1
|
Trier NH. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides. Methods Mol Biol 2024; 2821:179-193. [PMID: 38997489 DOI: 10.1007/978-1-0716-3914-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Characterization of peptide antibodies through identification of their target epitopes is of utmost importance, as information about epitopes provide important knowledge, among others, for discovery and development of new therapeutics, vaccines, and diagnostics.This chapter describes a strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies; (i) overlapping peptides, used to locate antigenic regions; (ii) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (iii) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening, resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for final epitope characterization and identification of critical hot spot residues. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-saving and straightforward approach for characterization of antibodies recognizing continuous epitopes, which applies to peptide antibodies and occasionally antibodies directed to larger proteins as well.
Collapse
|
2
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
3
|
Zhu H, Mathew E, Connelly SM, Zuber J, Sullivan M, Piepenbrink MS, Kobie JJ, Dumont ME. Identification of variant HIV envelope proteins with enhanced affinities for precursors to anti-gp41 broadly neutralizing antibodies. PLoS One 2019; 14:e0221550. [PMID: 31504041 PMCID: PMC6736307 DOI: 10.1371/journal.pone.0221550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/09/2019] [Indexed: 11/19/2022] Open
Abstract
HIV envelope protein (Env) is the sole target of broadly neutralizing antibodies (BNAbs) that are capable of neutralizing diverse strains of HIV. While BNAbs develop spontaneously in a subset of HIV-infected patients, efforts to design an envelope protein-based immunogen to elicit broadly neutralizing antibody responses have so far been unsuccessful. It is hypothesized that a primary barrier to eliciting BNAbs is the fact that HIV envelope proteins bind poorly to the germline-encoded unmutated common ancestor (UCA) precursors to BNAbs. To identify variant forms of Env with increased affinities for the UCA forms of BNAbs 4E10 and 10E8, which target the Membrane Proximal External Region (MPER) of Env, libraries of randomly mutated Env variants were expressed in a yeast surface display system and screened using fluorescence activated cell sorting for cells displaying variants with enhanced abilities to bind the UCA antibodies. Based on analyses of individual clones obtained from the screen and on next-generation sequencing of sorted libraries, distinct but partially overlapping sets of amino acid substitutions conferring enhanced UCA antibody binding were identified. These were particularly enriched in substitutions of arginine for highly conserved tryptophan residues. The UCA-binding variants also generally exhibited enhanced binding to the mature forms of anti-MPER antibodies. Mapping of the identified substitutions into available structures of Env suggest that they may act by destabilizing both the initial pre-fusion conformation and the six-helix bundle involved in fusion of the viral and cell membranes, as well as providing new or expanded epitopes with increased accessibility for the UCA antibodies.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Mark Sullivan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Michael S. Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY United States of America
| | - James J. Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY United States of America
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
4
|
Mathew E, Zhu H, Connelly SM, Sullivan MA, Brewer MG, Piepenbrink MS, Kobie JJ, Dewhurst S, Dumont ME. Display of the HIV envelope protein at the yeast cell surface for immunogen development. PLoS One 2018; 13:e0205756. [PMID: 30335821 PMCID: PMC6193675 DOI: 10.1371/journal.pone.0205756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022] Open
Abstract
As a step toward the development of variant forms of Env with enhanced immunogenic properties, we have expressed the glycoprotein in the yeast surface display system in a form that can be subjected to random mutagenesis followed by screening for forms with enhanced binding to germline antibodies. To optimize the expression and immunogenicity of the yeast-displayed Env protein, we tested different approaches for cell wall anchoring, expression of gp120 and gp140 Env from different viral strains, the effects of introducing mutations designed to stabilize Env, and the effects of procedures for altering N-linked glycosylation of Env. We find that diverse forms of HIV envelope glycoprotein can be efficiently expressed at the yeast cell surface and that gp140 forms of Env are effectively cleaved by Kex2p, the yeast furin protease homolog. Multiple yeast-displayed gp120 and gp140 proteins are capable of binding to antibodies directed against the V3-variable loop, CD4 binding site, and gp41 membrane-proximal regions, including some antibodies whose binding is known to depend on Env conformation and N-linked glycan. Based on antibody recognition and sensitivity to glycosidases, yeast glycosylation patterns partially mimic high mannose-type N-glycosylation in mammalian cells. However, yeast-displayed Env is not recognized by some anti-Env antibodies sensitive to quaternary structure, suggesting either that the displayed protein exists in a monomeric state or that for these antibodies, yeast glycosylation in certain regions hinders recognition or access. Consistent with studies in other systems, reconstructed predicted unmutated precursors to anti-Env antibodies exhibit little affinity for the yeast-displayed envelope protein.
Collapse
Affiliation(s)
- Elizabeth Mathew
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hong Zhu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Mark A. Sullivan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Matthew G. Brewer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Michael S. Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - James J. Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
5
|
Scutari R, Faieta M, D'Arrigo R, Fabeni L, Mussini C, Cossarizza A, Casoli C, Perno CF, Svicher V, Alteri C, Aquaro S. The degree of HIV-1 amino acid variability is strictly related to different disease progression rates. Virus Genes 2018; 54:493-501. [PMID: 29777446 DOI: 10.1007/s11262-018-1571-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
The aim of this study is to evaluate the amino acid variability of HIV-1 Gp41, C2-V3, and Nef in a group of patients characterized by different disease progression rates. HIV-1 sequences were collected from 19 Long term non progressor patients (LTNPs), 9 slow progressors (SPs), and 11 rapid progressors (RPs). Phylogenetic trees were estimated by MEGA 6. Differences in amino acid variability among sequences belonging to the 3 groups have been evaluated by amino acid divergence, Shannon entropy analysis, and the number of amino acid mutations (defined as amino acid variations compared with HxB2). The involvement of amino acid mutations on epitope rich regions was also investigated. The population was mainly composed of males (74.3%) and HIV-1 subtype B strains (B: 92.32%, CRF_12BF, A1, C: 2.56% each). Viral load (log10 copies/mL) and CD4+T cell count (cells/mm3) were 3.9 (3.5-4.2) and 618 (504-857) in LTNPs, 3.3 (2.8-4.7) and 463 (333-627) in SPs, and 4.6 (4.3-5.3) and 201 (110-254) in RPs. Gp41 and C2-V3 amino acid divergence was lower in LTNP and SP strains compared to RPs (median value: 0.085 and 0.091 vs. 0.114, p = 0.005 and 0.042) and a trend of lower variability was observed for Nef (p = 0.198). A lower entropy value was observed at 10, 3, and 7 positions of Gp41, C2-V3, and Nef belonging to LTNPs and at 7, 3, and 1 positions of Gp41, C2-V3, and Nef belonging to SPs compared with RPs (p < 0.05). Focusing on epitope rich regions, again a higher degree of conservation was observed in Gp41 and C2-V3 sequences belonging to LTNPs and SPs compared to those belonging to RPs. This study shows that the extent of amino acid variability correlates with a different HIV-1 progression rate. This variability also involves CTL epitope rich regions, thus suggesting its involvement in the immune escape process modulation.
Collapse
Affiliation(s)
- Rossana Scutari
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Roberta D'Arrigo
- Department of Microbiology and Virology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Lavinia Fabeni
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Mussini
- Department of Infectious Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Claudio Casoli
- GEMIB Laboratory, Centre for Medical Research and Molecular Diagnostic, Parma, Italy
| | | | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
6
|
Pre-screening of crude peptides in a serological bead-based suspension array. J Virol Methods 2017; 247:114-118. [DOI: 10.1016/j.jviromet.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 11/21/2022]
|
7
|
Trier NH. Characterization of Peptide Antibodies by Epitope Mapping Using Resin-Bound and Soluble Peptides. Methods Mol Biol 2015; 1348:229-39. [PMID: 26424276 DOI: 10.1007/978-1-4939-2999-3_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Characterization of peptide antibodies through identification of their target epitopes is of utmost importance. Understanding antibody specificity at the amino acid level provides the key to understand the specific interaction between antibodies and their epitopes and their use as research and diagnostic tools as well as therapeutic agents. This chapter describes a straightforward strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies: (1) overlapping peptides, used to locate antigenic regions; (2) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (3) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for fine mapping. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-sparing and straightforward approach for characterization of peptide antibodies.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
8
|
Apellániz B, Nieva JL. The Use of Liposomes to Shape Epitope Structure and Modulate Immunogenic Responses of Peptide Vaccines Against HIV MPER. PEPTIDE AND PROTEIN VACCINES 2015; 99:15-54. [DOI: 10.1016/bs.apcsb.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Dam CE, Houen G, Hansen PR, Trier NH. Identification and fine mapping of a linear B cell epitope of human vimentin. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:506-14. [PMID: 24792370 DOI: 10.3109/00365513.2014.908474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Knowledge about antibody-antigen interactions is important for the understanding of the immune system mechanisms and for supporting development of drugs and biomarkers. A tool for identification of these antigenic epitopes of specific antibodies is epitope mapping. In this study, a modified enzyme-linked immunosorbent assay was applied for epitope mapping of a mouse monoclonal vimentin antibody using overlapping resin-bound peptides covering the entire vimentin protein. The minimal epitope required for binding was identified as the LDSLPLVD sequence using N- and C-terminally truncated peptides. The peptide sequence LDSLPLVDTH was identified as the complete epitope, corresponding to amino acids 428-437 in the C-terminal end of the human vimentin protein. Alanine scanning and functionality scanning applying substituted peptides were used to identify amino acids essential for antibody reactivity. In particular, the two aspartate residues were found to be essential for antibody reactivity since these amino acids could not be substituted without a reduction in antibody reactivity. The majority of the remaining amino acids could be substituted without reducing antibody reactivity notably. These results confirm that charged amino acids are essential for antibody reactivity and that the vimentin antibody is dependent on side-chain interactions in combination with backbone interactions.
Collapse
Affiliation(s)
- Catharina E Dam
- Department of Systems Biology, Technical University of Denmark , Kongens Lyngby , Denmark
| | | | | | | |
Collapse
|
10
|
Yi G, Lapelosa M, Bradley R, Mariano TM, Dietz DE, Hughes S, Wrin T, Petropoulos C, Gallicchio E, Levy RM, Arnold E, Arnold GF. Chimeric rhinoviruses displaying MPER epitopes elicit anti-HIV neutralizing responses. PLoS One 2013; 8:e72205. [PMID: 24039745 PMCID: PMC3765159 DOI: 10.1371/journal.pone.0072205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/07/2013] [Indexed: 12/01/2022] Open
Abstract
Background The development of an effective AIDS vaccine has been a formidable task, but remains a critical necessity. The well conserved membrane-proximal external region (MPER) of the HIV-1 gp41 glycoprotein is one of the crucial targets for AIDS vaccine development, as it has the necessary attribute of being able to elicit antibodies capable of neutralizing diverse isolates of HIV. Methodology/Principle Findings Guided by X-ray crystallography, molecular modeling, combinatorial chemistry, and powerful selection techniques, we designed and produced six combinatorial libraries of chimeric human rhinoviruses (HRV) displaying the MPER epitopes corresponding to mAbs 2F5, 4E10, and/or Z13e1, connected to an immunogenic surface loop of HRV via linkers of varying lengths and sequences. Not all libraries led to viable chimeric viruses with the desired sequences, but the combinatorial approach allowed us to examine large numbers of MPER-displaying chimeras. Among the chimeras were five that elicited antibodies capable of significantly neutralizing HIV-1 pseudoviruses from at least three subtypes, in one case leading to neutralization of 10 pseudoviruses from all six subtypes tested. Conclusions Optimization of these chimeras or closely related chimeras could conceivably lead to useful components of an effective AIDS vaccine. While the MPER of HIV may not be immunodominant in natural infection by HIV-1, its presence in a vaccine cocktail could provide critical breadth of protection.
Collapse
Affiliation(s)
- Guohua Yi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Mauro Lapelosa
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Rachel Bradley
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Thomas M. Mariano
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Denise Elsasser Dietz
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Scott Hughes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, California, United States of America
| | - Chris Petropoulos
- Monogram Biosciences, South San Francisco, California, United States of America
| | - Emilio Gallicchio
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ronald M. Levy
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- * E-mail: (GA); (EA)
| | - Gail Ferstandig Arnold
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- * E-mail: (GA); (EA)
| |
Collapse
|
11
|
Robinson JA. Max Bergmann lecture protein epitope mimetics in the age of structural vaccinology. J Pept Sci 2013; 19:127-40. [PMID: 23349031 PMCID: PMC3592999 DOI: 10.1002/psc.2482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/09/2022]
Abstract
This review highlights the growing importance of protein epitope mimetics in the discovery of new biologically active molecules and their potential applications in drug and vaccine research. The focus is on folded β-hairpin mimetics, which are designed to mimic β-hairpin motifs in biologically important peptides and proteins. An ever-growing number of protein crystal structures reveal how β-hairpin motifs often play key roles in protein-protein and protein-nucleic acid interactions. This review illustrates how using protein structures as a starting point for small-molecule mimetic design can provide novel ligands as protein-protein interaction inhibitors, as protease inhibitors, and as ligands for chemokine receptors and folded RNA targets, as well as novel antibiotics to combat the growing health threat posed by the emergence of antibiotic-resistant bacteria. The β-hairpin antibiotics are shown to target a β-barrel outer membrane protein (LptD) in Pseudomonas sp., which is essential for the biogenesis of the outer cell membrane. Another exciting prospect is that protein epitope mimetics will be of increasing importance in synthetic vaccine design, in the emerging field of structural vaccinology. Crystal structures of protective antibodies bound to their pathogen-derived epitopes provide an ideal starting point for the design of synthetic epitope mimetics. The mimetics can be delivered to the immune system in a highly immunogenic format on the surface of synthetic virus-like particles. The scientific challenges in molecular design remain great, but the potential significance of success in this area is even greater.
Collapse
Affiliation(s)
- John A Robinson
- Chemistry Department, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Huarte N, Araujo A, Arranz R, Lorizate M, Quendler H, Kunert R, Valpuesta JM, Nieva JL. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity. PLoS One 2012; 7:e52740. [PMID: 23285173 PMCID: PMC3528738 DOI: 10.1371/journal.pone.0052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The membrane proximal external region (MPER) of the fusogenic HIV-1 glycoprotein-41 harbors the epitope sequence recognized by 2F5, a broadly neutralizing antibody isolated from an infected individual. Structural mimicry of the conserved MPER 2F5 epitope constitutes a pursued goal in the field of anti-HIV vaccine development. It has been proposed that 2F5 epitope folding into its native state is attained in the vicinity of the membrane interface and might involve interactions with other viral structures. Here we present results indicating that oligomeric complexes established between MPER and the conserved amino-terminal fusion peptide (FP) can partition into lipid vesicles and be specifically bound by the 2F5 antibody at their surfaces. Cryo-transmission electron microscopy of liposomes doped with MPER:FP peptide mixtures provided the structural grounds for complex recognition by antibody at lipid bilayer surfaces. Supporting the immunogenicity of the membrane-bound complex, these MPER:FP peptide-vesicle formulations could trigger cross-reactive anti-MPER antibodies in rabbits. Thus, our observations suggest that contacts with N-terminal regions of gp41 may stabilize the 2F5 epitope as a membrane-surface antigen.
Collapse
Affiliation(s)
- Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Aitziber Araujo
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Rocio Arranz
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Maier Lorizate
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Heribert Quendler
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - José M. Valpuesta
- Department of Macromolecular Structures, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - José L. Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
- * E-mail:
| |
Collapse
|
13
|
Role of human immunodeficiency virus type 1 envelope structure in the induction of broadly neutralizing antibodies. J Virol 2012; 86:13152-63. [PMID: 23015715 DOI: 10.1128/jvi.01110-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very soon after the discovery of neutralizing antibodies (NAbs) toward human immunodeficiency virus type 1 (HIV-1) infection, it became apparent that characterization of these NAbs would be an important step in finding a cure for or a vaccine to eradicate HIV-1. Since the initial description of broadly cross-clade NAbs naturally produced in HIV-1 patients, numerous studies have described new viral targets for these antibodies. More recently, studies concerning new groups of patients able to control their viremia, such as long-term nonprogressors (LTNPs) or elite controllers, have described the generation of numerous envelope-targeted NAbs. Recent studies have marked a new stage in research on NAbs with the description of antibodies obtained from a worldwide screening of HIV-positive patients. These studies have permitted the discovery of NAb families with great potential for both neutralization and neutralization breadth, such as PG, PGT, CH, and highly active agonistic anti-CD4 binding site antibodies (HAADs), of which VRC01 and its variants are members. These antibodies are able to neutralize more than 80% of circulating strains without any autoreactivity and can be rapidly integrated into clinical trials in order to test their protective potential. In this review, we will focus on new insights into HIV-1 envelope structure and their implications for the generation of potent NAbs.
Collapse
|
14
|
Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 2012; 3:194. [PMID: 22787464 PMCID: PMC3391733 DOI: 10.3389/fimmu.2012.00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023] Open
Abstract
This review describes the structure-based reverse vaccinology approach aimed at developing vaccine immunogens capable of inducing antibodies that broadly neutralize HIV-1. Some basic principles of protein immunochemistry are reviewed and the implications of the extensive polyspecificity of antibodies for vaccine development are underlined. Although it is natural for investigators to want to know the cause of an effective immunological intervention, the classic notion of causality is shown to have little explanatory value for a system as complex as the immune system, where any observed effect always results from many interactions between a large number of components. Causal explanations are reductive because a single factor is singled out for attention and given undue explanatory weight on its own. Other examples of the negative impact of reductionist thinking on HIV vaccine development are discussed. These include (1) the failure to distinguish between the chemical nature of antigenicity and the biological nature of immunogenicity, (2) the belief that when an HIV-1 epitope is reconstructed by rational design to better fit a neutralizing monoclonal antibody (nMab), this will produce an immunogen able to elicit Abs with the same neutralizing capacity as the Ab used as template for designing the antigen, and (3) the belief that protection against infection can be analyzed at the level of individual molecular interactions although it has meaning only at the level of an entire organism. The numerous unsuccessful strategies that have been used to design HIV-1 vaccine immunogens are described and it is suggested that the convergence of so many negative experimental results justifies the conclusion that reverse vaccinology is unlikely to lead to the development of a preventive HIV-1 vaccine. Immune correlates of protection in vaccines have not yet been identified because this will become feasible only retrospectively once an effective vaccine exists. The finding that extensive antibody affinity maturation is needed to obtain mature anti-HIV-1 Abs endowed with a broad neutralizing capacity explains why antigens designed to fit matured Mabs are not effective vaccine immunogens since these are administered to naive recipients who possess only B-cell receptors corresponding to the germline version of the matured Abs.
Collapse
Affiliation(s)
- Marc H. V. Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University,Stellenbosch, South Africa
| |
Collapse
|
15
|
White HN, Meng QH. Diversification of specificity after maturation of the antibody response to the HIV gp41 epitope ELDKWA. PLoS One 2012; 7:e31555. [PMID: 22348106 PMCID: PMC3279380 DOI: 10.1371/journal.pone.0031555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/10/2012] [Indexed: 11/18/2022] Open
Abstract
During maturing antibody responses the increase in affinity for target antigens is achieved by genetic diversification of antibody genes followed by selection for improved binding. The effect this process has on the specificity of antibody for variants of the antigen is not well-defined, despite the potential role of antibody diversification in generating enhanced protection against pathogen escape mutants, or novel specificities after vaccination. To investigate this, a library of single amino-acid substitution epitope variants has been screened with serum obtained at different time-points after immunization of mice with the HIV gp41 peptide epitope ELDKWA. The serum IgG response is shown to mature and increase affinity for ELDKWA, and the titre and affinity of IgG against most epitope variants tested increases. Furthermore there is a bias towards high affinity serum IgG binding to variant epitopes with conservative substitutions, although underlying this trend there is also significant binding to many epitopes with non-conservative substitutions. Thus, maturation of the antibody response to a single epitope results in a broadening of the high-affinity response toward variant epitopes. This implies that many pathogen epitope escape variants that could manifest as single amino-acid substitutions would not emerge by escaping immune surveillance.
Collapse
Affiliation(s)
- Henry N White
- Department of Molecular Immunology, University College London, Institute of Child Health, London, United Kingdom.
| | | |
Collapse
|
16
|
Neutralizing epitopes in the membrane-proximal external region of HIV-1 gp41 are influenced by the transmembrane domain and the plasma membrane. J Virol 2012; 86:2930-41. [PMID: 22238313 DOI: 10.1128/jvi.06349-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure.
Collapse
|
17
|
Azoitei ML, Ban YEA, Julien JP, Bryson S, Schroeter A, Kalyuzhniy O, Porter JR, Adachi Y, Baker D, Pai EF, Schief WR. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. J Mol Biol 2011; 415:175-92. [PMID: 22061265 PMCID: PMC7105911 DOI: 10.1016/j.jmb.2011.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 11/23/2022]
Abstract
Computational grafting of functional motifs onto scaffold proteins is a promising way to engineer novel proteins with pre-specified functionalities. Typically, protein grafting involves the transplantation of protein side chains from a functional motif onto structurally homologous regions of scaffold proteins. Using this approach, we previously transplanted the human immunodeficiency virus 2F5 and 4E10 epitopes onto heterologous proteins to design novel “epitope-scaffold” antigens. However, side-chain grafting is limited by the availability of scaffolds with compatible backbone for a given epitope structure and offers no route to modify backbone structure to improve mimicry or binding affinity. To address this, we report here a new and more aggressive computational method—backbone grafting of linear motifs—that transplants the backbone and side chains of linear functional motifs onto scaffold proteins. To test this method, we first used side-chain grafting to design new 2F5 epitope scaffolds with improved biophysical characteristics. We then independently transplanted the 2F5 epitope onto three of the same parent scaffolds using the newly developed backbone grafting procedure. Crystal structures of side-chain and backbone grafting designs showed close agreement with both the computational models and the desired epitope structure. In two cases, backbone grafting scaffolds bound antibody 2F5 with 30- and 9-fold higher affinity than corresponding side-chain grafting designs. These results demonstrate that flexible backbone methods for epitope grafting can significantly improve binding affinities over those achieved by fixed backbone methods alone. Backbone grafting of linear motifs is a general method to transplant functional motifs when backbone remodeling of the target scaffold is necessary.
Collapse
Affiliation(s)
- Mihai L Azoitei
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim M, Sun ZYJ, Rand KD, Shi X, Song L, Cheng Y, Fahmy AF, Majumdar S, Ofek G, Yang Y, Kwong PD, Wang JH, Engen JR, Wagner G, Reinherz EL. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nat Struct Mol Biol 2011; 18:1235-43. [PMID: 22002224 PMCID: PMC3253551 DOI: 10.1038/nsmb.2154] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/09/2011] [Indexed: 11/08/2022]
Abstract
Broadly neutralizing antibodies such as 2F5 are directed against the membrane-proximal external region (MPER) of HIV-1 GP41 and recognize well-defined linear core sequences. These epitopes can be engrafted onto protein scaffolds to serve as immunogens with high structural fidelity. Although antibodies that bind to this core GP41 epitope can be elicited, they lack neutralizing activity. To understand this paradox, we used biophysical methods to investigate the binding of human 2F5 to the MPER in a membrane environment, where it resides in vivo. Recognition is stepwise, through a paratope more extensive than core binding site contacts alone, and dynamic rearrangement through an apparent scoop-like movement of heavy chain complementarity-determining region 3 (CDRH3) is essential for MPER extraction from the viral membrane. Core-epitope recognition on the virus requires the induction of conformational changes in both the MPER and the paratope. Hence, target neutralization through this lipid-embedded viral segment places stringent requirements on the plasticity of the antibody combining site.
Collapse
Affiliation(s)
- Mikyung Kim
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kasper D. Rand
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Xiaomeng Shi
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Likai Song
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yuxing Cheng
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- PhD Program in Biological Sciences in Public Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Amr F. Fahmy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Shreoshi Majumdar
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia-huai Wang
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - John R. Engen
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Revilla A, Delgado E, Christian EC, Dalrymple J, Vega Y, Carrera C, González-Galeano M, Ocampo A, de Castro RO, Lezaún MJ, Rodríguez R, Mariño A, Ordóñez P, Cilla G, Cisterna R, Santamaría JM, Prieto S, Rakhmanova A, Vinogradova A, Ríos M, Pérez-Álvarez L, Nájera R, Montefiori DC, Seaman MS, Thomson MM. Construction and phenotypic characterization of HIV type 1 functional envelope clones of subtypes G and F. AIDS Res Hum Retroviruses 2011; 27:889-901. [PMID: 21226626 DOI: 10.1089/aid.2010.0177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Subtype G has been estimated to represent the fourth most prevalent clade in the HIV-1 pandemic and subtype F is widely circulating in parts of South America (frequently within BF recombinant forms) and in Romania. However, functional envelope clones of these subtypes are lacking, which are needed for studies on antibody-mediated neutralization, coreceptor usage, and efficiency of viral entry inhibitor drugs. Here we report the construction, neutralization properties, and coreceptor usage of HIV-1 functional envelope clones of subtypes G (n = 15) and F (n = 7). These clones were obtained through RT-PCR amplification of HIV-1 gp160 from plasma RNA, and were used for pseudovirus production. All 15 subtype G-enveloped pseudoviruses were resistant to neutralization by gp120-targeted broadly neutralizing monoclonal antibodies (MAbs) b12 and 2G12, while a majority were neutralized by gp41-targeted MAbs 2F5 and 4E10. With regard to the subtype F envelopes, all seven pseudoviruses were resistant to 2F5 and b12, six were resistant to G12, and six were neutralized by 4E10. Coreceptor usage testing revealed that 21 of 22 envelopes were CCR5-tropic, including all 15 subtype G envelopes, seven of which were from patients with CD4(+) T cell counts <200/ml. These results confirm the broadly neutralizing activity of 4E10 on envelope clones across all tested group M clades, including subtypes G and F, reveal the resistance of most subtype F-enveloped pseudoviruses to broadly neutralizing MAbs b12, 2G12, and 2F5, and suggest that, similarly to subtype C, CXCR4 tropism is uncommon in subtype G, even at advanced stages of infection.
Collapse
Affiliation(s)
- Ana Revilla
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elizabeth C. Christian
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Justin Dalrymple
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Yolanda Vega
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Carrera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María González-Galeano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Antonio Ocampo
- Complejo Hospitalario Xeral-Cíes, Vigo, Pontevedra, Spain
| | | | | | | | - Ana Mariño
- Hospital Arquitecto Marcide, Ferrol, A Coruña, Spain
| | | | | | | | | | | | - Aza Rakhmanova
- Botkin's Infectious Diseases Hospital, St. Petersburg, Russia
| | | | - Maritza Ríos
- National Reference Center of HIV/AIDS, Public Health Institute of Chile, Santiago, Chile
| | - Lucía Pérez-Álvarez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rafael Nájera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - David C. Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, North Carolina
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
20
|
Palacios-Rodríguez Y, Gazarian T, Huerta L, Gazarian K. Constrained peptide models from phage display libraries highlighting the cognate epitope-specific potential of the anti-HIV-1 mAb 2F5. Immunol Lett 2011; 136:80-9. [PMID: 21237206 DOI: 10.1016/j.imlet.2010.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/02/2010] [Accepted: 12/26/2010] [Indexed: 10/18/2022]
Abstract
The monoclonal antibody 2F5 (mAb 2F5), one of the most potent broadly neutralizing mAbs targeted to the HIV-1 gp41 membrane proximal exterior region (MPER), displays an unusually wide antigenic specificity, tolerating amino acid substitutions at virtually all positions of the 662-ELDKWAS-668 epitope sequence when presented by peptides. Investigating this phenomenon, Menendez et al. [22] concluded that the paratope of 2F5 contains two distinct binding compartments. One is specific and binds the DKW epitope core; the other is multi-specific and binds to the flanking DKW regions that can be distinct from the epitope sequence. Because the DKW-flanking amino acids are strongly conserved in viruses, it is not clear whether the DKW only satisfies the 2F5 epitope recognition demand. In this study, we demonstrate that the specificity of recognition of the epitope depends on the structural context in which the cognate epitope sequence is presented. The antibody does not tolerate any replacements of the DKW-flanking epitope amino acids and binds exclusively to the (L)DKWA sequence provided that it is presented by a 7-mer constrained peptide exposed by the M13 phage pIII protein. Our data propose a novel epitope recognition model in which the 2F5 mAb requires a sequence longer than DKW and no substitution of flanking amino acids for specific recognition of the peptide. Additionally, immunization data supports the notion that the binding and neutralizing immunogenic structural features of the described epitope model do not coincide.
Collapse
Affiliation(s)
- Yadira Palacios-Rodríguez
- Department of Molecular Biology and Biotechnology, Institute of Biomedical Research, Mexican National Autonomous University, Circuito Exterior, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
21
|
Antigenic characteristics of rhinovirus chimeras designed in silico for enhanced presentation of HIV-1 gp41 epitopes [corrected]. J Mol Biol 2010; 397:752-66. [PMID: 20138057 DOI: 10.1016/j.jmb.2010.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/21/2022]
Abstract
The development of an effective AIDS vaccine remains the most promising long-term strategy to combat human immunodeficiency virus (HIV)/AIDS. Here, we report favorable antigenic characteristics of vaccine candidates isolated from a combinatorial library of human rhinoviruses displaying the ELDKWA epitope of the gp41 glycoprotein of HIV-1. The design principles of this library emerged from the application of molecular modeling calculations in conjunction with our knowledge of previously obtained ELDKWA-displaying chimeras, including knowledge of a chimera with one of the best 2F5-binding characteristics obtained to date. The molecular modeling calculations identified the energetic and structural factors affecting the ability of the epitope to assume conformations capable of fitting into the complementarity determining region of the ELDKWA-binding, broadly neutralizing human mAb 2F5. Individual viruses were isolated from the library following competitive immunoselection and were tested using ELISA and fluorescence quenching experiments. Dissociation constants obtained using both techniques revealed that some of the newly isolated chimeras bind 2F5 with greater affinity than previously identified chimeric rhinoviruses. Molecular dynamics simulations of two of these same chimeras confirmed that their HIV inserts were partially preorganized for binding, which is largely responsible for their corresponding gains in binding affinity. The study illustrates the utility of combining structure-based experiments with computational modeling approaches for improving the odds of selecting vaccine component designs with preferred antigenic characteristics. The results obtained also confirm the flexibility of HRV as a presentation vehicle for HIV epitopes and the potential of this platform for the development of vaccine components against AIDS.
Collapse
|
22
|
de la Arada I, Julien JP, de la Torre BG, Huarte N, Andreu D, Pai EF, Arrondo JLR, Nieva JL. Structural constraints imposed by the conserved fusion peptide on the HIV-1 gp41 epitope recognized by the broadly neutralizing antibody 2F5. J Phys Chem B 2009; 113:13626-37. [PMID: 19754136 DOI: 10.1021/jp905965h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The HIV-1 gp41 epitope recognized by the broadly neutralizing 2F5 antibody has focused much attention as a suitable target in the design of peptide immunogens. Peptides mimicking the linear 2F5 epitope (2F5ep) are however intrinsically disordered, while the structural constraints existing in the cognate gp41 native structure recognized by the antibody are presently unknown. In recent reports, we have shown that core residues of the amino-terminal fusion peptide (FP) increase MAb2F5 affinity. Here, we have inferred the sequence-specific structural constraints imposed by the FP residues on the 2F5 epitope from the comparison of two hybrid peptides: HybK3, which connects through a flexible tether residues derived from 2F5ep and FP sequences, and scrHybK3, combining 2F5ep and an FP sequence with the conserved core scrambled. Circular dichroism, conventional and two-dimensional correlation infrared spectroscopy, and X-ray diffraction studies revealed specific structural features that were dependent on the exact FP sequence, namely, (i) the production with moderate low polarity of an intermediate folded structure enriched in beta-turns and alpha-helix; (ii) the existence in this intermediate of a thermotropic conformational transition taking place at ca. 18-20 degrees C, consistent with the conversion of 3(10)-helices into beta-turn conformers; and (iii) the presence of a C-terminal alpha-helix in crystals of Fab'-peptide complexes. Those features support the existence of native-like tertiary interactions between FP and 2F5 epitope residues, which might be important to recreate when developing an effective AIDS peptide vaccine.
Collapse
Affiliation(s)
- Igor de la Arada
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Verkoczy L, Moody MA, Holl TM, Bouton-Verville H, Scearce RM, Hutchinson J, Alam SM, Kelsoe G, Haynes BF. Functional, non-clonal IgMa-restricted B cell receptor interactions with the HIV-1 envelope gp41 membrane proximal external region. PLoS One 2009; 4:e7215. [PMID: 19806186 PMCID: PMC2751816 DOI: 10.1371/journal.pone.0007215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 08/24/2009] [Indexed: 11/24/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 has several features that make it an attractive antibody-based vaccine target, but eliciting an effective gp41 MPER-specific protective antibody response remains elusive. One fundamental issue is whether the failure to make gp41 MPER-specific broadly neutralizing antibodies like 2F5 and 4E10 is due to structural constraints with the gp41 MPER, or alternatively, if gp41 MPER epitope-specific B cells are lost to immunological tolerance. An equally important question is how B cells interact with, and respond to, the gp41 MPER epitope, including whether they engage this epitope in a non-canonical manner i.e., by non-paratopic recognition via B cell receptors (BCR). To begin understanding how B cells engage the gp41 MPER, we characterized B cell-gp41 MPER interactions in BALB/c and C57BL/6 mice. Surprisingly, we found that a significant (∼7%) fraction of splenic B cells from BALB/c, but not C57BL/6 mice, bound the gp41 MPER via their BCRs. This strain-specific binding was concentrated in IgMhi subsets, including marginal zone and peritoneal B1 B cells, and correlated with enriched fractions (∼15%) of gp41 MPER-specific IgM secreted by in vitro-activated splenic B cells. Analysis of Igha (BALB/c) and Ighb (C57BL/6) congenic mice demonstrated that gp41 MPER binding was controlled by determinants of the Igha locus. Mapping of MPER gp41 interactions with IgMa identified MPER residues distinct from those to which mAb 2F5 binds and demonstrated the requirement of Fc CH regions. Importantly, gp41 MPER ligation produced detectable BCR-proximal signaling events, suggesting that interactions between gp41 MPER and IgMa determinants may elicit partial B cell activation. These data suggest that low avidity, non-paratopic interactions between the gp41 MPER and membrane Ig on naïve B cells may interfere with or divert bnAb responses.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ura T, Yoshida A, Xin KQ, Yoshizaki S, Yashima S, Abe S, Mizuguchi H, Okuda K. Designed recombinant adenovirus type 5 vector induced envelope-specific CD8(+) cytotoxic T lymphocytes and cross-reactive neutralizing antibodies against human immunodeficiency virus type 1. J Gene Med 2009; 11:139-49. [PMID: 19065543 DOI: 10.1002/jgm.1277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND A monoclonal antibody (mAb) 2F5 binds to the membrane-proximal external region (MPER) of the transmembrane subunit gp41 of human immunodeficiency virus type 1 (HIV-1) is known to broadly neutralize HIV-1 strains. The Adenovirus type 5 vector (Ad5) has been widely applied for HIV-1 vaccine, and hexon hypervariable region 5 (HVR5) is exposed on viral surface and easily target host immune responses against Ad5. METHODS We constructed a recombinant adenovirus type 5 vector (rAd5) with a 2F5-binding epitope (ELDKWA) of MPER on Ad5-HVR5. In addition, we developed rAd5 encoding the HIV-1(IIIB) envelope (Env) gene for the induction of Env-specific cellular immunity. RESULTS The virus titers of the constructed rAd5 were similar to that of the parental Ad5 vector. Furthermore, high-dose immunization of rAd5 induced Env-specific CD8(+) cells and high levels of anti-ELDKWA antibodies. Moreover, an in vitro HIV-1 neutralization assay indicated that ELDKWA-specific mAbs derived from rAd5-immunized mice neutralized a wide range of HIV-1 strains. CONCLUSIONS The present study outlines the development of an Ad5-based HIV-1 vaccine targeting the hypervariable regions of Ad5. The constructed rAd5 induced an HIV-1-specific cellular immune response and neutralizing antibodies against various strains of HIV-1 simultaneously.
Collapse
Affiliation(s)
- Takehiro Ura
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bryson S, Julien JP, Isenman DE, Kunert R, Katinger H, Pai EF. Crystal Structure of the Complex between the Fab′ Fragment of the Cross-Neutralizing Anti-HIV-1 Antibody 2F5 and the Fab Fragment of Its Anti-idiotypic Antibody 3H6. J Mol Biol 2008; 382:910-9. [DOI: 10.1016/j.jmb.2008.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
|
26
|
The broadly neutralizing anti-human immunodeficiency virus type 1 4E10 monoclonal antibody is better adapted to membrane-bound epitope recognition and blocking than 2F5. J Virol 2008; 82:8986-96. [PMID: 18596094 DOI: 10.1128/jvi.00846-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broadly neutralizing 2F5 and 4E10 monoclonal antibodies (MAbs) recognize epitopes within the membrane-proximal external region (MPER) that connects the human immunodeficiency virus type 1 (HIV-1) envelope gp41 ectodomain with the transmembrane anchor. By adopting different conformations that stably insert into the virion external membrane interface, such as helical structures, a conserved aromatic-rich sequence within the MPER is thought to participate in HIV-1-cell fusion. Recent experimental evidence suggests that the neutralizing activity of 2F5 and 4E10 might correlate with the MAbs' capacity to recognize epitopes inserted into the viral membrane, thereby impairing MPER fusogenic activity. To gain new insights into the molecular mechanism underlying viral neutralization by these antibodies, we have compared the capacities of 2F5 and 4E10 to block the membrane-disorganizing activity of MPER peptides inserted into the surface bilayer of solution-diffusing unilamellar vesicles. Both MAbs inhibited leakage of vesicular aqueous contents (membrane permeabilization) and intervesicular lipid mixing (membrane fusion) promoted by MPER-derived peptides. Thus, our data support the idea that antibody binding to a membrane-inserted epitope may interfere with the function of the MPER during gp41-induced fusion. Antibody insertion into a cholesterol-containing, uncharged virion-like membrane is mediated by specific epitope recognition, and moreover, partitioning-coupled folding into a helix reduces the efficiency of 2F5 MAb binding to its epitope in the membrane. We conclude that the capacity to interfere with the membrane activity of conserved MPER sequences is best correlated with the broad neutralization of the 4E10 MAb.
Collapse
|
27
|
The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 2008; 72:54-84, table of contents. [PMID: 18322034 DOI: 10.1128/mmbr.00020-07] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Enormous efforts have been made to produce a protective vaccine against human immunodeficiency virus type 1; there has been little success. However, the identification of broadly neutralizing antibodies against epitopes on the highly conserved membrane-proximal external region (MPER) of the gp41 envelope protein has delineated this region as an attractive vaccine target. Furthermore, emerging structural information on the MPER has provided vaccine designers with new insights for building relevant immunogens. This review describes the current state of the field regarding (i) the structure and function of the gp41 MPER; (ii) the structure and binding mechanisms of the broadly neutralizing antibodies 2F5, 4E10, and Z13; and (iii) the development of an MPER-targeting vaccine. In addition, emerging approaches to vaccine design are presented.
Collapse
|
28
|
Abstract
Biologists often claim that they follow a rational design strategy when their research is based on molecular knowledge of biological systems. This claim implies that their knowledge of the innumerable causal connections present in biological systems is sufficient to allow them to deduce and predict the outcome of their experimental interventions. The design metaphor is shown to originate in human intentionality and in the anthropomorphic fallacy of interpreting objects, events, and the behavior of all living organisms in terms of goals and purposes. Instead of presenting rational design as an effective research strategy, it would be preferable to acknowledge that advances in biomedicine are nearly always derived from empirical observations based on trial and error experimentation. The claim that rational design is an effective research strategy was tested in the case of current attempts to develop synthetic vaccines, in particular against human immunodeficiency virus. It was concluded that in this field of biomedicine, trial and error experimentation is more likely to succeed than a rational design approach. Current developments in systems biology may give us eventually a better understanding of the immune system and this may enable us in the future to develop improved vaccines.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- Ecole Supérieure de Biotechnologie de Strasbourg, Centre de la Recherche Scientifique, Illkirch, France.
| |
Collapse
|
29
|
Lorizate M, de la Arada I, Huarte N, Sánchez-Martínez S, de la Torre BG, Andreu D, Arrondo JLR, Nieva JL. Structural Analysis and Assembly of the HIV-1 Gp41 Amino-Terminal Fusion Peptide and the Pretransmembrane Amphipathic-At-Interface Sequence. Biochemistry 2006; 45:14337-46. [PMID: 17128972 DOI: 10.1021/bi0612521] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amino-terminal region within the HIV-1 gp41 aromatic-rich pretransmembrane domain is an amphipathic-at-interface sequence (AIS). AIS is highly conserved between different viral strains and isolates and recognized by the broadly neutralizing 2F5 antibody. The atomic structure of the native Fab2F5-bound AIS appears to involve a nonhelical extended region and a beta-turn structure. We previously described how an immunogenic complex forms, based on the stereospecific interactions between AIS and the gp41 amino-terminal fusion peptide (FP). Here, we have analyzed the structure generated by these interactions using synthetic hybrids containing AIS and FP sequences connected through flexible tethers. The monoclonal 2F5 antibody recognized FP-AIS hybrid sequences with an apparently higher affinity than the linear AIS. Indeed, these hybrids exhibited a weaker capacity to destabilize membranes than FP alone. A combined structural analysis, including circular dichroism, infrared spectroscopy, and two-dimensional infrared correlation spectroscopy, revealed the existence of specific conformations in FP-AIS hybrids, predominantly involving beta-turns. Thermal denaturation studies indicated that FP stabilizes the nonhelical folded AIS structure. We propose that the assembly of the FP-AIS complex may act as a kinetic trap in halting the capacity of FP to promote fusion.
Collapse
Affiliation(s)
- Maier Lorizate
- Biophysics Unit (CSIC-UPV/EHU) and Biochemistry Department, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Platis D, Labrou NE. Development of an aqueous two-phase partitioning system for fractionating therapeutic proteins from tobacco extract. J Chromatogr A 2006; 1128:114-24. [PMID: 16828788 DOI: 10.1016/j.chroma.2006.06.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/08/2006] [Accepted: 06/14/2006] [Indexed: 12/01/2022]
Abstract
In the present study, an aqueous two-phase partitioning system (ATPS) was developed and evaluated as an initial fractionation step for therapeutic antibodies and enzymes from tobacco extracts. A detailed study has been performed to analyze the effect of pH, ionic composition of the system, types of polymers and their molecular weight and concentration, on the partitioning behavior of tobacco proteins and human anti-human immunodeficiency virus (HIV) monoclonal antibody 2F5 (mAb 2F5). A polyethyleneglycol/phosphate (PEG/Pi) aqueous two-phase system composed of 12% (w/w) PEG 1500 and 13% (w/w) phosphate buffer, pH 5, was selected as the system with the highest selectivity of antibody over native tobacco proteins. Under selected conditions, sufficient purification (3-4-fold) with high recovery at the bottom phase (approximately 95%) was achieved for mAb 2F5. In addition, the system allows removal of plant-derived compounds, such as phenolics and toxic alkaloids. The antibody fraction may be directly applied to a Protein A affinity column without any further pre-treatment, thus allowing homogenous antibody preparation. Analysis of the purified antibody fraction by enzyme-linked immunosorbent assay (ELISA) and western blot showed that the antibody was fully active and free of degraded variants or modified forms. The efficacy of the system was further demonstrated using additional proteins and enzymes of therapeutic importance, such as neuraminidase (NA) from influenza virus and human anti-HIV monoclonal antibody 2G12 (mAb 2G12), and showed that the system may find wide applicability as an economic extraction strategy for the initial fractionation of biopharmaceuticals from transgenic tobacco plants.
Collapse
Affiliation(s)
- Dimitris Platis
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos, GR 118 55 Athens, Greece
| | | |
Collapse
|
31
|
Platis D, Sotriffer CA, Clonis Y, Labrou NE. Lock-and-key motif as a concept for designing affinity adsorbents for protein purification. J Chromatogr A 2006; 1128:138-51. [PMID: 16860333 DOI: 10.1016/j.chroma.2006.06.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The lock-and-key (LAK) motif, a common structural moiety found in subunit interfaces of glutathione S-transferases (GSTs), plays an important role in biomolecular recognition and quaternary structure integrity. Inspection of the key structural features of the LAK motif prompted the de novo design and combinatorial synthesis of a 13-membered solid-phase ligand library, employing as a lead ligand the Phe-Trz-X structure, mimicking the LAK motif. 1,3,5-Triazine (Trz) was used as the scaffold for assembly, substituted with different LAK-mimetic amino acids. De novo ligand design was effected using bioinformatics and molecular modeling and based on mimicking the interactions of the LAK motif. The library of affinity adsorbents was assessed for binding corn and human serum proteomes and purified proteins of different structure and ligand binding specificity. The results showed remarkable differences in the binding specificity of LAK-mimetic adsorbents for a wide range of proteins, as a consequence of minor changes in ligand structure. One LAK-mimetic adsorbent was integrated in a single-step purification protocol for human monoclonal anti-human immunodeficiency virus 2F5 antibody (mAb 2F5) from spiked corn extract, affording high recovery and purity. The results demonstrate that the principle of natural recognition found in the lock-and-key motif, in combination with de novo combinatorial design, may lead to synthetic affinity ligands, useful in downstream processing and proteomic research.
Collapse
Affiliation(s)
- Dimitris Platis
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece
| | | | | | | |
Collapse
|
32
|
Yuste E, Sanford HB, Carmody J, Bixby J, Little S, Zwick MB, Greenough T, Burton DR, Richman DD, Desrosiers RC, Johnson WE. Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (HIV-1)-specific epitopes: replication, neutralization, and survey of HIV-1-positive plasma. J Virol 2006; 80:3030-41. [PMID: 16501112 PMCID: PMC1395451 DOI: 10.1128/jvi.80.6.3030-3041.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.
Collapse
Affiliation(s)
- Eloisa Yuste
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical Scool, One Pine Hill Drive, Box 9102, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ou W, Lu N, Yu SS, Silver J. Effect of epitope position on neutralization by anti-human immunodeficiency virus monoclonal antibody 2F5. J Virol 2006; 80:2539-47. [PMID: 16474160 PMCID: PMC1395390 DOI: 10.1128/jvi.80.5.2539-2547.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-proximal region of the human immunodeficiency virus type 1 (HIV-1) transmembrane protein (TM) is critical for envelope (Env)-mediated membrane fusion and contains the target for broadly reactive neutralizing antibody 2F5. It has been proposed that 2F5 neutralization might involve interaction of its long, hydrophobic, complementarity-determining region (CDR) H3, with adjacent viral membrane. Using Moloney murine leukemia virus (MLV) as a tool, we examined the effect of epitope position on 2F5 neutralization. When the 2F5 epitope was inserted in the proline-rich region of MLV Env surface protein (SU), 2F5 blocked cell fusion and virus infection, whereas MLV with a hemagglutinin (HA) epitope at the same position was not neutralized by anti-HA, even though the antibodies bound their respective Envs on the surface of infected cells and viruses equally well. When the 2F5 epitope was inserted in the MLV Env TM at a position comparable to its natural position in HIV-1 TM, 2F5 antibody blocked Env-mediated cell fusion. Epitope position had subtle effects on neutralization by 2F5: the antibody concentration for 50% inhibition of cell fusion was more than 10-fold lower when the 2F5 epitope was in SU than in TM, and inhibition was less complete at high concentrations of antibody; we discuss possible explanations for these effects of epitope position. Since membrane proximity was not required for neutralization by 2F5 antibody, we speculate that the CDR H3 of 2F5 contributes to neutralization by destabilizing an adjacent protein rather than by inserting into an adjacent membrane.
Collapse
Affiliation(s)
- Wu Ou
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 336, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Tian Y, Sohar I, Taylor JW, Lobel P. Determination of the Substrate Specificity of Tripeptidyl-peptidase I Using Combinatorial Peptide Libraries and Development of Improved Fluorogenic Substrates. J Biol Chem 2006; 281:6559-72. [PMID: 16339154 DOI: 10.1074/jbc.m507336200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical late-infantile neuronal ceroid lipofuscinosis is a fatal neurodegenerative disease caused by mutations in CLN2, the gene encoding the lysosomal protease tripeptidyl-peptidase I (TPP I). The natural substrates for TPP I and the pathophysiological processes associated with lysosomal storage and disease progression are not well understood. Detailed characterization of TPP I substrate specificity should provide insights into these issues and also aid in the development of improved clinical and biochemical assays. To this end, we constructed fluorogenic and standard combinatorial peptide libraries and analyzed them using fluorescence and mass spectrometry-based activity assays. The fluorogenic group 7-amino-4-carbamoylmethylcoumarin was incorporated into a series of 7-amino-4-carbamoylmethylcoumarin tripeptide libraries using a design strategy that allowed systematic evaluation of the P1, P2, and P3 positions. TPP I digestion of these substrates liberates the fluorescence group and results in a large increase in fluorescence that can be used to calculate kinetic parameters and to derive the substrate specificity constant kcat/KM. In addition, we implemented a mass spectrometry-based assay to measure the hydrolysis of individual peptides in peptide pools and thus expand the scope of the analysis. Nonfluorogenic tetrapeptide and pentapeptide libraries were synthesized and analyzed to evaluate P1' and P2' residues. Together, this analysis allowed us to predict the relative specificity of TPP I toward a wide range of potential biological substrates. In addition, we evaluated a variety of new fluorogenic peptides with a P3 Arg residue, and we demonstrated their superiority compared with the widely used substrate Ala-Ala-Phe-AMC for selectively measuring TPP I activity in biological specimens.
Collapse
Affiliation(s)
- Yu Tian
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
35
|
Decker JM, Bibollet-Ruche F, Wei X, Wang S, Levy DN, Wang W, Delaporte E, Peeters M, Derdeyn CA, Allen S, Hunter E, Saag MS, Hoxie JA, Hahn BH, Kwong PD, Robinson JE, Shaw GM. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. ACTA ACUST UNITED AC 2005; 201:1407-19. [PMID: 15867093 PMCID: PMC2213183 DOI: 10.1084/jem.20042510] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunogenic, broadly reactive epitopes of the HIV-1 envelope glycoprotein could serve as important targets of the adaptive humoral immune response in natural infection and, potentially, as components of an acquired immune deficiency syndrome vaccine. However, variability in exposed epitopes and a combination of highly effective envelope-cloaking strategies have made the identification of such epitopes problematic. Here, we show that the chemokine coreceptor binding site of HIV-1 from clade A, B, C, D, F, G, and H and circulating recombinant form (CRF)01, CRF02, and CRF11, elicits high titers of CD4-induced (CD4i) antibody during natural human infection and that these antibodies bind and neutralize viruses as divergent as HIV-2 in the presence of soluble CD4 (sCD4). 178 out of 189 (94%) HIV-1–infected patients had CD4i antibodies that neutralized sCD4-pretreated HIV-2 in titers (50% inhibitory concentration) as high as 1:143,000. CD4i monoclonal antibodies elicited by HIV-1 infection also neutralized HIV-2 pretreated with sCD4, and polyclonal antibodies from HIV-1–infected humans competed specifically with such monoclonal antibodies for binding. In vivo, variants of HIV-1 with spontaneously exposed coreceptor binding surfaces were detected in human plasma; these viruses were neutralized directly by CD4i antibodies. Despite remarkable evolutionary diversity among primate lentiviruses, functional constraints on receptor binding create opportunities for broad humoral immune recognition, which in turn serves to constrain the viral quasispecies.
Collapse
Affiliation(s)
- Julie M Decker
- Howard Hughes Institute, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Vaccine 2005; 23:1559-73. [PMID: 15694508 DOI: 10.1016/j.vaccine.2004.09.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/21/2004] [Accepted: 09/24/2004] [Indexed: 11/25/2022]
Abstract
2F5 is one of the few broadly neutralizing monoclonal antibodies against type 1 Human Immunodeficiency Virus (HIV-1). It recognizes the amino acid sequence ELDKWAS in gp41. We have previously identified a number of immunotargeting 2F5-reactive candidate immunogens. Three of them (designated H-BT1-3) have the ELDKWAS sequence constrained at beta-turn sites within the immunoglobulin heavy chain. Two others (L-CT and L-CTx3) have the sequence attached at the C-terminus of the immunoglobulin light chain with minimal conformational constraints. In the present investigation, the H-BTs were found to bind 2F5 with up to 10-fold higher affinities than their unconstrained counterpart. When used as immunogens, immunogen-specific antibodies were induced with or without adjuvant, confirming the immunotargeting potential of these immunogen constructs. While HIV-1 gp160 cross-reactive antibodies were induced, virus neutralization was not detected. Thus, factors other than 2F5 binding affinity may have a critical role to play in the design of a 2F5-based vaccine.
Collapse
Affiliation(s)
- Jason Ho
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
37
|
Shepherd NE, Hoang HN, Abbenante G, Fairlie DP. Single turn peptide alpha helices with exceptional stability in water. J Am Chem Soc 2005; 127:2974-83. [PMID: 15740134 DOI: 10.1021/ja0456003] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cyclic pentapeptides are not known to exist in alpha-helical conformations. CD and NMR spectra show that specific 20-membered cyclic pentapeptides, Ac-(cyclo-1,5) [KxxxD]-NH(2) and Ac-(cyclo-2,6)-R[KxxxD]-NH(2), are highly alpha-helical structures in water and independent of concentration, TFE, denaturants, and proteases. These are the smallest alpha-helical peptides in water.
Collapse
Affiliation(s)
- Nicholas E Shepherd
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
38
|
Zwick MB, Jensen R, Church S, Wang M, Stiegler G, Kunert R, Katinger H, Burton DR. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J Virol 2005; 79:1252-61. [PMID: 15613352 PMCID: PMC538539 DOI: 10.1128/jvi.79.2.1252-1261.2005] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conserved membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 is a target of two broadly neutralizing human monoclonal antibodies, 2F5 and 4E10, and is an important lead for vaccine design. However, immunogens that bear MPER epitopes so far have not elicited neutralizing antibodies in laboratory animals. One explanation is that the immunogens fail to recreate the proper molecular environment in which the epitopes of 2F5 and 4E10 are presented on the virus. To explore this molecular environment, we used alanine-scanning mutagenesis across residues 660 to 680 in the MPER of a pseudotyped variant of HIV-1(JR-FL), designated HIV-1(JR2), and examined the ability of 2F5 and 4E10 to neutralize the Ala mutant viruses. The results show that the only changes to produce neutralization resistance to 2F5 occurred in residue D, K, or W of the core epitope (LELDKWANL). Likewise, 4E10 resistance arose by replacing one of three residues; two (W and F) were in the core epitope, and one (W) was seven residues C-terminal to these two (NWFDISNWLW). Importantly, no single substitution resulted in resistance of virus to both 2F5 and 4E10. Surprisingly, 8 out of 21 MPER Ala mutants were more sensitive than the parental pseudovirus to 2F5 and/or 4E10. At most, only small differences in neutralization sensitivity to anti-gp120 monoclonal antibody b12 and peptide T20 were observed with the MPER Ala mutant pseudoviruses. These data suggest that MPER substitutions can act locally and enhance the neutralizing activity of antibodies to this region and imply a distinct role of the MPER of gp41 during HIV-1 envelope-mediated fusion. Neutralization experiments showing synergy between and T20 and 4E10 against HIV-1 are also presented. The data presented may aid in the design of antigens that better present the MPER of gp41 to the immune system.
Collapse
Affiliation(s)
- Michael B Zwick
- Department of Immunology (IMM-2), The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol 2004; 78:10724-37. [PMID: 15367639 PMCID: PMC516390 DOI: 10.1128/jvi.78.19.10724-10737.2004] [Citation(s) in RCA: 392] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-proximal region of the ectodomain of the gp41 envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) is the target of three of the five broadly neutralizing anti-HIV-1 antibodies thus far isolated. We have determined crystal structures of the antigen-binding fragment for one of these antibodies, 2F5, in complex with 7-mer, 11-mer, and 17-mer peptides of the gp41 membrane-proximal region, at 2.0-, 2.1-, and 2.2-A resolutions, respectively. The structures reveal an extended gp41 conformation, which stretches over 30 A in length. Contacts are made with five complementarity-determining regions of the antibody as well as with nonpolymorphic regions. Only one exclusive charged face of the gp41 epitope is bound by 2F5, while the nonbound face, which is hydrophobic, may be hidden due to occlusion by other portions of the ectodomain. The structures reveal that the 2F5 antibody is uniquely built to bind to an epitope that is proximal to a membrane surface and in a manner mostly unaffected by large-scale steric hindrance. Biochemical studies with proteoliposomes confirm the importance of lipid membrane and hydrophobic context in the binding of 2F5 as well as in the binding of 4E10, another broadly neutralizing antibody that recognizes the membrane-proximal region of gp41. Based on these structural and biochemical results, immunization strategies for eliciting 2F5- and 4E10-like broadly neutralizing anti-HIV-1 antibodies are proposed.
Collapse
Affiliation(s)
- Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Instiutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Menendez A, Chow KC, Pan OCC, Scott JK. Human immunodeficiency virus type 1-neutralizing monoclonal antibody 2F5 is multispecific for sequences flanking the DKW core epitope. J Mol Biol 2004; 338:311-27. [PMID: 15066434 DOI: 10.1016/j.jmb.2004.02.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/13/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Human monoclonal antibody 2F5 is one of a few human antibodies that neutralize a broad range of HIV-1 primary isolates. The 2F5 epitope on gp41 includes the sequence ELDKWA, with the core residues, DKW, being critical for antibody binding. HIV-neutralizing antibodies have never been elicited by immunization with peptides bearing ELDKWA, suggesting that important part(s) of the 2F5 paratope remain unidentified. The use of longer peptides extending beyond ELDKWA has resulted in increased epitope antigenicity, but neutralizing antibodies have not been generated. We sought to develop peptides that bind to 2F5, and that function as specific probes of the 2F5 paratope. Thus, we used 2F5 to screen a set of phage-displayed, random peptide libraries. Tight-binding clones from the random peptide libraries displayed sequence variability in the regions flanking the DKW motif. To further reveal flanking regions involved in 2F5 binding, two semi-defined libraries were constructed having 12 variegated residues either N-terminal or C-terminal to the DKW core (X(12)-AADKW and AADKW-X(12), respectively). Three clones isolated from the AADKW-X(12) library had similar high affinities, despite a lack of sequence homology among them, or with gp41. The contribution of each residue of these clones to 2F5 binding was evaluated by Ala substitution and amino acid deletion studies, and revealed that each clone bound 2F5 by a different mechanism. These results suggest that the 2F5 paratope is formed by at least two functionally distinct regions: one that displays specificity for the DKW core epitope, and another that is multispecific for sequences C-terminal to the core epitope. The implications of this second, multispecific region of the 2F5 paratope for its unique biological function are discussed.
Collapse
Affiliation(s)
- Alfredo Menendez
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
41
|
Zwick MB, Komori HK, Stanfield RL, Church S, Wang M, Parren PWHI, Kunert R, Katinger H, Wilson IA, Burton DR. The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5. J Virol 2004; 78:3155-61. [PMID: 14990736 PMCID: PMC353725 DOI: 10.1128/jvi.78.6.3155-3161.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The human monoclonal antibody 2F5 neutralizes primary human immunodeficiency virus type 1 (HIV-1) with rare breadth and potency. A crystal structure of a complex of 2F5 and a peptide corresponding to its core epitope on gp41, ELDKWAS, revealed that the peptide interacts with residues at the base of the unusually long (22-residue) third complementarity-determining region of the heavy chain (CDR H3) but not the apex. Here, we perform alanine-scanning mutagenesis across CDR H3 and make additional substitutions of selected residues to map the paratope of Fab 2F5. Substitution of residues from the base of the H3 loop or from CDRs H1, H2, and L3, which are proximal to the peptide, significantly diminished the affinity of Fab 2F5 for gp41 and a short peptide containing the 2F5 core motif. However, nonconservative substitutions to a phenylalanine residue at the apex of the H3 loop also markedly decreased 2F5 binding to both gp41 and the peptide, suggesting that recognition of the core epitope is crucially dependent on features at the apex of the H3 loop. Furthermore, substitution at the apex of the H3 loop had an even more pronounced effect on the neutralizing activity of 2F5 against three sensitive HIV-1. These observations present a challenge to vaccine strategies based on peptide mimics of the linear epitope.
Collapse
Affiliation(s)
- Michael B Zwick
- Department of Immunology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Side-chain lactam bridges linking amino acid residues that are spaced several residues apart in the linear sequence offer a convenient and flexible method for introducing conformational constraints into a peptide structure. The availability of a variety of selectively cleavable protecting groups for amines and carboxylic acids allows for several approaches to the synthesis of monocyclic, dicyclic, and bicyclic lactam-bridged peptides by solid-phase methods. Multicyclic structures are also accessible, but segment-condensation syntheses with solution-phase cyclizations are most likely to provide the best synthetic approach to these more complex constrained peptides. Lactam bridges linking (i, i + 3)-, (i, i + 4), and (i, i + 7)-spaced residue pairs have all proven useful for stabilization of alpha helices, and (i, i + 3)-linked residues have also been demonstrated to stabilize beta-turns. These structures are finding an increasing number of applications in protein biology, including studies of protein folding, protein aggregation, peptide ligand-receptor recognition, and the development of more potent peptide therapeutics. Defining the functional roles of the amphiphilic alpha-helices in medium-sized peptide hormones, and studying helix propagation from rigid, alpha-helix initiating bicyclic peptides are among the most exciting developments currently underway in this field.
Collapse
Affiliation(s)
- John W Taylor
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
43
|
Barbato G, Bianchi E, Ingallinella P, Hurni WH, Miller MD, Ciliberto G, Cortese R, Bazzo R, Shiver JW, Pessi A. Structural analysis of the epitope of the anti-HIV antibody 2F5 sheds light into its mechanism of neutralization and HIV fusion. J Mol Biol 2003; 330:1101-15. [PMID: 12860131 DOI: 10.1016/s0022-2836(03)00611-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inhibition of human immunodeficiency virus (HIV) fusion with the host cell has emerged as a viable therapeutic strategy, and rational design of inhibitors and vaccines, interfering with this process, is a prime target for antiviral research. To advance our knowledge of the structural biology of HIV fusion, we have studied the membrane-proximal region of the fusogenic envelope subunit gp41, which includes the epitope ELDKWA of the broadly neutralizing human antibody 2F5. The structural evidence available for this region is contradictory, with some studies suggesting an overall helical conformation, while the X-ray structure of the ELDKWAS peptide bound to the antibody shows it folded in a type I beta turn. We used a two-step strategy: Firstly, by a competition binding assay, we identified the proper boundaries of the domain recognized by 2F5, which we found considerably larger than the ELDKWAS hexapeptide. Secondly, we studied the structure of the resulting 13 amino acid residue peptide by collecting NMR data and analyzing them by our previously developed statistical method (NAMFIS). Our study revealed that the increase in binding affinity goes in parallel with stabilization of specific local and global conformational propensities, absent from the shorter epitope. When compounded with the available biological evidence, our structural analysis allows us to propose a specific role for the membrane-proximal region during HIV fusion, in terms of a conformational transition between the turn and the helical structure. At the same time, our hypothesis offers a structural explanation for the mechanism of neutralization of mAb 2F5.
Collapse
Affiliation(s)
- Gaetano Barbato
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McGaughey GB, Citron M, Danzeisen RC, Freidinger RM, Garsky VM, Hurni WM, Joyce JG, Liang X, Miller M, Shiver J, Bogusky MJ. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb. Biochemistry 2003; 42:3214-23. [PMID: 12641452 DOI: 10.1021/bi026952u] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human immunodeficiency virus type I (HIV-1) transmembrane glycoprotein gp41 mediates viral entry through fusion of the target cellular and viral membranes. A segment of gp41 containing the sequence Glu-Leu-Asp-Lys-Trp-Ala has previously been identified as the epitope of the HIV-1 neutralizing human monoclonal antibody 2F5 (MAb 2F5). The 2F5 epitope is highly conserved among HIV-1 envelope glycoproteins. Antibodies directed at the 2F5 epitope have neutralizing effects on a broad range of laboratory-adapted HIV-1 variants and primary isolates. Recently, a crystal structure of the epitope bound to the Fab fragment of MAb 2F5 has shown that the 2F5 peptide adopts a beta-turn conformation [Pai, E. F., Klein, M. H., Chong, P., and Pedyczak, A. (2000) World Intellectual Property Organization Patent WO-00/61618]. We have designed cyclic peptides to adopt beta-turn conformations by the incorporation of a side-chain to side-chain lactam bridge between the i and i + 4 residues containing the Asp-Lys-Trp segment. Synthesis of extended, nonconstrained peptides encompassing the 2F5 epitope revealed that the 13 amino acid sequence, Glu-Leu-Leu-Glu-Leu-Asp-Lys-Trp-Ala-Ser-Leu-Trp-Asn, maximized MAb 2F5 binding. Constrained analogues of this sequence were explored to optimize 2F5 binding affinity. The solution conformations of the constrained peptides have been characterized by NMR spectroscopy and molecular modeling techniques. The results presented here demonstrate that both inclusion of the lactam constraint and extension of the 2F5 segment are necessary to elicit optimal antibody binding activity. The ability of these peptide immunogens to stimulate a high titer, peptide-specific immune response incapable of viral neutralization is discussed in regard to developing an HIV-1 vaccine designed to elicit a 2F5-like immune response.
Collapse
Affiliation(s)
- G B McGaughey
- Department of Molecular Systems, Merck Research Laboratories, P.O. Box 4, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|