1
|
Shi X, Zhang Y, Chen S, Du X, Zhang P, Duan X, Fang H, Liu S. Differential gene expression and immune cell infiltration in maedi-visna virus-infected lung tissues. BMC Genomics 2024; 25:534. [PMID: 38816794 PMCID: PMC11141007 DOI: 10.1186/s12864-024-10448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Maedi-visna virus (MVV) is a lentivirus that infects monocyte/macrophage lineage cells in sheep, goats, and wild ruminants and causes pneumonia, mastitis, arthritis, and encephalitis. The immune response to MVV infection is complex, and a complete understanding of its infection and pathogenesis is lacking. This study investigated the in vivo transcriptomic patterns of lung tissues in sheep exposed to MVV using the RNA sequencing technology. RESULT The results indicated that 2,739 genes were significantly differentially expressed, with 1,643 downregulated genes and 1,096 upregulated genes. Many variables that could be unique to MVV infections were discovered. Gene Ontology analysis revealed that a significant proportion of genes was enriched in terms directly related to the immune system and biological responses to viral infections. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most enriched pathways were related to virus-host cell interactions and inflammatory responses. Numerous immune-related genes, including those encoding several cytokines and interferon regulatory factors, were identified in the protein-protein interaction network of differentially expressed genes (DEGs). The expression of DEGs was evaluated using real-time polymerase chain reaction and western blot analysis. CXCL13, CXCL6, CXCL11, CCR1, CXCL8, CXCL9, CXCL10, TNFSF8, TNFRSF8, IL7R, IFN-γ, CCL2, and MMP9 were upregulated. Immunohistochemical analysis was performed to identify the types of immune cells that infiltrated MVV-infected tissues. B cells, CD4+ and CD8+ T cells, and macrophages were the most prevalent immune cells correlated with MVV infection in the lungs. CONCLUSION Overall, the findings of this study provide a comprehensive understanding of the in vivo host response to MVV infection and offer new perspectives on the gene regulatory networks that underlie pathogenesis in natural hosts.
Collapse
Affiliation(s)
- Xiaona Shi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Sixu Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Xiaoyue Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Pei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Xujie Duan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Hui Fang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, 010018, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, China.
| |
Collapse
|
2
|
Costa-Tuna A, Chaves OA, Almeida ZL, Cunha RS, Pina J, Serpa C. Profiling the Interaction between Human Serum Albumin and Clinically Relevant HIV Reverse Transcriptase Inhibitors. Viruses 2024; 16:491. [PMID: 38675834 PMCID: PMC11054712 DOI: 10.3390/v16040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Tenofovir (TFV) is the active form of the prodrugs tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), both clinically prescribed as HIV reverse transcriptase inhibitors. The biophysical interactions between these compounds and human serum albumin (HSA), the primary carrier of exogenous compounds in the human bloodstream, have not yet been thoroughly characterized. Thus, the present study reports the interaction profile between HSA and TFV, TDF, and TAF via UV-Vis, steady-state, and time-resolved fluorescence techniques combined with isothermal titration calorimetry (ITC) and in silico calculations. A spontaneous interaction in the ground state, which does not perturb the microenvironment close to the Trp-214 residue, is classified as weak. In the case of HSA/TFV and HSA/TDF, the binding is both enthalpically and entropically driven, while for HSA/TAF, the binding is only entropically dominated. The binding constant (Ka) and thermodynamic parameters obtained via ITC assays agree with those obtained using steady-state fluorescence quenching measurements, reinforcing the reliability of the data. The small internal cavity known as site I is probably the main binding pocket for TFV due to the low steric volume of the drug. In contrast, most external sites (II and III) can better accommodate TAF due to the high steric volume of this prodrug. The cross-docking approach corroborated experimental drug-displacement assays, indicating that the binding affinity of TFV and TAF might be impacted by the presence of different compounds bound to albumin. Overall, the weak binding capacity of albumin to TFV, TDF, and TAF is one of the main factors for the low residence time of these antiretrovirals in the human bloodstream; however, positive cooperativity for TAF and TDF was detected in the presence of some drugs, which might improve their residence time (pharmacokinetic profile).
Collapse
Affiliation(s)
- Andreia Costa-Tuna
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - Otávio A. Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil
| | - Zaida L. Almeida
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - Rita S. Cunha
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - João Pina
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| |
Collapse
|
3
|
Min AK, Javidfar B, Missall R, Doanman D, Durens M, Graziani M, Mordelt A, Marro SG, de Witte L, Chen BK, Swartz TH, Akbarian S. HIV-1 infection of genetically engineered iPSC-derived central nervous system-engrafted microglia in a humanized mouse model. J Virol 2023; 97:e0159523. [PMID: 38032195 PMCID: PMC10734545 DOI: 10.1128/jvi.01595-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.
Collapse
Affiliation(s)
- Alice K. Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Behnam Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald Doanman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madel Durens
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Annika Mordelt
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, the Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Samuele G. Marro
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lotje de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, the Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Guo Y, Li Z, Dong S, Si X, Ta N, Liang H, Xu L. Multiple infections of zoonotic pathogens in wild Brandt's voles (Lasiopodomys brandtii). Vet Med Sci 2023; 9:2201-2211. [PMID: 37491010 PMCID: PMC10508490 DOI: 10.1002/vms3.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/03/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The frequent interactions of rodents with humans make them a common source of zoonotic infections. Brandt's vole is the dominant rodent species of the typical steppe in Inner Mongolia, and it is also an important pest in grassland. OBJECTIVES To obtain an initial unbiased measure of the microbial diversity and abundance in the blood and intestinal tracts and to detect the pathogens carried by wild Brandt's voles in Hulun Buir, Inner Mongolia. METHODS Twenty wild adult Brandt's voles were trapped using live cages, and 12 intestinal samples were collected for metagenomic analysis and 8 blood samples were collected for meta-transcriptomic analysis. We compared the sequencing data with pathogenic microbiota databases to analyse the phylogenetic characteristics of zoonotic pathogens carried by wild voles. RESULTS A total of 122 phyla, 79 classes, 168 orders, 382 families and 1693 genera of bacteria and a total of 32 families of DNA and RNA viruses in Brandt's voles were characterized. We found that each sample carried more than 10 pathogens, whereas some pathogens that were low in abundance were still at risk of transmission to humans. CONCLUSION This study improves our understanding of the viral and bacterial diversity in wild Brandt's voles and highlights the multiple viral and bacterial pathogens carried by this rodent. These findings may serve as a basis for developing strategies targeting rodent population control in Hulun Buir and provide a better approach to the surveillance of pathogenic microorganisms in wildlife.
Collapse
Affiliation(s)
- Yongman Guo
- Vanke School of Public HealthTsinghua UniversityBeijingChina
- Institute for Healthy ChinaTsinghua UniversityBeijingChina
| | - Zhengrun Li
- Vanke School of Public HealthTsinghua UniversityBeijingChina
- Institute for Healthy ChinaTsinghua UniversityBeijingChina
| | - Shike Dong
- Vanke School of Public HealthTsinghua UniversityBeijingChina
- Institute for Healthy ChinaTsinghua UniversityBeijingChina
| | - Xiaoyan Si
- Inner Mongolia Autonomous Region Center for Disease Control and PreventionHohhotChina
| | - Na Ta
- Inner Mongolia Autonomous Region Center for Disease Control and PreventionHohhotChina
| | - Hanwei Liang
- Vanke School of Public HealthTsinghua UniversityBeijingChina
- Institute for Healthy ChinaTsinghua UniversityBeijingChina
| | - Lei Xu
- Vanke School of Public HealthTsinghua UniversityBeijingChina
- Institute for Healthy ChinaTsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Dutta D, Liu J, Xiong H. The Impact of COVID-19 on People Living with HIV-1 and HIV-1-Associated Neurological Complications. Viruses 2023; 15:1117. [PMID: 37243203 PMCID: PMC10223371 DOI: 10.3390/v15051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of the coronavirus disease 2019 (COVID-19) pandemic, a fatal respiratory illness. The associated risk factors for COVID-19 are old age and medical comorbidities. In the current combined antiretroviral therapy (cART) era, a significant portion of people living with HIV-1 (PLWH) with controlled viremia is older and with comorbidities, making these people vulnerable to SARS-CoV-2 infection and COVID-19-associated severe outcomes. Additionally, SARS-CoV-2 is neurotropic and causes neurological complications, resulting in a health burden and an adverse impact on PLWH and exacerbating HIV-1-associated neurocognitive disorder (HAND). The impact of SARS-CoV-2 infection and COVID-19 severity on neuroinflammation, the development of HAND and preexisting HAND is poorly explored. In the present review, we compiled the current knowledge of differences and similarities between SARS-CoV-2 and HIV-1, the conditions of the SARS-CoV-2/COVID-19 and HIV-1/AIDS syndemic and their impact on the central nervous system (CNS). Risk factors of COVID-19 on PLWH and neurological manifestations, inflammatory mechanisms leading to the neurological syndrome, the development of HAND, and its influence on preexisting HAND are also discussed. Finally, we have reviewed the challenges of the present syndemic on the world population, with a particular emphasis on PLWH.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
6
|
Min AK, Javidfar B, Missall R, Doanman D, Durens M, Vil SS, Masih Z, Graziani M, Mordelt A, Marro S, de Witte L, Chen BK, Swartz TH, Akbarian S. HIV-1 infection of genetically engineered iPSC-derived central nervous system-engrafted microglia in a humanized mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538461. [PMID: 37162838 PMCID: PMC10168358 DOI: 10.1101/2023.04.26.538461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The central nervous system (CNS) is a major human immunodeficiency virus type 1 reservoir. Microglia are the primary target cell of HIV-1 infection in the CNS. Current models have not allowed the precise molecular pathways of acute and chronic CNS microglial infection to be tested with in vivo genetic methods. Here, we describe a novel humanized mouse model utilizing human-induced pluripotent stem cell-derived microglia to xenograft into murine hosts. These mice are additionally engrafted with human peripheral blood mononuclear cells that served as a medium to establish a peripheral infection that then spread to the CNS microglia xenograft, modeling a trans-blood-brain barrier route of acute CNS HIV-1 infection with human target cells. The approach is compatible with iPSC genetic engineering, including inserting targeted transgenic reporter cassettes to track the xenografted human cells, enabling the testing of novel treatment and viral tracking strategies in a comparatively simple and cost-effective way vivo model for neuroHIV.
Collapse
Affiliation(s)
- Alice K. Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Behnam Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald Doanman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madel Durens
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samantha St Vil
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zahra Masih
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Annika Mordelt
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Samuele Marro
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lotje de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboud UMC, Nijmegen, Netherlands
- Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Soler Y, Rodriguez M, Austin D, Gineste C, Gelber C, El-Hage N. SERPIN-Derived Small Peptide (SP16) as a Potential Therapeutic Agent against HIV-Induced Inflammatory Molecules and Viral Replication in Cells of the Central Nervous System. Cells 2023; 12:cells12040632. [PMID: 36831299 PMCID: PMC9954444 DOI: 10.3390/cells12040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
Despite the success of combined antiretroviral therapy (cART) increasing the survival rate in human immunodeficiency virus (HIV) patients, low levels of viremia persist in the brain of patients leading to glia (microglia and astrocytes)-induced neuroinflammation and consequently, the reactivation of HIV and neuronal injury. Here, we tested the therapeutic efficacy of a Low-Density Lipoprotein Receptor-Related Protein 1 (LRP-1) agonistic small peptide drug (SP16) in attenuating HIV replication and the secretion of inflammatory molecules in brain reservoirs. SP16 was developed by Serpin Pharma and is derived from the pentapeptide sequence of the serine protease inhibitor alpha-1-antitrypsin (A1AT). The SP16 peptide sequence was subsequently modified to improve the stability, bioavailability, efficacy, and binding to LRP-1; a scavenger regulatory receptor that internalizes ligands to induce anti-viral, anti-inflammatory, and pro-survival signals. Using glial cells infected with HIV, we showed that: (i) SP16 attenuated viral-induced secretion of pro-inflammatory molecules; and (ii) SP16 attenuated viral replication. Using an artificial 3D blood-brain barrier (BBB) system, we showed that: (i) SP16 was transported across the BBB; and (ii) restored the permeability of the BBB compromised by HIV. Mechanistically, we showed that SP16 interaction with LRP-1 and binding lead to: (i) down-regulation in the expression levels of nuclear factor-kappa beta (NF-κB); and (ii) up-regulation in the expression levels of Akt. Using an in vivo mouse model, we showed that SP16 was transported across the BBB after intranasal delivery, while animals infected with EcoHIV undergo a reduction in (i) viral replication and (ii) viral secreted inflammatory molecules, after exposure to SP16 and antiretrovirals. Overall, these studies confirm a therapeutic response of SP16 against HIV-associated inflammatory effects in the brain.
Collapse
Affiliation(s)
- Yemmy Soler
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Dana Austin
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cyrille Gineste
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cohava Gelber
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
8
|
Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Shi R, Jia S, Liu H, Nie H. Clinical grade lentiviral vector purification and quality control requirements. J Sep Sci 2022; 45:2093-2101. [PMID: 35247228 DOI: 10.1002/jssc.202100937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
Lentiviral vectors have been proven to be a powerful tool in gene therapies that includes the ability to perform long-term gene editing in both dividing and non-dividing cells. In order to meet the rising demand of clinical grade lentiviral vectors for future clinical trials and requirements by regulatory agencies, new methods and technologies were developed, including the rapid optimization of production and purification processes. However, gaps still exist in achieving ideal yields and recovery rates in large-scale manufacturing process steps. The downstream purification process is a critical step required to obtain sufficient quantity and high-quality lentiviral vectors products, which is challenged by the low stability of the LV particles and large production volumes associated with the manufacturing process. This review summarizes the most recent and promising technologies and enhancements used in the large-scale purification process step of LV manufacturing and aims to provide a significant contribution towards the achievement of providing sufficient quantity and quality of LVs in scalable processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruina Shi
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Shenghua Jia
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Analytical Instrumental Center, Peking University, Beijing, China
| |
Collapse
|
10
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
11
|
Martínez-Molina E, Chocarro-Wrona C, Martínez-Moreno D, Marchal JA, Boulaiz H. Large-Scale Production of Lentiviral Vectors: Current Perspectives and Challenges. Pharmaceutics 2020; 12:pharmaceutics12111051. [PMID: 33153183 PMCID: PMC7693937 DOI: 10.3390/pharmaceutics12111051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.
Collapse
Affiliation(s)
- Eduardo Martínez-Molina
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Carlos Chocarro-Wrona
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Daniel Martínez-Moreno
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Houria Boulaiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada (D.M.), 18016 Granada, Spain; (E.M.-M.); (C.C.-W.); (D.M.-M.); (J.A.M.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-271
| |
Collapse
|
12
|
Dey J, Alam MT, Chandra S, Gupta J, Ray U, Srivastava AK, Tripathi PP. Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. J Med Virol 2020; 93:1296-1303. [PMID: 32964419 DOI: 10.1002/jmv.26521] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
The recent outbreak of the novel coronavirus, SARS-CoV-2, has emerged to be highly pathogenic in nature. Although lungs are considered as the primary infected organs by SARS-CoV-2, some of the other organs, including the brain, have also been found to be affected. Here, we have discussed how SARS-CoV-2 might infect the brain. The infection of the respiratory center in the brainstem could be hypothesized to be responsible for the respiratory failure in many COVID-19 patients. The virus might gain entry through the olfactory bulb and invade various parts of the brain, including the brainstem. Alternatively, the entry might also occur from peripheral circulation into the central nervous system by compromising the blood-brain barrier. Finally, yet another possible entry route could be its dispersal from the lungs into the vagus nerve via the pulmonary stretch receptors, eventually reaching the brainstem. Therefore, screening neurological symptoms in COVID-19 patients, especially toward the breakdown of the respiratory center in the brainstem, might help us better understand this disease.
Collapse
Affiliation(s)
- Jhilik Dey
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Md T Alam
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India
| | - Sreyashi Chandra
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jalaj Gupta
- Stem Cell Research Centre, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Upasana Ray
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Amit K Srivastava
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Prem P Tripathi
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Abstract
Purpose of Review This review focuses on the pathophysiology of acute HIV infection (AHI) and related central nervous system (CNS) pathology, the clinical characteristics of neurologic complications of AHI, and the implications of the CNS reservoir and viral escape for HIV treatment and cure strategies. Recent Findings Recent studies in newly seroconverted populations show a high prevalence of peripheral neuropathy and cognitive dysfunction in AHI, even though these findings have been classically associated with chronic HIV infection. HIV cure strategies such as the "shock and kill" strategy are currently being studied in vitro and even in small clinical trials, though the CNS as a reservoir for latent HIV poses unique barriers to these treatment strategies. Summary Limited point of care diagnostic testing for AHI and delayed recognition of infection continue to lead to under-recognition and under-reporting of neurologic manifestations of AHI. AHI should be on the differential for a broad range of neurological conditions, from Bell's palsy, peripheral neuropathy, and aseptic meningitis, to more rare manifestations such as ADEM, AIDP, meningo-radiculitis, transverse myelitis, and brachial neuritis. Treatment for these conditions involves early initiation of antiretroviral therapy (ART) and then standard presentation-specific treatments. Current HIV cure strategies under investigation include bone marrow transplant, viral reservoir re-activation and eradication, and genome and epigenetic viral targeting. However, CNS penetration by HIV-1 occurs early on in the disease course with the establishment of the CNS viral reservoir and is an important limiting factor for these therapies.
Collapse
|
14
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Bladowska J, Pawłowski T, Fleischer-Stępniewska K, Knysz B, Małyszczak K, Żelwetro A, Rymer W, Inglot M, Waliszewska-Prosół M, Ejma M, Podgórski P, Zimny A, Sąsiadek M. Interferon-free therapy as the cause of white matter tracts and cerebral perfusion recovery in patients with chronic hepatitis C. J Viral Hepat 2019; 26:635-643. [PMID: 30702208 DOI: 10.1111/jvh.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to assess cerebral microstructural and perfusion changes in patients with chronic hepatitis C virus (HCV) infection before and after interferon-free therapy, using advanced magnetic resonance (MR) techniques. Eleven HCV-positive patients underwent diffusion tensor imaging (DTI) and perfusion-weighted imaging (PWI) using a 1.5T MR unit, before and 24 weeks after completion of interferon-free therapy. DTI fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained from 14 white matter tracts. PWI values of relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) were assessed from 8 areas, including basal ganglia, and cortical and white matter locations. In HCV-positive patients therapy with ombitasvir, paritaprevir boosted with ritonavir and dasabuvir, with or without ribavirin, was scheduled. Cognitive tests were used to assess cognitive function. We found increased FA values after interferon-free therapy compared to values obtained before treatment in HCV patients in almost all white matter tracts. We also observed elevated rCBV values in basal ganglia after therapy. There were significant correlations between improvement in the score of cognitive tests and increased FA values in both inferior fronto-occipital fascicles and left posterior cingulum after treatment. Liver fibrosis regression in elastography, APRI and improvement in cognitive tests were observed. This is the first report of interferon-free therapy as the cause of white matter tracts recovery as well as cerebral perfusion improvement in HCV-infected patients, indicating better functioning of frontal lobes after interferon-free treatment.
Collapse
Affiliation(s)
- Joanna Bladowska
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Fleischer-Stępniewska
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiency, Wroclaw Medical University, Wroclaw, Poland
| | - Brygida Knysz
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiency, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Małyszczak
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Weronika Rymer
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiency, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Inglot
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiency, Wroclaw Medical University, Wroclaw, Poland
| | | | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Przemysław Podgórski
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Zimny
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Sąsiadek
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders. Curr HIV/AIDS Rep 2019; 15:72-83. [PMID: 29460224 DOI: 10.1007/s11904-018-0374-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS). RECENT FINDINGS Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal. Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.
Collapse
|
17
|
Ysrayl BB, Balasubramaniam M, Albert I, Villalta F, Pandhare J, Dash C. A Novel Role of Prolidase in Cocaine-Mediated Breach in the Barrier of Brain Microvascular Endothelial Cells. Sci Rep 2019; 9:2567. [PMID: 30796241 PMCID: PMC6385491 DOI: 10.1038/s41598-018-37495-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Cocaine use is associated with breach in the blood brain barrier (BBB) and increased HIV-1 neuro-invasion. We show that the cellular enzyme "Prolidase" plays a key role in cocaine-induced disruption of the BBB. We established a barrier model to mimic the BBB by culturing human brain microvascular endothelial cells (HBMECs) in transwell inserts. In this model, cocaine treatment enhanced permeability of FITC-dextran suggesting a breach in the barrier. Interestingly, cocaine treatment increased the activity of matrix metallo-proteinases that initiate degradation of the BBB-associated collagen. Cocaine exposure also induced prolidase expression and activity in HBMECs. Prolidase catalyzes the final and rate-limiting step of collagen degradation during BBB remodeling. Knock-down of prolidase abrogated cocaine-mediated increased permeability suggesting a direct role of prolidase in BBB breach. To decipher the mechanism by which cocaine regulates prolidase, we probed the inducible nitric oxide synthase (iNOS) mediated phosphorylation of prolidase since mRNA levels of the protein were not altered upon cocaine treatment. We observed increased iNOS expression concurrent with increased prolidase phosphorylation in cocaine treated cells. Subsequently, inhibition of iNOS decreased prolidase phosphorylation and reduced cocaine-mediated permeability. Finally, cocaine treatment increased transmigration of monocytic cells through the HBMEC barrier. Knock-down of prolidase reduced cocaine-mediated monocyte transmigration, establishing a key role of prolidase in cocaine-induced breach in endothelial cell barrier.
Collapse
Affiliation(s)
- Binah Baht Ysrayl
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Ife Albert
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Fernando Villalta
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA.
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA.
- Center for Molecular and Behavioral Neurosciences, Meharry Medical College, Nashville, Tennessee, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA.
| |
Collapse
|
18
|
Patters BJ, Kumar S. The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology 2018; 15:79. [PMID: 30577804 PMCID: PMC6303896 DOI: 10.1186/s12977-018-0462-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection, despite great advances in antiretroviral therapy, remains a lifelong affliction. Though current treatment regimens can effectively suppress viral load to undetectable levels and preserve healthy immune function, they cannot fully alleviate all symptoms caused by the presence of the virus, such as HIV-associated neurocognitive disorders. Exosomes are small vesicles that transport cellular proteins, RNA, and small molecules between cells as a mechanism of intercellular communication. Recent research has shown that HIV proteins and RNA can be packaged into exosomes and transported between cells, to pathogenic effect. This review summarizes the current knowledge on the diverse mechanisms involved in the sorting of viral elements into exosomes and the damage those exosomal agents can inflict. In addition, potential therapeutic options to counteract exosome-mediated HIV pathogenesis are reviewed and considered.
Collapse
Affiliation(s)
- Benjamin J Patters
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Santosh Kumar
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
19
|
Mechanisms of neuropathogenesis in HIV and HCV: similarities, differences, and unknowns. J Neurovirol 2018; 24:670-678. [PMID: 30291565 DOI: 10.1007/s13365-018-0678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
HIV and hepatitis C virus (HCV) have both been associated with cognitive impairment. Combination antiretroviral therapy (cART) has dramatically changed the nature of cognitive impairment in HIV-infected persons, while the role of direct-acting antivirals (DAA) in neurocognition of HCV-infected individuals remains unclear. Also, whether HIV and HCV interact to promote neurocognitive decline or whether they each contribute an individual effect continues to be an open question. In this work, we review the virally mediated mechanisms of HIV- and HCV-mediated neuropathogenesis, with an emphasis on the role of dual infection, and discuss observed changes with HIV viral suppression and HCV functional cure on neurocognitive impairments.
Collapse
|
20
|
Evering TH, Tsuji M. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System. Front Immunol 2018; 9:649. [PMID: 29670623 PMCID: PMC5893637 DOI: 10.3389/fimmu.2018.00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| |
Collapse
|
21
|
Ahmadi Ghezeldasht S, Hedayati-Moghaddam MR, Habibi M, Mollahosseini F, Rafatpanah H, Miri R, Hatef Fard M, Sahebari M. Rate of positive autoimmune markers in Human T lymphotropic virus type 1 carriers: a case-control study from Iran. Int J Rheum Dis 2018; 21:108-113. [PMID: 28261958 DOI: 10.1111/1756-185x.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Human T lymphotropic virus type 1 (HTLV-1) infection with high prevalence in the north-east of Iran, particularly in Mashhad, can lead to adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a variety of autoimmune diseases. The aim of the study was to examine the presence of autoimmune markers in HTLV carries. METHODS Serum samples were obtained from blood donors in Mashhad, northeastern Iran. One hundred and five HTLV-1 positive (cases) and 104 age- and sex-matched HTLV-1 negative donors (controls) were assessed for presence of serum autoimmune markers by enzyme-linked immunosorbent assay. RESULTS The mean ages of cases and controls were 40.8 ± 9.4 and 41.5 ± 9.3 years, respectively (P = 0.5). In the case group, 81.9% and in the control group 83.7% were male (P = 0.74). The frequency of positive antinuclear antibodies and anticyclic citrullinated peptide antibodies in the serum of the two groups were not significantly different (P = 0.68 and P = 0.62, respectively). Only one antineutrophil cytoplasmic antibody-positive case (1%) was observed in the group and no anti-phospholipid immunoglobulin G positivity was observed. The frequency of rheumatoid factor (RF) was greater in case group than in the control group, although the difference was not significant (P = 0.08). The amount of RF in all 12 RF positive sera were higher than normal levels (33-37 IU/mL). CONCLUSION Because we failed to detect any significant relation between serum autoimmune markers and HTLV-1 infection, and because of the relatively low prevalence of autoimmune diseases, it could be concluded that healthy HTLV-1 carriers do not produce rheumatologic-related auto-antibodies more than the healthy population.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Mohammad Reza Hedayati-Moghaddam
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Meysam Habibi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
- Rheumatic Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Mollahosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine and Razavi Khorasan Blood Transfusion Center, Tehran, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahele Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - MohammadReza Hatef Fard
- Rheumatic Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sahebari
- Rheumatic Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Abstract
Human immunodeficiency virus (HIV) infection induces neuronal injuries, with almost 50% of infected individuals developing HIV-associated neurocognitive disorders (HAND). Although highly activate antiretroviral therapy (HAART) has significantly reduced the incidence of severe dementia, the overall prevalence of HAND remains high. Synaptic degeneration is emerging as one of the most relevant neuropathologies associate with HAND. Previous studies have reported critical roles of viral proteins and inflammatory responses in this pathogenesis. Infected cells, including macrophages, microglia and astrocytes, may release viral proteins and other neurotoxins to stimulate neurons and cause excessive calcium influx, overproduction of free radicals and disruption of neurotransmitter hemostasis. The dysregulation of neural circuits likely leads to synaptic damage and loss. Identification of the specific mechanism of the synaptic degeneration may facilitate the development of effective therapeutic approaches to treat HAND.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
23
|
Rawat P, Spector SA. Development and characterization of a human microglia cell model of HIV-1 infection. J Neurovirol 2016; 23:33-46. [PMID: 27538994 DOI: 10.1007/s13365-016-0472-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/13/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Microglia cells are the major reservoir of HIV-1 (HIV) within the CNS. However, current models using transformed cell lines are not representative of primary microglia and fetal brain samples for isolation of primary human microglia (HMG) are increasingly difficult to obtain. Here, we describe a monocyte-derived microglia (MMG) cell model of HIV infection that recapitulates infection of primary HMG. CD14+ cells isolated from healthy donors were cultured with M-CSF, beta-nerve growth factor, GM-CSF, and CCL2, and compared to HMG. MMG and HMG cells were infected with HIV and viral replication was detected by p24 antigen. Both MMG and HMG cells were found to acquire spindle shape with few branched or unbranched processes at their ends during the second week in culture and both were found to be CD11b+/ CD11c+/ CD14+/ CD45+/ CD195+/ HLADRlow/ CD86low/ CD80+. Whereas hT-Hμglia and HMC3 transformed cell lines are deficient in human microglia signature genes (C1Q, GAS6, GPR34, MERTK, PROS1, and P2RY12), MMG cells expressed all of these genes. Additionally, MMG expressed all the microglia signature miRNA (miR-99a, miR125b-5p, and miR-342-3p). Both MMG and HMG produced ROS and phagocytosed labeled zymosan particles upon PMA stimulation. MMG and HMG infected with HIV produced equivalent levels of HIV p24 antigen in culture supernatants for 30 days post-infection. Thus, we have developed and characterized a microglia cell model of HIV infection derived from primary monocytes that recapitulates the phenotypic and molecular properties of HMG, is superior to transformed cell lines, and has similar HIV replication kinetics to HMG.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093-0672, USA
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093-0672, USA. .,Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
24
|
Quantitation of Productively Infected Monocytes and Macrophages of Simian Immunodeficiency Virus-Infected Macaques. J Virol 2016; 90:5643-5656. [PMID: 27030272 PMCID: PMC4886778 DOI: 10.1128/jvi.00290-16] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022] Open
Abstract
Despite the success of combined antiretroviral therapy (ART), human immunodeficiency virus (HIV) infection remains a lifelong infection because of latent viral reservoirs in infected patients. The contribution of CD4+ T cells to infection and disease progression has been extensively studied. However, during early HIV infection, macrophages in brain and other tissues are infected and contribute to tissue-specific diseases, such as encephalitis and dementia in brain and pneumonia in lung. The extent of infection of monocytes and macrophages has not been rigorously assessed with assays comparable to those used to study infection of CD4+ T cells and to evaluate the number of CD4+ T cells that harbor infectious viral genomes. To assess the contribution of productively infected monocytes and macrophages to HIV- and simian immunodeficiency virus (SIV)-infected cells in vivo, we developed a quantitative virus outgrowth assay (QVOA) based on similar assays used to quantitate CD4+ T cell latent reservoirs in HIV- and SIV-infected individuals in whom the infection is suppressed by ART. Myeloid cells expressing CD11b were serially diluted and cocultured with susceptible cells to amplify virus. T cell receptor β RNA was measured as a control to assess the potential contribution of CD4+ T cells in the assay. Virus production in the supernatant was quantitated by quantitative reverse transcription-PCR. Productively infected myeloid cells were detected in blood, bronchoalveolar lavage fluid, lungs, spleen, and brain, demonstrating that these cells persist throughout SIV infection and have the potential to contribute to the viral reservoir during ART. IMPORTANCE Infection of CD4+ T cells and their role as latent reservoirs have been rigorously assessed; however, the frequency of productively infected monocytes and macrophages in vivo has not been similarly studied. Myeloid cells, unlike lymphocytes, are resistant to the cytopathic effects of HIV. Moreover, tissue-resident macrophages have the ability to self-renew and persist in the body for months to years. Thus, tissue macrophages, once infected, have the characteristics of a potentially stable viral reservoir. A better understanding of the number of productively infected macrophages is crucial to further evaluate the role of infected myeloid cells as a potential viral reservoir. In the study described here we compared the frequency of productively infected CD4+ T cells and macrophages in an SIV-infected macaque model. We developed a critical assay that will allow us to quantitate myeloid cells containing viral genomes that lead to productive infection in SIV-infected macaques and assess the role of macrophages as potential reservoirs.
Collapse
|
25
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
26
|
Li Y, Kang G, Duan L, Lu W, Katze MG, Lewis MG, Haase AT, Li Q. SIV Infection of Lung Macrophages. PLoS One 2015; 10:e0125500. [PMID: 25933119 PMCID: PMC4416753 DOI: 10.1371/journal.pone.0125500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.
Collapse
Affiliation(s)
- Yue Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Guobin Kang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Lijie Duan
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Wuxun Lu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michael G. Katze
- Washington National Primate Research Center, Seattle, Washington, United States of America
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Mark G. Lewis
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, Maryland, United States of America
| | - Ashley T. Haase
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
27
|
Identification and characterization of an emerging small ruminant lentivirus circulating recombinant form (CRF). Virology 2014; 475:159-71. [PMID: 25462356 DOI: 10.1016/j.virol.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/26/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
Abstract
The molecular epidemiology of small ruminant lentiviruses (SRLVs) is constantly changing due to animal movements, cross species transmission and because of their rapid evolutionary rate. This study reports a comprehensive genetic and phylogenetic analysis based on consensus gag and pol sequences covering 3kb of the SRLV genome from small ruminants in Québec, Canada. A group of strains obtained from goats originating from different flocks, segregated in a unique clade distinct from currently known SRLV groups. Genetic dissection of the gag gene from these strains revealed that it originated as a result of a recombination event between parental strains currently circulating in small ruminants of the country. Following HIV nomenclature, we propose to call this group of strains, circulating recombinant form 1 SRLV, or CRF01_AB SRLV. In addition, the study confirms the existence of genetically distinct and homogeneous populations of SRLVs infecting sheep and goats housed in single species flocks.
Collapse
|
28
|
Evering TH, Kamau E, St Bernard L, Farmer CB, Kong XP, Markowitz M. Single genome analysis reveals genetic characteristics of Neuroadaptation across HIV-1 envelope. Retrovirology 2014; 11:65. [PMID: 25125210 PMCID: PMC4145222 DOI: 10.1186/s12977-014-0065-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background The widespread use of highly effective, combination antiretroviral therapy (cART) has led to a significant reduction in the incidence of HIV-associated dementia (HAD). Despite these advances, the prevalence of HIV-1 associated neurocognitive disorders (HANDs) has been estimated at approximately 40%-50%. In the cART era, the majority of this disease burden is represented by asymptomatic neurocognitive impairment and mild neurocognitive disorder (ANI and MND respectively). Although less severe than HAD, these diagnoses carry with them substantial morbidity. Results In this cross-sectional study, single genome amplification (SGA) was used to sequence 717 full-length HIV-1 envelope (env) clade B variants from the paired cerebrospinal fluid (CSF) and blood plasma samples of fifteen chronically infected HIV-positive individuals with normal neurocognitive performance (NCN), ANI and MND. Various degrees of compartmentalization were found across disease states and history of cART utilization. In individuals with compartmentalized virus, mean HIV-1 env population diversity was lower in the CSF than plasma-derived variants. Overall, mean V1V2 loop length was shorter in CSF-derived quasispecies when compared to contemporaneous plasma populations, and this was found to correlate with a lower mean number of N-linked glycosylation sites in this region. A number of discrete amino acid positions that correlate strongly with compartmentalization in the CSF were identified in both variable and constant regions of gp120 as well as in gp41. Correlated mutation analyses further identified that a subset of amino acid residues in these compartmentalization “hot spot” positions were strongly correlated with one another, suggesting they may play an important, definable role in the adaptation of viral variants to the CSF. Analysis of these hot spots in the context of a well-supported crystal structure of HIV-1 gp120 suggests mechanisms through which amino acid differences at the identified residues might contribute to viral compartmentalization in the CSF. Conclusions The detailed analyses of SGA-derived full length HIV-1 env from subjects with both normal neurocognitive performance and the most common HAND diagnoses in the cART era allow us to identify novel and confirm previously described HIV-1 env genetic determinants of neuroadaptation and relate potential motifs to HIV-1 env structure and function. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0065-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, an affiliate of the Rockefeller University, New York, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Viral neuropathogenesis. HANDBOOK OF CLINICAL NEUROLOGY 2014. [PMID: 25015485 DOI: 10.1016/b978-0-444-53488-0.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
|
30
|
Abstract
Potent combination antiretroviral therapy (ART) has resulted in dramatic improvements in AIDS-associated morbidity and mortality. Although combination ART has resulted in a significant reduction in HIV-associated dementia, the most severe of the HIV-associated neurocognitive disorders (HAND), the overall prevalence of HAND among this population is estimated at 40%. It has been recognized that the central nervous system (CNS) serves as a reservoir for HIV, and neuronal damage begins at the time of acute infection and persists due to chronic infection of microglial and perivascular macrophages. Although combination ART has resulted in virologic control in the plasma compartment, virologic breakthrough can potentially ensue within the CNS compartment due to limited ART drug exposure. The purpose of this review is to discuss the definition, clinical spectrum, and risk factors associated with HAND, review the pathogenesis of HAND, and address the pharmacologic challenges associated with ART drug exposure in the CNS compartment.
Collapse
|
31
|
Bilgrami M, O'Keefe P. Neurologic diseases in HIV-infected patients. HANDBOOK OF CLINICAL NEUROLOGY 2014; 121:1321-44. [PMID: 24365422 DOI: 10.1016/b978-0-7020-4088-7.00090-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since the introduction of highly active antiretroviral therapy there has been an improvement in the quality of life for people with HIV infection. Despite the progress made, about 70% of HIV patients develop neurologic complications. These originate either in the central or the peripheral nervous system (Sacktor, 2002). These neurologic disorders are divided into primary and secondary disorders. The primary disorders result from the direct effects of the virus and include HIV-associated neurocognitive disorder (HAND), HIV-associated vacuolar myelopathy (VM), and distal symmetric polyneuropathy (DSP). Secondary disorders result from marked immunosuppression and include opportunistic infections and primary central nervous system lymphoma (PCNSL). A differential diagnosis which can be accomplished by detailed history, neurologic examination, and by having a good understanding of the role of HIV in various neurologic disorders will help physicians in approaching these problems. The focus of this chapter is to discuss neuropathogenesis of HIV, the various opportunistic infections, primary CNS lymphoma, neurosyphilis, CNS tuberculosis, HIV-associated peripheral neuropathies, HIV-associated neurocognitive disorder (HAND), and vacuolar myelopathy (VM). It also relies on the treatment recommendations and guidelines for the above mentioned neurologic disorders proposed by the US Centers for Disease Control and Prevention (CDC) and the Infectious Diseases Society of America.
Collapse
Affiliation(s)
- Mohammed Bilgrami
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Paul O'Keefe
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA.
| |
Collapse
|
32
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Sider LH, Heaton MP, Chitko-McKown CG, Harhay GP, Smith TPL, Leymaster KA, Laegreid WW, Clawson ML. Small ruminant lentivirus genetic subgroups associate with sheep TMEM154 genotypes. Vet Res 2013; 44:64. [PMID: 23895262 PMCID: PMC3734121 DOI: 10.1186/1297-9716-44-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) are prevalent in North American sheep and a major cause of production losses for the U.S. sheep industry. Sheep susceptibility to SRLV infection is influenced by genetic variation within the ovine transmembrane 154 gene (TMEM154). Animals with either of two distinct TMEM154 haplotypes that both encode glutamate at position 35 of the protein (E35) are at greater risk of SRLV infection than those homozygous with a lysine (K35) haplotype. Prior to this study, it was unknown if TMEM154 associations with infection are influenced by SRLV genetic subgroups. Accordingly, our goals were to characterize SRLVs naturally infecting sheep from a diverse U.S. Midwestern flock and test them for associations with TMEM154 E35K genotypes. Two regions of the SRLV genome were targeted for proviral amplification, cloning, sequence analysis, and association testing with TMEM154 E35K genotypes: gag and the transmembrane region of env. Independent analyses of gag and env sequences showed that they clustered in two subgroups (1 and 2), they were distinct from SRLV subtypes originating from Europe, and that subgroup 1 associated with hemizygous and homozygous TMEM154 K35 genotypes and subgroup 2 with hemi- and homozygous E35 genotypes (gag p < 0.001, env p = 0.01). These results indicate that SRLVs in the U.S. have adapted to infect sheep with specific TMEM154 E35K genotypes. Consequently, both host and SRLV genotypes affect the relative risk of SRLV infection in sheep.
Collapse
Affiliation(s)
- Lucia H Sider
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), U,S, Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses 2013; 5:1867-84. [PMID: 23881276 PMCID: PMC3738966 DOI: 10.3390/v5071867] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
Zoonotic events of simian immunodeficiency virus (SIV) from non-human primates to humans have generated the acquired immunodeficiency syndrome (AIDS), one of the most devastating infectious disease of the last century with more than 30 million people dead and about 40.3 million people currently infected worldwide. Human immunodeficiency virus (HIV-1 and HIV-2), the two major viruses that cause AIDS in humans are retroviruses of the lentivirus genus. The genus includes arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), and a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting goat and sheep. Lentivirus genome integrates into the host DNA, causing persistent infection associated with a remarkable diversity during viral replication. Direct evidence of mixed infections with these two closely related SRLVs was found in both sheep and goats. The evidence of a genetic continuum with caprine and ovine field isolates demonstrates the absence of an efficient species barrier preventing cross-species transmission. In dual-infected animals, persistent infections with both CAEV and MVV have been described, and viral chimeras have been detected. This not only complicates animal trade between countries but favors the risk that highly pathogenic variants may emerge as has already been observed in the past in Iceland and, more recently, in outbreaks with virulent strains in Spain. SRLVs affecting wildlife have already been identified, demonstrating the existence of emergent viruses adapted to new hosts. Viruses adapted to wildlife ruminants may acquire novel biopathological properties which may endanger not only the new host species but also domestic ruminants and humans. SRLVs infecting sheep and goats follow a genomic evolution similar to that observed in HIV or in other lentiviruses. Lentivirus genetic diversity and host factors leading to the establishment of naturally occurring virulent versus avirulent infections, in addition to the emergence of new strains, challenge every aspect of SRLV control measures for providing efficient tools to prevent the transmission of diseases between wild ungulates and livestock.
Collapse
|
35
|
Zhang Y, Wei F, Liang Q, Ding W, Qiao L, Song F, Liu L, Yang S, Jin R, Gu J, Li N, Chen D. High levels of divergent HIV-1 quasispecies in patients with neurological opportunistic infections in China. J Neurovirol 2013; 19:359-66. [PMID: 23838848 DOI: 10.1007/s13365-013-0176-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/06/2013] [Accepted: 06/05/2013] [Indexed: 01/01/2023]
Abstract
Despite the fact that the survival of people infected with human immunodeficiency virus (HIV) has improved worldwide because of the increasingly powerful and highly active antiretroviral therapy, opportunistic infections (OIs) of the central nervous system (CNS) remain a serious burden. HIV-1 is capable of entering the CNS through infected peripheral monocytes, but its effect on OIs of CNS remains unclear. In this study, we investigated the characteristics of HIV-1 in acquired immunodeficiency syndrome (AIDS) patients with CNS OIs. A total of 24 patients with CNS OIs and 16 non-CNS OIs (control) cases were selected. These AIDS patients were infected with HIV-1 by paid blood donors in China. HIV-1 loads in plasma and cerebrospinal fluid (CSF) were detected using RT-PCR, and the C2-V5 region of HIV-1 envelope gene was amplified from viral quasispecies isolated from CSF using nested PCR. The CSF HIV-1 load of CNS OIs was higher than that of non-CNS OIs, but plasma HIV-1 load of CNS OIs was not higher than that of non-CNS OIs. The nucleotide sequence of C2-V5 region of the HIV-1 quasispecies isolated from the CSF of CNS OIs had a high diversity, and the HIV-1 quasispecies isolated from the CSF of CNS OIs revealed R5 tropism as 11/25 charge rule. These results suggest that high levels of divergent HIV-1 quasispecies in the CNS probably contribute to opportunistic infections.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Infectious Diseases, Beijing You'An Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Human immunodeficiency virus type 1 is associated with the development of neurocognitive disorders in many infected individuals, including a broad spectrum of motor impairments and cognitive deficits. Despite extensive research, the pathogenesis of HIV-associated neurocognitive disorders (HAND) is still not clear. This review provides a comprehensive view of HAND, including HIV neuroinvasion, HAND diagnosis and different level of disturbances, influence of highly-active antiretroviral therapy to HIV-associated dementia (HAD), possible pathogenesis of HAD, etc. Together, this review will give a thorough and clear understanding of HAND, especially HAD, which will be vital for future research, diagnosis and treatment.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| |
Collapse
|
37
|
Zhang X, Chen G, Lu Y, Liu J, Fang M, Luo J, Cao Q, Wang X. Association of Mitochondrial Letm1 with Epileptic Seizures. Cereb Cortex 2013; 24:2533-40. [DOI: 10.1093/cercor/bht118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
38
|
Chompre G, Cruz E, Maldonado L, Rivera-Amill V, Porter JT, Noel RJ. Astrocytic expression of HIV-1 Nef impairs spatial and recognition memory. Neurobiol Dis 2012; 49:128-36. [PMID: 22926191 DOI: 10.1016/j.nbd.2012.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/02/2012] [Accepted: 08/16/2012] [Indexed: 02/08/2023] Open
Abstract
Despite the widespread use of antiretroviral therapy that effectively limits viral replication, memory impairment remains a dilemma for HIV infected people. In the CNS, HIV infection of astrocytes leads to the production of the HIV-1 Nef protein without viral replication. Post mortem studies have found Nef expression in hippocampal astrocytes of people with HIV associated dementia suggesting that astrocytic Nef may contribute to HIV associated cognitive impairment even when viral replication is suppressed. To test whether astrocytic expression of Nef is sufficient to induce cognitive deficits, we examined the effect of implanting primary rat astrocytes expressing Nef into the hippocampus on spatial and recognition memory. Rats implanted unilaterally with astrocytes expressing Nef showed impaired novel location and novel object recognition in comparison with controls implanted with astrocytes expressing green fluorescent protein (GFP). This impairment was correlated with an increase in chemokine ligand 2 (CCL2) expression and the infiltration of peripheral macrophages into the hippocampus at the site of injection. Furthermore, the Nef exposed rats exhibited a bilateral loss of CA3 neurons. These results suggest that Nef protein expressed by the implanted astrocytes activates the immune system leading to neuronal damage and spatial and recognition memory deficits. Therefore, the continued expression of Nef by astrocytes in the absence of viral replication has the potential to contribute to HIV associated cognitive impairment.
Collapse
Affiliation(s)
- Gladys Chompre
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Emmanuel Cruz
- Department of Physiology & Pharmacology, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Lucianette Maldonado
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Vanessa Rivera-Amill
- Department of Microbiology, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - James T Porter
- Department of Physiology & Pharmacology, Ponce School of Medicine and Health Sciences, Ponce, PR, USA
| | - Richard J Noel
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, PR, USA.
| |
Collapse
|
39
|
De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT. Infectious agents and neurodegeneration. Mol Neurobiol 2012; 46:614-38. [PMID: 22899188 PMCID: PMC3496540 DOI: 10.1007/s12035-012-8320-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022]
Abstract
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host’s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kaba J, Strzałkowska N, Jóźwik A, Krzyżewski J, Bagnicka E. Twelve-year cohort study on the influence of caprine arthritis-encephalitis virus infection on milk yield and composition. J Dairy Sci 2012; 95:1617-22. [PMID: 22459809 DOI: 10.3168/jds.2011-4680] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022]
Abstract
This long-term observational cohort study was carried out to evaluate the effect of caprine arthritis-encephalitis virus (CAEV) infection on the quantitative and qualitative characteristics of milk production in dairy goats. For this purpose, a dairy herd comprising both CAEV-infected and uninfected female goats was observed for 12 consecutive years. Records on daily milk yield, somatic cell count (SCC), and contents of the major milk components (fat, protein and lactose) were collected every month. In total, 3,042 records (1,114 from CAEV-positive and 1,928 from CAEV-negative animals) from 177 female goats were used for statistical analysis. The multi-trait repeatability test-day animal model using the derivative-free multivariate analysis package with the average information-REML method was applied to eliminate the influence of factors other than CAEV infection on milk production in goats. The statistical significance of the differences between estimates for seropositive and seronegative goats was evaluated using Student's t-test. The effect of age of goats (parity) on their serological status was also estimated with the one-trait repeatability test-day model. The serological status of goats was linked to parity: the higher the parity, the greater the probability of CAEV infection. No significant differences between infected and uninfected goats with respect to daily milk yield and SCC were found. On the other hand, the milk of uninfected goats contained more total protein (3.40% vs. 3.35%), fat (3.69% vs. 3.54%), and lactose (4.30% vs. 4.25%) than the milk of infected goats. Even though these differences were highly significant, they were small when expressed numerically.
Collapse
Affiliation(s)
- J Kaba
- Division of Infectious Diseases and Epidemiology, Department of Large Animal Diseases with the Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
41
|
Spudich S, González-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med 2012; 2:a007120. [PMID: 22675662 PMCID: PMC3367536 DOI: 10.1101/cshperspect.a007120] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIV-associated central nervous system (CNS) injury continues to be clinically significant in the modern era of HIV infection and therapy. A substantial proportion of patients with suppressed HIV infection on optimal antiretroviral therapy have impaired performance on neuropsychological testing, suggesting persistence of neurological abnormalities despite treatment and projected long-term survival. In the underresourced setting, limited accessibility to antiretroviral medications means that CNS complications of later-stage HIV infection continue to be a major concern. This article reviews key recent advances in our understanding of the neuropathogenesis of HIV, focusing on basic and clinical studies that reveal viral and host features associated with viral neuroinvasion, persistence, and immunopathogenesis in the CNS, as well as issues related to monitoring and treatment of HIV-associated CNS injury in the current era.
Collapse
Affiliation(s)
- Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Neuroimaging studies of the aging HIV-1-infected brain. J Neurovirol 2012; 18:291-302. [PMID: 22653528 DOI: 10.1007/s13365-012-0114-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 01/17/2023]
Abstract
Highly active antiretroviral therapy (HAART) has increased life expectancy among HIV-infected individuals, and by 2015, at least half of all HIV-infected individuals will be over 50 years of age. Neurodegenerative processes associated with aging may be facilitated by HIV-1 infection, resulting in premature brain aging. This review will highlight brain abnormalities in HIV patients in the setting of aging, focusing on recent neuroimaging studies of the structural, physiological, functional and neurochemical changes. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy studies performed during the pre-HAART era or on antiretroviral-naive subjects suggest an accelerated aging process, while those on HAART-treated subjects suggest premature brain atrophy. Diffusion tensor imaging studies yielded conflicting findings on the relationship between HIV and age in neuroasymptomatic individuals. Functional MRI studies found evidence of premature or accelerated aging processes in the brains of HIV subjects. Lastly, many age-related illnesses such as diabetes, stroke, and depression, as well as comorbid substance abuse, may further exacerbate the aging process in the HIV-infected brain, leading to premature or accelerated age-related brain changes. Given the different pathologic or physiologic changes in the brain assessed by the different neuroimaging techniques, using a multimodal approach in longitudinal follow-up studies is recommended for future studies.
Collapse
|
43
|
Patel JR, Heldens JGM, Bakonyi T, Rusvai M. Important mammalian veterinary viral immunodiseases and their control. Vaccine 2012; 30:1767-81. [PMID: 22261411 PMCID: PMC7130670 DOI: 10.1016/j.vaccine.2012.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
This paper offers an overview of important veterinary viral diseases of mammals stemming from aberrant immune response. Diseases reviewed comprise those due to lentiviruses of equine infectious anaemia, visna/maedi and caprine arthritis encephalitis and feline immunodeficiency. Diseases caused by viruses of feline infectious peritonitis, feline leukaemia, canine distemper and aquatic counterparts, Aleutian disease and malignant catarrhal fever. We also consider prospects of immunoprophylaxis for the diseases and briefly other control measures. It should be realised that the outlook for effective vaccines for many of the diseases is remote. This paper describes the current status of vaccine research and the difficulties encountered during their development.
Collapse
Affiliation(s)
- J R Patel
- Jas Biologicals Ltd, 12 Pembroke Avenue, Denny Industrial Estate, Waterbeach, Cambridge CB25 9QR, UK.
| | | | | | | |
Collapse
|
44
|
Pant M, Garg P, Seth P. Central Nervous System Infection by HIV-1: Special Emphasis to NeuroAIDS in India. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s40011-011-0007-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Blacklaws BA. Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 2012; 35:259-69. [PMID: 22237012 DOI: 10.1016/j.cimid.2011.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
The small ruminant lentiviruses include the prototype for the genus, visna-maedi virus (VMV) as well as caprine arthritis encephalitis virus (CAEV). Infection of sheep or goats with these viruses causes slow, progressive, inflammatory pathology in many tissues, but the most common clinical signs result from pathology in the lung, mammary gland, central nervous system and joints. This review examines replication, immunity to and pathogenesis of these viruses and highlights major differences from and similarities to some of the other lentiviruses.
Collapse
Affiliation(s)
- Barbara A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| |
Collapse
|
46
|
Verma AS, Singh UP, Dwivedi PD, Singh A. Contribution of CNS cells in NeuroAIDS. J Pharm Bioallied Sci 2011; 2:300-6. [PMID: 21180461 PMCID: PMC2996080 DOI: 10.4103/0975-7406.72129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/15/2010] [Accepted: 08/12/2010] [Indexed: 11/28/2022] Open
Abstract
NeuroAIDS is becoming a major health problem among AIDS patients and long-term HIV survivors. As per 2009 estimates of UNAIDS report, more than 34 million people have been infected with HIV out of which ≥ 50% show signs and symptoms of neuropsychiatric disorders. These disorders affect central nervous system (CNS) and peripheral nervous systems (PNS). CNS is one of the most protected organ systems in body which is protected by blood-brain barrier (BBB). Not only this, most of the cells of CNS are negative for receptors and co-receptors for HIV infections. Neurons have been found to be completely nonpermissive for HIV infection. These facts suggest that neurotoxicity could be an indirect mechanism responsible for neuropsychiatric complications. In this review, we will discuss the importance of different cell types of CNS and their contribution toward neurotoxicity.
Collapse
Affiliation(s)
- Ashish Swarup Verma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector -125, Noida (UP) - 201 303, India
| | | | | | | |
Collapse
|
47
|
Proteomic biosignatures for monocyte-macrophage differentiation. Cell Immunol 2011; 271:239-55. [PMID: 21788015 DOI: 10.1016/j.cellimm.2011.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
We used pulsed stable isotope labeling of amino acids in cell culture (pSILAC) to assess protein dynamics during monocyte-macrophage differentiation. pSILAC allows metabolic labeling of newly synthesized proteins. Such de novo protein production was evaluated from 3 to 7 days in culture. Proteins were identified by liquid chromatography-tandem mass spectrometry then quantified by MaxQuant. Protein-protein linkages were then assessed by Ingenuity Pathway Analysis. Proteins identified were linked to cell homeostasis, free radical scavenging, molecular protein transport, carbohydrate metabolism, small molecule chemistry, and cell morphology. The data demonstrates specific biologic events that are linked to monocyte transformation in a defined biologic system.
Collapse
|
48
|
Rosca E, Rosca O, Chirileanu R, Simu M. Neurocognitive disorders due to HIV infection. HIV & AIDS REVIEW 2011. [DOI: 10.1016/j.hivar.2011.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
The inside out of lentiviral vectors. Viruses 2011; 3:132-159. [PMID: 22049307 PMCID: PMC3206600 DOI: 10.3390/v3020132] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022] Open
Abstract
Lentiviruses induce a wide variety of pathologies in different animal species. A common feature of the replicative cycle of these viruses is their ability to target non-dividing cells, a property that constitutes an extremely attractive asset in gene therapy. In this review, we shall describe the main basic aspects of the virology of lentiviruses that were exploited to obtain efficient gene transfer vectors. In addition, we shall discuss some of the hurdles that oppose the efficient genetic modification mediated by lentiviral vectors and the strategies that are being developed to circumvent them.
Collapse
|
50
|
Martin-Blondel G, Delobel P, Blancher A, Massip P, Marchou B, Liblau RS, Mars LT. Pathogenesis of the immune reconstitution inflammatory syndrome affecting the central nervous system in patients infected with HIV. Brain 2011; 134:928-46. [DOI: 10.1093/brain/awq365] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|