1
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Hori A, Inaba H, Hato T, Tanaka K, Sato S, Okamoto M, Horiuchi Y, Paran FJ, Tabe Y, Mori S, Rosales C, Akamatsu W, Murayama T, Kurebayashi N, Sakurai T, Ai T, Miida T. Carvedilol suppresses ryanodine receptor-dependent Ca2+ bursts in human neurons bearing PSEN1 variants found in early onset Alzheimer's disease. PLoS One 2024; 19:e0291887. [PMID: 39173065 PMCID: PMC11341060 DOI: 10.1371/journal.pone.0291887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/02/2024] [Indexed: 08/24/2024] Open
Abstract
Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid β (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the β-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Haruka Inaba
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Hato
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kimie Tanaka
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shoichi Sato
- Department of Clinical Engineering, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Mizuho Okamoto
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Faith Jessica Paran
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shusuke Mori
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corina Rosales
- Center for Bioenergetics and the Department of Medicine, Houston Methodist Research Institute, Texas, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Acute Care and Disaster Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Princen K, Van Dooren T, van Gorsel M, Louros N, Yang X, Dumbacher M, Bastiaens I, Coupet K, Dupont S, Cuveliers E, Lauwers A, Laghmouchi M, Vanwelden T, Carmans S, Van Damme N, Duhamel H, Vansteenkiste S, Prerad J, Pipeleers K, Rodiers O, De Ridder L, Claes S, Busschots Y, Pringels L, Verhelst V, Debroux E, Brouwer M, Lievens S, Tavernier J, Farinelli M, Hughes-Asceri S, Voets M, Winderickx J, Wera S, de Wit J, Schymkowitz J, Rousseau F, Zetterberg H, Cummings JL, Annaert W, Cornelissen T, De Winter H, De Witte K, Fivaz M, Griffioen G. Pharmacological modulation of septins restores calcium homeostasis and is neuroprotective in models of Alzheimer's disease. Science 2024; 384:eadd6260. [PMID: 38815015 PMCID: PMC11827694 DOI: 10.1126/science.add6260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
Abnormal calcium signaling is a central pathological component of Alzheimer's disease (AD). Here, we describe the identification of a class of compounds called ReS19-T, which are able to restore calcium homeostasis in cell-based models of tau pathology. Aberrant tau accumulation leads to uncontrolled activation of store-operated calcium channels (SOCCs) by remodeling septin filaments at the cell cortex. Binding of ReS19-T to septins restores filament assembly in the disease state and restrains calcium entry through SOCCs. In amyloid-β and tau-driven mouse models of disease, ReS19-T agents restored synaptic plasticity, normalized brain network activity, and attenuated the development of both amyloid-β and tau pathology. Our findings identify the septin cytoskeleton as a potential therapeutic target for the development of disease-modifying AD treatments.
Collapse
Affiliation(s)
| | | | | | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Xiaojuan Yang
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | | | | | - Shana Dupont
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Eva Cuveliers
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Carmans
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Hein Duhamel
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | - Jovan Prerad
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | - Sofie Claes
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | | | | | | | | - Marinka Brouwer
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Sam Lievens
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Lab, VIB Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | | | - Marieke Voets
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Joris Winderickx
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- Functional Biology, Department of Biology, KU Leuven, 3001 Leuven-Heverlee, Belgium
| | - Stefaan Wera
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
- ViroVet NV, 3001 Leuven-Heverlee, Belgium
| | - Joris de Wit
- Laboratory of Synapse Biology, VIB Center for Brain & Disease Research and KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research and Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | | | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Koen De Witte
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | - Marc Fivaz
- reMYND NV, Bio-Incubator, 3001 Leuven-Heverlee, Belgium
| | | |
Collapse
|
4
|
Lin EY, Hsu SX, Wu BH, Deng YC, Wuli W, Li YS, Lee JH, Lin SZ, Harn HJ, Chiou TW. Engineered Exosomes Containing microRNA-29b-2 and Targeting the Somatostatin Receptor Reduce Presenilin 1 Expression and Decrease the β-Amyloid Accumulation in the Brains of Mice with Alzheimer's Disease. Int J Nanomedicine 2024; 19:4977-4994. [PMID: 38828204 PMCID: PMC11144417 DOI: 10.2147/ijn.s442876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the β-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.
Collapse
Affiliation(s)
- En-Yi Lin
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shao-Xi Hsu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Bing-Hua Wu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Yu-Chen Deng
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Everfront Biotech Inc, Taipei, Taiwan
| | - Wei Wuli
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | | | | | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
5
|
Kaar A, Weir MP, Rae MG. Altered neuronal group 1 metabotropic glutamate receptor- and endoplasmic reticulum-mediated Ca 2+ signaling in two rodent models of Alzheimer's disease. Neurosci Lett 2024; 823:137664. [PMID: 38309326 DOI: 10.1016/j.neulet.2024.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.
Collapse
Affiliation(s)
- Aidan Kaar
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Megan P Weir
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
6
|
Wang T, Pang L, He M, Wang Z. Small-molecule inhibitors targeting apoptosis signal-regulated kinase 1. Eur J Med Chem 2023; 262:115889. [PMID: 37883895 DOI: 10.1016/j.ejmech.2023.115889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Apoptosis signal regulated kinase 1 (ASK1, also known as MAP3K5) is a member of the mitogen activated protein kinase kinase kinase (MAP3K) family. Since its first isolation from a human macrophage library in 1996, its research has been ongoing for over 25 years. A large number of reports have revealed that ASK1, as a key activator of the p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) signaling cascade, responds to various stressors, and its inhibitors have important potential value in the treatment of diseases such as inflammation, cancer, and the nervous system and so on. This review summarizes the recent development in this field, including the structure and signaling pathways of ASK1, with a particular focus on the structure-activity relationships, and the hit-to-lead optimization strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Lidan Pang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Mengni He
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
7
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
8
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022; 14:nu14235086. [PMID: 36501116 PMCID: PMC9740746 DOI: 10.3390/nu14235086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary interventions can ameliorate age-related neurological decline. Decades of research of in vitro studies, animal models, and clinical trials support their ability and efficacy to improve behavioral outcomes by inducing biochemical and physiological changes that lead to a more resilient brain. Dietary interventions including calorie restriction, alternate day fasting, time restricted feeding, and fasting mimicking diets not only improve normal brain aging but also slow down, or even reverse, the progression of neurological diseases. In this review, we focus on the effects of intermittent and periodic fasting on improving phenotypic outcomes, such as cognitive and motor-coordination decline, in the normal aging brain through an increase in neurogenesis and synaptic plasticity, and decrease in neuroinflammation, mitochondrial dysfunction, and oxidative stress. We summarize the results of various dietary interventions in animal models of age-related neurological diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, and Multiple Sclerosis and discuss the results of clinical trials that explore the feasibility of dietary interventions in the prevention and treatment of these diseases.
Collapse
|
10
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
11
|
Lee A, Kondapalli C, Virga DM, Lewis TL, Koo SY, Ashok A, Mairet-Coello G, Herzig S, Foretz M, Viollet B, Shaw R, Sproul A, Polleux F. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun 2022; 13:4444. [PMID: 35915085 PMCID: PMC9343354 DOI: 10.1038/s41467-022-32130-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-β 1-42 oligomers (Aβ42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aβ42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aβ42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.
Collapse
Affiliation(s)
- Annie Lee
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- The Integrated Graduate Program in Cellular, Molecular, and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Chandana Kondapalli
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Daniel M Virga
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Tommy L Lewis
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Sebastien Herzig
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Reuben Shaw
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Pang K, Jiang R, Zhang W, Yang Z, Li LL, Shimozawa M, Tambaro S, Mayer J, Zhang B, Li M, Wang J, Liu H, Yang A, Chen X, Liu J, Winblad B, Han H, Jiang T, Wang W, Nilsson P, Guo W, Lu B. An App knock-in rat model for Alzheimer's disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res 2022; 32:157-175. [PMID: 34789895 PMCID: PMC8807612 DOI: 10.1038/s41422-021-00582-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
A major obstacle in Alzheimer's disease (AD) research is the lack of predictive and translatable animal models that reflect disease progression and drug efficacy. Transgenic mice overexpressing amyloid precursor protein (App) gene manifest non-physiological and ectopic expression of APP and its fragments in the brain, which is not observed in AD patients. The App knock-in mice circumvented some of these problems, but they do not exhibit tau pathology and neuronal death. We have generated a rat model, with three familiar App mutations and humanized Aβ sequence knocked into the rat App gene. Without altering the levels of full-length APP and other APP fragments, this model exhibits pathologies and disease progression resembling those in human patients: deposit of Aβ plaques in relevant brain regions, microglia activation and gliosis, progressive synaptic degeneration and AD-relevant cognitive deficits. Interestingly, we have observed tau pathology, neuronal apoptosis and necroptosis and brain atrophy, phenotypes rarely seen in other APP models. This App knock-in rat model may serve as a useful tool for AD research, identifying new drug targets and biomarkers, and testing therapeutics.
Collapse
Affiliation(s)
- Keliang Pang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lin-Lin Li
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Mayer
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Man Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ailing Yang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xi Chen
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiazheng Liu
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Hua Han
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Verma M, Lizama BN, Chu CT. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegener 2022; 11:3. [PMID: 35078537 PMCID: PMC8788129 DOI: 10.1186/s40035-021-00278-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Glutamate is the most commonly engaged neurotransmitter in the mammalian central nervous system, acting to mediate excitatory neurotransmission. However, high levels of glutamatergic input elicit excitotoxicity, contributing to neuronal cell death following acute brain injuries such as stroke and trauma. While excitotoxic cell death has also been implicated in some neurodegenerative disease models, the role of acute apoptotic cell death remains controversial in the setting of chronic neurodegeneration. Nevertheless, it is clear that excitatory synaptic dysregulation contributes to neurodegeneration, as evidenced by protective effects of partial N-methyl-D-aspartate receptor antagonists. Here, we review evidence for sublethal excitatory injuries in relation to neurodegeneration associated with Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and Huntington's disease. In contrast to classic excitotoxicity, emerging evidence implicates dysregulation of mitochondrial calcium handling in excitatory post-synaptic neurodegeneration. We discuss mechanisms that regulate mitochondrial calcium uptake and release, the impact of LRRK2, PINK1, Parkin, beta-amyloid and glucocerebrosidase on mitochondrial calcium transporters, and the role of autophagic mitochondrial loss in axodendritic shrinkage. Finally, we discuss strategies for normalizing the flux of calcium into and out of the mitochondrial matrix, thereby preventing mitochondrial calcium toxicity and excitotoxic dendritic loss. While the mechanisms that underlie increased uptake or decreased release of mitochondrial calcium vary in different model systems, a common set of strategies to normalize mitochondrial calcium flux can prevent excitatory mitochondrial toxicity and may be neuroprotective in multiple disease contexts.
Collapse
Affiliation(s)
- Manish Verma
- grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA ,grid.423286.90000 0004 0507 1326Present Address: Astellas Pharma Inc., 9 Technology Drive, Westborough, MA 01581 USA
| | - Britney N. Lizama
- grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Charleen T. Chu
- grid.21925.3d0000 0004 1936 9000Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
15
|
Javonillo DI, Tran KM, Phan J, Hingco E, Kramár EA, da Cunha C, Forner S, Kawauchi S, Milinkeviciute G, Gomez-Arboledas A, Neumann J, Banh CE, Huynh M, Matheos DP, Rezaie N, Alcantara JA, Mortazavi A, Wood MA, Tenner AJ, MacGregor GR, Green KN, LaFerla FM. Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer’s Disease. Front Neurosci 2022; 15:785276. [PMID: 35140584 PMCID: PMC8818877 DOI: 10.3389/fnins.2021.785276] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Animal models of disease are valuable resources for investigating pathogenic mechanisms and potential therapeutic interventions. However, for complex disorders such as Alzheimer’s disease (AD), the generation and availability of innumerous distinct animal models present unique challenges to AD researchers and hinder the success of useful therapies. Here, we conducted an in-depth analysis of the 3xTg-AD mouse model of AD across its lifespan to better inform the field of the various pathologies that appear at specific ages, and comment on drift that has occurred in the development of pathology in this line since its development 20 years ago. This modern characterization of the 3xTg-AD model includes an assessment of impairments in long-term potentiation followed by quantification of amyloid beta (Aβ) plaque burden and neurofibrillary tau tangles, biochemical levels of Aβ and tau protein, and neuropathological markers such as gliosis and accumulation of dystrophic neurites. We also present a novel comparison of the 3xTg-AD model with the 5xFAD model using the same deep-phenotyping characterization pipeline and show plasma NfL is strongly driven by plaque burden. The results from these analyses are freely available via the AD Knowledge Portal (https://modeladexplorer.org/). Our work demonstrates the utility of a characterization pipeline that generates robust and standardized information relevant to investigating and comparing disease etiologies of current and future models of AD.
Collapse
Affiliation(s)
- Dominic I. Javonillo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Kristine M. Tran
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Edna Hingco
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Celia da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Angela Gomez-Arboledas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Jonathan Neumann
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Crystal E. Banh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Michelle Huynh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Dina P. Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Narges Rezaie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Joshua A. Alcantara
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Andrea J. Tenner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Grant R. MacGregor
- Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, University of California, Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Kim N. Green
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Kim N. Green,
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Frank M. LaFerla,
| |
Collapse
|
16
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
17
|
Barthelson K, Newman M, Lardelli M. Brain transcriptomes of zebrafish and mouse Alzheimer's disease knock-in models imply early disrupted energy metabolism. Dis Model Mech 2021; 15:273566. [PMID: 34842276 PMCID: PMC8807579 DOI: 10.1242/dmm.049187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Energy production is the most fundamentally important cellular activity supporting all other functions, particularly in highly active organs, such as brains. Here, we summarise transcriptome analyses of young adult (pre-disease) brains from a collection of 11 early-onset familial Alzheimer's disease (EOFAD)-like and non-EOFAD-like mutations in three zebrafish genes. The one cellular activity consistently predicted as affected by only the EOFAD-like mutations is oxidative phosphorylation, which produces most of the energy of the brain. All the mutations were predicted to affect protein synthesis. We extended our analysis to knock-in mouse models of APOE alleles and found the same effect for the late onset Alzheimer's disease risk allele ε4. Our results support a common molecular basis for the initiation of the pathological processes leading to both early and late onset forms of Alzheimer's disease, and illustrate the utility of zebrafish and knock-in single EOFAD mutation models for understanding the causes of this disease. Summary: Young adult zebrafish mutants and a mouse model of a genetic variant promoting early- and late-onset Alzheimer's disease, respectively, share changes in brain gene expression, indicating disturbance of oxidative phosphorylation.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
18
|
Barthelson K, Dong Y, Newman M, Lardelli M. PRESENILIN 1 Mutations Causing Early-Onset Familial Alzheimer's Disease or Familial Acne Inversa Differ in Their Effects on Genes Facilitating Energy Metabolism and Signal Transduction. J Alzheimers Dis 2021; 82:327-347. [PMID: 34024832 DOI: 10.3233/jad-210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The most common cause of early-onset familial Alzheimer's disease (EOfAD) is mutations in PRESENILIN 1 (PSEN1) allowing production of mRNAs encoding full-length, but mutant, proteins. In contrast, a single known frameshift mutation in PSEN1 causes familial acne inversa (fAI) without EOfAD. The molecular consequences of heterozygosity for these mutation types, and how they cause completely different diseases, remains largely unexplored. OBJECTIVE To analyze brain transcriptomes of young adult zebrafish to identify similarities and differences in the effects of heterozygosity for psen1 mutations causing EOfAD or fAI. METHODS RNA sequencing was performed on mRNA isolated from the brains of a single family of 6-month-old zebrafish siblings either wild type or possessing a single, heterozygous EOfAD-like or fAI-like mutation in their endogenous psen1 gene. RESULTS Both mutations downregulate genes encoding ribosomal subunits, and upregulate genes involved in inflammation. Genes involved in energy metabolism appeared significantly affected only by the EOfAD-like mutation, while genes involved in Notch, Wnt and neurotrophin signaling pathways appeared significantly affected only by the fAI-like mutation. However, investigation of direct transcriptional targets of Notch signaling revealed possible increases in γ-secretase activity due to heterozygosity for either psen1 mutation. Transcriptional adaptation due to the fAI-like frameshift mutation was evident. CONCLUSION We observed both similar and contrasting effects on brain transcriptomes of the heterozygous EOfAD-like and fAI-like mutations. The contrasting effects may illuminate how these mutation types cause distinct diseases.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Yang Dong
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
19
|
Liu D, Ahmet I, Griess B, Tweedie D, Greig NH, Mattson MP. Age-related impairment of cerebral blood flow response to K ATP channel opener in Alzheimer's disease mice with presenilin-1 mutation. J Cereb Blood Flow Metab 2021; 41:1579-1591. [PMID: 33203296 PMCID: PMC8221766 DOI: 10.1177/0271678x20964233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Local cerebral blood flow (CBF) responses to neuronal activity are essential for cognition and impaired CBF responses occur in Alzheimer's disease (AD). In this study, regional CBF (rCBF) responses to the KATP channel opener diazoxide were investigated in 3xTgAD, WT and mutant Presenilin 1(PS1M146V) mice from three age groups using Laser-Doppler flowmetry. The rCBF response was reduced early in young 3xTgAD mice and almost absent in old 3xTgAD mice, up to 30%-40% reduction with altered CBF velocity and mean arterial pressure versus WT mice. The impaired rCBF response in 3xTgAD mice was associated with progression of AD pathology, characterized by deposition of intracellular and vascular amyloid-β (Aβ) oligomers, senile plaques and tau pathology. The nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine abolished rCBF response to diazoxide suggesting NO was involved in the mediation of vasorelaxation. Levels of phosphor-eNOS (Ser1177) diminished in 3xTgAD brains with age, while the rCBF response to the NO donor sodium nitroprusside remained. In PS1M146V mice, the rCBF response to dizoxide reduced and high molecular weight Abeta oligomers were increased indicating PS1M146V contributed to the dysregulation of rCBF response in AD mice. Our study revealed an Aβ oligomer-associated compromise of cerebrovascular function in rCBF response to diazoxide in AD mice with PS1M146V mutation.
Collapse
Affiliation(s)
- Dong Liu
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.,Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Brandon Griess
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Yoon Y, Voloudakis G, Doran N, Zhang E, Dimovasili C, Chen L, Shao Z, Darmanis S, Tang C, Tang J, Wang VX, Hof PR, Robakis NK, Georgakopoulos A. PS1 FAD mutants decrease ephrinB2-regulated angiogenic functions, ischemia-induced brain neovascularization and neuronal survival. Mol Psychiatry 2021; 26:1996-2012. [PMID: 32541930 PMCID: PMC7736163 DOI: 10.1038/s41380-020-0812-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis. Importantly, brain EC cultures expressing PS1 FAD mutants decrease the EphB4-stimulated γ-secretase cleavage of ephrinB2 and reduce production of the angiogenic peptide ephrinB2/CTF2, the VE-cadherin angiogenic complexes and EC sprouting and tube formation. These data suggest that FAD mutants may attenuate ischemia-induced brain angiogenesis. Supporting this hypothesis, ischemia-induced VE-cadherin angiogenic complexes, levels of neoangiogenesis marker Endoglin, vascular density, and cerebral blood flow recovery, are all decreased in brains of mouse models expressing PS1 FAD mutants. Ischemia-induced brain neuronal death and cognitive deficits also increase in these mice. Furthermore, a small peptide comprising the C-terminal sequence of peptide ephrinB2/CTF2 rescues angiogenic functions of brain ECs expressing PS1 FAD mutants. Together, our data show that PS1 FAD mutations impede the EphB4/ephrinB2-mediated angiogenic functions of ECs and impair brain neovascularization, neuronal survival and cognitive recovery following ischemia. Furthermore, our data reveal a novel brain angiogenic mechanism targeted by PS1 FAD mutants and a potential therapeutic target for ischemia-induced neurodegeneration. Importantly, FAD mutant effects occur in absence of neuropathological hallmarks of AD, supporting that such hallmarks may form downstream of mutant effects on neoangiogenesis and neuronal survival.
Collapse
Affiliation(s)
- YoneJung Yoon
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan Doran
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhiping Shao
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Cheuk Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Jun Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Victoria X Wang
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. Int J Mol Sci 2021; 22:ijms22115900. [PMID: 34072743 PMCID: PMC8198078 DOI: 10.3390/ijms22115900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
Collapse
|
22
|
Oka S, Leon J, Sakumi K, Abolhassani N, Sheng Z, Tsuchimoto D, LaFerla FM, Nakabeppu Y. MTH1 and OGG1 maintain a low level of 8-oxoguanine in Alzheimer's brain, and prevent the progression of Alzheimer's pathogenesis. Sci Rep 2021; 11:5819. [PMID: 33758207 PMCID: PMC7988129 DOI: 10.1038/s41598-021-84640-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
8-Oxoguanine (8-oxoG), a major oxidative base lesion, is highly accumulated in Alzheimer’s disease (AD) brains during the pathogenic process. MTH1 hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, thereby avoiding 8-oxo-dG incorporation into DNA. 8-OxoG DNA glycosylase-1 (OGG1) excises 8-oxoG paired with cytosine in DNA, thereby minimizing 8-oxoG accumulation in DNA. Levels of MTH1 and OGG1 are significantly reduced in the brains of sporadic AD cases. To understand how 8-oxoG accumulation in the genome is involved in AD pathogenesis, we established an AD mouse model with knockout of Mth1 and Ogg1 genes in a 3xTg-AD background. MTH1 and OGG1 deficiency increased 8-oxoG accumulation in nuclear and, to a lesser extent, mitochondrial genomes, causing microglial activation and neuronal loss with impaired cognitive function at 4–5 months of age. Furthermore, minocycline, which inhibits microglial activation and reduces neuroinflammation, markedly decreased the nuclear accumulation of 8-oxoG in microglia, and inhibited microgliosis and neuronal loss. Gene expression profiling revealed that MTH1 and OGG1 efficiently suppress progression of AD by inducing various protective genes against AD pathogenesis initiated by Aß/Tau accumulation in 3xTg-AD brain. Our findings indicate that efficient suppression of 8-oxoG accumulation in brain genomes is a new approach for prevention and treatment of AD.
Collapse
Affiliation(s)
- Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66010, USA
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Zijing Sheng
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
23
|
A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. SENSORS 2020; 20:s20215980. [PMID: 33105735 PMCID: PMC7660074 DOI: 10.3390/s20215980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.
Collapse
|
24
|
Montesinos J, Pera M, Larrea D, Guardia‐Laguarta C, Agrawal RR, Velasco KR, Yun TD, Stavrovskaya IG, Xu Y, Koo SY, Snead AM, Sproul AA, Area‐Gomez E. The Alzheimer's disease-associated C99 fragment of APP regulates cellular cholesterol trafficking. EMBO J 2020; 39:e103791. [PMID: 32865299 PMCID: PMC7560219 DOI: 10.15252/embj.2019103791] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The link between cholesterol homeostasis and cleavage of the amyloid precursor protein (APP), and how this relationship relates to Alzheimer's disease (AD) pathogenesis, is still unknown. Cellular cholesterol levels are regulated through crosstalk between the plasma membrane (PM), where most cellular cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol levels resides. The intracellular transport of cholesterol from the PM to the ER is believed to be activated by a lipid-sensing peptide(s) in the ER that can cluster PM-derived cholesterol into transient detergent-resistant membrane domains (DRMs) within the ER, also called the ER regulatory pool of cholesterol. When formed, these cholesterol-rich domains in the ER maintain cellular homeostasis by inducing cholesterol esterification as a mechanism of detoxification while attenuating its de novo synthesis. In this manuscript, we propose that the 99-aa C-terminal fragment of APP (C99), when delivered to the ER for cleavage by γ-secretase, acts as a lipid-sensing peptide that forms regulatory DRMs in the ER, called mitochondria-associated ER membranes (MAM). Our data in cellular AD models indicates that increased levels of uncleaved C99 in the ER, an early phenotype of the disease, upregulates the formation of these transient DRMs by inducing the internalization of extracellular cholesterol and its trafficking from the PM to the ER. These results suggest a novel role for C99 as a mediator of cholesterol disturbances in AD, potentially explaining early hallmarks of the disease.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Marta Pera
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Present address:
Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Delfina Larrea
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Rishi R Agrawal
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNYUSA
| | - Kevin R Velasco
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Taekyung D Yun
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Yimeng Xu
- Biomarkers Core LaboratoryColumbia University Irving Medical CenterNew YorkNYUSA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| | - Amanda M Snead
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Estela Area‐Gomez
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Institute of Human NutritionColumbia University Irving Medical CenterNew YorkNYUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
25
|
Reinehr S, Buschhorn V, Mueller-Buehl AM, Goldmann T, Grus FH, Wolfrum U, Dick HB, Joachim SC. Occurrence of Retinal Ganglion Cell Loss via Autophagy and Apoptotic Pathways in an Autoimmune Glaucoma Model. Curr Eye Res 2020; 45:1124-1135. [PMID: 31935132 DOI: 10.1080/02713683.2020.1716987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE In glaucoma, an apoptotic death of retinal ganglion cells (RGCs) has been shown. However, little is known about other cell death mechanisms, like autophagy or necrosis. Therefore, we investigated these mechanisms in addition to antibody deposits in an experimental autoimmune glaucoma model. METHODS Rats were immunized with a retinal ganglion cell-layer homogenate (RGA), while controls received sodium chloride. Untreated rats served as natїve group. After seven weeks, retinal cross-sections were stained with antibodies against RGCs (Brn-3a), apoptosis (cleaved caspase 2, cleaved caspase 3 as well as caspase 3, 8, and 9), autophagy (LC3BII and LAMP1), and necrosis (RIPK3) followed by cell counts. Autophagy was additionally visualized via transmission electron microscopy on retinal sections. Antibody deposits were also analyzed. RESULTS We noted a RGC loss after RGA immunization compared to both control groups. Also, significantly more cleaved caspase 2+ RGCs were observed in RGA animals. More caspase 3 and 8 signals were noted in RGA retinas compared to both controls, while no changes were seen in regard to caspase 9. Furthermore, significantly more cleaved caspase 3+ cells were detected in RGA animals. We noted an increase of LC3BII+ and LAMP1+ autophagic cells in the RGA group, while no alterations were seen regarding necrotic RIPK3+ cells. Autophagic vesicles were observed via transmission electron microscopy. IgG staining revealed significant differences between the RGA group and controls concerning IgG deposits in the ganglion cell layer. CONCLUSIONS Due to the novel results from this study, we conclude that IgG antibodies are involved in RGC loss in this model leading to apoptotic and autophagic cell loss. These results could help to develop new therapy strategies for glaucoma patients.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Verena Buschhorn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Tobias Goldmann
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - Franz H Grus
- Experimental Ophthalmology, University Medical Center Mainz , Mainz, Germany
| | - Uwe Wolfrum
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| |
Collapse
|
26
|
Duitama M, Vargas-López V, Casas Z, Albarracin SL, Sutachan JJ, Torres YP. TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Front Neurosci 2020; 14:782. [PMID: 32848557 PMCID: PMC7417429 DOI: 10.3389/fnins.2020.00782] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) are cation channels expressed in both non-excitable and excitable cells from diverse tissues, including heart, lung, and brain. The TRP channel family includes 28 isoforms activated by physical and chemical stimuli, such as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been shown that TRP channels are also directly or indirectly activated by reactive oxygen species. Oxidative stress plays an essential role in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, and TRP channels are involved in the progression of those diseases by mechanisms involving changes in the crosstalk between Ca2+ regulation, oxidative stress, and production of inflammatory mediators. TRP channels involved in nociception include members of the TRPV, TRPM, TRPA, and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has also been reported that pain is a complex issue in patients with Alzheimer's and Parkinson's diseases, and adequate management of pain in those conditions is still in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved in neurodegeneration. Therefore, some studies have considered TRPV1 as a target for both pain treatment and neurodegenerative disorders. Thus, this review aimed to describe the TRP-dependent mechanism that can mediate pain sensation in neurodegenerative diseases and the therapeutic approach available to palliate pain and neurodegenerative symptoms throughout the regulation of these channels.
Collapse
|
27
|
Pera M, Montesinos J, Larrea D, Agrawal RR, Velasco KR, Stavrovskaya IG, Yun TD, Area-Gomez E. MAM and C99, key players in the pathogenesis of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:235-278. [PMID: 32739006 DOI: 10.1016/bs.irn.2020.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inter-organelle communication is a rapidly-expanding field that has transformed our understanding of cell biology and pathology. Organelle-organelle contact sites can generate transient functional domains that act as enzymatic hubs involved in the regulation of cellular metabolism and intracellular signaling. One of these hubs is located in areas of the endoplasmic reticulum (ER) connected to mitochondria, called mitochondria-associated ER membranes (MAM). These MAM are transient lipid rafts intimately involved in cholesterol and phospholipid metabolism, calcium homeostasis, and mitochondrial function and dynamics. In addition, γ-secretase-mediated proteolysis of the amyloid precursor protein 99-aa C-terminal fragment (C99) to form amyloid β also occurs at the MAM. Our most recent data indicates that in Alzheimer's disease, increases in uncleaved C99 levels at the MAM provoke the upregulation of MAM-resident functions, resulting in the loss of lipid homeostasis, and mitochondrial dysfunction. Here, we discuss the relevance of these findings in the field, and the contribution of C99 and MAM dysfunction to Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, Barcelona, Spain.
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Kevin R Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Irina G Stavrovskaya
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
28
|
Al Rahim M, Yoon Y, Dimovasili C, Shao Z, Huang Q, Zhang E, Kezunovic N, Chen L, Schaffner A, Huntley GW, Ubarretxena-Belandia I, Georgakopoulos A, Robakis NK. Presenilin1 familial Alzheimer disease mutants inactivate EFNB1- and BDNF-dependent neuroprotection against excitotoxicity by affecting neuroprotective complexes of N-methyl-d-aspartate receptor. Brain Commun 2020; 2:fcaa100. [PMID: 33005890 PMCID: PMC7520050 DOI: 10.1093/braincomms/fcaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Excitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires de novo formation of 'survival complexes' which are factor-stimulated complexes of N-methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection. EPH receptor B2- and N-methyl-d-aspartate receptor-derived peptides designed to disrupt formation of survival complexes also decrease the factor-stimulated neuroprotection. Strikingly, factor-dependent neuroprotection and levels of the de novo factor-stimulated survival complexes decrease dramatically in neurons expressing presenilin 1 familial Alzheimer disease mutants. Mouse neurons and brains expressing presenilin 1 familial Alzheimer disease mutants contain increased amounts of constitutive presenilin 1-N-methyl-d-aspartate receptor complexes unresponsive to factors. Interestingly, the stability of the familial Alzheimer disease presenilin 1-N-methyl-d-aspartate receptor complexes differs from that of wild type complexes and neurons of mutant-expressing brains are more vulnerable to cerebral ischaemia than neurons of wild type brains. Furthermore, N-methyl-d-aspartate receptor-mediated excitatory post-synaptic currents at CA1 synapses are altered by presenilin 1 familial Alzheimer disease mutants. Importantly, high levels of presenilin 1-N-methyl-d-aspartate receptor complexes are also found in post-mortem brains of Alzheimer disease patients expressing presenilin 1 familial Alzheimer disease mutants. Together, our data identify a novel presenilin 1-dependent neuroprotective mechanism against excitotoxicity and indicate a pathway by which presenilin 1 familial Alzheimer disease mutants decrease factor-depended neuroprotection against excitotoxicity and ischaemia in the absence of Alzheimer disease neuropathological hallmarks which may form downstream of neuronal damage. These findings have implications for the pathogenic effects of familial Alzheimer disease mutants and therapeutic strategies.
Collapse
Affiliation(s)
- Md Al Rahim
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonejung Yoon
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Huang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nebojsa Kezunovic
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Schaffner
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W Huntley
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anastasios Georgakopoulos
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Rojas-Charry L, Calero-Martinez S, Morganti C, Morciano G, Park K, Hagel C, Marciniak SJ, Glatzel M, Pinton P, Sepulveda-Falla D. Susceptibility to cellular stress in PS1 mutant N2a cells is associated with mitochondrial defects and altered calcium homeostasis. Sci Rep 2020; 10:6455. [PMID: 32296078 PMCID: PMC7160112 DOI: 10.1038/s41598-020-63254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Presenilin 1 (PS1) mutations are the most common cause of familial Alzheimer's disease (FAD). PS1 also plays a role in cellular processes such as calcium homeostasis and autophagy. We hypothesized that mutant presenilins increase cellular vulnerability to stress. We stably expressed human PS1, mutant PS1E280A and mutant PS1Δ9 in mouse neuroblastoma N2a cells. We examined early signs of stress in different conditions: endoplasmic reticulum (ER) stress, calcium overload, oxidative stress, and Aβ 1-42 oligomers toxicity. Additionally, we induced autophagy via serum starvation. PS1 mutations did not have an effect in ER stress but PS1E280A mutation affected autophagy. PS1 overexpression influenced calcium homeostasis and generated mitochondrial calcium overload modifying mitochondrial function. However, the opening of the mitochondrial permeability transition pore (MPTP) was affected in PS1 mutants, being accelerated in PS1E280A and inhibited in PS1Δ9 cells. Altered autophagy in PS1E280A cells was neither modified by inhibition of γ-secretase, nor by ER calcium retention. MPTP opening was directly regulated by γ-secretase inhibitors independent on organelle calcium modulation, suggesting a novel direct role for PS1 and γ-secretase in mitochondrial stress. We identified intrinsic cellular vulnerability to stress in PS1 mutants associated simultaneously with both, autophagic and mitochondrial function, independent of Aβ pathology.
Collapse
Affiliation(s)
- Liliana Rojas-Charry
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sergio Calero-Martinez
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Kyungeun Park
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, 44121, Ferrara, Italy
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
30
|
Accelerated brain aging towards transcriptional inversion in a zebrafish model of the K115fs mutation of human PSEN2. PLoS One 2020; 15:e0227258. [PMID: 31978074 PMCID: PMC6980398 DOI: 10.1371/journal.pone.0227258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background The molecular changes involved in Alzheimer’s disease (AD) progression remain unclear since we cannot easily access antemortem human brains. Some non-mammalian vertebrates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of the PSEN2 gene. PS2V is induced by hypoxia/oxidative stress and shows increased expression in late onset, sporadic AD brains. A unique, early onset familial AD mutation of PSEN2, K115fs, mimics the PS2V coding sequence suggesting that forced, early expression of PS2V-like isoforms may contribute to AD pathogenesis. Here we use zebrafish to model the K115fs mutation to investigate the effects of forced PS2V-like expression on the transcriptomes of young adult and aged adult brains. Methods We edited the zebrafish genome to model the K115fs mutation. To explore its effects at the molecular level, we analysed the brain transcriptome and proteome of young (6-month-old) and aged (24-month-old) wild type and heterozygous mutant female sibling zebrafish. Finally, we used gene co-expression network analysis (WGCNA) to compare molecular changes in the brains of these fish to human AD. Results Young heterozygous mutant fish show transcriptional changes suggesting accelerated brain aging and increased glucocorticoid signalling. These early changes precede a transcriptional ‘inversion’ that leads to glucocorticoid resistance and other likely pathological changes in aged heterozygous mutant fish. Notably, microglia-associated immune responses regulated by the ETS transcription factor family are altered in both our zebrafish mutant model and in human AD. The molecular changes we observe in aged heterozygous mutant fish occur without obvious histopathology and possibly in the absence of Aβ. Conclusions Our results suggest that forced expression of a PS2V-like isoform contributes to immune and stress responses favouring AD pathogenesis. This highlights the value of our zebrafish genetic model for exploring molecular mechanisms involved in AD pathogenesis.
Collapse
|
31
|
Involvement of GABAergic interneuron dysfunction and neuronal network hyperexcitability in Alzheimer's disease: Amelioration by metabolic switching. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:191-205. [DOI: 10.1016/bs.irn.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Ryskamp DA, Zhemkov V, Bezprozvanny I. Mutational Analysis of Sigma-1 Receptor's Role in Synaptic Stability. Front Neurosci 2019; 13:1012. [PMID: 31607852 PMCID: PMC6761230 DOI: 10.3389/fnins.2019.01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) resident transmembrane protein. In our previous experiments, we demonstrated neuroprotective effects of pridopidine, an agonist of S1R, in cellular and animal models of Huntington’s disease (HD) and Alzheimer’s disease (AD). Consistent with previous observations, deletion of endogenous S1R with CRISPR/Cas9 in cultured hippocampal neurons resulted in fewer mushroom-shaped dendritic spines. Overexpression of human S1R restored mushroom spine density to control levels. In contrast, overexpression of S1R with the Δ31–50 deletion (linked to distal hereditary motor neuropathy) or the E102Q mutation (linked to amyotrophic lateral sclerosis) destabilized mushroom spines. Recently a crystal structure of S1R was determined in lipidic cubic phase. In the present study, we took an advantage of this structural information and performed docking studies with pridopidine and the S1R structural model. We generated a series of S1R point mutations based on residues predicted to be involved in direct association with pridopidine. We discovered that all ligand binding-site mutants were able to compensate for loss of endogenous S1R. However, most of these mutants were not able to support pridopidine-induced rescue of mushroom spines in presenilin-1-mutant cultures. Our mutational analysis was in agreement with in silico docking based on the published S1R crystal structure, with an exception of R119 residue. Our data also suggest that basal S1R activity is required for mature spine stability, whereas agonist-mediated S1R activity is required for stabilization of mushroom spines in the context of disease-causing mutations.
Collapse
Affiliation(s)
- Daniel A Ryskamp
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States.,Laboratory of Molecular Neurodegeneration, Peter the Great Saint Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
33
|
Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci 2019; 13:862. [PMID: 31551669 PMCID: PMC6736580 DOI: 10.3389/fnins.2019.00862] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 receptor (S1R) is a multi-functional, ligand-operated protein situated in endoplasmic reticulum (ER) membranes and changes in its function and/or expression have been associated with various neurological disorders including amyotrophic lateral sclerosis/frontotemporal dementia, Alzheimer's (AD) and Huntington's diseases (HD). S1R agonists are broadly neuroprotective and this is achieved through a diversity of S1R-mediated signaling functions that are generally pro-survival and anti-apoptotic; yet, relatively little is known regarding the exact mechanisms of receptor functioning at the molecular level. This review summarizes therapeutically relevant mechanisms by which S1R modulates neurophysiology and implements neuroprotective functions in neurodegenerative diseases. These mechanisms are diverse due to the fact that S1R can bind to and modulate a large range of client proteins, including many ion channels in both ER and plasma membranes. We summarize the effect of S1R on its interaction partners and consider some of the cell type- and disease-specific aspects of these actions. Besides direct protein interactions in the endoplasmic reticulum, S1R is likely to function at the cellular/interorganellar level by altering the activity of several plasmalemmal ion channels through control of trafficking, which may help to reduce excitotoxicity. Moreover, S1R is situated in lipid rafts where it binds cholesterol and regulates lipid and protein trafficking and calcium flux at the mitochondrial-associated membrane (MAM) domain. This may have important implications for MAM stability and function in neurodegenerative diseases as well as cellular bioenergetics. We also summarize the structural and biochemical features of S1R proposed to underlie its activity. In conclusion, S1R is incredibly versatile in its ability to foster neuronal homeostasis in the context of several neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel A. Ryskamp
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Svetlana Korban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
34
|
Abstract
Animal models are indispensable tools for Alzheimer disease (AD) research. Over the course of more than two decades, an increasing number of complementary rodent models has been generated. These models have facilitated testing hypotheses about the aetiology and progression of AD, dissecting the associated pathomechanisms and validating therapeutic interventions, thereby providing guidance for the design of human clinical trials. However, the lack of success in translating rodent data into therapeutic outcomes may challenge the validity of the current models. This Review critically evaluates the genetic and non-genetic strategies used in AD modelling, discussing their strengths and limitations, as well as new opportunities for the development of better models for the disease.
Collapse
|
35
|
Deficits in Enrichment-Dependent Neurogenesis and Enhanced Anxiety Behaviors Mediated by Expression of Alzheimer's Disease-Linked Ps1 Variants Are Rescued by Microglial Depletion. J Neurosci 2019; 39:6766-6780. [PMID: 31217332 DOI: 10.1523/jneurosci.0884-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/13/2019] [Accepted: 06/08/2019] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that presently affects an estimated 5.7 million Americans. Understanding the basis for this disease is key for the development of a future successful treatment. In this effort, we previously reported that mouse prion protein-promoter-driven, ubiquitous expression of familial AD (FAD)-linked human PSEN1 variants in transgenic mice impairs environmental enrichment (EE)-induced proliferation and neurogenesis of adult hippocampal neural progenitor cells (AHNPCs) and in a non-cell autonomous manner. These findings were confirmed in PS1M146V/+ mice that harbor an FAD-linked mutation in the endogenous PSEN1 gene. We now demonstrate that CSF1R antagonist-mediated microglial depletion in transgenic male mice expressing mutant presenilin 1 (PS1) or PS1M146V/+ "knock-in" mice leads to a complete rescue of deficits in proliferation, differentiation and survival of AHNPCs. Moreover, microglia depletion suppressed the heightened baseline anxiety behavior observed in transgenic mice expressing mutant PS1 and PS1M146V/+ mice to levels observed in mice expressing wild-type human PS1 or nontransgenic mice, respectively. These findings demonstrate that in mice expressing FAD-linked PS1, microglia play a critical role in the regulation of EE-dependent AHNPC proliferation and neurogenesis and the modulation of affective behaviors.SIGNIFICANCE STATEMENT Inheritance of mutations in genes encoding presenilin 1 (PS1) causes familial Alzheimer's disease (FAD). Mutant PS1 expression enhances the levels and assembly of toxic Aβ42 peptides and impairs the self-renewal and neuronal differentiation of adult hippocampal neural progenitor cells (AHNPCs) following environmental enrichment (EE) that is associated with heightened baseline anxiety. We now show that microglial depletion fully restores the EE-mediated impairments in AHNPC phenotypes and suppresses the heightened baseline anxiety observed in mice expressing FAD-linked PS1. Thus, we conclude that the memory deficits and anxiety-related behaviors in patients with PS1 mutations is a reflection not just of an increase in the levels of Aβ42 peptides, but to impairments in the self-renewal and neuronal differentiation of AHNPCs that modulate affective behaviors.
Collapse
|
36
|
Newman M, Hin N, Pederson S, Lardelli M. Brain transcriptome analysis of a familial Alzheimer's disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production. Mol Brain 2019; 12:43. [PMID: 31053140 PMCID: PMC6500017 DOI: 10.1186/s13041-019-0467-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
To prevent or ameliorate Alzheimer’s disease (AD) we must understand its molecular basis. AD develops over decades but detailed molecular analysis of AD brains is limited to postmortem tissue where the stresses initiating the disease may be obscured by compensatory responses and neurodegenerative processes. Rare, dominant mutations in a small number of genes, but particularly the gene PRESENILIN 1 (PSEN1), drive early onset of familial AD (EOfAD). Numerous transgenic models of AD have been constructed in mouse and other organisms, but transcriptomic analysis of these models has raised serious doubts regarding their representation of the disease state. Since we lack clarity regarding the molecular mechanism(s) underlying AD, we posit that the most valid approach is to model the human EOfAD genetic state as closely as possible. Therefore, we sought to analyse brains from zebrafish heterozygous for a single, EOfAD-like mutation in their PSEN1-orthologous gene, psen1. We previously introduced an EOfAD-like mutation (Q96_K97del) into the endogenous psen1 gene of zebrafish. Here, we analysed transcriptomes of young adult (6-month-old) entire brains from a family of heterozygous mutant and wild type sibling fish. Gene ontology (GO) analysis implies effects on mitochondria, particularly ATP synthesis, and on ATP-dependent processes including vacuolar acidification.
Collapse
Affiliation(s)
- Morgan Newman
- Department of Molecular and Biomedical Science, University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, SA, 5005, Australia
| | - Nhi Hin
- Department of Molecular and Biomedical Science, University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, SA, 5005, Australia
| | - Stephen Pederson
- Department of Molecular and Biomedical Science, University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, SA, 5005, Australia
| | - Michael Lardelli
- Department of Molecular and Biomedical Science, University of Adelaide, School of Biological Sciences, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
37
|
Ryskamp D, Wu L, Wu J, Kim D, Rammes G, Geva M, Hayden M, Bezprozvanny I. Pridopidine stabilizes mushroom spines in mouse models of Alzheimer's disease by acting on the sigma-1 receptor. Neurobiol Dis 2019; 124:489-504. [PMID: 30594810 PMCID: PMC6363865 DOI: 10.1016/j.nbd.2018.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
There is evidence that cognitive decline in Alzheimer's disease (AD) results from deficiencies in synaptic communication (e.g., loss of mushroom-shaped 'memory spines') and neurodegenerative processes. This might be treated with sigma-1 receptor (S1R) agonists, which are broadly neuroprotective and modulate synaptic plasticity. For example, we previously found that the mixed muscarinic/S1R agonist AF710B prevents mushroom spine loss in hippocampal cultures from APP knock-in (APP-KI) and presenilin-1-M146 V knock-in (PS1-KI) mice. We also found that the "dopaminergic stabilizer" pridopidine (structurally similar to the S1R agonist R(+)-3-PPP), is a high-affinity S1R agonist and is synaptoprotective in a mouse model of Huntington disease. Here we tested whether pridopidine and R(+)-3-PPP are synaptoprotective in models of AD and whether this requires S1R. We also examined the effects of pridopidine on long-term potentiation (LTP), endoplasmic reticulum calcium and neuronal store-operated calcium entry (nSOC) in spines, all of which are dysregulated in AD, contributing to synaptic pathology. We report here that pridopidine and 3-PPP protect mushroom spines from Aβ42 oligomer toxicity in primary WT hippocampal cultures from mice. Pridopidine also reversed LTP defects in hippocampal slices resulting from application of Aβ42 oligomers. Pridopidine and 3-PPP rescued mushroom spines in hippocampal cultures from APP-KI and PS1-KI mice. S1R knockdown from lenti-viral shRNA expression destabilized WT mushroom spines and prevented the synaptoprotective effects of pridopidine in PS1-KI cultures. Knockout of PS1/2 destabilized mushroom spines and pridopidine was unable to prevent this. Pridopidine lowered endoplasmic reticulum calcium levels in WT, PS1-KO, PS1-KI and PS2 KO neurons, but not in PS1/2 KO neurons. S1R was required for pridopidine to enhance spine nSOC in PS1-KI neurons. Pridopidine was unable to rescue PS1-KI mushroom spines during pharmacological or genetic inhibition of nSOC. Oral pridopidine treatment rescued mushroom spines in vivo in aged PS1-KI-GFP mice. Pridopidine stabilizes mushroom spines in mouse models of AD and this requires S1R, endoplasmic reticulum calcium leakage through PS1/2 and nSOC. Thus, pridopidine may be useful to explore for the treatment of AD.
Collapse
Affiliation(s)
- Daniel Ryskamp
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lili Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dabin Kim
- Department of Anesthesiology and Intensive Care, Technische Universität München, Munich 81675, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Technische Universität München, Munich 81675, Germany.
| | | | | | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| |
Collapse
|
38
|
Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM. Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC Neurosci 2019; 20:13. [PMID: 30894120 PMCID: PMC6425634 DOI: 10.1186/s12868-019-0496-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/15/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Knock-in (KI) mouse models of Alzheimer's disease (AD) that endogenously overproduce Aβ without non-physiological overexpression of amyloid precursor protein (APP) provide important insights into the pathogenic mechanisms of AD. Previously, we reported that AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic) exhibited emotional alterations before the onset of definitive cognitive deficits. To determine whether these mice exhibit deficits in learning and memory at more advanced ages, we compared the Morris water maze performance of AppNL-G-F and AppNL mice, which harbor only the Swedish mutation, with that of wild-type (WT) C57BL/6J mice at the age of 24 months. To correlate cognitive deficits and neuroinflammation, we also examined Aβ plaque formation and reactive gliosis in these mice. RESULTS In the Morris water maze, a spatial task, 24-month-old AppNL-G-F/NL-G-F mice exhibited significantly poorer spatial learning than WT mice during the hidden training sessions, but similarly to WT mice during the visible training sessions. Not surprisingly, AppNL-G-F/NL-G-F mice also exhibited spatial memory deficits both 1 and 7 days after the last training session. By contrast, 24-month-old AppNL/NL mice had intact spatial learning and memory relative to WT mice. Immunohistochemical analyses revealed that 24-month-old AppNL-G-F/NL-G-F mice developed massive Aβ plaques and reactive gliosis (microgliosis and astrocytosis) throughout the brain, including the cortex and hippocampus. By contrast, we observed no detectable brain pathology in AppNL/NL mice despite overproduction of human Aβ40 and Aβ42 in their brains. CONCLUSIONS Aβ plaque formation, followed by sustained neuroinflammation, is necessary for the induction of definitive cognitive deficits in App-KI mouse models of AD. Our data also indicate that introduction of the Swedish mutation alone in endogenous APP is not sufficient to produce either AD-related brain pathology or cognitive deficits in mice.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603 Japan
| |
Collapse
|
39
|
Rocchio F, Tapella L, Manfredi M, Chisari M, Ronco F, Ruffinatti FA, Conte E, Canonico PL, Sortino MA, Grilli M, Marengo E, Genazzani AA, Lim D. Gene expression, proteome and calcium signaling alterations in immortalized hippocampal astrocytes from an Alzheimer's disease mouse model. Cell Death Dis 2019; 10:24. [PMID: 30631041 PMCID: PMC6328590 DOI: 10.1038/s41419-018-1264-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
Evidence is rapidly growing regarding a role of astroglial cells in the pathogenesis of Alzheimer’s disease (AD), and the hippocampus is one of the important brain regions affected in AD. While primary astroglial cultures, both from wild-type mice and from rodent models of AD, have been useful for studying astrocyte-specific alterations, the limited cell number and short primary culture lifetime have limited the use of primary hippocampal astrocytes. To overcome these limitations, we have now established immortalized astroglial cell lines from the hippocampus of 3xTg-AD and wild-type control mice (3Tg-iAstro and WT-iAstro, respectively). Both 3Tg-iAstro and WT-iAstro maintain an astroglial phenotype and markers (glutamine synthetase, aldehyde dehydrogenase 1 family member L1 and aquaporin-4) but display proliferative potential until at least passage 25. Furthermore, these cell lines maintain the potassium inward rectifying (Kir) current and present transcriptional and proteomic profiles compatible with primary astrocytes. Importantly, differences between the 3Tg-iAstro and WT-iAstro cell lines in terms of calcium signaling and in terms of transcriptional changes can be re-conducted to the changes previously reported in primary astroglial cells. To illustrate the versatility of this model we performed shotgun mass spectrometry proteomic analysis and found that proteins related to RNA binding and ribosome are differentially expressed in 3Tg-iAstro vs WT-iAstro. In summary, we present here immortalized hippocampal astrocytes from WT and 3xTg-AD mice that might be a useful model to speed up research on the role of astrocytes in AD.
Collapse
Affiliation(s)
- Francesca Rocchio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,International Center for T1D, Pediatric Clinic Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy.,ISALIT S.r.l., Spin-off of Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Francesca Ronco
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | | | - Eleonora Conte
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
40
|
Shepherd A, Zhang TD, Zeleznikow-Johnston AM, Hannan AJ, Burrows EL. Transgenic Mouse Models as Tools for Understanding How Increased Cognitive and Physical Stimulation Can Improve Cognition in Alzheimer's Disease. Brain Plast 2018; 4:127-150. [PMID: 30564551 PMCID: PMC6296266 DOI: 10.3233/bpl-180076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy D Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
41
|
Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y, Hashimoto S, Sato K, Kurup D, Yokota T, Saido TC. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat Commun 2018; 9:2892. [PMID: 30042426 PMCID: PMC6057936 DOI: 10.1038/s41467-018-05262-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
Base Editor (BE) and Target-AID (activation-induced cytidine deaminase) are engineered genome-editing proteins composed of Cas9 and cytidine deaminases. These base-editing tools convert C:G base pairs to T:A at target sites. Here, we inject either BE or Target-AID mRNA together with identical single-guide RNAs (sgRNAs) into mouse zygotes, and compare the base-editing efficiencies of the two distinct tools in vivo. BE consistently show higher base-editing efficiency (10.0–62.8%) compared to that of Target-AID (3.4–29.8%). However, unexpected base substitutions and insertion/deletion formations are also more frequently observed in BE-injected mice or zygotes. We are able to generate multiple mouse lines harboring point mutations in the mouse presenilin 1 (Psen1) gene by injection of BE or Target-AID. These results demonstrate that BE and Target-AID are highly useful tools to generate mice harboring pathogenic point mutations and to analyze the functional consequences of the mutations in vivo. CRISPR-guided cytidine deaminases, including BE3 (Base Editor 3) and Target-AID (activation-induced cytidine deaminase), can covert C:G base pairs to T:A at target site. Here, the authors generate missense mutations of mouse Psen1 gene and find BE3 has higher editing efficiency than Target-AID.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan. .,Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Kenichi Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Kaori Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Deepika Kurup
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
42
|
Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson MP. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging 2018; 70:160-169. [PMID: 30015035 DOI: 10.1016/j.neurobiolaging.2018.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive impairment and by extensive neuronal loss associated with extracellular amyloid β-peptide (Aβ) plaques and intraneuronal tau pathology in temporal and parietal lobes. AD patients are at increased risk for epileptic seizures, and data from experimental models of AD suggest that aberrant neuronal network activity occurs early in the disease process before cognitive deficits and neuronal degeneration. The contributions of Aβ and/or tau pathologies to dysregulation of neuronal network activity are unclear. Using a transgenic mouse model of AD (3×TgAD mice) in which there occurs differential age-dependent development of tau and Aβ plaque pathologies, we applied analysis of resting state functional magnetic resonance imaging regional homogeneity, a measure of local synchronous activity, to discriminate the effects of Aβ and tau on neuronal network activity throughout the brain. Compared to age-matched wild-type mice, 6- to 8-month-old 3×TgAD mice exhibited increased regional homogeneity in the hippocampus and parietal and temporal cortices, regions with tau pathology but not Aβ pathology at this age. By 18-24 months of age, 3×TgAD mice exhibited extensive tau and Aβ pathologies involving the hippocampus and multiple functionally related brain regions, with a spatial expansion of increased local synchronous activity to include those regions. Our findings demonstrate that age-related brain regional hypersynchronous activity is associated with early tau pathology in a mouse model, consistent with a role for early tau pathology in the neuronal circuit hyperexcitability that is believed to precede and contribute to neuronal degeneration in AD.
Collapse
Affiliation(s)
- Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Elliot Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| |
Collapse
|
43
|
Adiele RC, Adiele CA. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1257-70. [PMID: 27392851 DOI: 10.3233/jad-150967] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative brain disorder with progressive cognitive decline that leads to terminal dementia and death. For decades, amyloid-beta (Aβ) and neurofibrillary tangle (NFT) aggregation hypotheses have dominated studies on the pathogenesis and identification of potential therapeutic targets in AD. Little attention has been paid to the mitochondrial molecular/biochemical pathways leading to AD. Mitochondria play a critical role in cell viability and death including neurons and neuroglia, not only because they regulate energy and oxygen metabolism but also because they regulate cell death pathways. Mitochondrial impairment and oxidative stress are implicated in the pathogenesis of AD. Interestingly, current therapeutics provide symptomatic benefits to AD patients resulting in the use of preventive trials on presymptomatic subjects. This review article elucidates the pathophysiology of AD and emphasizes the need to explore the mitochondrial pathways to provide solutions to unanswered questions in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chiedukam A Adiele
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
44
|
Tapella L, Cerruti M, Biocotino I, Stevano A, Rocchio F, Canonico PL, Grilli M, Genazzani AA, Lim D. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication. Eur J Neurosci 2018; 47:211-221. [DOI: 10.1111/ejn.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Matteo Cerruti
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Isabella Biocotino
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Alessio Stevano
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Francesca Rocchio
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| |
Collapse
|
45
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
46
|
Lee M, Choi BY, Suh SW. Unexpected Effects of Acetylcholine Precursors on Pilocarpine Seizure- Induced Neuronal Death. Curr Neuropharmacol 2018; 16:51-58. [PMID: 28521701 PMCID: PMC5771384 DOI: 10.2174/1570159x15666170518150053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Choline alfoscerate (α-GPC) and Cytidine 5'-diphosphocholine (CDPCholine) are both acetylcholine precursors and are considered to act as pro-cholinergic nootropic agents. Acetylcholine precursors have also recently found frequent use in the neurology clinic. Stroke and many types of dementia have been shown to respond favorably after treatment with these agents, not only in terms of cognitive dysfunction but also behavioral and psychological symptoms. The primary mechanisms of Acetylcholine precursors are the following: 1) Acetylcholine precursors themselves are used in the biosynthesis of acetylcholine and 2) byproducts like glycerophosphate have protective functions for neuronal phospholipids. However, whether acetylcholine precursors have a similar effect in treating cognitive impairment in patients with epilepsy remains controversial. METHODS Our previous studies investigating acetylcholine precursors in seizure-experienced animals have produced variable results that were dependent on the timing of administration. RESULTS Early administration of CDP-choline immediately after seizure increased neuronal death, blood-brain barrier (BBB) disruption and microglial activation in the hippocampus. However, administration of α-GPC starting 3 weeks after seizure (late administration) improved cognitive function through reduced neuronal death and BBB disruption, and increased neurogenesis in the hippocampus. CONCLUSION These seemingly contradictory results may be attributed to both epileptogenic features and neuroprotective functions of several acetylcholine precursors.
Collapse
Affiliation(s)
| | | | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chunchon, 24252, Korea
| |
Collapse
|
47
|
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:89. [PMID: 29273078 PMCID: PMC5741956 DOI: 10.1186/s13024-017-0231-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
48
|
Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem Soc Trans 2017; 45:1185-1202. [PMID: 29079648 DOI: 10.1042/bst20170002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.
Collapse
|
49
|
Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR, Xu Y, Chan RB, Di Paolo G, Mehler MF, Perumal GS, Macaluso FP, Freyberg ZZ, Acin-Perez R, Enriquez JA, Schon EA, Area-Gomez E. Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 2017; 36:3356-3371. [PMID: 29018038 PMCID: PMC5731665 DOI: 10.15252/embj.201796797] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by β‐secretase to generate a 99‐aa C‐terminal fragment (C99) that is then cleaved by γ‐secretase to generate the β‐amyloid (Aβ) found in senile plaques. In previous reports, we and others have shown that γ‐secretase activity is enriched in mitochondria‐associated endoplasmic reticulum (ER) membranes (MAM) and that ER–mitochondrial connectivity and MAM function are upregulated in AD. We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by γ‐secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Jorge Montesinos
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Kevin R Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Medical Campus, New York, NY, USA
| | - Yimeng Xu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mark F Mehler
- Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Geoffrey S Perumal
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zachary Z Freyberg
- Departments of Psychiatry and Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebeca Acin-Perez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jose Antonio Enriquez
- Cardiovascular Metabolism Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
50
|
Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer's Disease Treatment. J Neurosci 2017; 36:11837-11850. [PMID: 27881772 DOI: 10.1523/jneurosci.1188-16.2016] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022] Open
Abstract
Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in aging and Alzheimer's disease (AD). The stability of mushroom spines depends on stromal interaction molecule 2 (STIM2)-mediated neuronal-store-operated Ca2+ influx (nSOC) pathway, which is compromised in AD mouse models, in aging neurons, and in sporadic AD patients. Here, we demonstrate that the Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 channels form a STIM2-regulated nSOC Ca2+ channel complex in hippocampal mushroom spines. We further demonstrate that a known TRPC6 activator, hyperforin, and a novel nSOC positive modulator, NSN21778 (NSN), can stimulate activity of nSOC pathway in the spines and rescue mushroom spine loss in both presenilin and APP knock-in mouse models of AD. We further show that NSN rescues hippocampal long-term potentiation impairment in APP knock-in mouse model. We conclude that the STIM2-regulated TRPC6/Orai2 nSOC channel complex in dendritic mushroom spines is a new therapeutic target for the treatment of memory loss in aging and AD and that NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD. SIGNIFICANCE STATEMENT Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in Alzheimer's disease (AD). This study demonstrated that Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 form stromal interaction molecule 2 (STIM2)-regulated neuronal-store-operated Ca2+ influx (nSOC) channel complex in hippocampal synapse and the resulting Ca2+ influx is critical for long-term maintenance of mushroom spines in hippocampal neurons. A novel nSOC-positive modulator, NSN21778 (NSN), rescues mushroom spine loss and synaptic plasticity impairment in AD mice models. The TRPC6/Orai2 nSOC channel complex is a new therapeutic target and NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD.
Collapse
|