1
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
2
|
Bhullar S, Shah A, Dhalla N. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion of angiotensin I to angiotensin II, are well-known for the treatments of cardiovascular diseases, such as heart failure, hypertension and acute coronary syndrome. Several of these inhibitors including captopril, enalapril, ramipril, zofenopril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunction and decrease mortality. Extensive experimental and clinical research over the past 35 years has revealed that the beneficial effects of ACE inhibitors in heart failure are associated with full or partial prevention of adverse cardiac remodeling. Since cardiac function is mainly determined by coordinated activities of different subcellular organelles, including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils, for regulating the intracellular concentration of Ca2+ and myocardial metabolism, there is ample evidence to suggest that adverse cardiac remodelling and cardiac dysfunction in the failing heart are the consequence of subcellular defects. In fact, the improvement of cardiac function by different ACE inhibitors has been demonstrated to be related to the attenuation of abnormalities in subcellular organelles for Ca2+-handling, metabolic alterations, signal transduction defects and gene expression changes in failing cardiomyocytes. Various ACE inhibitors have also been shown to delay the progression of heart failure by reducing the formation of angiotensin II, the development of oxidative stress, the level of inflammatory cytokines and the occurrence of subcellular defects. These observations support the view that ACE inhibitors improve cardiac function in the failing heart by multiple mechanisms including the reduction of oxidative stress, myocardial inflammation and Ca2+-handling abnormalities in cardiomyocytes.
Collapse
|
3
|
Bhullar SK, Shah AK, Dhalla NS. Role of angiotensin II in the development of subcellular remodeling
in heart failure. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of heart failure under various pathological conditions such as myocardial infarction (MI), hypertension and diabetes are accompanied by adverse cardiac remodeling and cardiac dysfunction. Since heart function is mainly determined by coordinated activities of different subcellular organelles including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils for regulating the intracellular concentration of Ca2+, it has been suggested that the occurrence of heart failure is a consequence of subcellular remodeling, metabolic alterations and Ca2+-handling abnormalities in cardiomyocytes. Because of the elevated plasma levels of angiotensin II (ANG II) due to activation of the renin-angiotensin system (RAS) in heart failure, we have evaluated the effectiveness of treatments with angiotensin converting enzyme (ACE) inhibitors and ANG II type 1 receptor (AT1R) antagonists in different experimental models of heart failure. Attenuation of marked alterations in subcellular activities, protein content and gene expression were associated with improvement in cardiac function in MI-induced heart failure by treatment with enalapril (an ACE inhibitor) or losartan (an AT1R antagonist). Similar beneficial effects of ANG II blockade on subcellular remodeling and cardiac performance were also observed in failing hearts due to pressure overload, volume overload or chronic diabetes. Treatments with enalapril and losartan were seen to reduce the degree of RAS activation as well as the level of oxidative stress in failing hearts. These observations provide evidence which further substantiate to support the view that activation of RAS and high level of plasma ANG II play a critical role in inducing subcellular defects and cardiac dys-function during the progression of heart failure.
Collapse
Affiliation(s)
- Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Anureet K. Shah
- School of Kinesiology, Nutrition and Food Science, California State University, Los Angeles, CA 90032, USA
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada
| |
Collapse
|
4
|
Mongkolpathumrat P, Kijtawornrat A, Prompunt E, Panya A, Chattipakorn N, Barrère-Lemaire S, Kumphune S. Post-Ischemic Treatment of Recombinant Human Secretory Leukocyte Protease Inhibitor (rhSLPI) Reduced Myocardial Ischemia/Reperfusion Injury. Biomedicines 2021; 9:biomedicines9040422. [PMID: 33924676 PMCID: PMC8070046 DOI: 10.3390/biomedicines9040422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major cause of mortality and morbidity worldwide. Among factors contributing to I/R injury, proteolytic enzymes could also cause cellular injury, expand the injured area and induce inflammation, which then lead to cardiac dysfunction. Therefore, protease inhibition seems to provide therapeutic benefits. Previous studies showed the cardioprotective effect of secretory leukocyte protease inhibitor (SLPI) against myocardial I/R injury. However, the effect of a post-ischemic treatment with SLPI in an in vivo I/R model has never been investigated. In the present study, recombinant human (rh) SLPI (rhSLPI) was systemically injected during coronary artery occlusion or at the onset of reperfusion. The results show that post-ischemic treatment with rhSLPI could significantly reduce infarct size, Lactate Dehydrogenase (LDH) and Creatine kinase-MB (CK-MB) activity, inflammatory cytokines and protein carbonyl levels, as well as improving cardiac function. The cardioprotective effect of rhSLPI is associated with the attenuation of p38 MAPK phosphorylation, Bax, caspase-3 and -8 protein levels and enhancement of pro-survival kinase Akt and ERK1/2 phosphorylation. In summary, this is the first report showing the cardioprotective effects against myocardial I/R injury of post-ischemic treatments with rhSLPI in vivo. Thus, these results suggest that SLPI could be used as a novel therapeutic strategy to reduce myocardial I/R injury.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Graduate Programs in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Eakkapote Prompunt
- Unit of Excellence in Infectious Disease, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Centre, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Stephanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la Cardonille, 34094 Montpellier, France;
| | - Sarawut Kumphune
- Graduate Programs in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-62-4693987
| |
Collapse
|
5
|
Riaz S, Abdulrahman N, Uddin S, Jabeen A, Gadeau AP, Fliegel L, Mraiche F. Anti-hypertrophic effect of Na +/H + exchanger-1 inhibition is mediated by reduced cathepsin B. Eur J Pharmacol 2020; 888:173420. [PMID: 32781168 DOI: 10.1016/j.ejphar.2020.173420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Previous studies have established the role of Na+/H+ exchanger isoform-1 (NHE1) and cathepsin B (Cat B) in the development of cardiomyocyte hypertrophy (CH). Both NHE1 and Cat B are activated under acidic conditions suggesting that their activities might be interrelated. The inhibition of NHE1 has been demonstrated to reduce cardiac hypertrophy but the mechanism that contributes to the anti-hypertrophic effect of NHE1 inhibition still remains unclear. H9c2 cardiomyoblasts were stimulated with Angiotensin (Ang) II in the presence and absence of N-[2-methyl-4,5-bis(methylsulphonyl)-benzoyl]-guanidine, hydrochloride (EMD, EMD 87580), an NHE1 inhibitor or CA-074Me, a Cat B inhibitor, and various cardiac hypertrophic parameters, namely cell surface area, protein content and atrial natriuretic peptide (ANP) mRNA were analyzed. EMD significantly suppressed markers of cardiomyocyte hypertrophy and inhibited Ang II stimulated Cat B protein and gene expression. Cat B is located within the acidic environment of lysosomes. Cat B proteases are released into the cytoplasm upon disintegration of the lysosomes. EMD or CA-074Me prevented the dispersal of the lysosomes induced by Ang II and reduced the ratio of LC3-II to LC3-I, a marker of autophagy. Moreover, Cat B protein expression and MMP-9 activity in the extracellular space were significantly attenuated in the presence of EMD or CA-074Me. Our study demonstrates a novel mechanism for attenuation of the hypertrophic phenotype by NHE1 inhibition that is mediated by a regression in Cat B. The inhibition of Cat B via EMD or CA-074Me attenuates the autosomal-lysosomal pathway and MMP-9 activation.
Collapse
Affiliation(s)
- Sadaf Riaz
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Hamad Medical Corporation, Doha, Qatar
| | - Nabeel Abdulrahman
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ayesha Jabeen
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | | | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
6
|
Nam DH, Lee KB, Kruchowy E, Pham H, Ge X. Protease Inhibition Mechanism of Camelid-like Synthetic Human Antibodies. Biochemistry 2020; 59:3802-3812. [PMID: 32997500 PMCID: PMC7572768 DOI: 10.1021/acs.biochem.0c00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macromolecular protease inhibitors and camelid single-domain antibodies achieve their enzymic inhibition functions often through protruded structures that directly interact with catalytic centers of targeted proteases. Inspired by this phenomenon, we constructed synthetic human antibody libraries encoding long CDR-H3s, from which highly selective monoclonal antibodies (mAbs) that inhibit multiple proteases were discovered. To elucidate their molecular mechanisms, we performed in-depth biochemical characterizations on a panel of matrix metalloproteinase (MMP)-14 inhibitory mAbs. Assays included affinity and potency measurements, enzymatic kinetics, a competitive enzyme-linked immunosorbent assay, proteolytic stability, and epitope mapping followed by quantitative analysis of binding energy changes. The results collectively indicated that these mAbs of convex paratopes were competitive inhibitors recognizing the vicinity of the active cleft, with their significant epitopes scattered across the north and south rims of the cleft. Remarkably, identified epitopes were the surface loops that were highly diverse among MMPs and predominately located at the prime side of the proteolytic site, shedding light on the mechanisms of target selectivity and proteolytic resistance. Substrate sequence profiling and paratope mutagenesis further suggested that mAb 3A2 bound to the active-site cleft in a canonical (substrate-like) manner, by direct interactions between 100hNLVATP100m of its CDR-H3 and subsites S1-S5' of MMP-14. Overall, synthetic mAbs carrying convex paratopes can achieve efficient inhibition and thus hold great therapeutic promise for effectively and safely targeting biomedically important proteases.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Evan Kruchowy
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Henry Pham
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
7
|
Abstract
Maternally mitochondrial dysfunction includes a heterogeneous group of genetic disorders which leads to the impairment of the final common pathway of energy metabolism. Coronary heart disease and coronary venous disease are two important clinical manifestations of mitochondrial dysfunction due to abnormality in the setting of underlying pathways. Mitochondrial dysfunction can lead to cardiomyopathy, which is involved in the onset of acute cardiac and pulmonary failure. Mitochondrial diseases present other cardiac manifestations such as left ventricular noncompaction and cardiac conduction disease. Different clinical findings from mitochondrial dysfunction originate from different mtDNA mutations, and this variety of clinical symptoms poses a diagnostic challenge for cardiologists. Heart transplantation may be a good treatment, but it is not always possible, and other complications of the disease, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome, should be considered. To diagnose and treat most mitochondrial disorders, careful cardiac, neurological, and molecular studies are needed. In this study, we looked at molecular genetics of MIDs and cardiac manifestations in patients with mitochondrial dysfunction.
Collapse
|
8
|
Lopez T, Mustafa Z, Chen C, Lee KB, Ramirez A, Benitez C, Luo X, Ji RR, Ge X. Functional selection of protease inhibitory antibodies. Proc Natl Acad Sci U S A 2019; 116:16314-16319. [PMID: 31363054 PMCID: PMC6697876 DOI: 10.1073/pnas.1903330116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Critical for diverse biological processes, proteases represent one of the largest families of pharmaceutical targets. To inhibit pathogenic proteases with desired selectivity, monoclonal antibodies (mAbs) hold great promise as research tools and therapeutic agents. However, identification of mAbs with inhibitory functions is challenging because current antibody discovery methods rely on binding rather than inhibition. This study developed a highly efficient selection method for protease inhibitory mAbs by coexpressing 3 recombinant proteins in the periplasmic space of Escherichia coli-an antibody clone, a protease of interest, and a β-lactamase modified by insertion of a protease cleavable peptide sequence. During functional selection, inhibitory antibodies prevent the protease from cleaving the modified β-lactamase, thereby allowing the cell to survive in the presence of ampicillin. Using this method to select from synthetic human antibody libraries, we isolated panels of mAbs inhibiting 5 targets of 4 main protease classes: matrix metalloproteinases (MMP-14, a predominant target in metastasis; MMP-9, in neuropathic pain), β-secretase 1 (BACE-1, an aspartic protease in Alzheimer's disease), cathepsin B (a cysteine protease in cancer), and Alp2 (a serine protease in aspergillosis). Notably, 37 of 41 identified binders were inhibitory. Isolated mAb inhibitors exhibited nanomolar potency, exclusive selectivity, excellent proteolytic stability, and desired biological functions. Particularly, anti-Alp2 Fab A4A1 had a binding affinity of 11 nM and inhibition potency of 14 nM, anti-BACE1 IgG B2B2 reduced amyloid beta (Aβ40) production by 80% in cellular assays, and IgG L13 inhibited MMP-9 but not MMP-2/-12/-14 and significantly relieved neuropathic pain development in mice.
Collapse
Affiliation(s)
- Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Zahid Mustafa
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Aaron Ramirez
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Chris Benitez
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521;
| |
Collapse
|
9
|
Yang CF, Chen YY, Singh JP, Hsu SF, Liu YW, Yang CY, Chang CW, Chen SN, Shih RH, Hsu STD, Jou YS, Cheng CF, Meng TC. Targeting protein tyrosine phosphatase PTP-PEST (PTPN12) for therapeutic intervention in acute myocardial infarction. Cardiovasc Res 2019. [DOI: 10.1093/cvr/cvz165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Aims
The myocardial ischaemia/reperfusion (I/R) injury is almost inevitable since reperfusion is the only established treatment for acute myocardial infarction (AMI). To date there is no effective strategy available for reducing the I/R injury. Our aim was to elucidate the mechanisms underlying myocardial I/R injury and to develop a new strategy for attenuating the damage it causes.
Methods and results
Using a mouse model established by ligation of left anterior descending artery, we found an increase in activity of protein tyrosine phosphatases (PTPs) in myocardium during I/R. Treating the I/R-mice with a pan-PTP inhibitor phenyl vinyl sulfone attenuated I/R damage, suggesting PTP activation to be harmful in I/R. Through analysing RNAseq data, we showed PTPs being abundantly expressed in mouse myocardium. By exposing primary cardiomyocytes ablated with specific endogenous PTPs by RNAi to hypoxia/reoxygenation (H/R), we found a role that PTP-PEST (PTPN12) plays to promote cell death under H/R stress. Auranofin, a drug being used in clinical practice for treating rheumatoid arthritis, may target PTP-PEST thus suppressing its activity. We elucidated the molecular basis for Auranofin-induced inactivation of PTP-PEST by structural studies, and then examined its effect on myocardial I/R injury. In the mice receiving Auranofin before reperfusion, myocardial PTP activity was suppressed, leading to restored phosphorylation of PTP-PEST substrates, including ErbB-2 that maintains the survival signalling of the heart. In line with the inhibition of PTP-PEST activity, the Auranofin-treated I/R-mice had smaller infarct size and better cardiac function.
Conclusions
PTP-PEST contributes to part of the damages resulting from myocardial I/R. The drug Auranofin, potentially acting through the PTP-PEST-ErbB-2 signalling axis, reduces myocardial I/R injury. Based on this finding, Auranofin could be used in the development of new treatments that manage I/R injury in patients with AMI.
Collapse
Affiliation(s)
- Chiu-Fen Yang
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707 Chung-Yang Road Sec. 3, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jai Prakash Singh
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Chemistry, National Tsing-Hua University, 101 Kuang-Fu Road Sec. 2, Hsinchu 300, Taiwan
| | - Shu-Fang Hsu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yu-Wen Liu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Chun-Yi Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Chia-Wei Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Szu-Ni Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Rou-Ho Shih
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Ching-Feng Cheng
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian Dist., New Taipei City 231, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
10
|
Tripeptide analogues of MG132 as protease inhibitors. Bioorg Med Chem 2018; 27:436-441. [PMID: 30581047 DOI: 10.1016/j.bmc.2018.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
The 26S proteasome and calpain are linked to a number of important human diseases. Here, we report a series of analogues of the prototypical tripeptide aldehyde inhibitor MG132 that show a unique combination of high activity and selectivity for calpains over proteasome. Tripeptide aldehydes (1-3) with an aromatic P3 substituent show enhanced activity and selectivity against ovine calpain 2 relative to chymotrypsin-like activity of proteasome. Docking studies reveal the key contacts between inhibitors and calpain to confirm the importance of the S3 pocket with respect to selectivity between calpains 1 and 2 and the proteasome.
Collapse
|
11
|
Barcan A, Suciu Z, Rapolti E. Monitoring Acute Myocardial Infarction Complicated with Cardiogenic Shock — from the Emergency Room to Coronary Care Units. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2017. [DOI: 10.1515/jce-2017-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Cardiogenic shock remains the leading cause of death in patients hospitalized for acute myocardial infarction, despite many advances encountered in the last years in reperfusion, mechanical, and pharmacological therapies addressed to stabilization of the hemodynamic condition of these critical patients. Such patients require immediate initiation of the most effective therapy, as well as a continuous monitoring in the Coronary Care Unit. Novel biomarkers have been shown to improve diagnosis and risk stratification in patients with cardiogenic shock, and their proper use may be especially important for the identification of the critical condition, leading to prompt therapeutic interventions. The aim of this review was to evaluate the current literature data on complex biomarker assessment and monitoring of patients with acute myocardial infarction complicated with cardiogenic shock in the Coronary Care Unit.
Collapse
Affiliation(s)
| | | | - Emese Rapolti
- Cardiovascular Rehabilitation Hospital , Covasna, Romania
| |
Collapse
|
12
|
Cahill K, Suttmiller R, Oehrle M, Sabelhaus A, Gemene KL. Pulsed Chronopotentiometric Detection of Thrombin Activity Using Reversible Polyion Selective Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kaitlin Cahill
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Rebecca Suttmiller
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Melissa Oehrle
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Andrew Sabelhaus
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Kebede L. Gemene
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| |
Collapse
|
13
|
Yang L, Wu T, Fu C, Chen G, Xu S, Xu W. SERS determination of protease through a particle-on-a-film configuration constructed by electrostatic assembly in an enzymatic hydrolysis reaction. RSC Adv 2016. [DOI: 10.1039/c6ra15679g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We describe a simple and universal method for trypsin determination with the surface-enhanced Raman scattering (SERS) technique.
Collapse
Affiliation(s)
- Liyuan Yang
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Tong Wu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Cuicui Fu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Gang Chen
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
14
|
Ho ML, Judd J, Kuypers BE, Yamagami M, Wong FF, Suh J. Efficiency of Protease-Activatable Virus Nanonodes Tuned Through Incorporation of Wild-Type Capsid Subunits. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0334-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Protective effect of calpain inhibitor N-acetyl-l-leucyl-l-leucyl-l-norleucinal on acute alcohol consumption related cardiomyopathy. Mol Biol Rep 2014; 41:6743-53. [DOI: 10.1007/s11033-014-3560-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
16
|
Buchholz B, Perez V, Siachoque N, Miksztowicz V, Berg G, Rodríguez M, Donato M, Gelpi RJ. Dystrophin proteolysis: a potential target for MMP-2 and its prevention by ischemic preconditioning. Am J Physiol Heart Circ Physiol 2014; 307:H88-96. [DOI: 10.1152/ajpheart.00242.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dystrophin is responsible for the mechanical stabilization of the sarcolemma, and it has been shown that it is one of the most sensitive proteins to ischemic injury. However, the enzyme responsible for this proteolysis is still unknown. Isolated rabbit hearts were subjected to 30 min of global ischemia with and without reperfusion (180 min) to determine whether dystrophin is cleaved by matrix metalloproteinase (MMP)-2 during acute ischemia and whether ischemic preconditioning (PC) prevents dystrophin breakdown through MMP-2 inhibition. The activity of MMP-2 was evaluated by zymography and using doxycycline as an inhibitor. Also, to stimulate MMP-2 activity without ischemia, SIN-1 was administered in the absence and presence of doxycycline. Finally, we considered the PC effect on MMP-2 activity and dystrophin expression. The dystrophin level decreased during ischemia, reaching 21% of control values ( P < 0.05), but the spectrin level remained unchanged. MMP-2 activity increased 71% during ischemia compared with control values ( P < 0.05). Doxycycline administration before ischemia prevented dystrophin breakdown. In normoxic hearts, SIN-1 increased thiobarbituric acid-reactive substances by 33% ( P < 0.05) and MMP-2 activity by 36% ( P < 0.05) and significantly reduced the dystrophin level to 23% of control values ( P < 0.05). PC significantly prevented dystrophin breakdown by inhibiting MMP-2 activity, and the dystrophin level reached 89% of control values ( P < 0.05). In conclusion, MMP-2 could be responsible for the proteolysis of dystrophin. Thus, dystrophin emerges as a possible novel substrate for MMP-2 in the context of ischemic injury. Furthermore, our results demonstrate that ischemic PC prevents dystrophin breakdown most likely by inhibiting MMP-2 activity.
Collapse
Affiliation(s)
- Bruno Buchholz
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, and Institute of Biochemistry and Molecular Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Virginia Perez
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, and Institute of Biochemistry and Molecular Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Nadezda Siachoque
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, and Institute of Biochemistry and Molecular Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Verónica Miksztowicz
- Institute of Physiopathology and Clinical Biochemistry, Lipids and Lipoproteins Laboratory, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Berg
- Institute of Physiopathology and Clinical Biochemistry, Lipids and Lipoproteins Laboratory, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Manuel Rodríguez
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, and Institute of Biochemistry and Molecular Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Martín Donato
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, and Institute of Biochemistry and Molecular Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| | - Ricardo J. Gelpi
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, and Institute of Biochemistry and Molecular Medicine, University of Buenos Aires, Buenos Aires, Argentina; and
| |
Collapse
|
17
|
Chen L, Fu X, Li J. Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases. NANOSCALE 2013; 5:5905-11. [PMID: 23703031 DOI: 10.1039/c3nr00637a] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and thus decreasing the Raman intensity of 4-MPY, by which the trypsin could be sensed optically. A detection level down to 0.1 ng mL(-1) for trypsin was obtained. The induced accumulation of AgNPs modified with Raman reporter 4-MPY largely enhanced the SERS responses. A good linearity was found within the wide range over five orders of magnitude and reasonable relative standard deviations (between 2.4 and 11.6%) were attained. By using trypsin as a model, the new concept can provide an excellent platform for ultrasensitive SERS measurements of various proteases/enzymes which can lead to nanoparticles stability change through catalyzed hydrolysis toward substrate.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | | | | |
Collapse
|
18
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
19
|
Le DV, Nguyen VT, Tang LJ, Jiang JH, Yu RQ, Wang YZ. Proteolysis-mediated protection of gold nanoparticles for sensitive activity assay of peptidases. Talanta 2013; 107:233-8. [PMID: 23598217 DOI: 10.1016/j.talanta.2013.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/28/2022]
Abstract
Rapid, sensitive and quantitative assays for peptide hydrolysis enzymes are of paramount importance for drug development and in the diagnosis of disease. Here, we proposed a novel biosensor for sensitive and selective active screening of peptidases. This strategy relies on the proteolysis-mediated protection of gold nanoparticles (AuNPs) that were decorated with biotin-labeled substrate peptides and can be aggregated by streptavidin. Enzyme-mediated protection of AuNPs offers this strategy high specificity, and the use of AuNPs additionally allows a visual and homogeneous assay format, thus permitting improved simplicity and throughput of the assays. As a model case, desirable selectivity and sensitivity in peptidase assay were achieved in the active assays of pancreatic elastase with a wide linear response range from 0.005 to 0.10 U/mL and a detection limit of 0.003 U/mL. The results indicated that this strategy can offer a simple, robust and convenient platform for visualized peptidase activity analysis and related biochemical studies with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Dinh-Vu Le
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Müller AL, Freed D, Dhalla NS. Activation of proteases and changes in Na+-K+-ATPase subunits in hearts subjected to ischemia-reperfusion. J Appl Physiol (1985) 2012; 114:351-60. [PMID: 23221958 DOI: 10.1152/japplphysiol.01239.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that ischemia-reperfusion (I/R) injury is associated with cardiac dysfunction and changes in sarcolemmal Na(+)-K(+)-ATPase subunits and activity. This study was undertaken to evaluate the role of proteases in these alterations by subjecting rat hearts to different times of global ischemia, as well as reperfusion after 45 min of ischemia. Decreases in Na(+)-K(+)-ATPase activity at 30-60 min of global ischemia were accompanied by augmented activities of both calpain and matrix metalloproteinases (MMPs) and depressed protein content of β(1)- and β(2)-subunits, without changes in α(1)- and α(2)-subunits of the enzyme. Compared with control values, the activities of both calpain and MMP-2 were increased, whereas the activity and protein content for all subunits of Na(+)-K(+)-ATPase were decreased upon reperfusion for 5-40 min, except that α(1)- and α(2)-subunit content was not depressed in 5 min I/R hearts. MDL28170, a calpain inhibitor, was more effective in attenuating the I/R-induced alterations in cardiac contracture, Na(+)-K(+)-ATPase activity, and α(2)-subunit than doxycycline, an MMP inhibitor. Incubation of control sarcolemma preparation with calpain, unlike MMP-2, depressed Na(+)-K(+)-ATPase activity and decreased α(1)-, α(2)-, and β(2)-subunits, without changes in the β(1)-subunit. These results support the view that activation of both calpain and MMP-2 are involved in depressing Na(+)-K(+)-ATPase activity and degradation of its subunits directly or indirectly in hearts subjected to I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, and Departments of Physiology and University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
21
|
Müller AL, Freed D, Hryshko L, Dhalla NS. Implications of protease activation in cardiac dysfunction and development of genetic cardiomyopathy in hamsters. Can J Physiol Pharmacol 2012; 90:995-1004. [DOI: 10.1139/y2012-034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has become evident that protein degradation by proteolytic enzymes, known as proteases, is partly responsible for cardiovascular dysfunction in various types of heart disease. Both extracellular and intracellular alterations in proteolytic activities are invariably seen in heart failure associated with hypertrophic cardiomyopathy, dilated cardiomyopathy, hypertensive cardiomyopathy, diabetic cardiomyopathy, and ischemic cardiomyopathy. Genetic cardiomyopathy displayed in different strains of hamsters provides a useful model for studying heart failure due to either cardiac hypertrophy or cardiac dilation. Alterations in the function of several myocardial organelles such as sarcolemma, sarcoplasmic reticulum, myofibrils, mitochondria, as well as extracellular matrix have been shown to be due to subcellular remodeling as a consequence of changes in gene expression and protein content in failing hearts from cardiomyopathic hamsters. In view of the increased activities of various proteases, including calpains and matrix metalloproteinases in the hearts of genetically determined hamsters, it is proposed that the activation of different proteases may also represent an important determinant of subcellular remodeling and cardiac dysfunction associated with genetic cardiomyopathy.
Collapse
Affiliation(s)
- Alison L. Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Darren Freed
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Departments of Surgery, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Larry Hryshko
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, and Departments of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
22
|
Müller AL, Hryshko LV, Dhalla NS. Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 2012; 164:39-47. [PMID: 22357424 DOI: 10.1016/j.ijcard.2012.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 10/19/2011] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Various procedures such as angioplasty, thrombolytic therapy, coronary bypass surgery, and cardiac transplantation are invariably associated with ischemia-reperfusion (I/R) injury. Impaired recovery of cardiac function due to I/R injury is considered to be a consequence of the occurrence of both oxidative stress and intracellular Ca(2+)-overload in the myocardium. These changes in the ischemic myocardium appear to activate both extracellular and intracellular proteases which are responsible for the cleavage of extracellular matrix and subcellular structures involved in the maintenance of cardiac function. It is thus intended to discuss the actions of I/R injury on several proteases, with a focus on calpain, matrix metalloproteinases, and cathepsins as well as their role in inducing alterations both inside and outside the cardiomyocytes. In addition, modifications of subcellular organelles such as myofibrils, sarcoplasmic reticulum and sarcolemma as well as extracellular matrix, and the potential regulatory effects of endogenous inhibitors on protease activities are identified. Both extracellular and intracellular proteolytic activities appear to be imperative in determining the true extent of I/R injury and their inhibition seems to be of critical importance for improving the recovery of cardiac function. Thus, both extracellular and intracellular proteases may serve as potential targets for the development of cardioprotective interventions for reducing damage to the heart and retarding the development of contractile dysfunction caused by I/R injury.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
23
|
Gemene KL, Meyerhoff ME. Detection of protease activities by flash chronopotentiometry using a reversible polycation-sensitive polymeric membrane electrode. Anal Biochem 2011; 416:67-73. [PMID: 21601559 PMCID: PMC3125491 DOI: 10.1016/j.ab.2011.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/20/2011] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
Abstract
A novel electrochemical method, termed flash chronopotentiometry (FCP), is used to develop a rapid and sensitive method for detecting protease activities. In this method, an appropriate current pulse is applied across a polycation-selective polymer membrane to induce a strong flux of the polycationic peptides from the sample phase into the organic membrane of the electrode. During this current pulse, the cell potential (EMF) is monitored continuously, and is a function of the polypeptide concentration. The imposed current causes a local depletion of the polypeptide at the sample/membrane interface, which yields a drastic potential change in the observed chronopotentiogram at a characteristic time, called the transition time (τ). For a given magnitude of current, the square root of τ is directly proportional to the concentration of the polypeptide. Proteases cleave polypeptides into smaller fragments that are not favorably extracted into the membrane of the sensor. Therefore, a decrease in the transition time is observed during the proteolysis process. The degree of change in the transition time can be correlated to protease activity. To demonstrate this approach, the activities of trypsin and α-chymotrypsin are detected using protamine and synthetic polycationic oligopeptides that possess specific cleavage sites that are recognized by these proteases.
Collapse
Affiliation(s)
- Kebede L. Gemene
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| | - Mark E. Meyerhoff
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| |
Collapse
|
24
|
Patterson C, Portbury A, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 2011; 109:453-62. [PMID: 21817165 PMCID: PMC3151485 DOI: 10.1161/circresaha.110.239749] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in the regulation of the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize the molecular mechanisms by which calpain inhibition has been shown to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is then discussed.
Collapse
Affiliation(s)
- Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Departments of Medicine, Pharmacology, Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea Portbury
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
25
|
|
26
|
Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci 2010; 87:391-400. [PMID: 20670633 PMCID: PMC2946433 DOI: 10.1016/j.lfs.2010.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 02/06/2023]
Abstract
The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models.
Collapse
Affiliation(s)
- Claude Jourdan-LeSaux
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Jianhua Zhang
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Merry L. Lindsey
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| |
Collapse
|
27
|
Suryakumar G, Kasiganesan H, Balasubramanian S, Kuppuswamy D. Lack of beta3 integrin signaling contributes to calpain-mediated myocardial cell loss in pressure-overloaded myocardium. J Cardiovasc Pharmacol 2010; 55:567-73. [PMID: 20224428 PMCID: PMC3319054 DOI: 10.1097/fjc.0b013e3181d9f5d4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although cardiac hypertrophy initially ensues as a compensatory mechanism, it often culminates in congestive heart failure. Based on our earlier studies that calpain and beta3 integrin play cell death and survival roles, respectively, during pressure-overload (PO) hypertrophy, we investigated if the loss of beta3 integrin signaling is a potential mechanism for calpain-mediated cardiomyocyte death during PO. beta3 Integrin knockout (beta3) and wild-type mice were used to induce either moderate or severe PO in vivo for short-term (72-hour) and long-term (4-week) transverse aortic constriction. Whereas wild-type mice showed no changes during moderate PO at both time points, beta3 mice exhibited both enrichment of the mu-calpain isoform and programmed cell death of cardiomyocytes after 4-week PO. However, with severe PO that caused increased mortality in both mice groups, cell death was observed in wild-type mice also. To study calpain's role, calpeptin, a specific inhibitor of calpain, was administered through an osmotic mini-pump at 2.5 mg/kg per day beginning 3 days before moderate transverse aortic constriction or sham surgery. Calpeptin administration blocked both calpain enrichment and myocardial cell death in the 4-week PO beta3 mice. Because beta3 integrin contributes to cardioprotective signaling, these studies indicate that the loss of specific integrin function could be a key mechanism for calpain-mediated programmed cell death of cardiomyocytes in PO myocardium.
Collapse
Affiliation(s)
- Geetha Suryakumar
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Harinath Kasiganesan
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Sundaravadivel Balasubramanian
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
| | - Dhandapani Kuppuswamy
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29425
| |
Collapse
|
28
|
Lathia US, Ornatsky O, Baranov V, Nitz M. Development of inductively coupled plasma-mass spectrometry-based protease assays. Anal Biochem 2010; 398:93-8. [PMID: 19912984 PMCID: PMC2825755 DOI: 10.1016/j.ab.2009.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/28/2009] [Accepted: 11/08/2009] [Indexed: 11/26/2022]
Abstract
Rapid, sensitive, and quantitative assays for proteases are important for drug development and in the diagnosis of disease. Here an assay for protease activity that uses inductively coupled plasma-mass spectrometry (ICP-MS) detection is described. Peptidic alpha-chymotrypsin substrates were synthesized containing a lanthanide ion chelate at the N terminus to provide a distinct elemental tag. A biotin label was appended to the C terminus of the peptide, allowing separation of uncleaved peptide from the enzymatic digestion. The enzyme activity was determined by quantifying the lanthanide ion signal of the peptide cleavage products by ICP-MS. Biotinylated substrates synthesized include Lu-DTPA-Asp-Leu-Leu-Val-Tyr approximately Asp-Lys(biotin) and Lu-DTPA-betaAla-betaAla-betaAla-betaAla-Gly-Ser-Ala-Tyr approximately Gly-Lys-Arg-Lys(biotin)-amide. Parallel assays with a commercially available fluorogenic substrate (Suc-AAPF-AMC) for alpha-chymotrypsin were performed for comparison. Using the ICP-MS assay, enzyme concentrations as low as 2pM could be readily detected, superior to the detection limit of an assay using the alpha-chymotrypsin fluorogenic substrate (Suc-AAPF-AMC). Furthermore, we demonstrated the use of this approach to detect chymotrypsin activity in HeLa cell lysates.
Collapse
Affiliation(s)
- Urja S. Lathia
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6
| | - Olga Ornatsky
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6
| | - Vladimir Baranov
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6
| |
Collapse
|
29
|
Singh RB, Dhalla NS. Ischemia–reperfusion-induced changes in sarcolemmal Na+/K+-ATPase are due to the activation of calpain in the heartThis article is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:388-97. [DOI: 10.1139/y10-012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Depression in cardiac performance due to ischemia–reperfusion (I/R) injury is associated with the development of oxidative stress and decreased sarcolemmal (SL) Na+/K+-ATPase activity. Since both I/R and oxidative stress have been reported to promote the occurrence of intracellular Ca2+ overload and activate proteases such as calpain, this study was undertaken to investigate whether the activation of calpain in I/R hearts is associated with alterations in the SL Na+/K+-ATPase activity and its isoform content. For this purpose, isolated rat hearts treated with and without 2 different calpain inhibitors (leupeptin and MDL28170) were subjected to 30 min ischemia followed by 60 min of reperfusion, and the cardiac function, SL Na+/K+-ATPase activity, Na+/K+-ATPase isoform protein content, and calpain activity were measured. The I/R-induced depressions in cardiac function, Na+/K+-ATPase activity, and protein content of Na+/K+-ATPase isoforms were associated with an increase in calpain activity , but were prevented by treatment of hearts with leupeptin. Incubation of SL membranes with calpain decreased the Na+/K+-ATPase activity and protein content of its isoforms; these changes were also attenuated by leupeptin. The I/R-induced alterations in cardiac function and the activity of SL Na+/K+-ATPase and calpain were Ca2+-dependent and were prevented by MDL28170, a specific inhibitor of calpain. The I/R-induced translocation of calpain isoforms (I and II) from the cytosol to SL and the changes in distribution of calpastatin were also attenuated by treatment with calpain inhibitors. These results suggest that the depression in cardiac function and SL Na+/K+-ATPase activity in I/R hearts may be due to changes in the activity and translocation of calpain.
Collapse
Affiliation(s)
- Raja B. Singh
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
30
|
Dhalla NS, Saini-Chohan HK, Duhamel TA. Strategies for the regulation of intracellular calcium in ischemic heart disease. Future Cardiol 2009; 4:339-45. [PMID: 19804313 DOI: 10.2217/14796678.4.4.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Mani SK, Balasubramanian S, Zavadzkas JA, Jeffords LB, Rivers WT, Zile MR, Mukherjee R, Spinale FG, Kuppuswamy D. Calpain inhibition preserves myocardial structure and function following myocardial infarction. Am J Physiol Heart Circ Physiol 2009; 297:H1744-51. [PMID: 19734364 PMCID: PMC2781387 DOI: 10.1152/ajpheart.00338.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/01/2009] [Indexed: 12/13/2022]
Abstract
Cardiac pathology, such as myocardial infarction (MI), activates intracellular proteases that often trigger programmed cell death and contribute to maladaptive changes in myocardial structure and function. To test whether inhibition of calpain, a Ca(2+)-dependent cysteine protease, would prevent these changes, we used a mouse MI model. Calpeptin, an aldehydic inhibitor of calpain, was intravenously administered at 0.5 mg/kg body wt before MI induction and then at the same dose subcutaneously once per day. Both calpeptin-treated (n = 6) and untreated (n = 6) MI mice were used to study changes in myocardial structure and function after 4 days of MI, where end-diastolic volume (EDV) and left ventricular ejection fraction (EF) were measured by echocardiography. Calpain activation and programmed cell death were measured by immunohistochemistry, Western blotting, and TdT-mediated dUTP nick-end labeling (TUNEL). In MI mice, calpeptin treatment resulted in a significant improvement in EF [EF decreased from 67 + or - 2% pre-MI to 30 + or - 4% with MI only vs. 41 + or - 2% with MI + calpeptin] and attenuated the increase in EDV [EDV increased from 42 + or - 2 microl pre-MI to 73 + or - 4 microl with MI only vs. 55 + or - 4 microl with MI + calpeptin]. Furthermore, calpeptin treatment resulted in marked reduction in calpain- and caspase-3-associated changes and TUNEL staining. These studies indicate that calpain contributes to MI-induced alterations in myocardial structure and function and that it could be a potential therapeutic target in treating MI patients.
Collapse
Affiliation(s)
- Santhosh K Mani
- Division of Cardiology, Department of Medicine, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Romero-Perez D, Agrawal A, Jacobsen J, Yan Y, Thomas R, Cohen S, Villarreal F. Effects of novel semiselective matrix metalloproteinase inhibitors on ex vivo cardiac structure-function. J Cardiovasc Pharmacol 2009; 53:452-61. [PMID: 19365278 PMCID: PMC2835692 DOI: 10.1097/fjc.0b013e3181a6aa83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to evaluate the ability of novel semiselective matrix metalloproteinase inhibitors (MMPI) to protect myocardial structure-function in the setting of ischemia-reperfusion injury. For this purpose, an isolated rat model of myocardial stunning and infarction was used. Isolated hearts were subjected to 20-30 minutes of global no-flow ischemia and 30-minute reperfusion. Myocardial performance was assessed as the product of the heart rate and left ventricular developed pressure (rate-pressure product, RPP). Coronary flow rates, ventricular weights, indicators of muscle (troponin I), and fibrillar collagen damage (collagen opalation) were measured. Four MMPI were tested: 2 non-hydroxamate, semiselective inhibitors (PY-2 and 1,2-HOPO-2) and 2 broad-spectrum inhibitors (PD166793 and CGS27023A). The non-hydroxamate, semiselective inhibitors were shown to be nontoxic in cocultures of cardiac cells. Results indicate that semiselective inhibitors (in particular 1,2-HOPO-2) yield improved cardiac performance (approximately 23% higher RPP vs. controls) and coronary flow rates (approximately 22%), reducing muscle (approximately 25%) and fibrillar collagen damage (approximately 60%). Evidence suggests the involvement of matrix metalloproteinase-2 in these actions. Interestingly, broad-spectrum inhibitors only show modest improvement (approximately 8% higher RPP vs. controls) without affecting the other measured parameters. In conclusion, semiselective MMPI can act as cardioprotectors in isolated perfused rat hearts. Protection is observed in all structural components of the myocardium translating into improved contractile function. Based on these findings, non-hydroxamate, semiselective MMPI warrant further studies as to their ability to protect ischemic myocardium in the in vivo setting.
Collapse
Affiliation(s)
- Diego Romero-Perez
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Arpita Agrawal
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Jennifer Jacobsen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Yilong Yan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Robert Thomas
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Seth Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | | |
Collapse
|
33
|
De Maria A, Shi Y, Kumar NM, Bassnett S. Calpain expression and activity during lens fiber cell differentiation. J Biol Chem 2009; 284:13542-13550. [PMID: 19269960 PMCID: PMC2679455 DOI: 10.1074/jbc.m900561200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Indexed: 12/28/2022] Open
Abstract
In animal models, the dysregulated activity of calcium-activated proteases, calpains, contributes directly to cataract formation. However, the physiological role of calpains in the healthy lens is not well defined. In this study, we examined the expression pattern of calpains in the mouse lens. Real time PCR and Western blotting data indicated that calpain 1, 2, 3, and 7 were expressed in lens fiber cells. Using controlled lysis, depth-dependent expression profiles for each calpain were obtained. These indicated that, unlike calpain 1, 2, and 7, which were most abundant in cells near the lens surface, calpain 3 expression was strongest in the deep cortical region of the lens. We detected calpain activities in vitro and showed that calpains were active in vivo by microinjecting fluorogenic calpain substrates into cortical fiber cells. To identify endogenous calpain substrates, membrane/cytoskeleton preparations were treated with recombinant calpain, and cleaved products were identified by two-dimensional difference electrophoresis/mass spectrometry. Among the calpain substrates identified by this approach was alphaII-spectrin. An antibody that specifically recognized calpain-cleaved spectrin was used to demonstrate that spectrin is cleaved in vivo, late in fiber cell differentiation, at or about the time that lens organelles are degraded. The generation of the calpain-specific spectrin cleavage product was not observed in lens tissue from calpain 3-null mice, indicating that calpain 3 is uniquely activated during lens fiber differentiation. Our data suggest a role for calpains in the remodeling of the membrane cytoskeleton that occurs with fiber cell maturation.
Collapse
Affiliation(s)
- Alicia De Maria
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| | - Yanrong Shi
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110
| | - Nalin M Kumar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri 63110.
| |
Collapse
|
34
|
Salthouse CD, Reynolds F, Tam JM, Josephson L, Mahmood U. Quantitative Measurement of Protease-Activity with Correction of Probe Delivery and Tissue Absorption Effects. SENSORS AND ACTUATORS. B, CHEMICAL 2009; 138:591-597. [PMID: 20161242 PMCID: PMC2706141 DOI: 10.1016/j.snb.2009.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light.Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods.
Collapse
Affiliation(s)
- Christopher D Salthouse
- Center for Molecular Imaging Research, Massachusetts General Hospital, Building 149, 13th Street, Room 5406, Charlestown, MA 02129-2060
| | | | | | | | | |
Collapse
|
35
|
Kilian KA, Lai LMH, Magenau A, Cartland S, Böcking T, Di Girolamo N, Gal M, Gaus K, Gooding JJ. Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. NANO LETTERS 2009; 9:2021-2025. [PMID: 19382766 DOI: 10.1021/nl900283j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Monitoring enzyme secretion in tissue culture has proved challenging because to date the activity cannot be continuously measured in situ. In this Letter, we present a solution using biopolymer loaded photonic crystals of anodized silicon. Shifts in the optical response by proteolytic degradation of the biopolymer provide label-free sensing with unprecedented low detection limits (1 pg) and calculation of kinetic parameters. The enhancement in sensitivity relative to previous photonic crystal sensors constitutes a change in the sensing paradigm because here the entire pore space is responsive to the secreted enzyme rather than just the pore walls. In situ monitoring is demonstrated by detecting secretion of matrix metalloprotease 9 from stimulated human macrophages.
Collapse
Affiliation(s)
- Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singh RB, Elimban V, Dhalla NS. Differences in ischemia-reperfusion-induced endothelial changes in hearts perfused at constant flow and constant pressure. J Appl Physiol (1985) 2008; 105:1779-87. [DOI: 10.1152/japplphysiol.00076.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isolated hearts subjected to ischemia-reperfusion (I/R) exhibit depressed cardiac performance and alterations in subcellular function. Since hearts perfused at constant flow (CF) and constant pressure (CP) show differences in their contractile response to I/R, this study was undertaken to examine mechanisms responsible for these I/R-induced alterations in CF-perfused and CP-perfused hearts. Rat hearts, perfused at CF (10 ml/min) or CP (80 mmHg), were subjected to I/R (30 min global ischemia followed by 60 min reperfusion), and changes in cardiac function as well as sarcolemmal (SL) Na+-K+-ATPase activity, sarcoplasmic reticulum (SR) Ca2+uptake, and endothelial function were monitored. The I/R-induced depressions in cardiac function, SL Na+-K+-ATPase, and SR Ca2+-uptake activities were greater in hearts perfused at CF than in hearts perfused at CP. In hearts perfused at CF, I/R-induced increase in calpain activity and decrease in nitric oxide (NO) synthase (endothelial NO synthase) protein content in the heart as well as decrease in NO concentration of the perfusate were greater than in hearts perfused at CP. These changes in contractile activity and biochemical parameters due to I/R in hearts perfused at CF were attenuated by treatment with l-arginine, a substrate for NO synthase, while those in hearts perfused at CP were augmented by treatment with NG-nitro-l-arginine methyl ester, an inhibitor of NO synthase. The results indicate that the I/R-induced differences in contractile responses and alterations in subcellular organelles between hearts perfused at CF and CP may partly be attributed to greater endothelial dysfunction in CF-perfused hearts than that in CP-perfused hearts.
Collapse
|
37
|
Chen CL, Huang SKS, Lin JL, Lai LP, Lai SC, Liu CW, Chen WC, Wen CH, Lin CS. Upregulation of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases in rapid atrial pacing-induced atrial fibrillation. J Mol Cell Cardiol 2008; 45:742-53. [DOI: 10.1016/j.yjmcc.2008.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 11/28/2022]
|
38
|
Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, Elimban V, Dent MR, Tappia PS. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 2008; 81:429-38. [DOI: 10.1093/cvr/cvn281] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
39
|
Mani SK, Shiraishi H, Balasubramanian S, Yamane K, Chellaiah M, Cooper G, Banik N, Zile MR, Kuppuswamy D. In vivo administration of calpeptin attenuates calpain activation and cardiomyocyte loss in pressure-overloaded feline myocardium. Am J Physiol Heart Circ Physiol 2008; 295:H314-26. [PMID: 18487434 PMCID: PMC2494745 DOI: 10.1152/ajpheart.00085.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/09/2008] [Indexed: 02/06/2023]
Abstract
Calpain activation is linked to the cleavage of several cytoskeletal proteins and could be an important contributor to the loss of cardiomyocytes and contractile dysfunction during cardiac pressure overload (PO). Using a feline right ventricular (RV) PO model, we analyzed calpain activation during the early compensatory period of cardiac hypertrophy. Calpain enrichment and its increased activity with a reduced calpastatin level were observed in 24- to 48-h-PO myocardium, and these changes returned to basal level by 1 wk of PO. Histochemical studies in 24-h-PO myocardium revealed the presence of TdT-mediated dUTP nick-end label (TUNEL)-positive cardiomyocytes, which exhibited enrichment of calpain and gelsolin. Biochemical studies showed an increase in histone H2B phosphorylation and cytoskeletal binding and cleavage of gelsolin, which indicate programmed cardiomyocyte cell death. To test whether calpain inhibition could prevent these changes, we administered calpeptin (0.6 mg/kg iv) by bolus injections twice, 15 min before and 6 h after induction of 24-h PO. Calpeptin blocked the following PO-induced changes: calpain enrichment and activation, decreased calpastatin level, caspase-3 activation, enrichment and cleavage of gelsolin, TUNEL staining, and histone H2B phosphorylation. Although similar administration of a caspase inhibitor, N-benzoylcarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VD-fmk), blocked caspase-3 activation, it did not alleviate other aforementioned changes. These results indicate that biochemical markers of cardiomyocyte cell death, such as sarcomeric disarray, gelsolin cleavage, and TUNEL-positive nuclei, are mediated, at least in part, by calpain and that calpeptin may serve as a potential therapeutic agent to prevent cardiomyocyte loss and preserve myocardial structure and function during cardiac hypertrophy.
Collapse
Affiliation(s)
- Santhosh K Mani
- Gazes Cardiac Research Institute, Charleston, SC 29425-2221, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bonnema DD, Webb CS, Pennington WR, Stroud RE, Leonardi AE, Clark LL, McClure CD, Finklea L, Spinale FG, Zile MR. Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail 2007; 13:530-40. [PMID: 17826643 PMCID: PMC2698433 DOI: 10.1016/j.cardfail.2007.04.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 04/20/2007] [Accepted: 04/23/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mechanisms causing age-dependent changes in left ventricular (LV) structure and function are not completely understood. Matrix metalloproteinase (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) constitute one important proteolytic pathway affecting LV remodeling. However, whether these determinants of extracellular matrix (ECM) composition change as a function of age has not been examined in an aging population free of clinically significant cardiovascular disease. METHODS AND RESULTS Subjects (n = 77, age 20-90 years) with no evidence of cardiovascular disease underwent echocardiography and measurement of plasma MMP-2, 7, 8, and 9 and TIMP-1, 2, and 4 (enzyme-linked immunosorbent assay). As subject age increased, volume/mass ratio decreased and mitral E/A ratio decreased. As subject age increased, MMP-2 increased (from 1188 +/- 99 ng/mL to 1507 +/- 76 ng/mL), MMP-7 increased (from 1.2 +/- 0.1 ng/mL to 3.1 +/- 0.6 ng/mL), MMP-9 decreased (from 29 +/- 7 ng/mL to 8 +/- 2 ng/mL), and TIMP-1, 2, and 4 increased (from 728 +/- 46 ng/mL to 1093 +/- 73 ng/mL, from 34 +/- 5 ng/mL to 53 +/- 6 ng/mL, and from 1.26 +/- 0.22 ng/mL to 2.34 +/- 0.30 ng/mL, respectively) (all P < .05). There were significant correlations between decreased LV volume/mass and E/A ratio and increased MMP-7 and TIMP-1 and 4. CONCLUSIONS MMPs and TIMPs changed as a function of age in the absence of clinically significant cardiovascular disease. These age-dependent alterations in MMP and TIMP profiles favor ECM accumulation and were associated with concentric remodeling and decreased LV diastolic function. Because of these age-dependent changes in this proteolytic system, the superimposition of disease processes such as myocardial infarction or hypertensive heart disease in the older subject may result in different myocardial ECM remodeling than that seen in a younger subject.
Collapse
Affiliation(s)
- D. Dirk Bonnema
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Depart of Veterans Affairs Medical Center, Charleston, SC 29425
| | - Carson S. Webb
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Depart of Veterans Affairs Medical Center, Charleston, SC 29425
| | - Weems R. Pennington
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Depart of Veterans Affairs Medical Center, Charleston, SC 29425
| | - Robert E. Stroud
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Amy E. Leonardi
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Leslie L. Clark
- Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC 29425
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Catherine D. McClure
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Laura Finklea
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Francis G. Spinale
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Michael R. Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Depart of Veterans Affairs Medical Center, Charleston, SC 29425
| |
Collapse
|
41
|
|
42
|
Ono Y, Hayashi C, Doi N, Kitamura F, Shindo M, Kudo K, Tsubata T, Yanagida M, Sorimachi H. Comprehensive survey of p94/calpain 3 substrates by comparative proteomics--possible regulation of protein synthesis by p94. Biotechnol J 2007; 2:565-76. [PMID: 17373644 PMCID: PMC2978325 DOI: 10.1002/biot.200700018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 11/21/2022]
Abstract
Calpain represents a family of Ca(2+)-dependent cytosolic cysteine proteases found in almost all eukaryotes and some bacteria, and is involved in a variety of biological phenomena, including brain function. Several substrates of calpain are aggressively proteolyzed under pathological conditions, e.g., in neurodegenerating processes, fodrin is proteolyzed by calpain. Because very small amounts of substrate are proteolyzed by calpain under normal biological conditions, the molecular identities of calpain substrates are largely unknown. In this study, an extensive survey of the substrates of p94/calpain 3 in COS7 cells was executed using iTRAQ(TM) labeling and 2-D LC-MALDI analysis. p94 was used because: (i) several p94 splicing variants are expressed in brain tissue even though p94 itself is a skeletal-muscle-specific calpain, and (ii) it exhibits Ca(2+)-independent activity in COS cells, which makes it useful for evaluating the effects of p94 protease activity on proteins without perturbing the cells. Our approach revealed several novel protein substrates for p94, including the substrates of conventional calpains, components of the protein synthesis system, and enzymes of the glycolytic pathway. The results demonstrate the usefulness and sensitivity of this approach for mining calpain substrates. A combination of this method with other analytical methods would contribute to elucidation of the biological relevance of the calpain family.
Collapse
Affiliation(s)
- Yasuko Ono
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
| | - Chikako Hayashi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of ScienceChiba, Japan
| | - Naoko Doi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| | - Fujiko Kitamura
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| | - Mayumi Shindo
- Proteomics & Small Molecules Division, Applied Biosystems Japan Ltd.Tokyo, Japan
| | | | - Takuichi Tsubata
- Proteomics & Small Molecules Division, Applied Biosystems Japan Ltd.Tokyo, Japan
| | - Mitsuaki Yanagida
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of MedicineChiba, Japan
| | - Hiroyuki Sorimachi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| |
Collapse
|
43
|
Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med (Hagerstown) 2007; 8:238-50. [PMID: 17413299 DOI: 10.2459/01.jcm.0000263489.13479.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have revealed varying degrees of changes in sarcoplasmic reticular and myofibrillar activities, protein content, gene expression and intracellular Ca-handling during cardiac dysfunction due to ischemia-reperfusion (I/R); however, relatively little is known about the sarcolemmal and mitochondrial alterations, as well as their mechanisms in the I/R hearts. Because I/R is associated with oxidative stress and intracellular Ca-overload, it has been indicated that changes in subcellular activities, protein content and gene expression due to I/R are related to both oxidative stress and Ca-overload. Intracellular Ca-overload appears to induce changes in subcellular activities, protein contents and gene expression (subcellular remodeling) by activation of proteases and phospholipases, as well as by affecting the genetic apparatus, whereas oxidative stress is considered to cause oxidation of functional groups of different subcellular proteins in addition to modifying the genetic machinery. Ischemic preconditioning, which is known to depress the development of both intracellular Ca-overload and oxidative stress due to I/R, was observed to attenuate the I/R-induced subcellular remodeling and improve cardiac performance. It is suggested that a combination therapy with antioxidants and interventions, which reduce the development of intracellular Ca-overload, may improve cardiac function by preventing or attenuating the occurrence of subcellular remodeling due to ischemic heart disease. It is proposed that defects in the activities of subcellular organelles may serve as underlying mechanisms for I/R-induced cardiac dysfunction under acute conditions, whereas subcellular remodeling due to alterations in gene expression may explain the impaired cardiac performance under chronic conditions of I/R.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, and Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Terai T, Kikuchi K, Iwasawa SY, Kawabe T, Hirata Y, Urano Y, Nagano T. Modulation of Luminescence Intensity of Lanthanide Complexes by Photoinduced Electron Transfer and Its Application to a Long-Lived Protease Probe [J. Am. Chem. Soc.2006,128, 6938−6946]. J Am Chem Soc 2006. [DOI: 10.1021/ja069963+] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y. Characterization of natural vasostatin-containing peptides in rat heart. FEBS J 2006; 273:3311-21. [PMID: 16857014 DOI: 10.1111/j.1742-4658.2006.05334.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromogranin A (CGA) is a protein that is stored and released together with neurotransmitters and hormones in the nervous, endocrine and diffuse neuroendocrine systems. As human vasostatins I and II [CGA(1-76) and CGA(1-113), respectively] have been reported to affect vessel motility and exert concentration-dependent cardiosuppressive effects on isolated whole heart preparations of eel, frog and rat (i.e. negative inotropism and antiadrenergic activity), we investigated the presence of vasostatin-containing peptides in rat heart. Rat heart extracts were purified by RP-HPLC, and the resulting fractions analyzed for the presence of CGA N-terminal fragments using dot-blot analysis. CGA-immunoreactive fractions were submitted to western blot and MS analysis using the TOF/TOF technique. Four endogenous N-terminal CGA-derived peptides [CGA(4-113), CGA(1-124), CGA(1-135) and CGA(1-199)] containing the vasostatin sequence were characterized. The following post-translational modifications of these fragments were identified: phosphorylation at Ser96, O-glycosylation (trisaccharide, NAcGal-Gal-NeuAc) at Thr126, and oxidation at three methionine residues. This first identification of CGA-derived peptides containing the vasostatin motif in rat heart supports their role in cardiac physiology by an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Elise Glattard
- Inserm U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Terai T, Kikuchi K, Iwasawa SY, Kawabe T, Hirata Y, Urano Y, Nagano T. Modulation of Luminescence Intensity of Lanthanide Complexes by Photoinduced Electron Transfer and Its Application to a Long-Lived Protease Probe. J Am Chem Soc 2006; 128:6938-46. [PMID: 16719474 DOI: 10.1021/ja060729t] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luminescent lanthanide complexes (Tb(3+), Eu(3+), etc.) have excellent properties for biological applications, including extraordinarily long lifetimes and large Stokes shifts. However, there have been few reports of lanthanide-based functional probes, because of the difficulty in designing suitable complexes with a luminescent on/off switch. Here, we have synthesized a series of complexes which consist of three moieties: a lanthanide chelate, an antenna, and a luminescence off/on switch. The antenna is an aromatic ring which absorbs light and transmits its energy to the metal, and the switch is a benzene derivative with a different HOMO level. If the HOMO level is higher than a certain threshold, the complex emits no luminescence at all, which indicates that the lanthanide luminescence can be modulated by photoinduced electron transfer (PeT) from the switch to the sensitizer. This approach to control lanthanide luminescence makes possible the rational design of functional lanthanide complexes, in which the luminescence property is altered by a biological reaction. To exemplify the utility of our approach to the design of lanthanide complexes with a switch, we have developed a novel protease probe, which undergoes a significant change in luminescence intensity upon enzymatic cleavage of the substrate peptide. This probe, combined with time-resolved measurements, was confirmed in model experiments to be useful for the screening of inhibitors, as well as for clinical diagnosis.
Collapse
Affiliation(s)
- Takuya Terai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Leloup L, Mazères G, Daury L, Cottin P, Brustis JJ. Involvement of calpains in growth factor-mediated migration. Int J Biochem Cell Biol 2006; 38:2049-63. [PMID: 16971167 DOI: 10.1016/j.biocel.2006.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Previous research in our laboratory has already shown the importance of the role played by ubiquitous calpains during myoblast migration. The aim of this study was to investigate calpain expression during myoblast migration and, to enhance this phenomenon via calpain stimulation. Ubiquitous calpains are members of a large family of calcium-dependent cysteine proteases. They play an important role in numerous biological and pathological phenomena, such as signal transduction, apoptosis, cell-cycle regulation, cell spreading, adhesion, invasion, myogenesis, and motility. Myoblast migration is a crucial step in myogenesis, as it is necessary for myoblast alignment and fusion to form myotubes. This study started by examining changes in calpain expression during migration, then investigated the possibility of activating myoblast migration via the stimulation of calpain expression and/or activity. The migration rate of myoblasts overexpressing mu- or milli-calpain was quantified. The results showed that calpain overexpression dramatically inhibited myoblast migration. Growth-factor treatments were then used to enhance myoblast migration. The results showed that treatment with IGF-1, TGF-beta1, or insulin induced a major increase in migration and caused a significant increase in m-calpain expression and activity. The increase in migration was totally inhibited by adding calpeptin, a calpain-specific inhibitor. These findings suggest that milli-calpain is involved in growth factor-mediated migration.
Collapse
Affiliation(s)
- Ludovic Leloup
- Laboratoire Biosciences de l'Aliment, Université Bordeaux 1, ISTAB USC-INRA 2009, avenue des Facultés, 33405 Talence Cedex, France.
| | | | | | | | | |
Collapse
|