1
|
Kang J, Hong B, Ma S, Wu J, Yang Z, Fan X, Shao L, Sun K, Zhao J, Fang H, Wu T. Ecological factors affecting toluene biosynthesis from bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178186. [PMID: 39708473 DOI: 10.1016/j.scitotenv.2024.178186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
As a highly emitted volatile organic compound, toluene significantly contributes to atmospheric pollution and poses high risks to human health. Its anthropogenic source is well understood, while its biosynthesis remains poorly understood, especially by bacterial communities. This research attempted to reveal the temporal changes of bacterial community structure during toluene biosynthesis and identify key bacterial factors using 16S rRNA sequencing gene and machine learning methods. The results showed that toluene biosynthesis by the bacterial consortium nonlinearly increased with phenylacetic acid concentration with the optimal temperature of 25-30 °C and pH of 7-7.5. Diversity and richness of the bacterial communities increased over time, as well as the abundance and composition of phyla (e.g. Bacteroidota and Synergistota), families (e.g. Acidaminococcaceae and Oscillospiraceae), species (e.g. Bacteroides and Parabacteroides), and functional genes (e.g. phenylalanine, tyrosine, and tryptophan biosynthesis and fatty acid metabolism). They were significantly related to toluene biosynthesis, of which the Shannon and Simpson indices and the abundances of Synergistaceae, Bacteroidaceae, and Spirochaetaceae species and functional genes related to metabolic pathways, biosynthesis of secondary metabolites, and alanine aspartate and glutamate metabolism were identified as key factors. Findings of this study contributed to new understandings of the underlying mechanisms of toluene biosynthesis by the bacterial community.
Collapse
Affiliation(s)
- Jian Kang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Bing Hong
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| | - Shutan Ma
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Jiangping Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Zhi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xiaoyu Fan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Luyi Shao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Kun Sun
- Wuhu Institute of Technology, Wuhu 241006, China
| | - Juan Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Hua Fang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China
| | - Ting Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| |
Collapse
|
2
|
Pinto-Zevallos DM, Skaldina O, Blande JD. Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services. GLOBAL CHANGE BIOLOGY 2025; 31:e70034. [PMID: 39823169 DOI: 10.1111/gcb.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), ozone (O3), sulphur dioxide (SO2) and particulate matter (PM2.5/PM10) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects. Consequently, air pollutants can affect ecosystem functioning and the services regulated by plant-insect interactions. This review examines the already identified and potential impacts of air pollutants on different aspects of VOC-mediated plant-insect interactions underlying a range of insect ES. Furthermore, we investigate the potential susceptibility of insects to future environmental changes and the adaptive mechanisms they may employ to efficiently detect odours. The current body of knowledge on the effects of air pollutants on key interspecific interactions is biased towards and limited to a few pollinators, herbivores and parasitoids on model plants. There is a notable absence of research on decomposers and seed dispersers. With exception of O3 and NOx, the effects of some widespread and emerging environmental pollutants, such as secondary organic aerosols (SOAs), SO2, HMs, PM and MPs/NPs, remain largely unexplored. It is recommended that the identified knowledge gaps be addressed in future research, with the aim of designing effective mitigation strategies for the adverse effects in question and developing robust conservation frameworks.
Collapse
Affiliation(s)
- Delia M Pinto-Zevallos
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland
| | - Oksana Skaldina
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Voyard A, Ciuraru R, Lafouge F, Decuq C, Fortineau A, Loubet B, Staudt M, Rees F. Emissions of volatile organic compounds from aboveground and belowground parts of rapeseed (Brassica napus L.) and tomato (Solanum lycopersicum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177081. [PMID: 39437913 DOI: 10.1016/j.scitotenv.2024.177081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Root systems represent a source of Volatile Organic Compounds (VOCs) that may significantly contribute to the atmospheric VOC emissions from agroecosystems and shape soil microbial activity. To gain deeper insights into the role of roots in the VOC emissions from crops, we developed a dynamic chamber with isolated aboveground and belowground compartments, allowing for simultaneous measurements of VOC fluxes from both compartments in controlled conditions. We continuously monitored VOC emissions from intact plants of rapeseed (Brassica napus L.) and tomato (Solanum lycopersicum L.) i) over 24 h when plants were rooted in soil, and ii) over 6 h following soil removal. The measurements were performed using a highly sensitive Proton Transfer Reaction - Time of Flight - Mass Spectrometer and a Thermic Desorption- Gas Chromatography - Mass Spectrometer. Net VOC emissions measured at the soil surface represented <5 % of the aboveground emissions and were higher during the day than at night. However, when soil was removed, belowground VOC emissions became up to two times higher than aboveground emissions. This large increase in VOC emissions from roots observed after soil removal was almost exclusively due to methanol emissions. Differences in VOC composition between plant species were also detected with and without soil: rapeseed emitted more sulphurous and nitrogenous compounds and tomato more mono- and poly-unsaturated hydrocarbons. Our results suggest that roots may be a largely underestimated VOC source and that the soil is a strong sink for root-borne methanol. Root VOC emissions should be considered when agricultural practices involve roots excavation.
Collapse
Affiliation(s)
- Auriane Voyard
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Raluca Ciuraru
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France.
| | - Florence Lafouge
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Céline Decuq
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Alain Fortineau
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Benjamin Loubet
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Michael Staudt
- CEFE, CNRS, EPHE, IRD, Université Montpellier, Montpellier, France
| | - Frédéric Rees
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France.
| |
Collapse
|
4
|
Herbstritt B, Wengeler L, Orlowski N. Coping with spectral interferences when measuring water stable isotopes of vegetables. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9907. [PMID: 39234849 DOI: 10.1002/rcm.9907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
RATIONALE Laser-based analyzers are widely used in ecohydrology to analyze plant water isotopic compositions (δ18O and δ2H). The suitability of three different water extraction and isotope equilibration techniques was compared. We examined whether co-extracted volatile organic compounds (VOCs) affect laser-based isotope measurements and used the instrument's spectral parameters to post-correct for interfering VOCs. METHODS Cryogenic vacuum extraction, vapor headspace equilibration in bags, and vapor equilibration in situ probes were used to extract liquid water or water vapor for laser-based isotope analysis (cavity ring-down spectrometry, CRDS). Isotope data were calibrated by standards for each method separately. Spectral parameters of the instrument, appropriate to identify spectral interferences with MeOH and CH4, were identified and used for post-correction. Differences between the three methods and between the origins of the vegetables were identified by statistical tests. RESULTS VOCs were found in various amounts for the three different methods. They were co-extracted or co-equilibrated during the different extraction or equilibration methods. Correlation coefficients of isotope data and "CH4" (spectral parameter) were 0.99 or better; however, slopes for δ18O were similar on different instrument types but different for δ2H. Our correction approach improved results and inter-comparability of the methods considerably without knowing the chemical composition of the plant sap. CONCLUSIONS All three methods were sensitive enough to distinguish and resolve differences in natural abundance. Data quality was improved by the "CH4 correction" approach but could probably be optimized by a plant species-specific correction. Standardized tools for contaminant removal or post-correction applications from manufacturers, in particular for vapor-mode analysis, are still needed.
Collapse
Affiliation(s)
- Barbara Herbstritt
- Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lena Wengeler
- Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
| | - Natalie Orlowski
- Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
- Institute of Soil Science and Site Ecology, TU Dresden, Tharandt, Germany
| |
Collapse
|
5
|
Bernardin JR, Gray SM, Bittleston LS. Arthropod prey type drives decomposition rates and microbial community processes. Appl Environ Microbiol 2024; 90:e0039424. [PMID: 38916291 PMCID: PMC11267907 DOI: 10.1128/aem.00394-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial communities perform various functions, many of which contribute to ecosystem-level nutrient cycling via decomposition. Factors influencing leaf detrital decomposition are well understood in terrestrial and aquatic ecosystems, but much less is known about arthropod detrital inputs. Here, we sought to infer how differences in arthropod detritus affect microbial-driven decomposition and community function in a carnivorous pitcher plant, Sarracenia purpurea. Using sterile mesh bags filled with different types of sterile arthropod prey, we assessed if prey type influenced the rate of decomposition in pitcher plants over 7 weeks. Additionally, we measured microbial community composition and function, including hydrolytic enzyme activity and carbon substrate use. When comparing decomposition rates, we found that ant and beetle prey with higher exoskeleton content lost less mass compared with fly prey. We observed the highest protease activity in the fly treatment, which had the lowest exoskeleton content. Additionally, we saw differences in the pH of the pitcher fluid, driven by the ant treatment which had the lowest pH. According to our results from 16S rRNA gene metabarcoding, prey treatments with the highest bacterial amplicon sequence variant (ASV) richness (ant and beetle) were associated with prey that lost a lower proportion of mass over the 7 weeks. Overall, arthropod detritus provides unique nutrient sources to decomposer communities, with different prey influencing microbial hydrolytic enzyme activity and composition. IMPORTANCE Microbial communities play pivotal roles in nutrient cycling via decomposition and nutrient transformation; however, it is often unclear how different substrates influence microbial activity and community composition. Our study highlights how different types of insects influence decomposition and, in turn, microbial composition and function. We use the aquatic pools found in a carnivorous pitcher plant as small, discrete ecosystems that we can manipulate and study independently. We find that some insect prey (flies) breaks down faster than others (beetles or ants) likely because flies contain more things that are easy for microbes to eat and derive essential nutrients from. This is also reflected in higher enzyme activity in the microbes decomposing the flies. Our work bridges a knowledge gap about how different substrates affect microbial decomposition, contributing to the broader understanding of ecosystem function in a nutrient cycling context.
Collapse
Affiliation(s)
| | - Sarah M. Gray
- Department of Biology-Ecology and Evolution, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
6
|
McBride SG, Osburn ED, Lucas JM, Simpson JS, Brown T, Barrett JE, Strickland MS. Volatile and Dissolved Organic Carbon Sources Have Distinct Effects on Microbial Activity, Nitrogen Content, and Bacterial Communities in Soil. MICROBIAL ECOLOGY 2023; 85:659-668. [PMID: 35102425 DOI: 10.1007/s00248-022-01967-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Variation in microbial use of soil carbon compounds is a major driver of biogeochemical processes and microbial community composition. Available carbon substrates in soil include both low molecular weight-dissolved organic carbon (LMW-DOC) and volatile organic compounds (VOCs). To compare the effects of LMW-DOC and VOCs on soil chemistry and microbial communities under different moisture regimes, we performed a microcosm experiment with five levels of soil water content (ranging from 25 to 70% water-holding capacity) and five levels of carbon amendment: a no carbon control, two dissolved compounds (glucose and oxalate), and two volatile compounds (methanol and α-pinene). Microbial activity was measured throughout as soil respiration; at the end of the experiment, we measured extractable soil organic carbon and total extractable nitrogen and characterized prokaryotic communities using amplicon sequencing. All C amendments increased microbial activity, and all except oxalate decreased total extractable nitrogen. Likewise, individual phyla responded to specific C amendments-e.g., Proteobacteria increased under addition of glucose, and both VOCs. Further, we observed an interaction between moisture and C amendment, where both VOC treatments had higher microbial activity than LMW-DOC treatments and controls at low moisture. Across moisture and C treatments, we identified that Chloroflexi, Nitrospirae, Proteobacteria, and Verrucomicrobia were strong predictors of microbial activity, while Actinobacteria, Bacteroidetes, and Thaumarcheota strongly predicted soil extractable nitrogen. These results indicate that the type of labile C source available to soil prokaryotes can influence both microbial diversity and ecosystem function and that VOCs may drive microbial functions and composition under low moisture conditions.
Collapse
Affiliation(s)
- Steven G McBride
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Ernest D Osburn
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Jane M Lucas
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - Julia S Simpson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Microbiology and Immunology, The Penn State, Hershey, PA, 17033, USA
| | - Taylor Brown
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - J E Barrett
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
7
|
Meischner M, Haberstroh S, Daber LE, Kreuzwieser J, Caldeira MC, Schnitzler JP, Werner C. Soil VOC emissions of a Mediterranean woodland are sensitive to shrub invasion. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:967-978. [PMID: 35661369 DOI: 10.1111/plb.13445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Many belowground processes, such as soil respiration and soil-atmosphere VOC (volatile organic compounds) exchange, are closely linked to soil microbiological processes. However, little is known about how changes in plant species cover, i.e. after plant invasion, alter these soil processes. In particular, the response of soil VOC emissions to plant invasion is not well understood. We analysed soil VOC emissions and soil respiration of a Mediterranean cork oak (Quercus suber) ecosystem, comparing soil VOC emissions from a non-invaded Q. suber woodland to one invaded by the shrub Cistus ladanifer. Soil VOC emissions were determined under controlled conditions using online proton-transfer time-of-flight mass spectrometry. Net soil VOC emissions were measured by exposing soils with or without litter to different temperature and soil moisture conditions. Soil VOC emissions were sensitive to C. ladanifer invasion. Highest net emission rates were determined for oxygenated VOC (acetaldehyde, acetone, methanol, acetic acid), and high temperatures enhanced total VOC emissions. Invasion affected the relative contribution of various VOC. Methanol and acetaldehyde were emitted exclusively from litter and were associated with the non-invaded sites. In contrast, acetone emissions increased in response to shrub presence. Interestingly, low soil moisture enhanced the effect of shrub invasion on VOC emissions. Our results indicate that shrub invasion substantially influences important belowground processes in cork oak ecosystems, in particular soil VOC emissions. High soil moisture is suggested to diminish the invasion effect through a moisture-induced increase in microbial decomposition rates of soil VOC.
Collapse
Affiliation(s)
- M Meischner
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - S Haberstroh
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - L E Daber
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - J Kreuzwieser
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | - M C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - J-P Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - C Werner
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
9
|
Baggesen NS, Davie‐Martin CL, Seco R, Holst T, Rinnan R. Bidirectional Exchange of Biogenic Volatile Organic Compounds in Subarctic Heath Mesocosms During Autumn Climate Scenarios. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:e2021JG006688. [PMID: 35865237 PMCID: PMC9285884 DOI: 10.1029/2021jg006688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/31/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Biogenic volatile organic compound (BVOC) flux dynamics during the subarctic autumn are largely unexplored and have been considered insignificant due to the relatively low biological activity expected during autumn. Here, we exposed subarctic heath ecosystems to predicted future autumn climate scenarios (ambient, warming, and colder, dark conditions), changes in light availability, and flooding, to mimic the more extreme rainfall or snowmelt events expected in the future. We used climate chambers to measure the net ecosystem fluxes and bidirectional exchange of BVOCs from intact heath mesocosms using a dynamic enclosure technique coupled to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). We focused on six BVOCs (methanol, acetic acid, acetaldehyde, acetone, isoprene, and monoterpenes) that were among the most dominant and that were previously identified in arctic tundra ecosystems. Warming increased ecosystem respiration and resulted in either net BVOC release or increased uptake compared to the ambient scenario. None of the targeted BVOCs showed net release in the cold and dark scenario. Acetic acid exhibited significantly lower net uptake in the cold and dark scenario than in the ambient scenario, which suggests reduced microbial activity. Flooding was characterized by net uptake of the targeted BVOCs and overruled any temperature effects conferred by the climate scenarios. Monoterpenes were mainly taken up by the mesocosms and their fluxes were not affected by the climate scenarios or flooding. This study shows that although autumn BVOC fluxes on a subarctic heath are generally low, changes in future climate may strongly modify them.
Collapse
Affiliation(s)
- Nanna S. Baggesen
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Cleo L. Davie‐Martin
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Roger Seco
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
- Institute of Environmental Assessment and Water Research (IDAEA‐CSIC)BarcelonaSpain
| | - Thomas Holst
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| |
Collapse
|
10
|
Llusià J, Asensio D, Sardans J, Filella I, Peguero G, Grau O, Ogaya R, Gargallo-Garriga A, Verryckt LT, Van Langenhove L, Brechet LM, Courtois E, Stahl C, Janssens IA, Peñuelas J. Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149769. [PMID: 34464786 DOI: 10.1016/j.scitotenv.2021.149769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Production, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley). We identified 45 soil terpenoids compounds emitted to the atmosphere, comprising 26 monoterpenes and 19 sesquiterpenes; of these, it was possible to identify 13 and 7 compounds, respectively. Under ambient conditions, soils acted as sinks of these BVOCs, with greatest soil uptake recorded for sesquiterpenes at upper elevations during the wet season (-282 μg m-2 h-1). Fertilization shifted soils from a sink to source, with greatest levels of terpene emissions recorded at upper elevations during the wet season, following the addition of N (monoterpenes: 406 μg m-2 h-1) and P (sesquiterpenes: 210 μg m-2 h-1). Total soil terpene emission rates were negatively correlated with total atmospheric terpene concentrations. These results indicate likely shifts in tropical soils from sink to source of atmospheric terpenes under projected increases in N deposition under global change, with potential impacts on regional-scale atmospheric chemistry balance and ecosystem function.
Collapse
Affiliation(s)
- Joan Llusià
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain.
| | - Dolores Asensio
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Jordi Sardans
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Iolanda Filella
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Guille Peguero
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Oriol Grau
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Romà Ogaya
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Albert Gargallo-Garriga
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Lore T Verryckt
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Leandro Van Langenhove
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laëtitia M Brechet
- INRAE, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, 97387 Kourou, French Guiana; Center of Excellence Global Change Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Elodie Courtois
- Laboratoire Ecologie, Evolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300 Cayenne, French Guiana
| | - Clément Stahl
- INRAE, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, 97387 Kourou, French Guiana
| | - Ivan A Janssens
- Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Josep Peñuelas
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| |
Collapse
|
11
|
Xie F, Zhou X, Wang H, Gao J, Hao F, He J, Lü C. Heating events drive the seasonal patterns of volatile organic compounds in a typical semi-arid city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147781. [PMID: 34034182 DOI: 10.1016/j.scitotenv.2021.147781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
The emission characteristics, source apportionment and chemical behavior of volatile organic compounds (VOCs) are important for strategy-making on ozone (O3) and fine particulate matter (PM2.5) control. Based on the continuous observation during four seasons, the seasonal characteristics, chemical reactivity and source apportionment of 116 VOCs species were studied in a typical semi-arid city with no relevant research. The results showed that the annual average concentrations of total volatile organic compounds (TVOCs) in Hohhot was 44.67 ± 46.59 ppbv with the predominant of alkanes and oxygenated volatile organic compounds (OVOCs). The sharp increment of TVOCs were explained by the elevating OVOCs and alkanes in autumn, while alkanes and alkenes in winter. The levels of alkenes presented negative and positive correlations with solar radiation and PM10, respectively. The mixing ratios accounted for 30% (alkanes) and 23% (alkenes and aromatics) of the TVOCs, respectively; while their ozone formation potential (OFP) ~15% and nearly 50% (even 75% in winter), respectively, indicating that the OFP of different VOCs species depends not only on their concentrations but more importantly on their chemical activity in atmosphere. According to the seasonal source apportionment, both the high levels of short-chain alkanes, alkenes and aromatics and the increasing coal sales volume suggested that the combustion sources were the predominant in heating seasons, while solvent uses was extracted as the most predominant during non-heating seasons. In non-heating seasons, the biogenic emission sources, ranking as the second contributor, were significantly higher than heating seasons. Isoprene was the most active biogenic VOCs species, bagging test results showed that deciduous trees were the predominant contributors for isoprene (~99%), while coniferous trees and shrub for monoterpenes (>95%). It will be helpful for understanding the characteristics of VOCs in Chinese national key development areas and informing policy to control semi-arid regional VOCs air pollution.
Collapse
Affiliation(s)
- Fei Xie
- School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Inner Mongolia Environmental Monitoring Center, 010011 Hohhot, China
| | - Xingjun Zhou
- Inner Mongolia Environmental Monitoring Center, 010011 Hohhot, China
| | - Haoji Wang
- School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Jimei Gao
- Inner Mongolia Environmental Monitoring Center, 010011 Hohhot, China
| | - Feng Hao
- Inner Mongolia Environmental Monitoring Center, 010011 Hohhot, China
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
12
|
Kim J, Goldstein AH, Chakraborty R, Jardine K, Weber R, Sorensen PO, Wang S, Faybishenko B, Misztal PK, Brodie EL. Measurement of Volatile Compounds for Real-Time Analysis of Soil Microbial Metabolic Response to Simulated Snowmelt. Front Microbiol 2021; 12:679671. [PMID: 34248891 PMCID: PMC8261151 DOI: 10.3389/fmicb.2021.679671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022] Open
Abstract
Snowmelt dynamics are a significant determinant of microbial metabolism in soil and regulate global biogeochemical cycles of carbon and nutrients by creating seasonal variations in soil redox and nutrient pools. With an increasing concern that climate change accelerates both snowmelt timing and rate, obtaining an accurate characterization of microbial response to snowmelt is important for understanding biogeochemical cycles intertwined with soil. However, observing microbial metabolism and its dynamics non-destructively remains a major challenge for systems such as soil. Microbial volatile compounds (mVCs) emitted from soil represent information-dense signatures and when assayed non-destructively using state-of-the-art instrumentation such as Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-TOF-MS) provide time resolved insights into the metabolism of active microbiomes. In this study, we used PTR-TOF-MS to investigate the metabolic trajectory of microbiomes from a subalpine forest soil, and their response to a simulated wet-up event akin to snowmelt. Using an information theory approach based on the partitioning of mutual information, we identified mVC metabolite pairs with robust interactions, including those that were non-linear and with time lags. The biological context for these mVC interactions was evaluated by projecting the connections onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) network of known metabolic pathways. Simulated snowmelt resulted in a rapid increase in the production of trimethylamine (TMA) suggesting that anaerobic degradation of quaternary amine osmo/cryoprotectants, such as glycine betaine, may be important contributors to this resource pulse. Unique and synergistic connections between intermediates of methylotrophic pathways such as dimethylamine, formaldehyde and methanol were observed upon wet-up and indicate that the initial pulse of TMA was likely transformed into these intermediates by methylotrophs. Increases in ammonia oxidation signatures (transformation of hydroxylamine to nitrite) were observed in parallel, and while the relative role of nitrifiers or methylotrophs cannot be confirmed, the inferred connection to TMA oxidation suggests either a direct or indirect coupling between these processes. Overall, it appears that such mVC time-series from PTR-TOF-MS combined with causal inference represents an attractive approach to non-destructively observe soil microbial metabolism and its response to environmental perturbation.
Collapse
Affiliation(s)
- Junhyeong Kim
- Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley, CA, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Romy Chakraborty
- Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley, CA, United States
| | - Kolby Jardine
- Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley, CA, United States
| | - Robert Weber
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Patrick O Sorensen
- Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley, CA, United States
| | - Shi Wang
- Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley, CA, United States
| | - Boris Faybishenko
- Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley, CA, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Eoin L Brodie
- Lawrence Berkeley National Laboratory, Climate and Ecosystems Sciences, Earth and Environmental Sciences, Berkeley, CA, United States.,Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
13
|
Viros J, Santonja M, Temime‐Roussel B, Wortham H, Fernandez C, Ormeño E. Volatilome of Aleppo Pine litter over decomposition process. Ecol Evol 2021; 11:6862-6880. [PMID: 34141261 PMCID: PMC8207447 DOI: 10.1002/ece3.7533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 01/26/2023] Open
Abstract
Biogenic Volatile Organic Compounds (BVOC) are largely accepted to contribute to both atmospheric chemistry and ecosystem functioning. While the forest canopy is recognized as a major source of BVOC, emissions from plant litter have scarcely been explored with just a couple of studies being focused on emission patterns over litter decomposition process. The aim of this study was to quantitatively and qualitatively characterize BVOC emissions (C1-C15) from Pinus halepensis litter, one of the major Mediterranean conifer species, over a 15-month litter decomposition experiment. Senescent needles of P. halepensis were collected and placed in 42 litterbags where they underwent in situ decomposition. Litterbags were collected every 3 months and litter BVOC emissions were studied in vitro using both online (PTR-ToF-MS) and offline analyses (GC-MS). Results showed a large diversity of BVOC (58 compounds detected), with a strong variation over time. Maximum total BVOC emissions were observed after 3 months of decomposition with 9.18 µg gDM -1 hr-1 mainly composed by terpene emissions (e.g., α-pinene, terpinolene, β-caryophyllene). At this stage, methanol, acetone, and acetic acid were the most important nonterpenic volatiles representing, respectively, up to 26%, 10%, and 26% of total emissions. This study gives an overview of the evolution of BVOC emissions from litter along with decomposition process and will thus contribute to better understand the dynamics and sources of BVOC emission in Mediterranean pine forests.
Collapse
Affiliation(s)
- Justine Viros
- CNRSAix Marseille UnivIRDAvignon UnivIMBEMarseilleFrance
| | | | | | | | | | - Elena Ormeño
- CNRSAix Marseille UnivIRDAvignon UnivIMBEMarseilleFrance
| |
Collapse
|
14
|
Drewer J, Leduning MM, Purser G, Cash JM, Sentian J, Skiba UM. Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31792-31802. [PMID: 33611733 DOI: 10.1007/s11356-021-13052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Regional estimates of VOC fluxes focus largely on emissions from the canopy and omit potential contributions from the forest floor including soil, litter and understorey vegetation. Here, we measured monoterpene emissions every 2 months over 2 years from logged tropical forest and oil palm plantation floor in Malaysian Borneo using static flux chambers. The main emitted monoterpenes were α-pinene, β-pinene and d-limonene. The amount of litter present was the strongest indicator for higher monoterpene fluxes. Mean α-pinene fluxes were around 2.5-3.5 μg C m-2 h-1 from the forest floor with occasional fluxes exceeding 100 μg C m-2 h-1. Fluxes from the oil palm plantation, where hardly any litter was present, were lower (on average 0.5-2.9 μg C m-2 h-1) and only higher when litter was present. All other measured monoterpenes were emitted at lower rates. No seasonal trends could be identified for all monoterpenes and mean fluxes from both forest and plantation floor were ~ 100 times smaller than canopy emission rates reported in the literature. Occasional spikes of higher emissions from the forest floor, however, warrant further investigation in terms of underlying processes and their contribution to regional scale atmospheric fluxes.
Collapse
Affiliation(s)
- Julia Drewer
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK.
| | - Melissa M Leduning
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 84400, Kota Kinabalu, Malaysia
| | - Gemma Purser
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - James M Cash
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - Justin Sentian
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 84400, Kota Kinabalu, Malaysia
| | - Ute M Skiba
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| |
Collapse
|
15
|
Baggesen N, Li T, Seco R, Holst T, Michelsen A, Rinnan R. Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. GLOBAL CHANGE BIOLOGY 2021; 27:2928-2944. [PMID: 33709612 PMCID: PMC8251604 DOI: 10.1111/gcb.15596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/08/2021] [Indexed: 06/08/2023]
Abstract
Traditionally, biogenic volatile organic compound (BVOC) emissions are often considered a unidirectional flux, from the ecosystem to the atmosphere, but recent studies clearly show the potential for bidirectional exchange. Here we aimed to investigate how warming and leaf litter addition affect the bidirectional exchange (flux) of BVOCs in a long-term field experiment in the Subarctic. We also assessed changes in net BVOC fluxes in relation to the time of day and the influence of different plant phenological stages. The study was conducted in a full factorial experiment with open top chamber warming and annual litter addition treatments in a tundra heath in Abisko, Northern Sweden. After 18 years of treatments, ecosystem-level net BVOC fluxes were measured in the experimental plots using proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). The warming treatment increased monoterpene and isoprene emissions by ≈50%. Increasing temperature, due to diurnal variations, can both increase BVOC emission and simultaneously, increase ecosystem uptake. For any given treatment, monoterpene, isoprene, and acetone emissions also increased with increasing ambient air temperatures caused by diurnal variability. Acetaldehyde, methanol, and sesquiterpenes decreased likely due to a deposition flux. For litter addition, only a significant indirect effect on isoprene and monoterpene fluxes (decrease by ~50%-75%) was observed. Litter addition may change soil moisture conditions, leading to changes in plant species composition and biomass, which could subsequently result in changes to BVOC emission compositions. Phenological stages significantly affected fluxes of methanol, isoprene and monoterpenes. We suggest that plant phenological stages differ in impacts on BVOC net emissions, but ambient air temperature and photosynthetically active radiation (PAR) also interact and influence BVOC net emissions differently. Our results may also suggest that BVOC fluxes are not only a response to changes in temperature and light intensity, as the circadian clock also affects emission rates.
Collapse
Affiliation(s)
- Nanna Baggesen
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Roger Seco
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Thomas Holst
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Department of Physical Geography and Ecosystem ScienceCentre for GeoBiosphere ScienceLund UniversityLundSweden
| | - Anders Michelsen
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| | - Riikka Rinnan
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for Permafrost (CENPERM)University of CopenhagenCopenhagen KDenmark
| |
Collapse
|
16
|
Qu Y, Liu X, Zhao X, Qin J, Cao Y, Li K, Zhou JJ, Wang S, Yin J. Evidence of the Involvement of a Plus-C Odorant-Binding Protein HparOBP14 in Host Plant Selection and Oviposition of the Scarab Beetle Holotrichia parallela. INSECTS 2021; 12:insects12050430. [PMID: 34068771 PMCID: PMC8151400 DOI: 10.3390/insects12050430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The scarab beetle Holotrichia parallela is a serious underground pest and causes serious damages in China to a variety of crops. To reduce the use of pesticides, insect olfactory proteins attract more and more attention in the development of pollution-free control agents in plant protection. In this study, we evaluate the molecular mechanism in the scarab beetle to detect oviposition cues. We clone a leg biased gene HparOBP14 which encodes for an odorant-binding protein of the scarab beetle and demonstrate its involvement in binding, electrophysiological, and behavioral responses to the oviposition chemicals by the knockdown of HparOBP14 expression using RNA interference technique. Our study provides a strong theoretical basis for the development of environmentally acceptable strategies for H. parallela control. Abstract Holotrichia parallela is one of the agriculturally important scarab beetle pests in China. In this study, HparOBP14 was cloned, which is the most abundantly expressed among the OBP genes in the legs of female H. parallela adults. Sequence comparison and phylogenetic analysis showed that HparOBP14 has a Plus-C structure motif. The expression profile analysis revealed that HparOBP14 expression was the highest in the female antennae and then in the legs. The fluorescence competitive binding experiment of the recombinant HparOBP14 protein showed that HparOBP14 had an affinity with 6-methyl-5-heptene-2-one (plant volatile), 3-methylindole, p-cymene, methanol, formaldehyde, α-pinene, and geraniol (organic fertilizer volatile). Knockdown HparOBP14 expression decreased significantly the EAG response of the injected female adults to p-cymene, methanol, formaldehyde, α-pinene, and geraniol. Similarly, the injected female adults were significantly less attracted to geraniol and methanol. Therefore, HparOBP14 might bind organic matter volatiles during oviposition. These results are not only helpful to analyze the olfactory recognition mechanism of female adult H. parallela when choosing suitable oviposition sites, but also to provide target genes for green prevention and control of H. parallela in the future.
Collapse
Affiliation(s)
- Yafei Qu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (Y.Q.); (J.-J.Z.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (J.Q.); (Y.C.); (K.L.)
| | - Xiangyu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (J.Q.); (Y.C.); (K.L.)
| | - Xu Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (J.Q.); (Y.C.); (K.L.)
| | - Jianhui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (J.Q.); (Y.C.); (K.L.)
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (J.Q.); (Y.C.); (K.L.)
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (J.Q.); (Y.C.); (K.L.)
| | - Jing-Jiang Zhou
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (Y.Q.); (J.-J.Z.)
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Senshan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (Y.Q.); (J.-J.Z.)
- Correspondence: (S.W.); (J.Y.); Tel.: +86-152-1009-7360 (J.Y.)
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (X.Z.); (J.Q.); (Y.C.); (K.L.)
- Correspondence: (S.W.); (J.Y.); Tel.: +86-152-1009-7360 (J.Y.)
| |
Collapse
|
17
|
Stoy PC, Trowbridge AM, Siqueira MB, Freire LS, Phillips RP, Jacobs L, Wiesner S, Monson RK, Novick KA. Vapor pressure deficit helps explain biogenic volatile organic compound fluxes from the forest floor and canopy of a temperate deciduous forest. Oecologia 2021; 197:971-988. [PMID: 33677772 DOI: 10.1007/s00442-021-04891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
Biogenic volatile organic compounds (BVOCs) play critical roles in ecological and earth-system processes. Ecosystem BVOC models rarely include soil and litter fluxes and their accuracy is often challenged by BVOC dynamics during periods of rapid ecosystem change like spring leaf out. We measured BVOC concentrations within the air space of a mixed deciduous forest and used a hybrid Lagrangian/Eulerian canopy transport model to estimate BVOC flux from the forest floor, canopy, and whole ecosystem during spring. Canopy flux measurements were dominated by a large methanol source and small isoprene source during the leaf-out period, consistent with past measurements of leaf ontogeny and theory, and indicative of a BVOC flux situation rarely used in emissions model testing. The contribution of the forest floor to whole-ecosystem BVOC flux is conditional on the compound of interest and is often non-trivial. We created linear models of forest floor, canopy, and whole-ecosystem flux for each study compound and used information criteria-based model selection to find the simplest model with the best fit. Most published BVOC flux models do not include vapor pressure deficit (VPD), but it entered the best canopy, forest floor, and whole-ecosystem BVOC flux model more than any other study variable in the present study. Since VPD is predicted to increase in the future, future studies should investigate how it contributes to BVOC flux through biophysical mechanisms like evaporative demand, leaf temperature and stomatal function.
Collapse
Affiliation(s)
- Paul C Stoy
- Department of Biological Systems Engineering, University of WI-Madison, Madison, WI, USA. .,Department of Atmospheric and Oceanic Sciences, University of WI-Madison, Madison, WI, USA. .,Department of Forest and Wildlife Ecology, University of WI-Madison, Madison, WI, USA. .,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of WI-Madison, Madison, WI, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.,Department of Entomology, University of WI-Madison, Madison, WI, USA
| | - Mario B Siqueira
- Department of Mechanical Engineering, Universidade de Brasília, Brasília, Brazil
| | - Livia Souza Freire
- Instituto de Ciências Matemáticas E de Computação, Universidade de São Paulo, São Carlos, Brazil
| | | | - Luke Jacobs
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Susanne Wiesner
- Department of Biological Systems Engineering, University of WI-Madison, Madison, WI, USA.,Department of Atmospheric and Oceanic Sciences, University of WI-Madison, Madison, WI, USA
| | - Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Kimberly A Novick
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| |
Collapse
|
18
|
McBride SG, Choudoir M, Fierer N, Strickland MS. Volatile organic compounds from leaf litter decomposition alter soil microbial communities and carbon dynamics. Ecology 2020; 101:e03130. [PMID: 32621285 DOI: 10.1002/ecy.3130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023]
Abstract
Investigations into the transfer of carbon from plant litter to underlying soil horizons have primarily focused on the leaching of soluble carbon from litter belowground or the mixing of litter directly into soil. However, previous work has largely ignored the role of volatile organic compounds (VOCs) released during litter decomposition. Unlike most leaf carbon, these litter-derived VOCs are able to diffuse directly into the soil matrix. Here, we used a 99-d microcosm experiment to track VOCs produced during microbial decomposition of 13 C-labeled leaf litter into soil carbon fractions where the decomposing litters were only sharing headspace with the soil samples, thus preventing direct contact and aqueous movement of litter carbon. We also determined the effects of these litter-derived VOCs on soil microbial community structure. We demonstrated that the litter VOCs contributed to all measured soil carbon pools. Specifically, VOC-derived carbon accounted for 2.0, 0.61, 0.18, and 0.08% of carbon in the microbial biomass, dissolved organic matter, mineral-associated organic matter, and particulate organic matter pools, respectively. We also show that litter-derived VOCs can affect soil bacterial and fungal community diversity and composition. These findings highlight the importance of an underappreciated pathway where VOCs alter soil microbial communities and carbon dynamics.
Collapse
Affiliation(s)
- Steven G McBride
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Mallory Choudoir
- Cooperative Institute for Research in Environmental Studies (CIRES), University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Studies (CIRES), University of Colorado Boulder, Boulder, Colorado, 80309, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, 83844, USA
| |
Collapse
|
19
|
Ground Level Isoprenoid Exchanges Associated with Pinus pinea Trees in A Mediterranean Turf. ATMOSPHERE 2020. [DOI: 10.3390/atmos11080809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The emissions of isoprenoids, a kind of biogenic volatile organic compounds (BVOCs), from soils is not well characterized. We quantified the exchange of isoprenoids between soil with litter and atmosphere along a horizontal gradient from the trunks of the trees, in a Mediterranean Pinus pinea plantation with dry and green needle litter to open herbaceous turf during mornings at mid-summer. Further, potential associated drivers were identified. Isoprenoid emissions were greatest and most diverse, and also can be roughly estimated by litter dry weight near the trunk, where the needle litter was denser. The composition of emitted isoprenoid by needle litter was different than the composition previously described for green needles. Low exchange rates of isoprenoids were recorded in open turf. Isoprenoid exchange rates were correlated positively with soil temperature and negatively with soil moisture. Given the variations in ground emissions with soil, vegetation, microorganisms, and associated interactions, we recommend widespread extensive spatio-temporal analysis of ground level BVOC exchanges in the different ecosystem types.
Collapse
|
20
|
de Boer W, Li X, Meisner A, Garbeva P. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol 2020; 95:5527321. [PMID: 31265069 DOI: 10.1093/femsec/fiz105] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that microbial volatile organic compounds (mVOCs) play an important role in interactions between microbes in soils. In this minireview, we zoom in on the possible role of mVOCs in the suppression of plant-pathogenic soil fungi. In particular, we have screened the literature to see what the actual evidence is that mVOCs in soil atmospheres can contribute to pathogen suppression. Furthermore, we discuss biotic and abiotic factors that influence the production of suppressive mVOCs in soils. Since microbes producing mVOCs in soils are part of microbial communities, community ecological aspects such as diversity and assembly play an important role in the composition of produced mVOC blends. These aspects have not received much attention so far. In addition, the fluctuating abiotic conditions in soils, such as changing moisture contents, influence mVOC production and activity. The biotic and abiotic complexity of the soil environment hampers the extrapolation of the production and suppressing activity of mVOCs by microbial isolates on artificial growth media. Yet, several pathogen suppressive mVOCs produced by pure cultures do also occur in soil atmospheres. Therefore, an integration of lab and field studies on the production of mVOCs is needed to understand and predict the composition and dynamics of mVOCs in soil atmospheres. This knowledge, together with the knowledge of the chemistry and physical behaviour of mVOCs in soils, forms the basis for the development of sustainable management strategies to enhance the natural control of soil-borne pathogens with mVOCs. Possibilities for the mVOC-based control of soil-borne pathogens are discussed.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Soil Biology Group, Wageningen University, Droevendaalsesteeg 3, 6708PB Wageningen, The Netherlands
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, 210037 Nanjing, China
| | - Annelein Meisner
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Microbial Ecology, Department of Biology, Lund University, Ecology Building, Sölvegatan 37, SE-22363 Lund, Sweden
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| |
Collapse
|
21
|
Nyamwasa I, Li K, Zhang S, Yin J, Li X, Liu J, Li E, Sun X. Overlooked side effects of organic farming inputs attract soil insect crop pests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02084. [PMID: 31985123 DOI: 10.1002/eap.2084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Organic farming has been praised for many sound reasons, but there are some negative effects of organic practices. Research on the interactions between soil insect pests and organic farming practices is still scarce, although such interactions might sometimes lead to severe crop damage. Here, we explore the influences of organic farming inputs and key host crops on the oviposition behavior of soil insect pests likely to infest crops. We also shed light on the factors driving this behavior and analyze 4 yr of data from an on-farm investigation. Our study offers clear support to the idea that decomposing organic matter and legume crops affect oviposition behavior and provides evidence that butyric acid and 1-hexanol are major attractants. The results suggest that poor management or returning decomposing organic matter to the field is risky. The silver lining, however, is that oviposition behavior can be disrupted by the identified key attractants to benefit crop protection.
Collapse
Affiliation(s)
- Innocent Nyamwasa
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaofeng Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Liu
- National Agro-tech Extension and Service Centre (NATESC), Beijing, 100125, China
| | - Ertao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
22
|
Ehlers BK, Berg MP, Staudt M, Holmstrup M, Glasius M, Ellers J, Tomiolo S, Madsen RB, Slotsbo S, Penuelas J. Plant Secondary Compounds in Soil and Their Role in Belowground Species Interactions. Trends Ecol Evol 2020; 35:716-730. [PMID: 32414604 DOI: 10.1016/j.tree.2020.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
Abstract
Knowledge of the effect of plant secondary compounds (PSCs) on belowground interactions in the more diffuse community of species living outside the rhizosphere is sparse compared with what we know about how PSCs affect aboveground interactions. We illustrate here that PSCs from foliar tissue, root exudates, and leaf litter effectively influence such belowground plant-plant, plant-microorganism, and plant-soil invertebrate interactions. Climatic factors can induce PSC production and select for different plant chemical types. Therefore, climate change can alter both quantitative and qualitative PSC production, and how these compounds move in the soil. This can change the soil chemical environment, with cascading effects on both the ecology and evolution of belowground species interactions and, ultimately, soil functioning.
Collapse
Affiliation(s)
- Bodil K Ehlers
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Matty P Berg
- Community and Conservation Ecology Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands; Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Michael Staudt
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier, France
| | - Martin Holmstrup
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Marianne Glasius
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Sara Tomiolo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Plant Ecology Group, Institute for Evolution and Ecology, Tübingen University, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - René B Madsen
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
| |
Collapse
|
23
|
Zhang-Turpeinen H, Kivimäenpää M, Aaltonen H, Berninger F, Köster E, Köster K, Menyailo O, Prokushkin A, Pumpanen J. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134851. [PMID: 32000328 DOI: 10.1016/j.scitotenv.2019.134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
One of the effects of climate change on boreal forest will be more frequent forest wildfires and permafrost thawing. These will increase the availability of soil organic matter (SOM) for microorganisms, change the ground vegetation composition and ultimately affect the emissions of biogenic volatile organic compounds (BVOCs), which impact atmospheric chemistry and climate. BVOC emissions from boreal forest floor have been little characterized in southern boreal region, and even less so in permafrost soil, which underlies most of the northern boreal region. Here, we report the long-term effects of wildfire on forest floor BVOC emission rates along a wildfire chronosequence in a Larix gmelinii forest in central Siberia. We determined forest floor BVOC emissions from forests exposed to wildfire 1, 23 and > 100 years ago. We studied how forest wildfires and the subsequent succession of ground vegetation, as well as changes in the availability of SOM along with the deepened and recovered active layer, influence BVOC emission rates. The forest floor acted as source of a large number of BVOCs in all forest age classes. Monoterpenes were the most abundant BVOC group in all age classes. The total BVOC emission rates measured from the 23- and >100-year-old areas were ca. 2.6 times higher than the emissions from the 1-year-old area. Lower emissions were related to a decrease in plant coverage and microbial decomposition of SOM after wildfire. Our results showed that forest wildfires play an important indirect role in regulating the amount and composition of BVOC emissions from post-fire originated boreal forest floor. This could have a substantial effect on BVOC emissions if the frequency of forest wildfires increases in the future as a result of climate warming.
Collapse
Affiliation(s)
- Huizhong Zhang-Turpeinen
- Department of Environmental and Biological Sciences, P.O.Box 1627, FI-70211 Kuopio, University of Eastern Finland, Finland.
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, P.O.Box 1627, FI-70211 Kuopio, University of Eastern Finland, Finland
| | - Heidi Aaltonen
- Department of Forest Sciences, P.O. Box 27, FI-00014 Helsinki, University of Helsinki, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, P.O.Box 111, FI-80101 Joensuu, University of Eastern Finland, Finland
| | - Egle Köster
- Department of Forest Sciences, P.O. Box 27, FI-00014 Helsinki, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research/ Forest sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kajar Köster
- Department of Forest Sciences, P.O. Box 27, FI-00014 Helsinki, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research/ Forest sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | | | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, P.O.Box 1627, FI-70211 Kuopio, University of Eastern Finland, Finland
| |
Collapse
|
24
|
Ghirardo A, Lindstein F, Koch K, Buegger F, Schloter M, Albert A, Michelsen A, Winkler JB, Schnitzler J, Rinnan R. Origin of volatile organic compound emissions from subarctic tundra under global warming. GLOBAL CHANGE BIOLOGY 2020; 26:1908-1925. [PMID: 31957145 PMCID: PMC7078956 DOI: 10.1111/gcb.14935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/04/2019] [Indexed: 05/06/2023]
Abstract
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature-dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13 CO2 -labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil-plant-atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13 C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%-44% (Salix) and 60%-68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%-58% (Salix) and 87%-95% (Betula). Analyses of above- and belowground 12/13 C showed shifts of C allocation in the plant-soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.
Collapse
Affiliation(s)
- Andrea Ghirardo
- Research Unit Environmental Simulation (EUS)Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Frida Lindstein
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kerstin Koch
- Research Unit Environmental Simulation (EUS)Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology (BIOP)Helmholtz Zentrum MünchenNeuherbergGermany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI)Helmholtz Zentrum MünchenNeuherbergGermany
| | - Andreas Albert
- Research Unit Environmental Simulation (EUS)Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Anders Michelsen
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for PermafrostDepartment of Geoscience and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - J. Barbro Winkler
- Research Unit Environmental Simulation (EUS)Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Jörg‐Peter Schnitzler
- Research Unit Environmental Simulation (EUS)Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Riikka Rinnan
- Terrestrial Ecology SectionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for PermafrostDepartment of Geoscience and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
25
|
Wang CQ, Li JQ, Li ET, Nyamwasa I, Li KB, Zhang S, Peng Y, Wei ZJ, Yin J. Molecular and functional characterization of odorant-binding protein genes in Holotrichia oblita Faldermann. Int J Biol Macromol 2019; 136:359-367. [DOI: 10.1016/j.ijbiomac.2019.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
|
26
|
Staudt M, Byron J, Piquemal K, Williams J. Compartment specific chiral pinene emissions identified in a Maritime pine forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1158-1166. [PMID: 30841390 DOI: 10.1016/j.scitotenv.2018.11.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
To track unknown sources and sinks of volatile organic compounds (VOCs) inside forest canopies we measured diel cycles of VOC exchanges in a temperate maritime forest at the branch, stem and ground level with special focus on the chiral signatures of pinenes. All compartments released day and night α- and β-pinene as major compounds. In addition, strong light dependent emissions of ocimene and linalool from branches occurred during hot summer days. In all compartments the overall emission strength of pinenes varied from day to day spanning 1 to 2 orders of magnitude. The highest pinene emissions from ground and stem were observed during high moisture conditions. Despite this variability stem emissions consistently expressed a different chiral composition than branch emissions, the former containing a much larger fraction of (-)-enantiomers than the latter. Pinene emissions from dead needle litter and soil were mostly enriched in (-)-enantiomers, while the chiral signatures of the ambient air inside the forest showed mostly intermediate levels compared to the emission signatures. These findings suggest that different organ-specific pinene producing enzymes exist in Maritime pine, and indicate that emissions from ground and stem compartments essentially contribute to the canopy VOC flux. Overall the results open new perspectives to explore chirality as a possible marker to recognize shifts in the contributions of different VOC sources present within forest ecosystems and to explain observed temporal changes in the chiral signature of pinenes in the atmosphere.
Collapse
Affiliation(s)
- Michael Staudt
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE Campus CNRS, 1919 Route de Mende, F-34293 Montpellier cedex 5, France.
| | - Joseph Byron
- Max-Planck-Institut für Chemie, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Karim Piquemal
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE Campus CNRS, 1919 Route de Mende, F-34293 Montpellier cedex 5, France
| | - Jonathan Williams
- Max-Planck-Institut für Chemie, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| |
Collapse
|
27
|
Mäki M, Aalto J, Hellén H, Pihlatie M, Bäck J. Interannual and Seasonal Dynamics of Volatile Organic Compound Fluxes From the Boreal Forest Floor. FRONTIERS IN PLANT SCIENCE 2019; 10:191. [PMID: 30853968 PMCID: PMC6395408 DOI: 10.3389/fpls.2019.00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
In the northern hemisphere, boreal forests are a major source of biogenic volatile organic compounds (BVOCs), which drive atmospheric processes and lead to cloud formation and changes in the Earth's radiation budget. Although forest vegetation is known to be a significant source of BVOCs, the role of soil and the forest floor, and especially interannual variations in fluxes, remains largely unknown due to a lack of long-term measurements. Our aim was to determine the interannual, seasonal and diurnal dynamics of boreal forest floor volatile organic compound (VOC) fluxes and to estimate how much they contribute to ecosystem VOC fluxes. We present here an 8-year data set of forest floor VOC fluxes, measured with three automated chambers connected to the quadrupole proton transfer reaction mass spectrometer (quadrupole PTR-MS). The exceptionally long data set shows that forest floor fluxes were dominated by monoterpenes and methanol, with relatively comparable emission rates between the years. Weekly mean monoterpene fluxes from the forest floor were highest in spring and in autumn (maximum 59 and 86 μg m-2 h-1, respectively), whereas the oxygenated VOC fluxes such as methanol had highest weekly mean fluxes in spring and summer (maximum 24 and 79 μg m-2 h-1, respectively). Although the chamber locations differed from each other in emission rates, the inter-annual dynamics were very similar and systematic. Accounting for this chamber location dependent variability, temperature and relative humidity, a mixed effects linear model was able to explain 79-88% of monoterpene, methanol, acetone, and acetaldehyde fluxes from the boreal forest floor. The boreal forest floor was a significant contributor in the forest stand fluxes, but its importance varies between seasons, being most important in autumn. The forest floor emitted 2-93% of monoterpene fluxes in spring and autumn and 1-72% of methanol fluxes in spring and early summer. The forest floor covered only a few percent of the forest stand fluxes in summer.
Collapse
Affiliation(s)
- Mari Mäki
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Heidi Hellén
- Finnish Meteorological Institute, Helsinki, Finland
| | - Mari Pihlatie
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Remediation of highly fuel oil-contaminated soil by food waste composting and its volatile organic compound (VOC) emission. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abis L, Loubet B, Ciuraru R, Lafouge F, Dequiedt S, Houot S, Maron PA, Bourgeteau-Sadet S. Profiles of volatile organic compound emissions from soils amended with organic waste products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1333-1343. [PMID: 29913594 DOI: 10.1016/j.scitotenv.2018.04.232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 05/24/2023]
Abstract
Volatile Organic Compounds (VOCs) are reactive compounds essential to atmospheric chemistry. They are mainly emitted by living organisms, and mostly by plants. Soil microbes also contribute to emissions of VOCs. However, these emissions have not yet been characterised in terms of quality and quantity. Furthermore, long-term organic matter amendments are known to affect the microbial content of soils, and hence the quantity and quality of VOC emissions. This study investigates which and how much of these VOCs are emitted from soil amended with organic waste products (OWPs). Four OWPs were investigated: municipal solid waste compost (MSW), green waste and sludge co-compost (GWS), bio-waste compost (BIOW) and farmyard manure (FYM). These OWPs have been amended every two years since 1998 until now at a rate of ~4 tC ha-1. A soil receiving no organic inputs was used as a reference (CN). VOCs emissions were measured under laboratory conditions using a Proton Transfer Reaction-Quadrupole ion guide Time of Flight-Mass Spectrometry (PTR-QiToF-MS). A laboratory system was set up made of two Pyrex chambers, one for samples and the second empty, to be used as a blank. Our results showed that total VOC emissions were higher in BIOW than in MSW. Further findings outlined that the most emitted compounds were acetone, butanone and acetaldehyde in all treatments, suggesting a common production mechanism for these compounds, meaning they were not affected by the OWP amendment. We isolated 21 VOCs that had statistically different emissions between the treatments and could therefore be considered as good markers of soil biological functioning. Our results suggest that organic matter and pH jointly influenced total VOC emissions. In conclusion, OWPs in soil affect the type of VOC emissions and the total flux also depends on the pH of the soil and the quantity of organic matter.
Collapse
Affiliation(s)
- Letizia Abis
- Sorbonne Université, UPMC, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.
| | - Benjamin Loubet
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Raluca Ciuraru
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Florence Lafouge
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Samuel Dequiedt
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079 Dijon cedex, France
| | - Sabine Houot
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pierre Alain Maron
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079 Dijon cedex, France
| | | |
Collapse
|
30
|
Zhang S, Deng M, Shan M, Zhou C, Liu W, Xu X, Yang X. A field experimental study on non-methane hydrocarbon (NMHC) emissions from a straw-returned maize cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:530-538. [PMID: 29715657 DOI: 10.1016/j.scitotenv.2018.04.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Non-methane hydrocarbons (NMHCs) play an important role in the atmospheric environment. However, NMHC emissions from agricultural fields, especially their variations with straw return, are poorly understood. Therefore, a field study comprising two treatments, i.e., (1) S0 (straw removal) and (2) S1 (incorporation of maize straw at a rate of 9000 kg ha-1), was conducted in a straw-returned maize cropping system to characterize NMHC emissions as well as to estimate the effect of straw return on those emissions. Using a Gas Chromatography-Mass Spectrometer (GC-MS) method, 28 types of NMHCs were identified. The total NMHC emission from S0 was 2018 g ha-1, where 1-methyl-3-propyl-benzene, (1-methylethyl)-benzene, and toluene were obviously predominant, whereas the total NMHC emission from S1 was 1903 g ha-1, where 1-methyl-3-propyl-benzene, 2-methyl-pentane, and (1-methylethyl)-benzene were the main species. The results showed that straw return had opposing effects on NMHC emissions, ranging from -55.4% to 478.6%. Overall, the total NMHC emission with returned straw alone decreased by 2963 ng kg straw-1 h-1. Furthermore, NMHC fluxes had higher correlations with soil temperature than with soil moisture or pH. Notably, the higher correlations of NMHC fluxes with 10 cm soil temperature than with 5 cm soil temperature indicate that soil in the deeper layer might play a more important role in NMHC fluxes. The results also suggest that more field study is needed to accurately estimate the effect of straw return on NMHC emissions from agroecosystems and fully understand its underlying mechanism.
Collapse
Affiliation(s)
- Shuangqi Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Mengsi Deng
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Ming Shan
- Department of Building Science, Tsinghua University, Beijing 100084, China.
| | - Chuang Zhou
- Energy & Environmental Research Institute of Heilongjiang Province, Harbin 150027, China
| | - Wei Liu
- Energy & Environmental Research Institute of Heilongjiang Province, Harbin 150027, China
| | - Xiaoqiu Xu
- Energy & Environmental Research Institute of Heilongjiang Province, Harbin 150027, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Benbow ME, Barton PS, Ulyshen MD, Beasley JC, DeVault TL, Strickland MS, Tomberlin JK, Jordan HR, Pechal JL. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1331] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M. Eric Benbow
- Department of Entomology; Michigan State University; East Lansing Michigan 48824 USA
- Department of Osteopathic Medical Specialties; Michigan State University; East Lansing Michigan 48824 USA
- Ecology, Evolutionary Biology and Behavior Program; Michigan State University; East Lansing Michigan 48824 USA
| | - Philip S. Barton
- Fenner School of Environment and Society; Australian National University; Canberra Australian Capital Territory 2601 Australia
| | | | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural Resources; University of Georgia; Aiken South Carolina 29802 USA
| | - Travis L. DeVault
- U.S. Department of Agriculture; National Wildlife Research Center; Sandusky Ohio 44870 USA
| | | | | | - Heather R. Jordan
- Department of Biological Sciences; Mississippi State University; Mississippi Mississippi 39762 USA
| | - Jennifer L. Pechal
- Department of Entomology; Michigan State University; East Lansing Michigan 48824 USA
| |
Collapse
|
32
|
Portillo‐Estrada M, Zenone T, Arriga N, Ceulemans R. Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation. GLOBAL CHANGE BIOLOGY. BIOENERGY 2018; 10:405-414. [PMID: 29937921 PMCID: PMC5993229 DOI: 10.1111/gcbb.12506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/23/2018] [Indexed: 05/13/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non-negligible portion of the carbon fixed by primary producers, but long-term ecosystem-scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short-rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha-1 yr-1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from -23.59 Mg C ha-1 yr-1 fixed as CO 2 and 20.55 Mg C ha-1 yr-1 respired as CO 2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO 2 fixed. Based on annual ecosystem-scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5-2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO 2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.
Collapse
Affiliation(s)
- Miguel Portillo‐Estrada
- Centre of Excellence PLECODepartment of BiologyUniversity of AntwerpUniversiteitsplein 1WilrijkB‐2610Belgium
| | - Terenzio Zenone
- Centre of Excellence PLECODepartment of BiologyUniversity of AntwerpUniversiteitsplein 1WilrijkB‐2610Belgium
| | - Nicola Arriga
- Centre of Excellence PLECODepartment of BiologyUniversity of AntwerpUniversiteitsplein 1WilrijkB‐2610Belgium
| | - Reinhart Ceulemans
- Centre of Excellence PLECODepartment of BiologyUniversity of AntwerpUniversiteitsplein 1WilrijkB‐2610Belgium
| |
Collapse
|
33
|
Timm CM, Lloyd EP, Egan A, Mariner R, Karig D. Direct Growth of Bacteria in Headspace Vials Allows for Screening of Volatiles by Gas Chromatography Mass Spectrometry. Front Microbiol 2018; 9:491. [PMID: 29662472 PMCID: PMC5890184 DOI: 10.3389/fmicb.2018.00491] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Bacterially produced volatile organic compounds (VOCs) can modify growth patterns of eukaryotic hosts and competing/cohabiting microbes. These compounds have been implicated in skin disorders and attraction of biting pests. Current methods to detect and characterize VOCs from microbial cultures can be laborious and low-throughput, making it difficult to understand the behavior of microbial populations. In this work we present an efficient method employing gas chromatography/mass spectrometry with autosampling to characterize VOC profiles from solid-phase bacterial cultures. We compare this method to complementary plate-based assays and measure the effects of growth media and incubation temperature on the VOC profiles from a well-studied Pseudomonas aeruginosa PAO1 system. We observe that P. aeruginosa produces longer chain VOCs, such as 2-undecanone and 2-undecanol in higher amounts at 37°C than 30°C. We demonstrate the throughput of this method by studying VOC profiles from a representative collection of skin bacterial isolates under three parallel growth conditions. We observe differential production of various aldehydes and ketones depending on bacterial strain. This generalizable method will support screening of bacterial populations in a variety of research areas.
Collapse
Affiliation(s)
- Collin M Timm
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - Evan P Lloyd
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - Amanda Egan
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - Ray Mariner
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| | - David Karig
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
| |
Collapse
|
34
|
Adams RI, Lymperopoulou DS, Misztal PK, De Cassia Pessotti R, Behie SW, Tian Y, Goldstein AH, Lindow SE, Nazaroff WW, Taylor JW, Traxler MF, Bruns TD. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. MICROBIOME 2017; 5:128. [PMID: 28950891 PMCID: PMC5615633 DOI: 10.1186/s40168-017-0347-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/20/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Microorganisms influence the chemical milieu of their environment, and chemical metabolites can affect ecological processes. In built environments, where people spend the majority of their time, very little is known about how surface-borne microorganisms influence the chemistry of the indoor spaces. Here, we applied multidisciplinary approaches to investigate aspects of chemical microbiology in a house. METHODS We characterized the microbial and chemical composition of two common and frequently wet surfaces in a residential setting: kitchen sink and bathroom shower. Microbial communities were studied using culture-dependent and independent techniques, including targeting RNA for amplicon sequencing. Volatile and soluble chemicals from paired samples were analyzed using state-of-the-art techniques to explore the links between the observed microbiota and chemical exudates. RESULTS Microbial analysis revealed a rich biological presence on the surfaces exposed in kitchen sinks and bathroom shower stalls. Microbial composition, matched for DNA and RNA targets, varied by surface type and sampling period. Bacteria were found to have an average of 25× more gene copies than fungi. Biomass estimates based on qPCR were well correlated with measured total volatile organic compound (VOC) emissions. Abundant VOCs included products associated with fatty acid production. Molecular networking revealed a diversity of surface-borne compounds that likely originate from microbes and from household products. CONCLUSIONS Microbes played a role in structuring the chemical profiles on and emitted from kitchen sinks and shower stalls. Microbial VOCs (mVOCs) were predominately associated with the processing of fatty acids. The mVOC composition may be more stable than that of microbial communities, which can show temporal and spatial variation in their responses to changing environmental conditions. The mVOC output from microbial metabolism on kitchen sinks and bathroom showers should be apparent through careful measurement, even against a broader background of VOCs in homes, some of which may originate from microbes in other locations within the home. A deeper understanding of the chemical interactions between microbes on household surfaces will require experimentation under relevant environmental conditions, with a finer temporal resolution, to build on the observational study results presented here.
Collapse
Affiliation(s)
- Rachel I. Adams
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | | | - Pawel K. Misztal
- Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
| | | | - Scott W. Behie
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Yilin Tian
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - Allen H. Goldstein
- Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - Steven E. Lindow
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - William W. Nazaroff
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - John W. Taylor
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Matt F. Traxler
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Thomas D. Bruns
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| |
Collapse
|
35
|
Johnson JE, Hamann L, Dettman DL, Kim-Hak D, Leavitt SW, Monson RK, Papuga SA. Performance of induction module cavity ring-down spectroscopy (IM-CRDS) for measuring δ 18 O and δ 2 H values of soil, stem, and leaf waters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:547-560. [PMID: 28010033 DOI: 10.1002/rcm.7813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Induction module cavity ring-down spectroscopy (IM-CRDS) has been proposed as a rapid and cost-effective alternative to cryogenic vacuum distillation (CVD) and isotope ratio mass spectrometry (IRMS) for the measurement of δ18 O and δ2 H values in matrix-bound waters. In the current study, we characterized the performance of IM-CRDS relative to CVD and IRMS and investigated the mechanisms responsible for differences between the methods. METHODS We collected a set of 75 soil, stem, and leaf water samples, and measured the δ18 O and δ2 H values of each sample with four techniques: CVD and IRMS, CVD and CRDS, CVD and IM-CRDS, and IM-CRDS alone. We then calculated the isotopic errors for each of the three CRDS methods relative to CVD and IRMS, and analyzed the relationships among these errors and suites of diagnostic spectral parameters that are indicative of organic contamination. RESULTS The IM-CRDS technique accurately assessed the δ18 O and δ2 H values of pure waters, but exhibited progressively increasing errors for soil waters, stem waters, and leaf waters. For soils, the errors were attributable to subsampling of isotopically heterogeneous source material, whereas for stems and leaves, they were attributable to spectral interference. Unexpectedly, the magnitude of spectral interference was higher for the solid samples analyzed directly via IM-CRDS than for those originally extracted via CVD and then analyzed by IM-CRDS. CONCLUSIONS There are many types of matrix-bound water samples for which IM-CRDS measurements include significant errors from spectral interference. As a result, spectral analysis and validation should be incorporated into IM-CRDS post-processing procedures. In the future, IM-CRDS performance could be improved through: (i) identification of the compounds that cause spectral interference, and either (ii) modification of the combustion step to completely oxidize these compounds to CO2 , and/or (iii) incorporation of corrections for these compounds into the spectral fitting models used by the CRDS analyzers. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- J E Johnson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Global Ecology, Carnegie Institution, 260 Panama Street, Stanford, CA, 94305, USA
| | - L Hamann
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - D L Dettman
- Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA
| | - D Kim-Hak
- Picarro, Inc., 3105 Patrick Henry Drive, Santa Clara, CA, 95054, USA
| | - S W Leavitt
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - R K Monson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - S A Papuga
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
36
|
Lewis SE, Freund JG, Beaver M. Consumption of Native Green Ash and Nonnative Common Buckthorn Leaves by the Amphipod Gammarus pseudolimnaeus. AMERICAN MIDLAND NATURALIST 2017. [DOI: 10.1674/0003-0031-177.1.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Zhao J, Wang Z, Wu T, Wang X, Dai W, Zhang Y, Wang R, Zhang Y, Shi C. Volatile organic compound emissions from straw-amended agricultural soils and their relations to bacterial communities: A laboratory study. J Environ Sci (China) 2016; 45:257-269. [PMID: 27372141 DOI: 10.1016/j.jes.2015.12.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/27/2015] [Accepted: 12/29/2015] [Indexed: 06/06/2023]
Abstract
A laboratory study was conducted to investigate volatile organic compound (VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone, 2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition (5924ng C/(kg·hr)) was significantly higher than that under the flooded condition (2211ng C/(kg·hr)). One "peak emission window" appeared at days 0-44 or 4-44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis (DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.
Collapse
Affiliation(s)
- Juan Zhao
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China
| | - Zhe Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China
| | - Ting Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Wanhong Dai
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China
| | - Yujie Zhang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China
| | - Ran Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China
| | - Yonggan Zhang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China
| | - Chengfei Shi
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
38
|
Freedman ZB, Upchurch RA, Zak DR, Cline LC. Anthropogenic N Deposition Slows Decay by Favoring Bacterial Metabolism: Insights from Metagenomic Analyses. Front Microbiol 2016; 7:259. [PMID: 26973633 PMCID: PMC4773658 DOI: 10.3389/fmicb.2016.00259] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/16/2016] [Indexed: 12/03/2022] Open
Abstract
Litter decomposition is an enzymatically-complex process that is mediated by a diverse assemblage of saprophytic microorganisms. It is a globally important biogeochemical process that can be suppressed by anthropogenic N deposition. In a northern hardwood forest ecosystem located in Michigan, USA, 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. Here, we paired extracellular enzyme assays with shotgun metagenomics to assess if anthropogenic N deposition has altered the functional potential of microbial communities inhabiting decaying forest floor. Experimental N deposition significantly reduced the activity of extracellular enzymes mediating plant cell wall decay, which occurred concurrently with changes in the relative abundance of metagenomic functional gene pathways mediating the metabolism of carbohydrates, aromatic compounds, as well as microbial respiration. Moreover, experimental N deposition increased the relative abundance of 50 of the 60 gene pathways, the majority of which were associated with saprotrophic bacteria. Conversely, the relative abundance and composition of fungal genes mediating the metabolism of plant litter was not affected by experimental N deposition. Future rates of atmospheric N deposition have favored saprotrophic soil bacteria, whereas the metabolic potential of saprotrophic fungi appears resilient to this agent of environmental change. Results presented here provide evidence that changes in the functional capacity of saprotrophic soil microorganisms mediate how anthropogenic N deposition increases C storage in soil.
Collapse
Affiliation(s)
- Zachary B Freedman
- School of Natural Resources and Environment, University of Michigan Ann Arbor, MI, USA
| | - Rima A Upchurch
- School of Natural Resources and Environment, University of Michigan Ann Arbor, MI, USA
| | - Donald R Zak
- School of Natural Resources and Environment, University of MichiganAnn Arbor, MI, USA; Department of Ecology, Evolution, and Behavior, University of MichiganAnn Arbor, MI, USA
| | - Lauren C Cline
- School of Natural Resources and Environment, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
39
|
Wu T, Wang X. Emission of oxygenated volatile organic compounds (OVOCs) during the aerobic decomposition of orange wastes. J Environ Sci (China) 2015; 33:69-77. [PMID: 26141879 DOI: 10.1016/j.jes.2015.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Oxygenated volatile organic compounds (OVOCs) emitted from orange wastes during aerobic decomposition were investigated in a laboratory-controlled incubator for a period of two months. Emission of total OVOCs (TOVOCs) from orange wastes reached 1714 mg/dry kg (330 mg/wet kg). Ethanol, methanol, ethyl acetate, methyl acetate, 2-butanone and acetaldehyde were the most abundant OVOC species with shares of 26.9%, 24.8%, 20.3%, 13.9%, 2.8% and 2.5%, respectively, in the TOVOCs released. The emission fluxes of the above top five OVOCs were quite trivial in the beginning but increased sharply to form one "peak emission window" with maximums at days 1-8 until leveling off after 10 days. This type of "peak emission window" was synchronized with the CO2 fluxes and incubation temperature of the orange wastes, indicating that released OVOCs were mainly derived from secondary metabolites of orange substrates through biotic processes rather than abiotic processes or primary volatilization of the inherent pool in oranges. Acetaldehyde instead had emission fluxes decreasing sharply from its initial maximum to nearly zero in about four days, suggesting that it was inherent rather than secondarily formed. For TOVOCs or all OVOC species except 2-butanone and acetone, over 80% of their emissions occurred during the first week, implying that organic wastes might give off a considerable amount of OVOCs during the early disposal period under aerobic conditions.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Environmental Sciences and Engineering, Anhui Normal University, Wuhu 241003, China.
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
40
|
Kanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. FRONTIERS IN PLANT SCIENCE 2015; 6:151. [PMID: 25821453 PMCID: PMC4358370 DOI: 10.3389/fpls.2015.00151] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/24/2015] [Indexed: 05/02/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity, and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides, and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs by describing microbial-plants and microbial-microbial interactions. Furthermore, we discuss MVOCs role in inducing phenotypic plant responses and their potential physiological effects on crops. Finally, we analyze potential and actual limitations for MVOC use and deployment in field conditions as a sustainable strategy for improving productivity and reducing pesticide use.
Collapse
Affiliation(s)
- Chidananda Nagamangala Kanchiswamy
- Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund MachTrento, Italy,
- *Correspondence: Chidananda Nagamangala Kanchiswamy, Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund Mach, Via E.Mach 1, San Michele all'Adige, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Center, Biology and Genomic of Fruit Plants, Fondazione Edmund MachTrento, Italy,
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
41
|
Austin AT, Vivanco L, González-Arzac A, Pérez LI. There's no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. THE NEW PHYTOLOGIST 2014; 204:307-314. [PMID: 25103145 DOI: 10.1111/nph.12959] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Litter decomposition in terrestrial ecosystems is an important first step for carbon and nutrient cycling, as senescent plant material is degraded and consequently incorporated, along with microbial products, into soil organic matter. The identification of litter affinity effects, whereby decomposition is accelerated in its home environment (home-field advantage, HFA), highlights the importance of plant-soil interactions that have consequences for biogeochemical cycling. While not universal, these affinity effects have been identified in a range of ecosystems, particularly in forests without disturbance. The optimization of the local decomposer community to degrade a particular combination of litter traits is the most oft-cited explanation for HFA effects, but the ways in which this specialized community can develop are only beginning to be understood. We explore ways in which HFA, or more broadly litter affinity effects, could arise in terrestrial ecosystems. Plant-herbivore interactions, microbial symbiosis, legacies from phyllosphere communities and attractors of specific soil fauna could contribute to spatially defined affinity effects for litter decomposition. Pyrosequencing soil communities and functional linkages of soil fauna provide great promise in advancing our mechanistic understanding of these interactions, and could lead to a greater appreciation of the role of litter-decomposer affinity in the maintenance of soil functional diversity.
Collapse
Affiliation(s)
- Amy T Austin
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
42
|
Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP. Biogenic volatile emissions from the soil. PLANT, CELL & ENVIRONMENT 2014; 37:1866-91. [PMID: 24689847 DOI: 10.1111/pce.12340] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 05/18/2023]
Abstract
Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed.
Collapse
Affiliation(s)
- J Peñuelas
- Global Ecology Unit CREAF-CEAB-CSIC-UAB, CSIC, Catalonia, Spain; CREAF, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Faiola CL, Vanderschelden GS, Wen M, Elloy FC, Cobos DR, Watts RJ, Jobson BT, Vanreken TM. SOA formation potential of emissions from soil and leaf litter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:938-946. [PMID: 24328143 DOI: 10.1021/es4040045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.
Collapse
Affiliation(s)
- Celia L Faiola
- Laboratory for Atmospheric Research, Department of Civil & Environmental Engineering, Washington State University , Pullman, Washington 99164
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 2012; 38:785-94. [PMID: 22592334 PMCID: PMC3375075 DOI: 10.1007/s10886-012-0129-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Root herbivores are notoriously difficult to study, as they feed hidden in the soil. However, root herbivores may be traced by analyzing specific volatile organic compounds (VOCs) that are produced by damaged roots. These VOCs not only support parasitoids in the localization of their host, but also may help scientists study belowground plant-herbivore interactions. Herbivore-induced VOCs are usually analyzed by gas-chromatography mass spectrometry (GC-MS), but with this off-line method, the gases of interest need to be preconcentrated, and destructive sampling is required to assess the level of damage to the roots. In contrast to this, proton-transfer-reaction mass spectrometry (PTR-MS) is a very sensitive on-line, non-invasive method. PTR-MS already has been successfully applied to analyze VOCs produced by aboveground (infested) plant parts. In this review, we provide a brief overview of PTR-MS and illustrate how this technology can be applied to detect specific root-herbivore induced VOCs from Brassica plants. We also specify the advantages and disadvantages of PTR-MS analyses and new technological developments to overcome their limitations.
Collapse
|