast) progressively decreased for slices treated with 10-microM/L A23187 (-20.9 +/- 6.3% at 8 hours). Slices treated with 50-micromol/L A23187 had significantly reduced Ffast 80 minutes earlier than slices treated with 10-microM/L A23187 (P < 0.05), but otherwise, the two doses had equivalent effects on the diffusion properties of tissue water. Correlative histologic analysis showed dose-related selective vulnerability of hippocampal pyramidal neurons (CA1 > CA3) to pathologic swelling induced by A23187, confirming that particular intravoxel cell populations may contribute disproportionately to water diffusion changes observed by MRI after acute brain injury. These data suggest diffusion-weighted images at high b-values and the diffusion parameter Ffast may be highly sensitive correlates of cell swelling in nervous issue after acute injury.
Collapse
Affiliation(s)
- Timothy M Shepherd
- Department of Neuroscience, Evelyn F. and William McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Pang Z, Bondada V, Sengoku T, Siman R, Geddes JW. Calpain facilitates the neuron death induced by 3-nitropropionic acid and contributes to the necrotic morphology. J Neuropathol Exp Neurol 2003; 62:633-43. [PMID: 12834108 DOI: 10.1093/jnen/62.6.633] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
3-Nitropropionic acid (3NP), an irreversible inhibitor of succinate dehydrogenase, has been used to model features of neurodegenerative disorders including Huntington disease, as well as acute neuronal insults such as cerebral ischemia. 3NP induces rapid necrosis and delayed apoptosis in primary cultures of rat hippocampal neurons. Low levels of extracellular glutamate shift the cell death mechanism to necrosis, whereas antagonism of NMDA receptors results in predominately apoptotic death. In the present study, the involvement of cysteine proteases in the morphologic and biochemical alterations accompanying 3NP-induced neuron death was investigated. Immunoblots of spectrin breakdown products indicated Ca(2+)-dependent cysteine protease (calpain) activation within the 8 hours of 3NP administration, whereas caspase-3 activation was not evident until 16 to 48 hours after treatment. The NMDA receptor antagonist MK-801 (dizocilpine) decreased 3NP-induced calpain activity, but did not alter caspase-3 activity. Similar to MK-801, calpain inhibitors (Z-Val-Phe.H and Z-Leu-Phe-CONHEt) shifted the cell death morphology towards apoptosis and delayed, but did not prevent, the 3NP-induced cell death. Together, the results indicate that following 3NP administration, increased calpain activity precedes caspase-3 activation, contributes to the necrotic morphology, and facilitates and accelerates the cell death.
Collapse
Affiliation(s)
- Zhen Pang
- Sanders-Brown Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, KY 40536-0230, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
This review highlights the current lack of therapeutic and prophylactic treatments for use against inhaled biological toxins, especially those considered as potential biological warfare (BW) or terrorist threats. Although vaccine development remains a priority, the use of rapidly deployable adjunctive therapeutic or prophylactic drugs could be life-saving in severe cases of intoxication or where vaccination has not been possible or immunity not established. The current lack of such drugs is due to many factors. Thus, methods involving molecular modelling are limited by the extent to which the cellular receptor sites and mode of action and structure of a toxin need to be known. There is also our general lack of knowledge of what effect individual toxins will have when inhaled into the lungs - whether and to what extent the action will be cell specific and cytotoxic or rather an acute inflammatory response requiring the use of immunomodulators. Possible sources of specific high-affinity toxin antagonists being investigated include monoclonal antibodies, selected oligonucleotides (aptamers) and derivatized dendritic polymers (dendrimers). The initial selection of suitable agents of these kinds can be made using cytotoxicity assays involving cultured normal human lung cells and a range of suitable indicators. The possibility that a mixture of selected antibody, aptamer or dendrimer-based materials for one or more toxins could be delivered simultaneously as injections or as inhaled aerosol sprays should be investigated.
Collapse
Affiliation(s)
- Brian M Paddle
- DSTO, Platforms Sciences Laboratory, 506 Lorimer Street, Fishermans Bend, Victoria 3207, Australia.
| |
Collapse
|
27
|
Novel Diketopiperazine Enhances Motor and Cognitive Recovery After Traumatic Brain Injury in Rats and Shows Neuroprotection In Vitro and In Vivo. J Cereb Blood Flow Metab 2003. [DOI: 10.1097/00004647-200303000-00009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Faden AI, Knoblach SM, Cernak I, Fan L, Vink R, Araldi GL, Fricke ST, Roth BL, Kozikowski AP. Novel diketopiperazine enhances motor and cognitive recovery after traumatic brain injury in rats and shows neuroprotection in vitro and in vivo. J Cereb Blood Flow Metab 2003; 23:342-54. [PMID: 12621309 DOI: 10.1097/01.wcb.0000046143.31247.fd] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors developed a novel diketopiperazine that shows neuroprotective activity in a variety of in vitro models, as well as in a clinically relevant experimental model of traumatic brain injury (TBI) in rats. Treatment with 1-ARA-35b (35b), a cyclized dipeptide derived from a modified thyrotropin-releasing hormone (TRH) analog, significantly reduced cell death associated with necrosis (maitotoxin), apoptosis (staurosporine), or mechanical injury in neuronal-glial cocultures. Rats subjected to lateral fluid percussion-induced TBI and then treated with 1 mg/kg intravenous 35b thirty minutes after trauma showed significantly improved motor recovery and spatial learning compared with vehicle-treated controls. Treatment also significantly reduced lesion volumes as shown by magnetic resonance imaging, and decreased the number of TUNEL-positive neurons observed in ipsilateral hippocampus. Unlike TRH or traditional TRH analogs, 35b treatment did not change mean arterial pressure, body temperature, or thyroid-stimulating hormone release, and did not have analeptic activity. Moreover, in contrast to TRH or typical TRH analogs, 35b administration after TBI did not alter free-magnesium concentration or cellular bioenergetic state. Receptor-binding studies showed that 35b did not act with high affinity at 50 classical receptors, channels, or transporters. Thus, 35b shows none of the typical physiologic actions associated with TRH, but possesses neuroprotective actions in vivo and in vitro, and appears to attenuate both necrotic and apoptotic cell death.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Room EP-12, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nedrelow JH, Cianci CD, Morrow JS. c-Src binds alpha II spectrin's Src homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176. J Biol Chem 2003; 278:7735-41. [PMID: 12446661 DOI: 10.1074/jbc.m210988200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectrin is a ubiquitous heterodimeric scaffolding protein that stabilizes membranes and organizes protein and lipid microdomains on both the plasma membrane and intracellular organelles. Phosphorylation of beta-spectrin on Ser/Thr is well recognized. Less clear is whether alpha-spectrin is phosphorylated in vivo and whether spectrin is phosphorylated on tyrosine (pTyr). We affirmatively answer both questions. In cultured Madin-Darby canine kidney cells, alphaII spectrin undergoes in vivo tyrosine phosphorylation. Enhancement of the steady state level of pTyr-modified alphaII spectrin by vanadate, a phosphatase inhibitor, implies a dynamic balance between alphaII spectrin phosphorylation and dephosphorylation. Recombinant peptides containing the Src homology 3 domain of alphaII spectrin (but not the Src homology 3 domain of alphaI spectrin) bind specifically to phosphorylated c-Src in Madin-Darby canine kidney cell lysates, suggesting that this kinase is responsible for its in vivo phosphorylation. pTyr-modified alphaII spectrin is resistant to maitotoxin-induced cleavage by mu-calpain in vivo. In vitro studies of recombinant alphaII spectrin peptides representing repeats 9-12 identify two sites of pTyr modification. The first site is at Tyr(1073), a residue immediately adjacent to a region encoded by alternative exon usage (insert 1). The second site is at Tyr(1176). This residue flanks the major site of cleavage by the calcium-dependent protease calpain, and phosphorylation of Tyr(1176) by c-Src reduces the susceptibility of alphaII spectrin to cleavage by mu-calpain. Calpain cleavage of spectrin, activated by Ca(2+) and calmodulin, contributes to diverse cellular processes including synaptic remodeling, receptor-mediated endocytosis, apoptosis, and the response of the renal epithelial cell to ischemic injury. Tyrosine phosphorylation of alphaII spectrin now would appear to also mediate these events. The spectrin skeleton thus forms a point of convergence between kinase/phosphatase and Ca(2+)-mediated signaling cascades.
Collapse
Affiliation(s)
- Jonathan H Nedrelow
- Department of Pediatrics, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
30
|
Davoli MA, Fourtounis J, Tam J, Xanthoudakis S, Nicholson D, Robertson GS, Ng GYK, Xu D. Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience 2003; 115:125-36. [PMID: 12401327 DOI: 10.1016/s0306-4522(02)00376-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we evaluated the time-course of caspase-3 activation, and the evolution of cell death following focal cerebral ischemia produced by transient middle cerebral artery occlusion in rats. Ischemia-induced active caspase-3 immunoreactivity in the striatum but not the cortex at 3 and 6 h time points post-reperfusion. Furthermore, using a novel approach to visualize enzymatic activity, deltaC-APP, a C-terminal cleavage product of APP generated by caspase-3, was found to immunolocalize to the same areas as active caspase-3. Double-labeling studies demonstrated co-localization of these two proteins at the cellular level. Further double-labeling experiments revealed that active caspase-3 was confined to neuronal cells which were still viable and thus immunoreactive for NeuN. DNA fragmentation, assessed histologically by terminal dUTP nick-end labeling (TUNEL), was observed in a small number of cells in the striatum as early as 3 h, but only began to appear in the cortex by 6 h. DNA fragmentation was progressive, and by 24 h post-reperfusion, large portions of both the striatum and cortex showed TUNEL positive cells. However, double-labeling of active caspase-3 with TUNEL showed only minimal co-localization at all time-points. Thus, caspase-3 activation is an event that appears to occur prior to DNA fragmentation. As a confirmation of the histological TUNEL data, 24 h ischemia also induced the generation of nucleosome fragments, evidenced by cell death enzyme-linked immunosorbent assay. Using a novel ischemia-induced substrate cleavage biochemical approach, spectrin P120 fragment, a caspase-specific cleavage product of alpha II spectrin, a cytoskeletal protein, was shown to be elevated by western blotting. Brain concentrations of both nucleosomes and spectrin P120 correlate with the degree of injury previously assessed by triphenyltetrazolium chloride staining and infarct volume calculation. Together, our findings suggest a possible association between caspase-3 activation and ischemic cell death following middle cerebral artery occlusion brain injury.
Collapse
Affiliation(s)
- M A Davoli
- Merck Frosst Center for Therapeutic Research, P.O. Box 1005, Pointe Claire-Dorval, QC, Canada H9R 4P8
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
For a long time necrosis was considered as an alternative to programmed cell death, apoptosis. Indeed, necrosis has distinct morphological features and it is accompanied by rapid permeabilization of plasma membrane. However, recent data indicate that, in contrast to necrosis caused by very extreme conditions, there are many examples when this form of cell death may be a normal physiological and regulated (programmed) event. Various stimuli (e.g., cytokines, ischemia, heat, irradiation, pathogens) can cause both apoptosis and necrosis in the same cell population. Furthermore, signaling pathways, such as death receptors, kinase cascades, and mitochondria, participate in both processes, and by modulating these pathways, it is possible to switch between apoptosis and necrosis. Moreover, antiapoptotic mechanisms (e.g., Bcl-2/Bcl-x proteins, heat shock proteins) are equally effective in protection against apoptosis and necrosis. Therefore, necrosis, along with apoptosis, appears to be a specific form of execution phase of programmed cell death, and there are several examples of necrosis during embryogenesis, a normal tissue renewal, and immune response. However, the consequences of necrotic and apoptotic cell death for a whole organism are quite different. In the case of necrosis, cytosolic constituents that spill into extracellular space through damaged plasma membrane may provoke inflammatory response; during apoptosis these products are safely isolated by membranes and then are consumed by macrophages. The inflammatory response caused by necrosis, however, may have obvious adaptive significance (i.e., emergence of a strong immune response) under some pathological conditions (such as cancer and infection). On the other hand, disturbance of a fine balance between necrosis and apoptosis may be a key element in development of some diseases.
Collapse
|
32
|
Knoblach SM, Nikolaeva M, Huang X, Fan L, Krajewski S, Reed JC, Faden AI. Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome. J Neurotrauma 2002; 19:1155-70. [PMID: 12427325 DOI: 10.1089/08977150260337967] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Caspase-3 is a cysteine protease that is strongly implicated in neuronal apoptosis. Activation of caspase-3 may be induced by at least two major initiator pathways: a caspase-8-mediated pathway activated through cell surface death receptors (extrinsic pathway), and a caspase-9-mediated pathway activated by signals from the mitochondria that lead to formation of an apoptosomal complex (intrinsic pathway). In the present studies, we compare the activation of caspases-3, -8, and -9 after lateral fluid-percussion traumatic brain injury (TBI) in rats. Immunoblot analysis identified cleaved forms of caspases-3 and -9, but not caspase-8, at 1, 12, and 48 h after injury. Immunocytochemistry specific for cleaved caspases-3 and -9 revealed their expression primarily in neurons. These caspases were also frequently localized in TUNEL-positive cells, some of which demonstrated morphological features of apoptosis. However, caspases-3 and -9 were also found in neurons that were not TUNEL-positive, and other TUNEL-positive cells did not show activated caspases. In contrast to caspases-3 or -9, caspase-8 expression was only minimally changed by injury. An increase in expression of this caspase was undetectable by immunoblotting methods, and appeared as positive immunostaining restricted to a few cells within the injured cortex. Treatment with the pan-caspase inhibitor z-VAD-fmk at 15 min after TBI improved performance on motor and spatial learning tests. These data suggest that several caspases may be involved in the pathophysiology of TBI and that pan-caspase inhibition strategies may improve neurological outcomes.
Collapse
Affiliation(s)
- Susan M Knoblach
- Department of Neuroscience, Georgetown University, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Prakash KRC, Tang Y, Kozikowski AP, Flippen-Anderson JL, Knoblach SM, Faden AI. Synthesis and biological activity of novel neuroprotective diketopiperazines. Bioorg Med Chem 2002; 10:3043-8. [PMID: 12110327 DOI: 10.1016/s0968-0896(02)00132-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyclic dipeptide cyclo[His-Pro] (CHP) is synthesized endogenously de novo and as a breakdown product of thyrotropin-releasing hormone (TRH), a tripeptide with known neuroprotective activity. We synthesized two isomeric compounds based on the structure of CHP, in which the histidine residue was replaced by 3,5-di-tert-butyltyrosine (DBT), a phenolic amino acid that traps reactive oxygen species. These novel diketopiperazines prevented neuronal death in an in vitro model of traumatic injury. In addition, they dose-dependently prevented death caused by the direct induction of free radicals, and by calcium mobilization through an agent that evokes rapid, necrotic death. The drugs showed activity in the latter system at picomolar concentrations. The neuroprotective profile of these compounds suggests that they may be useful as treatments for neuronal degeneration in vivo, potentially through several different mechanisms.
Collapse
Affiliation(s)
- K R C Prakash
- Drug Discovery Program, Department of Neurology, Georgetown University Medical Center, 3900 Reservoir Road, N. W., Washington, DC 20007-2197, USA
| | | | | | | | | | | |
Collapse
|
34
|
Dutta S, Chiu YC, Probert AW, Wang KKW. Selective release of calpain produced alphalI-spectrin (alpha-fodrin) breakdown products by acute neuronal cell death. Biol Chem 2002; 383:785-91. [PMID: 12108543 DOI: 10.1515/bc.2002.082] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activation of calpain results in the breakdown of alpha II spectrin (alpha-fodrin), a neuronal cytoskeleton protein, which has previously been detected in various in vitro and in vivo neuronal injury models. In this study, a 150 kDa spectrin breakdown product (SBDP150) was found to be released into the cell-conditioned media from SH-SY5Y cells treated with the calcium channel opener maitotoxin (MTX). SBDP150 release can be readily quantified on immunoblot using an SBDP150-specific polyclonal antibody. Increase of SBDP150 also correlated with cell death in a time-dependent manner. MDL28170, a selective calpain inhibitor, was the only protease inhibitor tested that significantly reduced MTX-induced SBDP150 release. The cell-conditioned media of cerebellar granule neurons challenged with excitotoxins (NMDA and kainate) also exhibited a significant increase of SBDP150 that was attenuated by pretreatment with an NMDA receptor antagonist, R(-)-3-(2-carbopiperazine-4-yl)-propyl-1-phosphonic acid (CPP), and MDL28170. In addition, hypoxic/hypoglycemic challenge of cerebrocortical cultures also resulted in SBDP150 liberation into the media. These results support the theory that an antibody-based detection of SBDP150 in the cell-conditioned media can be utilized to quantify injury to neural cells. Furthermore, SBDP150 may potentially be used as a surrogate biomarker for acute neuronal injury in clinical settings.
Collapse
Affiliation(s)
- Satavisha Dutta
- Department of Neuroscience Therapeutics, Pfizer Global Research and Development, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Calpains (EC 3.4.22.17) are intracellular calcium-activated cysteine proteases that mediate tissue injury following post-ischemic and post-traumatic stress. Both human HIV protease and calpains share a similar secondary structure, where the active site is flanked by hydrophobic regions. The present study demonstrates that ritonavir, a hydrophobic HIV protease inhibitor, also inhibits calpain activity. In PC12 cell extracts assayed for calpain at maximal activity (2mM calcium), ritonavir exhibited competitive inhibition with a K(i) of 11+/-7.0 microM. Experiments with purified enzymes showed inhibition for both m- and mu-calpain isoforms (m-calpain, K(i)=9.2+/-1.2 microM; mu-calpain, K(i)=5.9+/-1.4 microM). Ritonavir also inhibited calcium-stimulated calpain activity in PC12 cells in situ. These results suggest that ritonavir or analogues of the drug should be investigated as cytoprotective agents in conditions where cell death or injury is mediated via calpain activation.
Collapse
Affiliation(s)
- Wenshuai Wan
- Unit of Clinical and Biochemical Pharmacology, Laboratory of Clinical Studies, Division of Intramural Clinical and Biochemical Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1256, USA
| | | |
Collapse
|
36
|
Affiliation(s)
- D L Mykles
- Department of Biology, Cell and Molecular Biology Program and Molecular, Cellular, and Integration Neurosciences Program, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
37
|
Newcomb-Fernandez JK, Zhao X, Pike BR, Wang KK, Kampfl A, Beer R, DeFord SM, Hayes RL. Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab 2001; 21:1281-94. [PMID: 11702043 DOI: 10.1097/00004647-200111000-00004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The contributions of calpain and caspase-3 to apoptosis and necrosis after central nervous system (CNS) trauma are relatively unexplored. No study has examined concurrent activation of calpain and caspase-3 in necrotic or apoptotic cell death after any CNS insult. Experiments used a model of oxygen-glucose deprivation (OGD) in primary septo-hippocampal cultures and assessed cell viability, occurrence of apoptotic and necrotic cell death phenotypes, and protease activation. Immunoblots using an antibody detecting calpain and caspase-3 proteolysis of alpha-spectrin showed greater accumulation of calpain-mediated breakdown products (BDPs) compared with caspase-3-mediated BDPs. Administration of calpain and caspase-3 inhibitors confirmed that activation of these proteases contributed to cell death, as inferred by lactate dehydrogenase release. Oxygen-glucose deprivation resulted in expression of apoptotic and necrotic cell death phenotypes, especially in neurons. Immunocytochemical studies of calpain and caspase-3 activation in apoptotic cells indicated that these proteases are almost always concurrently activated during apoptosis. These data demonstrate that calpain and caspase-3 activation is associated with expression of apoptotic cell death phenotypes after OGD, and that calpain activation, in combination with caspase-3 activation, could contribute to the expression of apoptotic cell death by assisting in the degradation of important cellular proteins.
Collapse
Affiliation(s)
- J K Newcomb-Fernandez
- Department of Neurosurgery, The Vivian L. Smith Center for Neurologic Research, University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pike BR, Flint J, Dutta S, Johnson E, Wang KK, Hayes RL. Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 2001; 78:1297-306. [PMID: 11579138 DOI: 10.1046/j.1471-4159.2001.00510.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although a number of increased CSF proteins have been correlated with brain damage and outcome after traumatic brain injury (TBI), a major limitation of currently tested biomarkers is a lack of specificity for defining neuropathological cascades. Identification of surrogate biomarkers that are elevated in CSF in response to brain injury and that offer insight into one or more pathological neurochemical events will provide critical information for appropriate administration of therapeutic compounds for treatment of TBI patients. Non-erythroid alpha II-spectrin is a cytoskeletal protein that is a substrate of both calpain and caspase-3 cysteine proteases. As we have previously demonstrated, cleavage of alpha II-spectrin by calpain and caspase-3 results in accumulation of protease-specific spectrin breakdown products (SBDPs) that can be used to monitor the magnitude and temporal duration of protease activation. However, accumulation of alpha II-spectrin and alpha II-SBDPs in CSF after TBI has never been examined. Following a moderate level (2.0 mm) of controlled cortical impact TBI in rodents, native alpha II-spectrin protein was decreased in brain tissue and increased in CSF from 24 h to 72 h after injury. In addition, calpain-specific SBDPs were observed to increase in both brain and CSF after injury. Increases in the calpain-specific 145 kDa SBDP in CSF were 244%, 530% and 665% of sham-injured control animals at 24 h, 48 h and 72 h after TBI, respectively. The caspase-3-specific SBDP was observed to increase in CSF in some animals but to a lesser degree. Importantly, levels of these proteins were undetectable in CSF of uninjured control rats. These results indicate that detection of alpha II-spectrin and alpha II-SBDPs is a powerful discriminator of outcome and protease activation after TBI. In accord with our previous studies, results also indicate that calpain may be a more important effector of cell death after moderate TBI than caspase-3.
Collapse
Affiliation(s)
- B R Pike
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute of the University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Yamakawa H, Banno Y, Nakashima S, Yoshimura S, Sawada M, Nishimura Y, Nozawa Y, Sakai N. Crucial role of calpain in hypoxic PC12 cell death: calpain, but not caspases, mediates degradation of cytoskeletal proteins and protein kinase C-alpha and -delta. Neurol Res 2001; 23:522-30. [PMID: 11474809 DOI: 10.1179/016164101101198776] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Ca2+ influx is one of the main causative events in hypoxic PC12 cell death, because an extracellular Ca2+ chelator, ethylene glycol bis (2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) inhibited and Ca2+ ionophore A23187 mimicked the hypoxic cell death. The hypoxic cell death was markedly prevented by a broad spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-FMK) as well as a calpain inhibitor, calpeptin, as assessed by nuclear staining with Hoechst 33258 and lactate dehydrogenase release. The processing of procaspase-3 was inhibited by z-VAD-FMK, but not by calpeptin. In contrast, z-VAD-FMK failed to block the proteolytic cleavage of fodrin-alpha, a preferential substrate for calpain. On the other hand, degradation of actin and fodrin-alpha was prevented by calpeptin but not by z-VAD-FMK. In addition, not only protein kinase C (PKC)-alpha but also PKC-delta were cleaved to generate approximately 46 kDa fragments. The PKC fragmentation was inhibited by calpeptin but not by z-VAD-FMK. These findings suggest that the extracellular Ca2+ influx induced by hypoxic stress activates calpain, resulting in the degradation of cytoskeletal proteins and generation of PKC fragments almost independently of caspase activation. Therefore, calpain may play an important role in hypoxic PC12 cell death.
Collapse
Affiliation(s)
- H Yamakawa
- Department of Neurosurgery, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500-8705, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao X, Bausano B, Pike BR, Newcomb-Fernandez JK, Wang KK, Shohami E, Ringger NC, DeFord SM, Anderson DK, Hayes RL. TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. J Neurosci Res 2001; 64:121-31. [PMID: 11288141 DOI: 10.1002/jnr.1059] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Primary septo-hippocampal cell cultures were incubated in varying concentrations of tumor necrosis factor (TNF-alpha; 0.3-500 ng/ml) to examine proteolysis of the cytoskeletal protein alpha-spectrin (240 kDa) to a signature 145 kDa fragment by calpain and to the apoptotic-linked 120-kDa fragment by caspase-3. The effects of TNF-alpha incubation on morphology and cell viability were assayed by fluorescein diacetate-propidium iodide (FDA-PI) staining, assays of lactate dehydrogenase (LDH) release, nuclear chromatin alterations (Hoechst 33258), and internucleosomal DNA fragmentation. Incubation with varying concentrations of TNF-alpha produced rapid increases in LDH release and nuclear PI uptake that were sustained over 48 hr. Incubation with 30 ng/ml TNF-alpha yielded maximal, 3-fold, increase in LDH release and was associated with caspase-specific 120-kDa fragment but not calpain-specific 145-kDa fragment as early as 3.5 hr after injury. Incubation with the pan-caspase inhibitor, carbobenzosy- Asp-CH(2)-OC (O)-2-6-dichlorobenzene (Z-D-DCB, 50-140 microM) significantly reduced LDH release produced by TNF-alpha. Apoptotic-associated oligonucleosomal-sized DNA fragmentation on agarose gels was detected from 6 to 72 hr after exposure to TNF-alpha. Histochemical changes included chromatin condensation, nuclear fragmentation, and formation of apoptotic bodies. Results of this study suggest TNF-alpha may induce caspase-3 activation but not calpain activation in septo-hippocampal cultures and that this activation of caspase-3 at least partially contributes to TNF-alpha-induced apoptosis.
Collapse
Affiliation(s)
- X Zhao
- The Vivian L. Smith Center for Neurologic Research, Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lane RH, Ramirez RJ, Tsirka AE, Kloesz JL, McLaughlin MK, Gruetzmacher EM, Devaskar SU. Uteroplacental insufficiency lowers the threshold towards hypoxia-induced cerebral apoptosis in growth-retarded fetal rats. Brain Res 2001; 895:186-93. [PMID: 11259777 DOI: 10.1016/s0006-8993(01)02074-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infants suffering uteroplacental insufficiency and hypoxic ischemic injury often demonstrate cerebral apoptosis. Our objective was to determine the global effects of uteroplacental insufficiency upon cerebral gene expression of the apoptosis related proteins Bcl-2 and Bax and their role in increasing vulnerability to hypoxia-induced cerebral apoptosis. We therefore caused uteroplacental insufficiency and growth retardation by performing bilateral uterine artery ligation upon pregnant rats 2 days prior to term delivery and elicited further perinatal fetal hypoxia by placing maternal rats in 14% FiO(2) 3 h prior to delivery. We quantified cerebral levels of Bcl-2 and Bax mRNA, lipid peroxidation, caspase-3 activity, and cAMP in control and growth retarded term rat pups that experienced either normoxia or hypoxia. Uteroplacental insufficiency alone caused a significant decrease in cerebral Bcl-2 mRNA levels without altering cerebral Bax mRNA levels, malondialdehyde levels, or caspase-3 activity. In contrast, uteroplacental insufficiency and subsequent fetal hypoxia significantly increased cerebral Bax mRNA levels, lipid peroxidation and caspase-3 activity; Bcl-2 mRNA levels continued to be decreased. Hypoxia alone increased cerebral cAMP levels, whereas uteroplacental insufficiency and subsequent hypoxia decreased cerebral cAMP levels. We speculate that the decrease in Bcl-2 gene expression increases the vulnerability towards cerebral apoptosis in fetal rats exposed initially to uteroplacental insufficiency and subsequent hypoxic stress.
Collapse
Affiliation(s)
- R H Lane
- Department of Pediatrics, UCLA School of Medicine, Mattel Children's Hospital at UCLA, Mental Retardation Research Center, Division of Neonatology and Developmental Biology, 10833 Le Conte Ave B2-375, Los Angeles, CA 90095-1752, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Prendergast MA, Harris BR, Mayer S, Littleton JM. Chronic, But Not Acute, Nicotine Exposure Attenuates Ethanol Withdrawal-Induced Hippocampal Damage In Vitro. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04578.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 2000; 81:323-39. [PMID: 11168679 PMCID: PMC2517738 DOI: 10.1111/j.1365-2613.2000.00169.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 08/14/2000] [Indexed: 11/30/2022] Open
Abstract
Over-activation of calpain, a ubiquitous calcium-sensitive protease, has been linked to a variety of degenerative conditions in the brain and several other tissues. Dozens of substrates for calpain have been identified and several of these have been used to measure activation of the protease in the context of experimentally induced and naturally occurring pathologies. Calpain-mediated cleavage of the cytoskeletal protein spectrin, in particular, results in a set of large breakdown products (BDPs) that are unique in that they are unusually stable. Over the last 15 years, measurements of BDPs in experimental models of stroke-type excitotoxicity, hypoxia/ischemia, vasospasm, epilepsy, toxin exposure, brain injury, kidney malfunction, and genetic defects, have established that calpain activation is an early and causal event in the degeneration that ensues from acute, definable insults. The BDPs also have been found to increase with normal ageing and in patients with Alzheimer's disease, and the calpain activity may be involved in related apoptotic processes in conjunction with the caspase family of proteases. Thus, it has become increasingly clear that regardless of the mode of disturbance in calcium homeostasis or the cell type involved, calpain is critical to the development of pathology and therefore a distinct and powerful therapeutic target. The recent development of antibodies that recognize the site at which spectrin is cleaved has greatly facilitated the temporal and spatial resolution of calpain activation in situ. Accordingly, sensitive spectrin breakdown assays now are utilized to identify potential toxic side-effects of compounds and to develop calpain inhibitors for a wide range of indications including stroke, cerebral vasospasm, and kidney failure.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
44
|
Abstract
Axonal injury is a feature of traumatic brain injury (TBI) contributing to both morbidity and mortality. The traumatic axon injury (TAI) results from focal perturbations of the axolemma, allowing for calcium influx triggering local intraaxonal cytoskeletal and mitochondrial damage. This mitochondrial damage has been posited to cause local bioenergetic failure, leading to axonal failure and disconnection; however, this mitochondrial damage may also lead to the release of cytochrome c (cyto-c), which then activates caspases with significant adverse intraaxonal consequences. In the current communication, we examine this possibility. Rats were subjected to TBI, perfused with aldehydes at 15-360 min after injury, and processed for light microscopic (LM) and electron microscopic (EM) single-labeling immunohistochemistry to detect extramitochondrially localized cytochrome c (cyto-c) and the signature protein of caspase-3 activation (120 kDa breakdown product of alpha-spectrin) in TAI. Combinations of double-labeling fluorescent immunohistochemistry (D-FIHC) were also used to demonstrate colocalization of calpain activation with cyto-c release and caspase-3-induction. In foci of TAI qualitative-quantitative LM demonstrated a parallel, significant increase in cyto-c release and caspase-3 activation over time after injury. EM analysis demonstrated that cyto-c and caspase-3 immunoreactivity were associated with mitochondrial swelling-disruption in sites of TAI. Furthermore, D-IFHC revealed a colocalization of calpain activation, cyto-c release, and caspase-3 induction in these foci, which also revealed progressive TAI. The results demonstrate that cyto-c and caspase-3 participate in the terminal processes of TAI. This suggests that those factors that play a role in the apoptosis in the neuronal soma are also major contributors to the demise of the axonal appendage.
Collapse
|
45
|
Pike BR, Zhao X, Newcomb JK, Glenn CC, Anderson DK, Hayes RL. Stretch injury causes calpain and caspase-3 activation and necrotic and apoptotic cell death in septo-hippocampal cell cultures. J Neurotrauma 2000; 17:283-98. [PMID: 10776913 DOI: 10.1089/neu.2000.17.283] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in numerous central and systemic responses that complicate interpretation of the effects of the primary mechanical trauma. For this reason, several in vitro models of mechanical cell injury have recently been developed that allow more precise control over intra- and extracellular environments than is possible in vivo. Although we recently reported that calpain and caspase-3 proteases are activated after TBI in rats, the role of calpain and/or caspase-3 has not been examined in any in vitro model of mechanical cell injury. In this investigation, varying magnitudes of rapid mechanical cell stretch were used to examine processing of the cytoskeletal protein alpha-spectrin (280 kDa) to a signature 145-kDa fragment by calpain and to the apoptotic-linked 120-kDa fragment by caspase-3 in septo-hippocampal cell cultures. Additionally, effects of stretch injury on cell viability and morphology were assayed. One hour after injury, maximal release of cytosolic lactate dehydrogenase and nuclear propidium iodide uptake were associated with peak accumulations of the calpain-specific 145-kDa fragment to alpha-spectrin at each injury level. The acute period of calpain activation (1-6 h) was associated with subpopulations of nuclear morphological alterations that appeared necrotic (hyperchromatism) or apoptotic (condensed, shrunken nuclei). In contrast, caspase-3 processing of alpha-spectrin to the apoptotic-linked 120-kDa fragment was only detected 24 h after moderate, but not mild or severe injury. The period of caspase-3 activation was predominantly associated with nuclear shrinkage, fragmentation, and apoptotic body formation characteristic of apoptosis. Results of this study indicate that rapid mechanical stretch injury to septo-hippocampal cell cultures replicates several important biochemical and morphological alterations commonly observed in vivo brain injury, although important differences were also noted.
Collapse
Affiliation(s)
- B R Pike
- Department of Neuroscience, Center for Traumatic Brain Injury Studies, University of Florida Brain Institute, Gainesville 32610, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Zhao X, Newcomb JK, Pike BR, Wang KK, d'Avella D, Hayes RL. Novel characteristics of glutamate-induced cell death in primary septohippocampal cultures: relationship to calpain and caspase-3 protease activation. J Cereb Blood Flow Metab 2000; 20:550-62. [PMID: 10724120 DOI: 10.1097/00004647-200003000-00014] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies examined the phenotypic characteristics of glutamate-induced cell death and their relationship to calpain and caspase-3 activation. Cell viability was assessed by fluorescein diacetate and propidium iodide staining and lactate dehydrogenase release. Calpain and caspase-3 activity was inferred from signature proteolytic fragmentation of alpha-spectrin. Characterization of cell death phenotypes was assessed by Hoechst 33258 and DNA fragmentation assays. Exposure of septohippocampal cultures to 1.0, 2.0, and 4.0 mmol/L glutamate induced a dose-dependent cell death with an LD50 of 2.0 mmol/L glutamate after 24 hours of incubation. Glutamate treatment induced cell death in neurons and astroglia and produced morphological alterations that differed from necrotic or apoptotic changes observed after maitotoxin or staurosporine exposure, respectively. After glutamate treatment, cell nuclei were enlarged and eccentrically shaped, and aggregated chromatin appeared in a diffusely speckled pattern. Furthermore, no dose of glutamate produced evidence of internucleosomal DNA fragmentation. Incubation with varying doses of glutamate produced calpain and caspase-3 activation. Calpain inhibitor II (N-acetyl-Leu-Leu-methionyl) provided protection only with a narrow dose range, whereas carbobenzoxy-Asp-CH2-OC(O)-2,6-dichlorobenzene (Z-D-DCB; pan-caspase inhibitor) and MK-801 (N-methyl-D-aspartate receptor antagonist) were potently effective across a wider dose range. Cycloheximide did not reduce cell death or protease activation.
Collapse
Affiliation(s)
- X Zhao
- Vivian L. Smith Center for Neurologic Research, Department of Neurosurgery, University of Texas-Houston Health Science Center, USA
| | | | | | | | | | | |
Collapse
|