1
|
Zeng Z, Zhang Q, Liang T, Xiong Y, Liu Z, Zhang J, Yang P, Yang J, Lu Q, Shen D, Tian H, Zhou Z, Fang W, Zhang M, Liu Q, Gao B, Wei Y, Zhou D. Hsp70 incompletely disaggregates misfolded K488X-menin to promote tumourigenesis in a family with multiple endocrine neoplasia type 1. Cell Signal 2025; 130:111681. [PMID: 39978610 DOI: 10.1016/j.cellsig.2025.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is caused by germline mutations in the MEN1 gene, including nonsense mutations and missense variants, which result in the formation of truncated inactive menin protein and some of which cause degradation of mutant menin proteins. Here, we describe a c.1462 A > T (p.K488X) mutation in exon 10 of MEN1 as a potential pathogenic mutation in an extended Chinese family with MEN1. We observed that K488X-menin was degraded by ubiquitination modification resulting from the combined actions of carboxy-terminus of Hsc70-interacting protein (CHIP) and Heat Shock Protein Family 70 (Hsp70) in vitro. K488X-menin is a misfolded truncated protein that results in amyloid aggregation in live cells and affected tissues, which is promoted by Hsp70 and/or CHIP. Although Hsp70 can inhibit the aggregation of K488X-menin in vitro, it is not upregulated in the affected tissues in patients with MEN1, and thus cannot completely disaggregate the aggregated K488X-menin. Further, we found that K488X-menin triggers early tumourigenesis in a MEN1 mutant zebrafish model. Moreover, K488X-menin disaggregation was induced by Hsp70 activator and Hsp70 was upregulated in homozygous mutant zebrafish. Our findings provide a novel biophysical mechanism involving Hsp70 underlying MEN1 tumourigenesis in a Chinese family with MEN1.
Collapse
Affiliation(s)
- Zhen Zeng
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Shanghai Children's Medical Center GuiZhou Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Qianqian Zhang
- Gastroenterology Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Tingting Liang
- Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yu Xiong
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Zhi Liu
- Department of Dermatovenereology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jing Zhang
- Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Pingping Yang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Jingye Yang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qingxiang Lu
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Hongxia Tian
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Zhongxue Zhou
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Wen Fang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Miao Zhang
- Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Qi Liu
- Gastroenterology Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Bo Gao
- Department of Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yonghui Wei
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Ding'an Zhou
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Key Laboratory of Medical Molecular Biology, Guizhou province; Key Laboratory of Endemic and Ethnic Disease, Ministry of Education; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| |
Collapse
|
2
|
Zhu JJ, Burgess JR. Predictors of Mortality in Patients With Multiple Endocrine Neoplasia Type 1. Clin Endocrinol (Oxf) 2025. [PMID: 40313068 DOI: 10.1111/cen.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE Multiple Endocrine Neoplasia Type 1 (MEN 1) is an autosomal dominant disease predisposing to hyperplasia and neoplasia in diverse endocrine tissues. Patients typically present with endocrine abnormalities before the age of 30 years and have reduced life expectancy. Our objective was to determine predictors of premature mortality in MEN 1. DESIGN Tertiary hospital based retrospective cohort study. PATIENTS One hundred and thirty patients with a common MEN1 genotype. MEASUREMENTS Kaplan-Meier survival analysis of median life expectancy (MLE). RESULTS The overall cohort MLE was 70.8 years. Sex and year of birth were not predictive of survival. A diagnosis before age 45 years of adrenal nodularity (MLE 51.8 years), hypergastrinaemia (MLE 66.2 years), or liver lesions (MLE 38.6) were associated with a significant reduction in survival (26.2 years, p < 0.01, 6.4 years, p = 0.03, and 30.3 years, p < 0.01 respectively) compared to being diagnosed with these conditions later in life. In contrast, diagnosis before age 45 years of pancreatic nodularity (MLE 68.9 years) and primary hyperparathyroidism (MLE 68.9 years) were not predictive of survival. CONCLUSION Patients with MEN 1 diagnosed before age 45 with adrenal nodularity, hypergastrinaemia or liver lesions had significantly reduced survival. The explanation for non-secretory and benign adrenal macronodular hyperplasia being associated with diminished life expectancy is unclear.
Collapse
Affiliation(s)
- Jasmine J Zhu
- Department of Endocrinology, Royal Hobart Hospital, Hobart, Australia
| | - John R Burgess
- Department of Endocrinology, Royal Hobart Hospital, Hobart, Australia
- School of Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|
3
|
Brown MR, Soto-Feliciano YM. Menin: from molecular insights to clinical impact. Epigenomics 2025; 17:489-505. [PMID: 40152985 PMCID: PMC12026131 DOI: 10.1080/17501911.2025.2485019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Menin, the protein product of the MEN1 gene, is essential for development and has been implicated in multiple different cancer types. These include leukemias and several different solid tumors, including neuroendocrine tumors. Menin interacts with many different protein partners and genomic loci in a context-dependent manner, implicating it in numerous cellular processes. The role of Menin varies across tumor types as well, acting as a tumor suppressor in some tissues and an oncogenic co-factor in others. Given the role of Menin in cancer, and particularly its oncogenic role in acute myeloid leukemia, the development of Menin inhibitors has been an expanding field over the past 10-15 years. Many inhibitors have been in clinical trials and one has recently received approval from the Food and Drug Administration (FDA). In this review, we explore the role of Menin in multiple cancer types, the development of Menin inhibitors and their clinical applications and what the focus of the field should be in the next 5-10 years to expand the use and efficacy of these drugs.
Collapse
Affiliation(s)
- Margaret R. Brown
- Department is Biology, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yadira M. Soto-Feliciano
- Department is Biology, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Loganathan T, Priya Doss C G. A comprehensive high-throughput screening approach for discovering inhibitors targeting the menin-MLL1 interaction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 143:69-95. [PMID: 39843145 DOI: 10.1016/bs.apcsb.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The prognosis for mixed-lineage leukemia (MLL), particularly in young children, remains a significant health concern due to the limited therapeutic options available. MLL refers to KMT2A chromosomal translocations that produce MLL fusion proteins. The protein menin, which is essential for the malignant potential of these MLL fusion proteins, offers novel targets for acute leukemia treatment. This study reports the identification of potential new inhibitors of MLL-mediated leukemia targeting menin through the screening of two distinct drug libraries and existing inhibitors. The 3D structure of the protein was retrieved from the Protein Data Bank (ID: 8IG0). The drug libraries, sourced from public repositories such as the 'Epigenetic Drug Library' and 'The FDA-anticancer Drug Library,' yielded top candidates like Tozaseritib and Panobinostat, which exhibited the highest binding energy scores in the Glide virtual screening module. Additionally, 31 known menin-MLL1 inhibitors were identified through PDB screening and subsequently docked with the menin protein. The top three inhibitors (M-525, M-808, and MI-89) were selected for further analysis. Five menin-ligand complexes were validated using molecular dynamics analysis and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations to verify the stability and binding mechanisms.These findings provide insights into the molecular mechanisms of these drugs and lay the groundwork for future clinical development aimed at improving outcomes for acute myeloid leukemia (AML) patients.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Liu J, Ling J, Li L, Wu Y, Song C, Shi S, Dong Z, Wang J, Tang M, Feng ST, Luo Y, Xu D. Genetic syndromes associated with pancreatic neuroendocrine neoplasms and imaging diagnostic strategies. Abdom Radiol (NY) 2024:10.1007/s00261-024-04764-0. [PMID: 39694946 DOI: 10.1007/s00261-024-04764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are the second most common pancreatic malignancy. While most cases are sporadic, a small proportion is associated with genetic syndromes, such as Multiple Endocrine Neoplasia (MEN), Von Hippel-Lindau Syndrome (VHL), Neurofibromatosis Type 1 (NF1), and Tuberous Sclerosis Complex (TSC). This review aims to use pNENs as a clue to reveal the full spectrum of disease, providing a comprehensive understanding of diagnosis. It aids in promptly identifying abnormalities in other organs, recognizing familial genetic mutations, and achieving personalized treatment.
Collapse
Affiliation(s)
- Jiawei Liu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Jian Ling
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Lujie Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Yuxin Wu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Siya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Jifei Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China.
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China.
| | - Danyang Xu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Second Zhongshan Road, Yuexiu District, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
7
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation. J Pathol 2024; 264:357-370. [PMID: 39360347 DOI: 10.1002/path.6348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular may progress from a low/intermediate to a high-grade disease. The aim of this work was to understand the molecular mechanisms underlying metastatic progression as well as PanNET transformation from a low/intermediate to a high-grade disease. We performed multi-omics analysis (genome/exome sequencing, total RNA-sequencing and methylation array) of 32 longitudinal samples from six patients with metastatic low/intermediate grade PanNET. The clonal composition of tumour lesions and underlying phylogeny of each patient were determined with bioinformatics analyses. Findings were validated in post-alkylating chemotherapy samples from 24 patients with PanNET using targeted next generation sequencing. We validate the current PanNET evolutionary model with MEN1 inactivation that occurs very early in tumourigenesis. This was followed by pronounced genetic diversity on both spatial and temporal levels, with parallel and convergent tumour evolution involving the ATRX/DAXX and mechanistic target of the rapamycin (mTOR) pathways. Following alkylating chemotherapy treatment, some PanNETs developed mismatch repair deficiency and acquired a hypermutational phenotype. This was validated among 16 patients with PanNET who had high-grade progression after alkylating chemotherapy, of whom eight had a tumour mutational burden >50 (50%). In comparison, among the eight patients who did not show high-grade progression, 0 had a tumour mutational burden >50 (0%; odds ratio 'infinite', 95% confidence interval 1.8 to 'infinite', p = 0.02). Our findings contribute to broaden the understanding of metastatic/high-grade PanNETs and suggests that therapy driven disease evolution is an important hallmark of this disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Christofer Juhlin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Almlöf
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Section of Radiology, Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Brunetti A, Cosso R, Vescini F, Falchetti A. Molecular Pathophysiology of Parathyroid Tumorigenesis-The Lesson from a Rare Disease: The "MEN1 Model". Int J Mol Sci 2024; 25:11586. [PMID: 39519139 PMCID: PMC11545851 DOI: 10.3390/ijms252111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Primary hyperparathyroidism represents the third most prevalent endocrine disease in the general population, consisting of an excessive secretion of parathyroid hormone from one or, more frequently, more of the parathyroid glands, leading to a dysregulation of calcium homeostasis. Schematically, its development occurs primarily by pathophysiological events with genetic mutation, at the germline and/or somatic level, that favor the neoplastic transformation of parathyroid cells and promote their aberrant proliferation, and mutations determining the shift in the PTH "set-point", thus interfering with the normal pathways of PTH secretion and leading to a "resetting" of Ca2+-dependent PTH secretion or to a secretion of PTH insensitive to changes in extracellular Ca2+ levels. Familial syndromic and non-syndromic forms of primary hyperparathyroidism are responsible for approximately 2-5% of primary hyperparathyroidism cases and most of them are inherited forms. The history of the genetic/molecular studies of parathyroid tumorigenesis associated with multiple endocrine neoplasia type 1 syndrome (MEN1) represents an interesting model to understand genetic-epigenetic-molecular aspects underlying the pathophysiology of primary hyperparathyroidism, both in relation to syndromic and non-syndromic forms. This minireview aims to take a quick and simplified look at the MEN1-associated parathyroid tumorigenesis, focusing on the molecular underlying mechanisms. Clinical, epidemiological, and observational studies, as well as specific guidelines, molecular genetics studies, and reviews, have been considered. Only studies submitted to PubMed in the English language were included, without time constraints.
Collapse
Affiliation(s)
- Alessandro Brunetti
- SC Endocrinologia, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy; (A.B.); (F.V.)
| | | | - Fabio Vescini
- SC Endocrinologia, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy; (A.B.); (F.V.)
| | - Alberto Falchetti
- SC Endocrinologia, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, 20162 Milano, Italy
| |
Collapse
|
9
|
Smirne C, Giacomini GM, Berton AM, Pasini B, Mercalli F, Prodam F, Caputo M, Brosens LAA, Mollero ELM, Pitino R, Pirisi M, Aimaretti G, Ghigo E. A novel likely pathogenetic variant p.(Cys235Arg) of the MEN1 gene in multiple endocrine neoplasia type 1 with multifocal glucagonomas. J Endocrinol Invest 2024; 47:1815-1825. [PMID: 38294658 PMCID: PMC11196359 DOI: 10.1007/s40618-023-02287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Multiple endocrine neoplasia type 1 (MEN1) is a hereditary endocrine syndrome caused by pathogenic variants in MEN1 tumor suppressor gene. Diagnosis is commonly based on clinical criteria and confirmed by genetic testing. The objective of the present study was to report on a MEN1 case characterized by multiple pancreatic glucagonomas, with particular concern on the possible predisposing genetic defects. METHODS While conducting an extensive review of the most recent scientific evidence on the unusual glucagonoma familial forms, we analyzed the MEN1 gene in a 35-year-old female with MEN1, as well as her son and daughter, using Sanger and next-generation sequencing (NGS) approaches. We additionally explored the functional and structural consequences of the identified variant using in silico analyses. RESULTS NGS did not show any known pathogenic variant in the tested regions. However, a new non-conservative variant in exon 4 of MEN1 gene was found in heterozygosity in the patient and in her daughter, resulting in an amino acid substitution from hydrophobic cysteine to hydrophilic arginine at c.703T > C, p.(Cys235Arg). This variant is absent from populations databases and was never reported in full papers: its characteristics, together with the high specificity of the patient's clinical phenotype, pointed toward a possible causative role. CONCLUSION Our findings confirm the need for careful genetic analysis of patients with MEN1 and establish a likely pathogenic role for the new p.(Cys235Arg) variant, at least in the rare subset of MEN1 associated with glucagonomas.
Collapse
Affiliation(s)
- C Smirne
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy.
| | - G M Giacomini
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - A M Berton
- Division of Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, 10126, Turin, Italy
| | - B Pasini
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
- Division of Medical Genetics, City of Health and Science University Hospital, 10126, Turin, Italy
| | - F Mercalli
- Division of Pathology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - F Prodam
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - M Caputo
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - L A A Brosens
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - E L M Mollero
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - R Pitino
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - M Pirisi
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - G Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - E Ghigo
- Division of Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, 10126, Turin, Italy
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| |
Collapse
|
10
|
Liang JY, Gao S, Jiang JM, Zhang P, Zou W, Tang XQ, Tang YY. Itaconate inhibits corticosterone-induced necroptosis and neuroinflammation via up-regulating menin in HT22 cells. J Physiol Biochem 2024; 80:393-405. [PMID: 38427168 DOI: 10.1007/s13105-024-01012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Corticosterone (CORT) damages hippocampal neurons as well as induces neuroinflammation. The tricarboxylic acid cycle metabolite itaconate has an anti-inflammatory role. Necroptosis is a form of programmed cell death, also known as inflammatory cell death. Menin is a multifunctional scaffold protein, which deficiency aggravates neuroinflammation. In this study, we explored whether itaconate inhibits CORT-induced neuroinflammation as well as necroptosis and further investigated the mediatory role of Menin in this protective effect of itaconate by using an exposure of CORT to HT22 cells (a hippocampal neuronal cell line). The viability of HT22 cells was examined by the cell counting kit 8 (CCK-8). The morphology of HT22 cells was observed by transmission electron microscope (TEM). The expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) were evaluated by western blotting. The contents of inflammatory factors were detected by an enzyme-linked immunosorbent assay (ELISA) kit. Our results showed that CORT increases the contents of pro-inflammatory factors (IL-1β, TNF-α) as well as decreases the contents of anti-inflammatory factors (IL-4, IL-10) in HT22 cells. We also found that CORT increases the expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) and decreases the cell viability in HT22 cells, indicating that CORT induces necroptosis in HT22 cells. Itaconate improves CORT-induced neuroinflammation and necroptosis. Furthermore, itaconate upregulates the expression of Menin in CORT-exposed HT22 cells. Importantly, silencing Menin abolishes the antagonistic effect of itaconate on CORT-induced necroptosis and neuroinflammation. In brief, these results indicated that itaconate protects HT22 cells against CORT-induced neuroinflammation and necroptosis via upregulating Menin.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Institute of Neuroscience, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shan Gao
- Institute of Neuroscience, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Jia-Mei Jiang
- Institute of Neuroscience, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Pin Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336 S Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336 S Dongfeng Road, Hengyang, 421002, Hunan Province, People's Republic of China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Yamasaki R. Pancreatic GHRHomas in Patients with or without Multiple Endocrine Neoplasia Type 1 (MEN 1) : An Analysis of 36 Reported Cases. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:1-8. [PMID: 38735704 DOI: 10.2152/jmi.71.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Pancreatic GHRHomas (pGHRHomas) with acromegaly have unique conditions, harboring the existence of multiple endocrine neoplasia type 1 (MEN 1). Moreover, pituitary lesions are affected by both protracted ectopic GHRH and loss of menin function. Of significance is the clarification of clinicopathological aspects of pGHRHomas in patients with or without MEN 1. From 1977-2016, thirty-six patients with pGHRHomas were reported. Twenty-two out of 36 patients (61%) had pGHRHomas with MEN 1 and 14 patients did not. The former had a tendency of male predominance, benign tumor behavior and fewer metastasis rather than the latter. The latter is a single pGHRHoma accompanied by pituitary enlargement with somatotroph hyperplasia (hyperplasia) caused by protracted ectopic GHRH. Nine patients with MEN 1 underwent transsphenoidal surgery (TSS). The hyperplasia associated with various pituitary adenomas (PAs) including three GH-related adenomas was observed in seven subjects (32%). In these patients, the resection of their pGHRHomas was feasible. Furthermore, all patients with acromegaly due to pGHRHomas without MEN 1 had non-TSS, whereas approximately 70% of those with MEN 1 had unnecessary TSS. The association with hyperplasia and various PAs suggested that formation of the three GH-related adenomas may be induced by the foundations of MEN 1 gene mutations. J. Med. Invest. 71 : 1-8, February, 2024.
Collapse
Affiliation(s)
- Ryuichi Yamasaki
- Department of Internal Medicine, Ryokusuikai Hospital, Osaka, Japan
| |
Collapse
|
12
|
Gao Y, Li R, Wu L, Yang H, Mao J, Zhao W. Thymoma in multiple endocrine neoplasia type 1: a case report and systematic review. Endocrine 2023; 82:442-449. [PMID: 37668926 DOI: 10.1007/s12020-023-03440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is a rare syndrome that combines endocrine and non-endocrine tumors. Thymic neuroendocrine tumors are uncommon components that predict poor prognosis in patients with MEN1. We aimed to summarize the clinical characteristics of thymoma in MEN1 by reviewing the current reports from the literature. METHODS A patient with multiple endocrine neoplasia type 1 (parathyroid hyperplasia, pituitary adenoma, and insulinoma) was found to have a 2 × 1.5 cm thymic mass during long-term follow-up. Thoracoscope surgery was performed, and a histopathology examination revealed WHO Type B3 thymoma. A pathogenic mutation of c.783 + 1G > A in the MEN1 gene was identified. We further searched PubMed and EMBASE for thymoma in association with MEN1. RESULTS A comprehensive overview of the literature concerning characteristics of MEN1-related thymoma was summarized. Clinical characteristics and differences between thymoma and thymic carcinoid are highlighted. CONCLUSIONS Besides carcinoid, other tumors, including thymoma, need to be identified for thymic space-occupying lesions in MEN1 patients. The impact of thymoma on the long-term prognosis of MEN1 patients needs further investigation.
Collapse
Affiliation(s)
- Yuting Gao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China
| | - Ran Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China
| | - Lingge Wu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China
| | - Jiangfeng Mao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China
| | - Weigang Zhao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, 100730, Beijing, China.
| |
Collapse
|
13
|
Jellins T, Hill M, Prager JD, Francom CR, Chan CM, Schneider KW, Sharma A, Herrmann BW. Pediatric head and neck manifestations associated with multiple endocrine neoplasia syndromes. Int J Pediatr Otorhinolaryngol 2023; 173:111703. [PMID: 37604101 DOI: 10.1016/j.ijporl.2023.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION Multiple endocrine neoplasia (MEN) syndromes are a group of hereditary cancer syndromes that can predispose children to endocrine neoplasms developing within the head and neck. OBJECTIVE To examine the neoplastic manifestations of MEN type 1 (MEN1) and MEN type 2 (MEN2) in the pediatric head and neck. METHODS Single-institution, retrospective review of pediatric MEN between 2005 and 2022. RESULTS Fifty-three children were genetically confirmed with MEN (15 MEN1, 34 MEN2A, and 4 MEN2B), while three patients received clinical diagnoses of MEN1. The male to female ratio was essentially equal (1.15:1), and a documented family history of cancer was present in 89% (50/56). After multidisciplinary evaluation, a familial MEN diagnosis was confirmed in 91% (51/56). The mean ages of initial presentation and surgical intervention were 8.9 years (SD 5) and 9.8 years (SD 4.8), respectively. Although patients with MEN2 received surgery earlier than patients with MEN1 (8.7 vs 12.7 years), surgical patients with MEN2 in this cohort were older relative to current American Thyroid Association (ATA) guidelines primarily due to late presentation. Thyroid malignancies were identified in 36% (9/25) of thyroidectomy specimens (21 MEN2A, 4 MEN2B), with medullary thyroid carcinoma (MTC) present in five MEN2A patients and three MEN2B patients (89%), and papillary thyroid carcinoma (PTC) present in one MEN2A patient (11%). Nearly 90% (8/9) of thyroid malignancies were occult, with some occurring earlier than predicted by current guidelines (ATA-MOD and ATA-H). Central neck dissections were performed in 24% (2 MEN1, 2 MEN2A, and 4 MEN2B), with two MEN2B (50%) demonstrating cervical lymph node (LN) metastases. Additional histopathologic findings included C-cell hyperplasia in 57% (12/21) of MEN2A thyroidectomy patients. Of the eight MEN1 parathyroidectomy patients, four demonstrated parathyroid hyperplasia and four presented with parathyroid adenoma. CONCLUSION Nearly 60% required head and neck procedures. While MEN1 guidelines were appropriate for our cohort, we identified patients with MEN2 that developed MTC earlier than expected based on current ATA guidelines, including children in categories considered lower risk. In conjunction with a multidisciplinary approach, pediatric head and neck surgeons should be aware of the potential need for earlier surgical intervention in the pediatric MEN2 population.
Collapse
Affiliation(s)
- T Jellins
- University of Colorado School of Medicine, Aurora, CO, USA
| | - M Hill
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA
| | - J D Prager
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, CO, USA
| | - C R Francom
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, CO, USA
| | - C M Chan
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - K W Schneider
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplantation, University of Colorado School of Medicine, Aurora, CO, USA
| | - A Sharma
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - B W Herrmann
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
14
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
15
|
Kumar S, Senapati S, Bhattacharya N, Bhattacharya A, Maurya SK, Husain H, Bhatti JS, Pandey AK. Mechanism and recent updates on insulin-related disorders. World J Clin Cases 2023; 11:5840-5856. [PMID: 37727490 PMCID: PMC10506040 DOI: 10.12998/wjcc.v11.i25.5840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Insulin, a small protein with 51 amino acids synthesized by pancreatic β-cells, is crucial to sustain glucose homeostasis at biochemical and molecular levels. Numerous metabolic dysfunctions are related to insulin-mediated altered glucose homeostasis. One of the significant pathophysiological conditions linked to the insulin associated disorder is diabetes mellitus (DM) (type 1, type 2, and gestational). Insulin resistance (IR) is one of the major underlying causes of metabolic disorders despite its association with several physiological conditions. Metabolic syndrome (MS) is another pathophysiological condition that is associated with IR, hypertension, and obesity. Further, several other pathophysiological disorders/diseases are associated with the insulin malfunctioning, which include polycystic ovary syndrome, neuronal disorders, and cancer. Insulinomas are an uncommon type of pancreatic β-cell-derived neuroendocrine tumor that makes up 2% of all pancreatic neoplasms. Literature revealed that different biochemical events, molecular signaling pathways, microRNAs, and microbiota act as connecting links between insulin disorder and associated pathophysiology such as DM, insuloma, neurological disorder, MS, and cancer. In this review, we focus on the insulin-related disorders and the underlying mechanisms associated with the pathophysiology.
Collapse
Affiliation(s)
- Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, New Delhi 110007, India
| | | | - Hadiya Husain
- Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| |
Collapse
|
16
|
Deng J, Liao X, Cao H. Neuroendocrine tumors in a patient with multiple endocrine neoplasia type 1 syndrome: A case report and review of the literature. Medicine (Baltimore) 2023; 102:e34350. [PMID: 37478229 PMCID: PMC10662830 DOI: 10.1097/md.0000000000034350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
RATIONALE Hyperparathyroidism is caused by parathyroid tumors combined with gastroenteropancreatic tumors and pituitary tumors, which is common in patients with multiple endocrine neoplasia 1 syndrome (MEN-1). As its main pathogenic factor involves genetic mutations, it can cause a variety of different clinical symptoms. However, cases with negative genetic testing results and multiple nonfunctional malignant neuroendocrine tumors (NETs) with metastasis are relatively rare. PATIENT CONCERNS A 33-year-old man was admitted to the hospital for hyperparathyroidism. Imaging examination revealed multiple nodules in the parathyroid gland, pancreas, thymus, and adrenal gland, and multiple metastases to the lung, liver, thoracolumbar, as well as mediastinal lymph nodes. DIAGNOSES After multidisciplinary consultation, this patient was diagnosed with MEN-1 syndrome with various original tumors and multiple systemic metastases. INTERVENTIONS The patient underwent parathyroid tumor resection and metastasis biopsy. OUTCOMES The patient received denosumab and sorafenib treatment. LESSONS As an autosomal dominant hereditary disease, MEN-1 patients present with parathyroid hyperplasia, pancreatic and intestinal tumors, pituitary tumors, and so on, which are caused by genetic mutations. These patients would have hyperparathyroidism, hypoglycemia, gastric ulcer, and gastrointestinal diseases. However, some patients with MEN-1 syndrome cannot be diagnosed by genetic testing and simultaneously present with multiple nonfunctional NETs with systemic metastasis. This increases the difficulty of diagnosis and the subsequent treatment.
Collapse
Affiliation(s)
- Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Cao
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Xu J, Ye Z, Zhuo Q, Gao H, Qin Y, Lou X, Zhang W, Wang F, Wang Y, Jing D, Fan G, Zhang Y, Chen X, Chen J, Xu X, Yu X, Ji S. MEN1 Degradation Induced by Neddylation and the CUL4B-DCAF7 Axis Promotes Pancreatic Neuroendocrine Tumor Progression. Cancer Res 2023; 83:2226-2247. [PMID: 36939378 DOI: 10.1158/0008-5472.can-22-3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
UNLABELLED Pancreatic neuroendocrine tumors (PanNET) are a group of rare sporadic malignant tumors in the pancreas. MEN1 is the most frequently mutated gene in PanNETs. The MEN1-encoded protein is a typical tumor suppressor that forms a complex with epigenetic and transcription factors and is an attractive target for therapeutic interventions for patients with PanNET. A better understanding of the regulation of MEN1 protein expression in PanNETs could identify strategies for targeting MEN1. Here, we found that the neddylation pathway and DCAF7-mediated ubiquitination regulated MEN1 protein expression. Increased expression of members of the neddylation pathway and DCAF7 was found in PanNET tissues compared with paired-adjacent tissues and was associated with poor prognosis in patients with PanNET. Suppression of neddylation using the neddylation inhibitor MLN4924 or RNA interference significantly induced MEN1 accumulation and repressed cancer-related malignant phenotypes. CUL4B and DCAF7 promoted MEN1 degradation by binding and catalyzing its ubiquitination. In PanNET cells resistant to everolimus, a pharmacologic mTOR inhibitor widely used for advanced PanNET patient treatment, the downregulation of DCAF7 expression overcame resistance and synergized with everolimus to suppress mTOR activation and to inhibit cancer cell growth. The effects of DCAF7 loss could be counteracted by the simultaneous knockdown of MEN1 both in vitro and in vivo. The inverse correlation between DCAF7 and MEN1 was further validated in clinical specimens. This study revealed that the posttranslational control of MEN1 expression in PanNET is mediated by neddylation and the CUL4B-DCAF7 axis and identifies potential therapeutic targets in patients with MEN1-associated PanNET. SIGNIFICANCE Identification of neddylation and ubiquitination pathways that regulate MEN1 protein stability provides an opportunity for therapeutic interventions for treating patients with pancreatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qifeng Zhuo
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Heli Gao
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wuhu Zhang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Fei Wang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Desheng Jing
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Guixiong Fan
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yue Zhang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuemin Chen
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Alexander ES, Ziv E. Neuroendocrine Tumors: Genomics and Molecular Biomarkers with a Focus on Metastatic Disease. Cancers (Basel) 2023; 15:cancers15082249. [PMID: 37190177 DOI: 10.3390/cancers15082249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Neuroendocrine tumors (NETs) are considered rare tumors that originate from specialized endocrine cells. Patients often present with metastatic disease at the time of diagnosis, which negatively impacts their quality of life and overall survival. An understanding of the genetic mutations that drive these tumors and the biomarkers used to detect new NET cases is important to identify patients at an earlier disease stage. Elevations in CgA, synaptophysin, and 5-HIAA are most commonly used to identify NETs and assess prognosis; however, new advances in whole genome sequencing and multigenomic blood assays have allowed for a greater understanding of the drivers of NETs and more sensitive and specific tests to diagnose tumors and assess disease response. Treating NET liver metastases is important in managing hormonal or carcinoid symptoms and is imperative to improve patient survival. Treatment for liver-dominant disease is varied; delineating biomarkers that may predict response will allow for better patient stratification.
Collapse
Affiliation(s)
- Erica S Alexander
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Etay Ziv
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
20
|
Ruggeri RM, Benevento E, De Cicco F, Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM, Colao A, Faggiano A. Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies. J Endocrinol Invest 2023; 46:213-234. [PMID: 36038743 DOI: 10.1007/s40618-022-01905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Neuroendocrine neoplasms can occur as part of inherited disorders, usually in the form of well-differentiated, slow-growing tumors (NET). The main predisposing syndromes include: multiple endocrine neoplasias type 1 (MEN1), associated with a large spectrum of gastroenteropancreatic and thoracic NETs, and type 4 (MEN4), associated with a wide tumour spectrum similar to that of MEN1; von Hippel-Lindau syndrome (VHL), tuberous sclerosis (TSC), and neurofibromatosis 1 (NF-1), associated with pancreatic NETs. In the present review, we propose a reappraisal of the genetic basis and clinical features of gastroenteropancreatic and thoracic NETs in the setting of inherited syndromes with a special focus on molecularly targeted therapies for these lesions. METHODS Literature search was systematically performed through online databases, including MEDLINE (via PubMed), and Scopus using multiple keywords' combinations up to June 2022. RESULTS Somatostatin analogues (SSAs) remain the mainstay of systemic treatment for NETs, and radiolabelled SSAs can be used for peptide-receptor radionuclide therapy for somatostatin receptor (SSTR)-positive NETs. Apart of these SSTR-targeted therapies, other targeted agents have been approved for NETs: the mTOR inhibitor everolimus for lung, gastroenteropatic and unknown origin NET, and sunitinib, an antiangiogenic tyrosine kinase inhibitor, for pancreatic NET. Novel targeted therapies with other antiangiogenic agents and immunotherapies have been also under evaluation. CONCLUSIONS Major advances in the understanding of genetic and epigenetic mechanisms of NET development in the context of inherited endocrine disorders have led to the recognition of molecular targetable alterations, providing a rationale for the implementation of treatments and development of novel targeted therapies.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico "Gaetano Martino" University Hospital, 98125, Messina, Italy.
| | - E Benevento
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - F De Cicco
- SSD Endocrine Disease and Diabetology, ASL TO3, Pinerolo, TO, Italy
| | - B Fazzalari
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - E Guadagno
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - I Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M G Tarsitano
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - A M Isidori
- Gruppo NETTARE, Policlinico Umberto I, Università Sapienza, Rome, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
The Classic, the Trendy, and the Refashioned: A Primer for Pathologists on What Is New in Familial Endocrine Tumor Syndromes. Adv Anat Pathol 2023; 30:69-78. [PMID: 36136401 DOI: 10.1097/pap.0000000000000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Familial endocrine tumor syndromes are continuously expanding owing to the growing role of genetic testing in routine clinical practice. Pathologists are usually the first on the clinical team to encounter these syndromes at their initial presentation; thus, recognizing them is becoming more pivotal in routine pathology practice to help in properly planning management and further family testing. Our increasing knowledge about them is reflected in the newer syndromes included in the new World Health Organization classification and in the evolving discovery of new endocrine tumors and new familial associations. In many of these syndromes, the clinical features and co-occurrence of multiple neoplasia are the only clues (multiple endocrine neoplasia syndromes). In other syndromes, specific morphologic findings (pituitary blastoma and DICER1 syndrome, cribriform morular thyroid carcinoma, and AFP syndrome) and available ancillary studies (SDHB in SDH-deficient tumor syndromes) can aid pathologists. The aim of this review is to provide a primer on recent updates on familial endocrine tumor syndromes and related tumors, focusing on recent classification changes or tumor syndromes where a clearer role for pathologists is at play.
Collapse
|
22
|
Insights into Epigenetic Changes Related to Genetic Variants and Cells-of-Origin of Pancreatic Neuroendocrine Tumors: An Algorithm for Practical Workup. Cancers (Basel) 2022; 14:cancers14184444. [PMID: 36139607 PMCID: PMC9496769 DOI: 10.3390/cancers14184444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic neuroendocrine tumors are composite entities due to their heterogeneity illustrated in clinical behavior, mutational pattern, and site of origin. Pancreatic neuroendocrine tumors display a low mutation burden with frequently epigenetic alterations, such as histone modifications, chromatin remodeling, or DNA methylation status. Using the epigenomic data of the pancreatic neuroendocrine tumors converged to the identification of molecularly distinct subgroups. Furthermore, epigenetic signatures could be used as biomarkers due to their link to cell lineages and genetic driver mutations. We integrated the current knowledge on genetic and epigenetic alterations involved in endocrine lineage associated with these neoplasms to present a pathway-based overview. In this review, we suggest a simplified algorithm on how to manage pancreatic neuroendocrine tumors from a practical perspective based on pathologist ’analysis. Abstract Current knowledge on the molecular landscape of pancreatic neuroendocrine tumors (PanNETs) has advanced significantly. Still, the cellular origin of PanNETs is uncertain and the associated mechanisms remain largely unknown. DAXX/ATRX and MEN1 are the three most frequently altered genes that drive PanNETs. They are recognized as a link between genetics and epigenetics. Moreover, the acknowledged impact on DNA methylation by somatic mutations in MEN1 is a valid hallmark of epigenetic mechanism. DAXX/ATRX and MEN1 can be studied at the immunohistochemical level as a reliable surrogate for sequencing. DAXX/ATRX mutations promote alternative lengthening of telomeres (ALT) activation, determined by specific fluorescence in situ hybridization (FISH) analysis. ALT phenotype is considered a significant predictor of worse prognosis and a marker of pancreatic origin. Additionally, ARX/PDX1 expression is linked to important epigenomic alterations and can be used as lineage associated immunohistochemical marker. Herein, ARX/PDX1 association with DAXX/ATRX/MEN1 and ALT can be studied through pathological assessment, as these biomarkers may provide important clues to the mechanism underlying disease pathogenesis. In this review, we present an overview of a new approach to tumor stratification based on genetic and epigenetic characteristics as well as cellular origin, with prognostic consequences.
Collapse
|
23
|
Disease Modeling of Pituitary Adenoma Using Human Pluripotent Stem Cells. Cancers (Basel) 2022; 14:cancers14153660. [PMID: 35954322 PMCID: PMC9367606 DOI: 10.3390/cancers14153660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pituitary adenoma pathophysiology has been studied mainly using murine cell lines, animal models, and pituitary tumor samples. However, the lack of human pituitary cell line is a significant limiting factor in studying the molecular mechanisms of human pituitary tumors. Recently, pituitary induction methods from human-induced pluripotent stem cells (hiPSCs) have been established. These methods can induce human pituitary hormone-producing cells that retain physiological properties. hiPSCs in which tumor-causing gene mutations are introduced using genome-editing techniques, such as CRISPR/Cas9 systems, provide great opportunities to establish in vitro human pituitary adenoma disease models. The models will be a novel platform to discover novel drugs and investigate tumorigenesis and pathophysiology. The purpose of this review is to provide an overview of the applications of iPSCs for pituitary and neoplastic disorder research and genome-editing technologies to create strategies for developing pituitary adenoma models using iPSCs. Abstract Pituitary adenomas are characterized by abnormal growth in the pituitary gland. Surgical excision is the first-line treatment for functional (hormone-producing) pituitary adenomas, except for prolactin-producing adenomas; however, complete excision is technically challenging, and many patients require long-term medication after the treatment. In addition, the pathophysiology of pituitary adenomas, such as tumorigenesis, has not been fully understood. Pituitary adenoma pathophysiology has mainly been studied using animal models and animal tumor-derived cell lines. Nevertheless, experimental studies on human pituitary adenomas are difficult because of the significant differences among species and the lack of reliable cell lines. Recently, several methods have been established to differentiate pituitary cells from human pluripotent stem cells (hPSCs). The induced pituitary hormone-producing cells retain the physiological properties already lost in tumor-derived cell lines. Moreover, CRISPR/Cas9 systems have expedited the introduction of causative gene mutations in various malignant tumors into hPSCs. Therefore, hPSC-derived pituitary cells have great potential as a novel platform for studying the pathophysiology of human-specific pituitary adenomas and developing novel drugs. This review presents an overview of the recent progresses in hPSC applications for pituitary research, functional pituitary adenoma pathogenesis, and genome-editing techniques for introducing causative mutations. We also discuss future applications of hPSCs for studying pituitary adenomas.
Collapse
|
24
|
Troka I, Griffanti G, Canaff L, Hendy GN, Goltzman D, Nazhat SN. Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix. Biomimetics (Basel) 2022; 7:biomimetics7030101. [PMID: 35892371 PMCID: PMC9329857 DOI: 10.3390/biomimetics7030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.
Collapse
Affiliation(s)
- Ildi Troka
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
| | - Lucie Canaff
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Geoffrey N. Hendy
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
- Correspondence:
| |
Collapse
|
25
|
Koyama N, Nagase T, Kure M, Odaka T, Kogure K, Takeda Y, Ishii T, Narisawa K, Fujita T, Fujimori M, Katsura Y. Multiple Endocrine Neoplasia Type 1 with Functional Parathyroid Cysts. Intern Med 2022; 61:1183-1188. [PMID: 34645755 PMCID: PMC9107977 DOI: 10.2169/internalmedicine.7505-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A 51-year-old woman was admitted because of hypercalcemia. Neck ultrasonography and computed tomography revealed the presence of parathyroid cysts on both sides. After primary hyperparathyroidism was diagnosed by technetium-99m-methoxyisobutylisonitrile scintigraphy, the patient was successfully treated with total parathyroidectomy and autotransplantation. She also had a non-functioning pancreatic neuroendocrine tumor, prolactinoma, and adrenal tumors with subclinical Cushing's syndrome. Given these clinical features and her family history, multiple endocrine neoplasia type 1 (MEN1) was suspected, and germline DNA sequencing revealed a missense mutation (c.1013T>C, [corrected] p.Leu338Pro) in exon 7 of MEN1. This case demonstrates the phenotypic and genetic diversity of MEN1.
Collapse
Affiliation(s)
- Nobuyuki Koyama
- Department of Respiratory Medicine, Saitama Medical Center, Saitama Medical University, Japan
| | - Terumasa Nagase
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
| | - Masahiko Kure
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
- Department of Internal Medicine, AOI Universal Hospital, Japan
| | - Tomotada Odaka
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
| | - Koichiro Kogure
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
| | - Yukihisa Takeda
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
| | - Tomoya Ishii
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
| | - Kenichiro Narisawa
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
- Department of Internal Medicine, AOI Universal Hospital, Japan
| | - Tomoyuki Fujita
- Department of Breast Surgery, Tokyo Medical University Ibaraki Medical Center, Japan
| | - Minoru Fujimori
- Department of Breast Surgery, Tokyo Medical University Ibaraki Medical Center, Japan
- Department of Breast and Endocrine Surgery, National Hospital Organization, Shinshu Ueda Medical Center, Japan
| | - Yoshiya Katsura
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Japan
| |
Collapse
|
26
|
Feng C, Chen H, Huang L, Feng Y, Chang S. The Research Landscape of Multiple Endocrine Neoplasia Type 1 (2000–2021): A Bibliometric Analysis. Front Med (Lausanne) 2022; 9:832662. [PMID: 35463033 PMCID: PMC9024095 DOI: 10.3389/fmed.2022.832662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction This study aimed to investigate the landscape of Multiple Endocrine Neoplasia Type 1 research during the last 22 years using machine learning and text analysis. Method In December 2021, all publications indexed under the MeSH term “Multiple Endocrine Neoplasia Type 1” were obtained from PubMed. The whole set of search results was downloaded in XML format, and metadata such as title, abstract, keywords, mesh words, and year of publication were extracted from the original XML files for bibliometric evaluation. The Latent Dirichlet allocation (LDA) topic modeling method was used to analyze specific themes. Results This study eventually contained 1,407 publications. Among them, there are 768 (54.58%) case reports and reviews. Text analysis based on MeSH words revealed that the most often studied clinical areas include therapy efficacy, prognosis, and genetic diagnosis. The majority of basic study is focused on genetic alterations. The LDA topic model further identifies three topic clusters include basic research, treatment cluster, and diagnosis cluster. In the basic research cluster, many studies are focused on the expression of Menin. The primary focus of the therapy cluster is pancreatic resections and parathyroidectomy. In the diagnose cluster, the main focus is on Genetic Diagnosis and screening strategies for Hereditary Cancer Syndrome. Conclusion The current state of research on MEN1 is far from adequate. Research on rare diseases MEN1 necessitates implementing a broad research program involving multiple centers to advance MEN1 research together.
Collapse
Affiliation(s)
- Chenzhe Feng
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Haolin Chen
- Department of Mathematics, University of California, Davis, Davis, CA, United States
| | - Leyi Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yeqian Feng
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
- Yeqian Feng
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, China
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, China
- *Correspondence: Shi Chang
| |
Collapse
|
27
|
Zhang F, Yu X, Wang X, Shao H. Multiple endocrine neoplasia type 1: a new germline "homozygous" variant (c.201delC) caused by detection errors. Hered Cancer Clin Pract 2022; 20:10. [PMID: 35255927 PMCID: PMC8900317 DOI: 10.1186/s13053-022-00216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is a hereditary cancer syndrome caused by germline variants in the MEN1 gene located on chromosome 11q13. We found a Chinese woman who had a pancreatic tumor, parathyroid tumor, adrenal tumor, and suspicion of gastrinoma. CASE PRESENTATION The proband and her immediate family members underwent genetic detection. The results showed that two of the proband's six relatives had the same variants as the proband, and her sister also had the typical symptoms of MEN1. However, the first- and second-time genetic detection results showed that they were homozygous variants, which did not conform to Mendelian inheritance laws. Multiplex ligation-dependent probe amplification (MLPA) was used to rule out homozygous variants caused by a deletion of gene fragments in the proband and her immediate family members. The MLPA results showed that the gene deletion was absent in the MEN1. The results from the third genetic detection (redesigned the primer) showed that they had a heterozygous variant. A new MEN1 germline variant [c.201delC (p.Ala68Profs*51)], which could induce MEN1, was found in this study. CONCLUSIONS This newly identified germline variant could improve the identification of clinical phenotypes and the early diagnosis of MEN1. Clinician should consider the present of situation that intron variant causing detection error. Re-designing the primers close to the variant site for gene detection could avoid this situation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, 110001, Shenyang, Liaoning Province, P. R. China
| | - Xiaohui Yu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, 110001, Shenyang, Liaoning Province, P. R. China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, 110001, Shenyang, Liaoning Province, P. R. China
| | - Hua Shao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Erickson LA, Mete O, Juhlin CC, Perren A, Gill AJ. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr Pathol 2022; 33:64-89. [PMID: 35175514 DOI: 10.1007/s12022-022-09709-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
Abstract
The 2022 WHO classification reflects increases in the knowledge of the underlying pathogenesis of parathyroid disease. In addition to the classic characteristic features of parathyroid neoplasms, subtleties in histologic features which may indicate an underlying genetic abnormality reflect increased understanding of the clinical manifestations, histologic, and genetic correlation in parathyroid disease. The importance of underlying genetic aberrancies is emphasized due to their significance to the care of the patient. Traditionally, the term "parathyroid hyperplasia" has been applied to multiglandular parathyroid disease; however, the concept of hyperplasia is generally no longer supported in the context of primary hyperparathyroidism since affected glands are usually composed of multiple "clonal" neoplastic proliferations. In light of these findings and management implications for patient care, the 2022 WHO classification endorses primary hyperparathyroidism-related multiglandular parathyroid disease (multiglandular multiple parathyroid adenomas) as a germline susceptibility-driven multiglandular parathyroid neoplasia. From such a perspective, pathologists can provide additional value to genetic triaging by recognizing morphological and immunohistochemical harbingers of MEN1, CDKN1B, MAX, and CDC73-related manifestations. In the current WHO classification, the term "parathyroid hyperplasia" is now used primarily in the setting of secondary hyperplasia which is most often caused by chronic renal failure. In addition to expansion in the histological features, including those that may be suggestive of an underlying genetic abnormality, there are additional nomenclature changes in the 2022 WHO classification reflecting increased understanding of the underlying pathogenesis of parathyroid disease. The new classification no longer endorses the use of "atypical parathyroid adenoma". This entity is now being replaced with the term of "atypical parathyroid tumor" to reflect a parathyroid neoplasm of uncertain malignant potential. The differential diagnoses of atypical parathyroid tumor are discussed along with the details of worrisome clinical and laboratory findings, and also features that define atypical histological and immunohistochemical findings to qualify for this diagnosis. The histological definition of parathyroid carcinoma still requires one of the following findings: (i) angioinvasion (vascular invasion) characterized by tumor invading through a vessel wall and associated thrombus, or intravascular tumor cells admixed with thrombus, (ii) lymphatic invasion, (iii) perineural (intraneural) invasion, (iv) local malignant invasion into adjacent anatomic structures, or (v) histologically/cytologically documented metastatic disease. In parathyroid carcinomas, the documentation of mitotic activity (e.g., mitoses per 10mm2) and Ki67 labeling index is recommended. Furthermore, the importance of complete submission of parathyroidectomy specimens for microscopic examination, and the crucial role of multiple levels along with ancillary biomarkers have expanded the diagnostic workup of atypical parathyroid tumors and parathyroid carcinoma to ensure accurate characterization of parathyroid neoplasms. The concept of parafibromin deficiency has been expanded upon and term "parafibromin deficient parathyroid neoplasm" is applied to a parathyroid neoplasm showing complete absence of nuclear parafibromin immunoreactivity. Nucleolar loss is considered as abnormal finding that requires further molecular testing to confirm its biological significance. The 2022 WHO classification emphasizes the role of molecular immunohistochemistry in parathyroid disease. By adopting a question-answer framework, this review highlights advances in knowledge of histological features, ancillary studies, and associated genetic findings that increase the understanding of the underlying pathogenesis of parathyroid disease that are now reflected in the updated classification and new entities in the 2022 WHO classification.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55901, USA.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Anthony J Gill
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Waguespack SG. Beyond the "3 Ps": A critical appraisal of the non-endocrine manifestations of multiple endocrine neoplasia type 1. Front Endocrinol (Lausanne) 2022; 13:1029041. [PMID: 36325452 PMCID: PMC9618614 DOI: 10.3389/fendo.2022.1029041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1), an autosomal-dominantly inherited tumor syndrome, is classically defined by tumors arising from the "3 Ps": Parathyroids, Pituitary, and the endocrine Pancreas. From its earliest descriptions, MEN1 has been associated with other endocrine and non-endocrine neoplastic manifestations. High quality evidence supports a direct association between pathogenic MEN1 variants and neoplasms of the skin (angiofibromas and collagenomas), adipose tissue (lipomas and hibernomas), and smooth muscle (leiomyomas). Although CNS tumors, melanoma, and, most recently, breast cancer have been reported as MEN1 clinical manifestations, the published evidence to date is not yet sufficient to establish causality. Well-designed, multicenter prospective studies will help us to understand better the relationship of these tumors to MEN1, in addition to verifying the true prevalence and penetrance of the well-documented neoplastic associations. Nevertheless, patients affected by MEN1 should be aware of these non-endocrine manifestations, and providers should be encouraged always to think beyond the "3 Ps" when treating an MEN1 patient.
Collapse
|
30
|
Chasseloup F, Bourdeau I, Tabarin A, Regazzo D, Dumontet C, Ladurelle N, Tosca L, Amazit L, Proust A, Scharfmann R, Mignot T, Fiore F, Tsagarakis S, Vassiliadi D, Maiter D, Young J, Lecoq AL, Deméocq V, Salenave S, Lefebvre H, Cloix L, Emy P, Dessailloud R, Vezzosi D, Scaroni C, Barbot M, de Herder W, Pattou F, Tétreault M, Corbeil G, Dupeux M, Lambert B, Tachdjian G, Guiochon-Mantel A, Beau I, Chanson P, Viengchareun S, Lacroix A, Bouligand J, Kamenický P. Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome: a multicentre, retrospective, cohort study. Lancet Diabetes Endocrinol 2021; 9:813-824. [PMID: 34655521 DOI: 10.1016/s2213-8587(21)00236-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome is caused by aberrant expression of the GIP receptor in adrenal lesions. The bilateral nature of this disease suggests germline genetic predisposition. We aimed to identify the genetic driver event responsible for GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. METHODS We conducted a multicentre, retrospective, cohort study at endocrine hospitals and university hospitals in France, Canada, Italy, Greece, Belgium, and the Netherlands. We collected blood and adrenal samples from patients who had undergone unilateral or bilateral adrenalectomy for GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome. Adrenal samples from patients with primary bilateral macronodular adrenal hyperplasia who had undergone an adrenalectomy for overt or mild Cushing's syndrome without evidence of food-dependent cortisol production and those with GIP-dependent unilateral adrenocortical adenomas were used as control groups. We performed whole genome, whole exome, and targeted next generation sequencing, and copy number analyses of blood and adrenal DNA from patients with familial or sporadic disease. We performed RNA sequencing on adrenal samples and functional analyses of the identified genetic defect in the human adrenocortical cell line H295R. FINDINGS 17 patients with GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome were studied. The median age of patients was 43·3 (95% CI 38·8-47·8) years and most patients (15 [88%]) were women. We identified germline heterozygous pathogenic or most likely pathogenic variants in the KDM1A gene in all 17 patients. We also identified a recurrent deletion in the short p arm of chromosome 1 harboring the KDM1A locus in adrenal lesions of these patients. None of the 29 patients in the control groups had KDM1A germline or somatic alterations. Concomitant genetic inactivation of both KDM1A alleles resulted in loss of KDM1A expression in adrenal lesions. Global gene expression analysis showed GIP receptor upregulation with a log2 fold change of 7·99 (95% CI 7·34-8·66; p=4·4 × 10-125), and differential regulation of several other G protein-coupled receptors in GIP-dependent primary bilateral macronodular hyperplasia samples compared with control samples. In vitro pharmacological inhibition and inactivation of KDM1A by CRISPR-Cas9 genome editing resulted in an increase of GIP receptor transcripts and protein in human adrenocortical H295R cells. INTERPRETATION We propose that GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome results from a two-hit inactivation of KDM1A, consistent with the tumour suppressor gene model of tumorigenesis. Genetic testing and counselling should be offered to these patients and their relatives. FUNDING Agence Nationale de la Recherche, Fondation du Grand défi Pierre Lavoie, and the French National Cancer Institute.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Antoine Tabarin
- Department of Endocrinology, Diabetes, and Nutrition, Hôpital Haut Lévêque, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Daniela Regazzo
- Endocrinology Unit, Department of Medicine, Hospital-University of Padua, Padua, Italy
| | - Charles Dumontet
- Université Claude Bernard Lyon 1, UMR INSERM 1052, CNRS 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
| | - Nataly Ladurelle
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Lucie Tosca
- Service d'Histologie, Embryologie et Cytogénétique, Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
| | - Larbi Amazit
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; UMS 44, Institut Biomédical du Val de Bièvre, Le Kremlin-Bicêtre, France
| | - Alexis Proust
- Service de Génétique Moléculaire et d'Hormonologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Tiphaine Mignot
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Frédéric Fiore
- US12 Centre d'immunophénomique, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes, and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Dimitra Vassiliadi
- Department of Endocrinology, Diabetes, and Metabolism, Evangelismos Hospital, Athens, Greece
| | - Dominique Maiter
- Department of Endocrinology and Nutrition, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jacques Young
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anne-Lise Lecoq
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Vianney Deméocq
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Sylvie Salenave
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Hervé Lefebvre
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, Rouen University Hospital, Rouen, France
| | - Lucie Cloix
- CHR Orleans, Service d'Endocrinologie, Diabète et Nutrition, Orleans, France
| | - Philippe Emy
- CHR Orleans, Service d'Endocrinologie, Diabète et Nutrition, Orleans, France
| | - Rachel Dessailloud
- Department of Endocrinology, Diabetes, and Nutrition, and PériTox, UMR-I 01 INERIS, Université de Picardie Jules Verne, Amiens, France
| | | | - Carla Scaroni
- Endocrinology Unit, Department of Medicine, Hospital-University of Padua, Padua, Italy
| | - Mattia Barbot
- Department of Neuroscience, Hospital-University of Padua, Padua, Italy
| | - Wouter de Herder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - François Pattou
- Service de Chirurgie Générale et Endocrinienne, Univ Lille, Institut Pasteur de Lille, INSERM U1190, Translational Research Laboratory for Diabetes, CHU Lille, Lille, France
| | - Martine Tétreault
- Department of Neurosciences, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Gilles Corbeil
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Margot Dupeux
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Lambert
- Service de Chirurgie Digestive et Endocrinienne, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Gérard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Assistance Publique-Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
| | - Anne Guiochon-Mantel
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service de Génétique Moléculaire et d'Hormonologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Isabelle Beau
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Say Viengchareun
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Jérôme Bouligand
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service de Génétique Moléculaire et d'Hormonologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Université Paris-Saclay, INSERM, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France; Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
31
|
Frey S, Mirallié E, Le Bras M, Regenet N. What Are the Place and Modalities of Surgical Management for Pancreatic Neuroendocrine Neoplasms? A Narrative Review. Cancers (Basel) 2021; 13:5954. [PMID: 34885063 PMCID: PMC8656750 DOI: 10.3390/cancers13235954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are a heterogeneous group of tumors derived from cells with neuroendocrine differentiation. They are considered malignant by default. However, their outcomes are variable depending on their presentation in the onset of hereditary syndromes, hormonal secretion, grading, and extension. Therefore, although surgical treatment has long been suggested as the only treatment of pancreatic neuroendocrine neoplasms, its modalities are an evolving landscape. For selected patients (small, localized, non-functional panNENs), a "wait and see" strategy is suggested, as it is in the setting of multiple neuroendocrine neoplasia type 1, but the accurate size cut-off remains to be established. Parenchyma-sparring pancreatectomy, aiming to limit pancreatic insufficiency, are also emerging procedures, which place beyond the treatment of insulinomas and small non-functional panNENs (in association with lymph node picking) remains to be clarified. Furthermore, giving the fact that the liver is generally the only metastatic site, surgery keeps a place of choice alongside medical therapies in the treatment of metastatic disease, but its modalities and extensions are still a matter of debate. This narrative review aims to describe the current recommended surgical management for pancreatic NENs and controversies in light of the actual recommendations and recent literature.
Collapse
Affiliation(s)
- Samuel Frey
- Université de Nantes, Quai de Tourville, 44000 Nantes, France; (S.F.); (E.M.)
- L’institut du Thorax, Université de Nantes, CNRS, INSERM, CHU de Nantes, 44000 Nantes, France
- Chirurgie Cancérologique, Digestive et Endocrinienne, Institut des Maladies de l’Appareil Digestif, CHU de Nantes, 44000 Nantes, France
| | - Eric Mirallié
- Université de Nantes, Quai de Tourville, 44000 Nantes, France; (S.F.); (E.M.)
- Chirurgie Cancérologique, Digestive et Endocrinienne, Institut des Maladies de l’Appareil Digestif, CHU de Nantes, 44000 Nantes, France
| | - Maëlle Le Bras
- Endocrinologie, Diabétologie et Nutrition, L’institut du Thorax, CHU Nantes, 44000 Nantes, France;
| | - Nicolas Regenet
- Chirurgie Cancérologique, Digestive et Endocrinienne, Institut des Maladies de l’Appareil Digestif, CHU de Nantes, 44000 Nantes, France
| |
Collapse
|
32
|
Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, Carbuccia N, Finetti P, Chaffanet M, Kaoutari AE, Vernerey J, Fazli L, Gleave M, Manai M, Barthélémy P, Birnbaum D, Bertucci F, Taïeb D, Rocchi P. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene 2021; 41:125-137. [PMID: 34711954 PMCID: PMC8724010 DOI: 10.1038/s41388-021-02039-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Disease progression and therapeutic resistance of prostate cancer (PC) are linked to multiple molecular events that promote survival and plasticity. We previously showed that heat shock protein 27 (HSP27) acted as a driver of castration-resistant phenotype (CRPC) and developed an oligonucleotides antisense (ASO) against HSP27 with evidence of anti-cancer activity in men with CRPC. Here, we show that the tumor suppressor Menin (MEN1) is highly regulated by HSP27. Menin is overexpressed in high-grade PC and CRPC. High MEN1 mRNA expression is associated with decreased biochemical relapse-free and overall survival. Silencing Menin with ASO technology inhibits CRPC cell proliferation, tumor growth, and restores chemotherapeutic sensitivity. ChIP-seq analysis revealed differential DNA binding sites of Menin in various prostatic cells, suggesting a switch from tumor suppressor to oncogenic functions in CRPC. These data support the evaluation of ASO against Menin for CRPC. ![]()
Collapse
Affiliation(s)
- Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Dang Tan Nguyen
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thibaud Sefiane
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Nadine Carbuccia
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Max Chaffanet
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Abdessamad El Kaoutari
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Julien Vernerey
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Mohamed Manai
- Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33076 Bordeaux, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Biophysics and Nuclear Medicine Department, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, F-13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.
| |
Collapse
|
33
|
Трухина ДА, Мамедова ЕО, Лапшина АМ, Васильев ЕВ, Тюльпаков АН, Белая ЖЕ. [Morphological characteristics of pituitary adenomas in the phenocopy of multiple endocrine neoplasia type 1]. PROBLEMY ENDOKRINOLOGII 2021; 67:50-58. [PMID: 35018761 PMCID: PMC9753811 DOI: 10.14341/probl12815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Multiple endocrine neoplasia type 1 (MEN 1) is a rare autosomal dominant disorder caused by mutations in the MEN1 gene, which encodes the menin protein. If a patient has the MEN 1 phenotype in the absence of mutations in the MEN1 gene, the condition is classified as a phenocopy of this syndrome. Although significant progress has been made in understanding the function of menin, its role in the oncogenesis of the endocrine glands is still being elucidated. Due to its key role in physiological and pathological processes, the assessment of the menin expression can provide valuable information. AIM to determine whether there are any differences in the expression of menin in the pituitary adenomas (PA) in patients with phenocopy of MEN 1 (phMEN 1) and genetically confirmed MEN 1 (gMEN 1) compared with their sporadic forms. MATERIALS AND METHODS immunohistochemical assessment of the menin expression was carried out in PA of patients with gMEN 1, phMEN 1 and sporadic acromegaly (SA), surgically treated in 2008-2020. IHC was performed using antibodies to menin, PRL, GH, ACTH, FSH, TSH, Pit-1, T-box, ERA on previously prepared histological section. RESULTS The study included 35 samples of PA: gMEN 1 - 9 samples, phMEN 1 - 12 (somatotropinomas + PHPT); CA - 14 samples. The patients were comparable by gender, adenoma size, and drug intake. The gMEN 1 group differed from phMEN 1 and SA by age (p = 0.0005). In patients with gMEN 1, the expression of menin varied from no staining (5/9) to intense cytoplasm staining. Cytoplasmic expression of menin was mainly present (11/12) in the phMEN 1. In the SA group, there was no staining in 1 case; nuclear expression was detected in 6/14 cases. The phMEN 1 group showed significantly higher cytoplasmic expression of menin than the gMEN 1 group (p = 0.006). The gMEN 1 group also differed from the SA group (p = 0.012). There were no statistically significant differences between the phMEN 1 and SA groups (p = 0.049). CONCLUSION It was revealed that the menin expression, in general, is retained in phMEN 1 and SA groups, although with different localization in the cell structure (nucleus and / or cytoplasm). At the same time, the expression of menin varies greatly in patients with gMEN 1. According to the data obtained, it can be assumed that the pathogenesis of PA in phMEN 1 and SA may have similarities; however, there could be factors contributing to the appearance of several tumors of the endocrine glands in one person with phMEN 1. To understand this process, it is necessary to further study the genes associated with MEN 1, epigenetic factors, signaling pathways in which menin is involved.
Collapse
Affiliation(s)
- Д. А. Трухина
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. О. Мамедова
- Национальный медицинский исследовательский центр эндокринологии
| | - А. М. Лапшина
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. В. Васильев
- Национальный медицинский исследовательский центр эндокринологии
| | - А. Н. Тюльпаков
- Национальный медицинский исследовательский центр эндокринологии;
Медико-генетический научный центр имени академика Н.П. Бочкова
| | - Ж. Е. Белая
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
34
|
Konukiewitz B, Jesinghaus M, Kasajima A, Klöppel G. Neuroendocrine neoplasms of the pancreas: diagnosis and pitfalls. Virchows Arch 2021; 480:247-257. [PMID: 34647171 PMCID: PMC8986719 DOI: 10.1007/s00428-021-03211-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
Common to neuroendocrine neoplasms of the pancreas is their expression of synaptophysin, chromogranin A, and/or INSM1. They differ, however, in their histological differentiation and molecular profile. Three groups can be distinguished: well-differentiated neuroendocrine neoplasms (neuroendocrine tumors), poorly differentiated neuroendocrine neoplasms (neuroendocrine carcinomas), and mixed neuroendocrine-non-neuroendocrine neoplasms. However, the expression of synaptophysin and, to a lesser extent, also chromogranin A is not restricted to the neuroendocrine neoplasms, but may also be in a subset of non-neuroendocrine epithelial and non-epithelial neoplasms. This review provides the essential criteria for the diagnosis of pancreatic neuroendocrine neoplasms including diagnostic clues for the distinction of high-grade neuroendocrine tumors from neuroendocrine carcinomas and an algorithm avoiding diagnostic pitfalls in the delineation of non-neuroendocrine neoplasms with neuroendocrine features from pancreatic neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Björn Konukiewitz
- Institute of Pathology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universität zu Kiel, Arnold-Heller-Straße 3/14, 24105, Kiel, Germany.
| | - Moritz Jesinghaus
- Institute of Pathology, Universitätsklinikum Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Atsuko Kasajima
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Günter Klöppel
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| |
Collapse
|
35
|
Somatostatin Analogue Therapy in MEN1-Related Pancreatic Neuroendocrine Tumors from Evidence to Clinical Practice: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14101039. [PMID: 34681263 PMCID: PMC8538402 DOI: 10.3390/ph14101039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are relatively rare and complex tumors that can be sporadic or hereditary, as in the context of multiple endocrine neoplasia type 1 (MEN1) where patients display a 70% lifelong risk of developing a pancreatic NENs (pNENs). To date, specific personalized treatment for pNENs in patients with MEN1 are lacking. The aim of this study was to systematically analyze the efficacy and safety of somatostatin analogue (SSA) treatment in patients affected by MEN1-related pNENs. We performed a systematic review of the literature, searching for peer-reviewed articles on SSA (octreotide or lanreotide) treatment in MEN1 associated with pNENs. We selected 20 studies with a pooled population of 105 MEN1 patients with pNENs. Females were 58.5%, median age was 44 years (18-73). TNM stage at diagnosis was stage I-II in 84.8% and stage IV in 15.2%. The overall response rate (SD+PR+CR) was achieved in 88.3% of cases, with stable disease in 75.6% and objective response in 12.7% of patients. The safety profile was favorable with both SSA agents. SSAs appear to be an effective and safe treatment option for MEN1-related pNEN, either at localized or advanced stages.
Collapse
|
36
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC, Li MZ, Haigis KM, Elledge SJ. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 2021; 373:1327-1335. [PMID: 34529489 DOI: 10.1126/science.abg5784] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Carcinogenesis
- Cell Line, Tumor
- Chemokine CCL2/metabolism
- Female
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Immune Evasion/genetics
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Selection, Genetic
- Tumor Microenvironment
Collapse
Affiliation(s)
- Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rupesh S Patel
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle R Cook
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mei Yuk Choi
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ajinkya Patil
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony C Liang
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mamie Z Li
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Thompson R, Landry CS. Multiple endocrine neoplasia 1: a broad overview. Ther Adv Chronic Dis 2021; 12:20406223211035288. [PMID: 34413971 PMCID: PMC8369854 DOI: 10.1177/20406223211035288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/07/2021] [Indexed: 01/10/2023] Open
Abstract
This review article discusses the diagnoses and treatment of patients with multiple endocrine neoplasia type 1 (MEN 1). The most common tumors associated with MEN 1 are located in the pancreas, pituitary, and parathyroid glands. Less common tumors include neuroendocrine tumors of the lung and thymus, adrenal tumors, and cutaneous lesions. This article describes the diagnosis, clinical manifestations, treatment, and surveillance of tumors associated with patients who are diagnosed with MEN 1.
Collapse
Affiliation(s)
- Rachel Thompson
- Department of Surgery, Baylor University Medical Center, Dallas, TX, USA
| | - Christine S. Landry
- Department of Surgery, Baylor University Medical Center, Dallas, TX 77030-3411, USA
| |
Collapse
|
39
|
Al-Salameh A, Cadiot G, Calender A, Goudet P, Chanson P. Clinical aspects of multiple endocrine neoplasia type 1. Nat Rev Endocrinol 2021; 17:207-224. [PMID: 33564173 DOI: 10.1038/s41574-021-00468-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare syndrome characterized by the co-occurrence of primary hyperparathyroidism, duodenopancreatic neuroendocrine tumours (NETs) and/or pituitary adenomas. MEN1 can predispose patients to other endocrine and non-endocrine tumours, such as cutaneous tumours, central nervous system tumours and breast cancer. Endocrine tumours in patients with MEN1 differ from sporadic tumours in that they have a younger age at onset, present as multiple tumours in the same organ and have a different clinical course. Therefore, patients with overt MEN1 and those who carry a MEN1 mutation should be offered tailored biochemical and imaging screening to detect tumours and evaluate their progression over time. Fortunately, over the past 10 years, knowledge about the clinical phenotype of these tumours has markedly progressed, thanks to the implementation of national registries, particularly in France and the Netherlands. This Review provides an update on the clinical management of MEN1-related tumours. Epidemiology, the clinical picture, diagnostic work-up and the main lines of treatment for MEN1-related tumours are summarized. Controversial therapeutic aspects and issues that still need to be addressed are also discussed. Moreover, special attention is given to MEN1 manifestations in children and adolescents.
Collapse
Affiliation(s)
- Abdallah Al-Salameh
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, France
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, CHU Amiens Picardie, Amiens, France
| | - Guillaume Cadiot
- Service d'Hépato-Gastro-Entérologie et de Cancérologie Digestive, Hôpital Robert Debré, Reims, France
| | - Alain Calender
- Unité Médicale des Cancers et Maladies Multifactorielles, Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Pierre Goudet
- Service de Chirurgie Endocrinienne, Hôpital du Bocage, Dijon, France
| | - Philippe Chanson
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, France.
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Le Kremlin-Bicêtre, France.
| |
Collapse
|
40
|
Juhlin CC, Erickson LA. Genomics and Epigenomics in Parathyroid Neoplasia: from Bench to Surgical Pathology Practice. Endocr Pathol 2021; 32:17-34. [PMID: 33269427 PMCID: PMC7960610 DOI: 10.1007/s12022-020-09656-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
The majority of parathyroid disease encountered in routine practice is due to single parathyroid adenoma, of which the majority arise as sporadic tumors. This is usually a straightforward diagnosis in endocrine pathology when in the appropriate clinical setting, although subsets of cases will exhibit atypical histological features that may warrant additional immunohistochemical and genetic analyses to estimate the malignant potential. Parathyroid carcinomas on the other hand, are bona fide malignant tumors characterized by their unequivocal invasion demonstrated through routine histology or metastasis. The ultimate endpoint for any molecular marker discovered through laboratory investigations is to be introduced in clinical routine practice and guide the surgical pathologist in terms of diagnostics and prognostication. For parathyroid tumors, the two main diagnostic challenges include the distinction between parathyroid adenoma and parathyroid carcinoma, as well as the pinpointing of hereditable disease for familial screening purposes. While numerous markers on genetic, epigenetic, and protein levels have been proposed as discriminative in these aspects, this review aims to condense the scientific coverage of these enigmatic topics and to propose a focused surgical pathology approach to the subject.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
KAMATANI Y, NAKAMURA Y. Genetic variations in medical research in the past, at present and in the future. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:324-335. [PMID: 34121043 PMCID: PMC8403528 DOI: 10.2183/pjab.97.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
As we look so different, our genomic sequences vary enormously. The differences in our genome, genetic variations, have played very significant roles in medical research and have contributed to improvement of medical managements in the last 2-3 decades. Genetic variations include germline variations, somatic mutations, and diversities in receptor genes of rearranged immune cells, T cells and B cells. Germline variants are in some cases causative of genetic diseases, are associated with the risk of various diseases, and also affect drug efficacies or adverse events. Some somatic mutations are causative of tumor development. Recent DNA sequencing technologies allow us to perform single-cell analysis or detailed repertoire analysis of B and T cells. It is critically important to investigate temporal changes in immune environment in various anatomical regions in the next one to two decades. In this review article, we would like to introduce the roles of genetic variations in medical fields in the past, at present and in the future.
Collapse
Affiliation(s)
- Yoichiro KAMATANI
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke NAKAMURA
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
42
|
Abstract
Regulation of the serum calcium level in humans is achieved by the endocrine action of parathyroid glands working in concert with vitamin D and a set of critical target cells and tissues including osteoblasts, osteoclasts, the renal tubules, and the small intestine. The parathyroid glands, small highly vascularized endocrine organs located behind the thyroid gland, secrete parathyroid hormone (PTH) into the systemic circulation as is needed to keep the serum free calcium concentration within a tight physiologic range. Primary hyperparathyroidism (HPT), a disorder of mineral metabolism usually associated with abnormally elevated serum calcium, results from the uncontrolled release of PTH from one or several abnormal parathyroid glands. Although in the vast majority of cases HPT is a sporadic disease, it can also present as a manifestation of a familial syndrome. Many benign and malignant sporadic parathyroid neoplasms are caused by loss-of-function mutations in tumor suppressor genes that were initially identified by the study of genomic DNA from patients who developed HPT as a manifestation of an inherited syndrome. Somatic and inherited mutations in certain proto-oncogenes can also result in the development of parathyroid tumors. The clinical and genetic investigation of familial HPT in kindreds found to lack germline variants in the already known HPT-predisposition genes represents a promising future direction for the discovery of novel genes relevant to parathyroid tumor development.
Collapse
Affiliation(s)
- Jenny E. Blau
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: William F. Simonds,
| |
Collapse
|
43
|
Gierlikowski W, Skwarek-Szewczyk A, Popow M. A Novel Germline c.1267T>A MEN1 Mutation in MEN1 Family—from Phenotype to Gene and Back. Genes (Basel) 2020; 11:genes11111382. [PMID: 33233395 PMCID: PMC7700542 DOI: 10.3390/genes11111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022] Open
Abstract
Primary hyperparathyroidism is a relatively common endocrine disorder, which may be hereditary. This report describes clinical, biochemical, radiographic, and genetic findings, the latter obtained using next generation sequencing (NGS), in three consanguineous patients. Gene panels in NGS consisted of 5 or 70 genes, including MEN1 and RET. The first patient suffered from recurrent primary hyperparathyroidism. Primary hyperparathyroidism and pituitary microadenomas were afterwards diagnosed in two of her daughters. No clinical nor radiological features of gastroenteropancreatic neuroendocrine tumors were found. All three family members were heterozygous for MEN1 NM_130799: c.1267T>A transversion, which is predicted to result in substitution of tryptophan with arginine in position 423. Additionally, the first patient was also a carrier of RET NM_020975: c.1946C>T missense mutation, which was not present in two other family members. We describe a family with a novel heterozygous mutation (NM_130799: c.1267T>A) in MEN1 gene and postulate that it leads to MEN1 syndrome. The study underlies the importance of genetic testing in primary hyperparathyroidism in personalizing patients’ care.
Collapse
|
44
|
Nelakurti DD, Pappula AL, Rajasekaran S, Miles WO, Petreaca RC. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers (Basel) 2020; 12:cancers12092616. [PMID: 32937789 PMCID: PMC7565326 DOI: 10.3390/cancers12092616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancers are characterized by accumulation of genetic mutations in key cell cycle regulators that alter or disable the function of these genes. Such mutations can be inherited or arise spontaneously during the life of the individual. The MEN1 gene prevents uncontrolled cell division and it is considered a tumor suppressor. Inherited MEN1 mutations are associated with certain parathyroid and pancreatic syndromes while spontaneous mutations have been detected in cancer cells. We investigated whether inherited mutations appear in cancer cells which would suggest that patients with parathyroid and pancreatic syndromes have a predisposition to develop cancer. We find a weak correlation between the spectrum of inherited mutations and those appearing spontaneously. Thus, inherited MEN1 mutations may not be a good predictor of tumorigenesis. Abstract MENIN is a scaffold protein encoded by the MEN1 gene that functions in multiple biological processes, including cell proliferation, migration, gene expression, and DNA damage repair. MEN1 is a tumor suppressor gene, and mutations that disrupts MEN1 function are common to many tumor types. Mutations within MEN1 may also be inherited (germline). Many of these inherited mutations are associated with a number of pathogenic syndromes of the parathyroid and pancreas, and some also predispose patients to hyperplasia. In this study, we cataloged the reported germline mutations from the ClinVar database and compared them with the somatic mutations detected in cancers from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We then used statistical software to determine the probability of mutations being pathogenic or driver. Our data show that many confirmed germline mutations do not appear in tumor samples. Thus, most mutations that disable MEN1 function in tumors are somatic in nature. Furthermore, of the germline mutations that do appear in tumors, only a fraction has the potential to be pathogenic or driver mutations.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Amrit L. Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Correspondence:
| |
Collapse
|
45
|
Mamedova EO, Dimitrova DA, Belaya ZE, Melnichenko GA. [The role of non-coding RNAs in the pathogenesis of multiple endocrine neoplasia syndrome type 1]. ACTA ACUST UNITED AC 2020; 66:4-12. [PMID: 33351343 DOI: 10.14341/probl12413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
Abstract
Changes in the expression of non-coding ribonucleic acids (ncRNAs) take part in the formation of various tumors. Multiple endocrine neoplasia syndrome type 1 (MEN1) is a rare autosomal dominant disease caused by mutations of the MEN1 gene encoding the menin protein. This syndrome is characterized by the occurrence of parathyroid tumors, gastroenteropancreatic neuroendocrine tumors, pituitary adenomas, as well as other endocrine and non-endocrine tumors. The pathogenesis of MEN-1 associated tumors due to MEN1 mutations remains unclear. In the absence of mutations of the MEN1 gene in patients with phenotypically similar features, this condition is regarded as a phenocopy of this syndrome. The cause of the combination of several MEN-1-related tumors in these patients remains unknown. The possible cause is that changes in the expression of ncRNAs affect the regulation of signaling pathways in which menin participates and may contribute to the development of MEN-1-related tumors. The identification of even a small number of agents interacting with menin makes a significant contribution to the improvement of knowledge about its pathophysiological influence and ways of developing tumors within the MEN-1 syndrome and its phenocopies.
Collapse
|
46
|
Demirtaş CÖ, Ata P, Çetin A, Türkyılmaz A, Duman DG. A large Turkish pedigree with multiple endocrine neoplasia type 1 syndrome carrying a rare mutation: c.1680_1683 del TGAG. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:508-514. [PMID: 32897224 DOI: 10.5152/tjg.2020.19830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant syndrome characterized by tumors arising from endocrine glands with no specific genotype-phenotype correlation. Herein, we report the largest Turkish kindred with MEN1 inherited a scarce MEN1 mutation gene. MATERIALS AND METHODS Sixty-four year-old man, referred to our gastroenterology outpatient clinic for evaluation of pancreatic mass lesion, was diagnosed with MEN1-syndrome after endoscopic ultrasound guided sampling of the mass revealing pancreatic neuroendocrine tumor (pNET), and accompanying primary hyperparathyroidism (PHPT) and pituitary tumor. Genetic analysis by whole gene Sanger sequencing of MEN1 gene identified a frame-shift mutation in exon 10 (c.1680_1683delTGAG). All the relatives of the index case were proposed for clinical and genetic evaluation for MEN1-syndrome. RESULTS Of the 25 relatives of the index case, 17 were diagnosed MEN1-syndrome. Eighteen members among all relatives consented to genetic analysis and 11 had the same mutation as the index case. All the mutation positive members had MEN1, while none of mutation negative subjects had any sign of MEN1-syndrome. The frequencies of PHPT, pNET and pituitary tumors in this kindred were 94.1% (16/17), 29.4% (5/17) and 29.4% (5/17) respectively. CONCLUSION We report rare MEN1 gene mutation which was descibed in a single sporadic patient before. It inherited in at least three generations of a large family, which has proven strong dominant effect on MEN1 phenotype. Further researches may be conducted to clarify potential candidacy of this mutation, as a hotspot for MEN1 patients, especially in Turkish population.
Collapse
Affiliation(s)
- Coşkun Özer Demirtaş
- Department of Gastroenterology, Marmara University School of Medicine, Istanbul, Turkey
| | - Pınar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Ali Çetin
- Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Deniz Guney Duman
- Department of Gastroenterology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
47
|
Vasilev V, Daly AF, Zacharieva S, Beckers A. Clinical and Molecular Update on Genetic Causes of Pituitary Adenomas. Horm Metab Res 2020; 52:553-561. [PMID: 32299111 DOI: 10.1055/a-1143-5930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pituitary adenomas are benign tumors with variable functional characteristics that can have a significant impact on patients. The majority arise sporadically, but an inherited genetic susceptibility is increasingly being recognized. Recent advances in genetics have widened the scope of our understanding of pituitary tumorigenesis. The clinical and genetic characteristics of pituitary adenomas that develop in the setting of germline-mosaic and somatic GNAS mutations (McCune-Albright syndrome and sporadic acromegaly), germline MEN1 mutations (multiple endocrine neoplasia type 1), and germline PRKAR1A mutations (Carney complex) have been well described. Non-syndromic familial cases of isolated pituitary tumors can occur as familial isolated pituitary adenomas (FIPA); mutations/deletions of the AIP gene have been found in a minority of these. Genetic alterations in GPR101 have been identified recently as causing X-linked acro-gigantism (X-LAG) leading to very early-onset pediatric gigantism. Associations of pituitary adenomas with other tumors have been described in syndromes like multiple endocrine neoplasia type 4, pheochromocytoma-paraganglioma with pituitary adenoma association (3PAs) syndrome and some of their genetic causes have been elucidated. The genetic etiologies of a significant proportions of sporadic corticotropinomas have recently been identified with the discovery of USP8 and USP48 mutations. The elucidation of genetic and molecular pathophysiology in pituitary adenomas is a key factor for better patient management and effective follow-up.
Collapse
Affiliation(s)
- Vladimir Vasilev
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
- Department of Endocrinology, Medical University, Sofia, Bulgaria
| | - Adrian F Daly
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
| | | | - Albert Beckers
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
48
|
Mele C, Mencarelli M, Caputo M, Mai S, Pagano L, Aimaretti G, Scacchi M, Falchetti A, Marzullo P. Phenotypes Associated With MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front Endocrinol (Lausanne) 2020; 11:591501. [PMID: 33312161 PMCID: PMC7708377 DOI: 10.3389/fendo.2020.591501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited tumor syndrome, associated with parathyroid, pituitary, and gastro-entero-pancreatic (GEP) neuroendocrine tumors (NETs). MEN1 is usually consequent to different germline and somatic mutations of the MEN1 tumor suppressor gene, although phenocopies have also been reported. This review analyzed main biomedical databases searching for reports on MEN1 gene mutations and focused on aggressive and aberrant clinical manifestations to investigate the potential genotype-phenotype correlation. Despite efforts made by several groups, this link remains elusive to date and evidence that aggressive or aberrant clinical phenotypes may be related to specific mutations has been provided by case reports and small groups of MEN1 patients or families. In such context, a higher risk of aggressive tumor phenotypes has been described in relation to frameshift and non-sense mutations, and predominantly associated with aggressive GEP NETs, particularly pancreatic NETs. In our experience a novel heterozygous missense mutation at c.836C>A in exon 6 was noticed in a MEN1 patient operated for macro-prolactinoma, who progressively developed recurrent parathyroid adenomas, expanding gastrinomas and, long after the first MEN1 manifestation, a neuroendocrine uterine carcinoma. In conclusion, proof of genotype-phenotype correlation is limited but current evidence hints at the need for long-term interdisciplinary surveillance in patients with aggressive phenotypes and genetically confirmed MEN1.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
| | - Monica Mencarelli
- Istituto Auxologico Italiano, IRCCS, Laboratory of Molecular Biology, S. Giuseppe Hospital, Piancavallo, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, IRCCS, Laboratory of Metabolic Research, S. Giuseppe Hospital, Piancavallo, Italy
| | - Loredana Pagano
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of Endocrinology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Massimo Scacchi
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
| | - Alberto Falchetti
- Istituto Auxologico Italiano, IRCCS, Rehabilitation Unit, S. Giuseppe Hospital, Unit for Bone Metabolism Diseases, Verbania, Italy
- Diabetes & Lab of Endocrine and Metabolic Research, Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Istituto Auxologico Italiano, IRCCS, Division of General Medicine, S. Giuseppe Hospital, Piancavallo, Italy
- *Correspondence: Paolo Marzullo,
| |
Collapse
|
49
|
|
50
|
Shen AJJ, King J, Scott H, Colman P, Yates CJ. Insights into pituitary tumorigenesis: from Sanger sequencing to next-generation sequencing and beyond. Expert Rev Endocrinol Metab 2019; 14:399-418. [PMID: 31793361 DOI: 10.1080/17446651.2019.1689120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Introduction: This review explores insights provided by next-generation sequencing (NGS) of pituitary tumors and the clinical implications.Areas covered: Although syndromic forms account for just 5% of pituitary tumours, past Sanger sequencing studies pragmatically focused on them. These studies identified mutations in MEN1, CDKN1B, PRKAR1A, GNAS and SDHx causing Multiple Endocrine Neoplasia-1 (MEN1), MEN4, Carney Complex-1, McCune Albright Syndrome and 3P association syndromes, respectively. Furthermore, linkage analysis of single-nucleotide polymorphisms identified AIP mutations in 20% with familial isolated pituitary adenomas (FIPA). NGS has enabled further investigation of sporadic tumours. Thus, mutations of USP8 and CABLES1 were identified in corticotrophinomas, BRAF in papillary craniopharyngiomas and CTNNB1 in adamantinomatous craniopharyngiomas. NGS also revealed that pituitary tumours occur in the DICER1 syndrome, due to DICER1 mutations, and CDH23 mutations occur in FIPA. These discoveries revealed novel therapeutic targets and studies are underway of BRAF inhibitors for papillary craniopharyngiomas, and EGFR and USP8 inhibitors for corticotrophinomas.Expert opinion: It has become apparent that single-nucleotide variants and small insertion/deletion DNA mutations cannot explain all pituitary tumorigenesis. Integrated and improved analyses including whole-genome sequencing, copy number, and structural variation analyses, RNA sequencing and epigenomic analyses, with improved genomic technologies, are likely to further define the genomic landscape.
Collapse
Affiliation(s)
| | - James King
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Peter Colman
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher J Yates
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|