1
|
Jiang J, Zhang H, Ou Y, Lai J, Huang Y, Cai W, Li C, Zhang L, Fu Y. The immune-reinforcements of Lenvatinib plus anti-PD-1 and their rationale to unite with TACE for unresectable hepatocellular carcinoma treatment. Immunol Lett 2025; 275:107003. [PMID: 40189154 DOI: 10.1016/j.imlet.2025.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Despite encouraging clinical benefits have gained by anti-PD-1 and Lenvatinib combination, in-depth characterizations about the mechanisms of action remain poorly characterized. Furthermore, although the combination of systemic anti-PD-1 or Lenvatinib treatment and locoregional transcatheter arterial chemoembolization (TACE) is widely carried out to treat unresectable HCC in clinical, the efficacies of different combination regimens are uncertain due to limited researches. METHODS We firstly generated murine HCC models to validate the enhanced anti-tumor effects of anti-PD-1 and Lenvatinib combination therapy. Then single cell mass cytometry (CyTOF) was employed to phenotypically reveal their mechanisms of action. After that, we further compared the effectiveness of TACE plus Lenvatinib (i.e., TACE-Len) dual therapy with TACE, Lenvatinib plus anti-PD-1 (i.e., TACE-Len-PD-1) triple therapy as conversion therapy for unresectable HCC. RESULTS Lenvatinib and anti-PD-1 combination could generate activated immune profiles not only by increasing systemic CD4+, CD8+T cells and B cells proportions, but also by weakening the immune-tolerance functions derived from both immunosuppressive cells (i.e., MDSCs) and co-inhibitory mediators (i.e., PD-L1 and LAG-3). Meanwhile, our study also suggested that TACE-Len-PD-1 triple therapy could achieve better clinical responses with powerful immune profiles for unresectable HCC compared to TACE-Len dual therapy. CONCLUSIONS Our study provided a delicate immune landscape of anti-PD-1and Lenvatinib combination, and we also offered scientific evidences that TACE-Len-PD-1 triple therapy could fulfill better clinical benefits than TACE-Len dual therapy, which is anticipated to provide objective and effective evidences for clinical use.
Collapse
Affiliation(s)
- Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Hui Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Yanjiao Ou
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Jiejuan Lai
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Leida Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China.
| | - Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
2
|
Birgersson M, Holm M, Gallardo-Dodd CJ, Chen B, Stepanauskaitė L, Hases L, Kutter C, Archer A, Williams C. Intestinal estrogen receptor beta modulates the murine colon tumor immune microenvironment. Cancer Lett 2025; 622:217661. [PMID: 40120798 DOI: 10.1016/j.canlet.2025.217661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Chronic inflammation contributes to the development of colorectal cancer, partly through its regulation of the microenvironment and antitumor immunity. Interestingly, women have a lower incidence of colorectal cancer, and estrogen treatment has been shown to reduce the occurrence of colorectal tumors. While intestinal estrogen receptor beta (ERβ, Esr2) can protect against colitis and colitis-induced cancer in mice, its role in shaping the tumor microenvironment remains unknown. In this study, we performed RNA sequencing to analyze the transcriptome of colonic epithelia and tumors from azoxymethane/dextran sulfate sodium-treated wild-type and intestinal ERβ knockout (ERβKOVil) mice and vehicle-treated controls. This revealed significant differences in gene expression and enriched biological processes influenced by sex and genotype, with immune-related responses being overrepresented. Deconvolution supported differential immune cell abundance and immunostaining showed that tumors from ERβKOVil mice displayed significantly increased macrophage infiltration, decreased T cell infiltration, and impaired natural killer cell infiltration. Further, ERβ mRNA levels in clinical colorectal tumors correlated with immune signaling profiles and better survival. Our findings indicate that intestinal ERβ promotes an antitumor microenvironment and could potentially affect the effectiveness of immunotherapy. These insights highlight the importance of ERβ in modulating antitumor immunity and underscore its therapeutic potential in colorectal cancer.
Collapse
Affiliation(s)
- Madeleine Birgersson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Matilda Holm
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor and Cell Biology, SciLifeLab, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Baizhen Chen
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden
| | - Lina Stepanauskaitė
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Linnea Hases
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, SciLifeLab, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Amena Archer
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Cecilia Williams
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 21 Solna, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
3
|
Li L, Muftuoglu M, Ayoub E, Lv J, Basyal M, Bidikian A, Zhao R, Prashant M, Mak PY, Kesharwani RK, Nishida Y, Issa GC, Varadarajan N, Carter B, Andreeff M. Somatic TP53 Mutations Drive T and NK Cell Dysfunction in AML and Can be Rescued by Reactivating Wild Type p53. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.11.25325281. [PMID: 40297420 PMCID: PMC12036377 DOI: 10.1101/2025.04.11.25325281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Therapeutic advances in immunotherapy have significantly improved outcomes in lymphomas and myelomas, yet patients with TP53-mutant acute myeloid leukemia (AML) continue to be challenged. While TP53 mutations in leukemic blasts have been extensively characterized, their incidence and impact within immune cells remain largely unexplored. Here, using single-cell multi-omics and integrated phenotypic analyses, we identify TP53 mutations in T and NK cells from AML patients. Notably, T cells harboring monoallelic TP53 mutations exhibited elevated proliferative markers yet showed reduced cytotoxic capacity and increased expression of inhibitory receptors, including PD-1, TIGIT, and TIM-3. To investigate the functional consequences of p53-mutant immune cells, we engineered CAR-T cells carrying clinically relevant p53 mutations (Y220C and R175H). These mutant p53 CAR-T cells exhibited a pronounced exhaustion phenotype, with diminished cytokine secretion and impaired tumor cytolysis both in vitro and in PDX mouse models. Crucially, restoring mutant p53 to a wild-type conformation using a targeted small-molecule reactivator rescued CAR-T functionality, reduced exhaustion marker expression, and prolonged survival in AML PDX mouse models, revealing a direct mechanistic link between TP53 mutations in T cells and therapeutic resistance. Our findings establish TP53-mutant T cells as a previously unrecognized driver of immune escape in AML, highlighting the importance of immune-cell genotyping and p53 reactivation strategies. By demonstrating that mutant p53 can be selectively corrected to restore T-cell function, this study opens new avenues for immunotherapeutic intervention in TP53-mutant AML.
Collapse
|
4
|
Kao C, Charmsaz S, Tsai HL, Aziz K, Shu DH, Munjal K, Griffin E, Leatherman JM, Lipson EJ, Ged Y, Hoffman-Censits J, Li HL, Hallab E, Brancati M, Nakazawa M, Alden S, Thoburn C, Gross NE, Hernandez AG, Coyne EM, Kartalia E, Baretti M, Jaffee EM, Bansal S, Tang L, Chandler GS, Mohindra R, Ho WJ, Yarchoan M, Zabransky DJ. Age-related divergence of circulating immune responses in patients with solid tumors treated with immune checkpoint inhibitors. Nat Commun 2025; 16:3531. [PMID: 40258833 PMCID: PMC12012091 DOI: 10.1038/s41467-025-58512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Most new cancer diagnoses occur in patients over the age of 65. The composition and function of the immune system changes with age, but how the aged immune system affects responses to immune checkpoint inhibitor (ICI) cancer therapies remains incompletely understood. Here, using multiplex cytokine assay and high-parameter mass cytometry, we analyze prospectively collected blood samples from 104 cancer patients receiving ICIs. We find aged patients ( ≥ 65-years-old; n = 54) derive similar clinical outcomes as younger patients (n = 50). However, aged, compared to young, patients have divergent immune phenotypes at baseline that persist during ICI therapy, including diminished cytokine responses, reduced pools of naïve T cells with increased relative expression of immune checkpoint molecules, and more robust effector T cell expansion in responders compared to non-responders. Our study provides insights into age-stratified mechanisms of ICI effects while also implying the utility of age-tailored immunotherapeutic approaches.
Collapse
Affiliation(s)
- Chester Kao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soren Charmsaz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hua-Ling Tsai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Khaled Aziz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel H Shu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kabeer Munjal
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ervin Griffin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James M Leatherman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan J Lipson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasser Ged
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Howard L Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsa Hallab
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madelena Brancati
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mari Nakazawa
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Alden
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Thoburn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole E Gross
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexei G Hernandez
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin M Coyne
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma Kartalia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marina Baretti
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Laura Tang
- Genentech Inc, South San Francisco, California, USA
| | | | | | - Won Jin Ho
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Mark Yarchoan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Daniel J Zabransky
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Watts TH, Yeung KKM, Yu T, Lee S, Eshraghisamani R. TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited. Annu Rev Immunol 2025; 43:113-142. [PMID: 39745933 DOI: 10.1146/annurev-immunol-082423-040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous Annual Review of Immunology article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Karen K M Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Tianning Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | | |
Collapse
|
6
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025; 25:249-273. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
7
|
Qian L, Wu L, Miao X, Xu J, Zhou Y. The role of TIGIT-CD226-PVR axis in mediating T cell exhaustion and apoptosis in NSCLC. Apoptosis 2025; 30:784-804. [PMID: 39725799 DOI: 10.1007/s10495-024-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) remains a critical challenge in oncology, primarily due to the dysfunction and exhaustion of T cells within the tumor microenvironment, which greatly limits the effectiveness of immunotherapy. This study investigates the regulatory role of the T cell immunoglobulin and ITIM domain (TIGIT)-CD226-PVR signaling axis in the exhaustion and apoptosis of cluster of differentiation (CD)27+/CD127+T cells in NSCLC. Utilizing single-cell sequencing technology, we conducted a comprehensive gene expression analysis of T cells in a mouse model of NSCLC. Bioinformatics analysis revealed that the TIGIT-CD226-PVR signaling axis is highly active in the CD27+/CD127+T cell subset and is closely associated with their functional decline and exhaustion. In vitro experiments further demonstrated that inhibiting the TIGIT-PVR pathway while activating the CD226-PVR pathway significantly restored T cell proliferation and effector function. Importantly, in vivo studies showed that targeting this axis can significantly alleviate T cell exhaustion, enhance their cytotoxicity against NSCLC cells, and promote apoptosis, thereby improving the efficacy of immunotherapy.
Collapse
MESH Headings
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Apoptosis/genetics
- Animals
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- T Lineage-Specific Activation Antigen 1
- Humans
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Mice
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Signal Transduction
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
- Cell Proliferation
- T-Cell Exhaustion
Collapse
Affiliation(s)
- Liang Qian
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Ling Wu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Xiaohui Miao
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Jiao Xu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Yao Zhou
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China.
| |
Collapse
|
8
|
Lv X, Zhang X, Gong R, Wang C, Guo L. Contrast-Enhanced Computed Tomography Radiomics Predicts Colony-Stimulating Factor 3 Expression and Clinical Prognosis in Ovarian Cancer. Acad Radiol 2025; 32:2053-2063. [PMID: 39609146 DOI: 10.1016/j.acra.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
RATIONALE AND OBJECTIVES To develop a radiomics model for non-invasive prediction of colony-stimulating factor 3 (CSF3) expression in ovarian cancer (OC) and evaluate its prognostic value. MATERIALS AND METHODS We acquired clinical data, genetic information, and corresponding computed tomography (CT) scans of OC from The Cancer Genome Atlas and The Cancer Imaging Archive repositories. We assessed the prognostic significance of CSF3 and its association with clinical features through the utilization of Kaplan-Meier analysis, univariate and multivariate Cox regression analysis, along with subgroup analysis. To explore the potential molecular mechanisms associated with CSF3 expression, we utilized gene set enrichment analysis and conducted an analysis on immune-cell infiltration. The max-relevance and min-redundancy and recursive feature elimination (RFE) algorithms were used for feature screening. The CT-based radiomics prediction model was built using support vector machine (SVM) and logistic regression (LR). RESULTS The expression of CSF3 was found to be decreased in OC, and high expression of CSF3 was associated with poor overall survival. Moreover, it was noted that the expression of CSF3 exhibited a positive correlation with programmed death ligand 1 (PD-L1) and sialic acid-binding Ig-like lectin 15 (SIGLEC15). Patients with high CSF3 expression exhibited a decrease in tumor necrosis factor receptor superfamily member 7 (CD27) expression. The infiltration of neutrophils increased and CD8 +T cells decreased in CSF3 high expression group. CONCLUSION The radiomics model, which utilized both LR and SVM methods, demonstrated significant clinical applicability. The expression level of CSF3 was related to the prognosis of OC. Radiomics based on CT can serve as a novel tool for forecasting prognosis.
Collapse
Affiliation(s)
- Xiaofeng Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.); Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.)
| | - Xiaoxue Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.); Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.)
| | - Ruyue Gong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China (R.G.)
| | - Changyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.); Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.)
| | - Lili Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.); Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.L., X.Z., C.W., L.G.).
| |
Collapse
|
9
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Interaction of the endogenous antibody response with activating FcγRs enhance control of Mayaro virus through monocytes. PLoS Pathog 2025; 21:e1012944. [PMID: 39993025 PMCID: PMC11884725 DOI: 10.1371/journal.ppat.1012944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/06/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with increased MAYV in joint-associated tissues. Viral reduction was associated with anti-MAYV cell surface binding antibodies rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes present in the joint-associated tissue through chronic timepoints. Single-cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents a pro-viral role for monocytes.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Cui C, Zhang H, Yang C, Yin M, Teng X, Yang M, Kong D, Zhang J, Peng W, Chu Z, Wang J, Sun Y, Kang L, Lyu B, Gao Q, Wu M, Wang Y, Li Y. Inhibition of JNK Signaling Overcomes Cancer-Associated Fibroblast-Mediated Immunosuppression and Enhances the Efficacy of Immunotherapy in Bladder Cancer. Cancer Res 2024; 84:4199-4213. [PMID: 39292817 DOI: 10.1158/0008-5472.can-24-0940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Currently, only 20% to 40% of patients with cancer benefit from immune checkpoint inhibitors. Understanding the mechanisms underlying the immunosuppressive tumor microenvironment (TME) and characterizing dynamic changes in the immunologic landscape during treatment are critical for improving responsiveness to immunotherapy. In this study, we identified JNK signaling in cancer-associated fibroblasts (CAF) as a regulator of the immunosuppressive TME. Single-cell RNA sequencing of bladder cancer samples treated with a JNK inhibitor revealed enhanced cytotoxicity and effector functions of CD8+ T cells. In untreated tumors, CAFs interacted frequently with CD8+ T cells and mediated their exhaustion. JNK inhibition abrogated the immunosuppression function of CAFs by downregulating the expression of thymic stromal lymphopoietin (TSLP), thereby restoring CD8+ T-cell cytotoxicity. In addition, blockade of CAF-derived TSLP in combination with anti-PD-1 treatment promoted tumor elimination by CD8+ T cells in vivo. Collectively, these results indicate that JNK signaling plays an important immunosuppressive role in the TME by promoting expression of TSLP in CAFs and suggest that inhibiting JNK signaling could be a promising immunotherapeutic strategy for cancer treatment. Significance: JNK signaling promotes the secretion of TSLP by bladder cancer-associated fibroblasts to impede CD8+ T-cell activity, which can be circumvented by combination treatment targeting JNK signaling and PD-1.
Collapse
Affiliation(s)
- Chengying Cui
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Haojie Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Congcong Yang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingwei Yin
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinkun Teng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Miaomiao Yang
- The First Affiliated Hospital of Anhui Medical University, Pathology Center, Hefei, China
- Anhui Public Health Clinical Center, Pathology Center, Hefei, China
| | - Dejie Kong
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jinzhi Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Weidong Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhimin Chu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jingjing Wang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yating Sun
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Liping Kang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Bin Lyu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Qian Gao
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingqing Wu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yongqiang Wang
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
von Witzleben A, Grages A, Thomas J, Ezić J, Brunner C, Schuler PJ, Kraus JM, Kestler HA, Vahl JM, Doescher J, King EV, Ottensmeier CH, Hoffmann TK, Laban S. Immune checkpoint expression on tumor-infiltrating lymphocytes (TIL) is dependent on HPV status in oropharyngeal carcinoma (OPSCC) - A single-cell RNA sequencing analysis. Oral Oncol 2024; 159:107107. [PMID: 39549431 DOI: 10.1016/j.oraloncology.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
INTRODUCTION A substantial proportion of head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), is associated with human papillomavirus (HPV), resulting in distinct molecular phenotypes. In this study, we investigated differential immune checkpoint molecule (ICM) expression by HPV status using RNA sequencing data to identify additional ICM targets that may complement anti-PD1 antibodies. MATERIAL AND METHODS RNA sequencing was performed on 51 OPSCC cases and validated using the TCGA HNSCC dataset. Unsupervised clustering and differential gene expression analyses in R were conducted based on HPV status. Additionally, a published single-cell RNA sequencing (scRNA) dataset of tumor-infiltrating lymphocytes (TIL) and peripheral immune cells (PBMC) (GSE139324) was analyzed with a Seurat pipeline grouped by HPV status. RESULTS Our study identified a significant upregulation of all examined ICM in HPV-positive OPSCC through bulk RNA sequencing, validated by the TCGA cohort. Unsupervised clustering revealed a strong association between HPV-positive/-negative and high/low ICM expression cases respectively, indicating overlap between ICM and HPV status. In scRNA analysis, CD27, PD-1, OX-40, and BTLA were significantly more highly expressed on TILs of HPV-positive OPSCC. Conversely, VSIR was increased in PBMC and TILs of HPV-negative OPSCC, while LAG3 expression on PBMC was reduced in HPV-negative OPSCC. CONCLUSION Our study unveils the intricate interplay of ICMs in OPSCC, emphasizing the necessity for personalized therapeutic approaches based on HPV status and immune profiles. The identified ICMs, including PD1, CD27, and CTLA4, are promising candidates for further investigation and may enhance immunotherapeutic interventions in the HPV-dependent treatment strategies for OPSCC.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany.
| | - Ayla Grages
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK
| | - Jasmin Ezić
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany; Core Facility Immune Monitoring, Medical Faculty of Ulm University, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Johann M Kraus
- Institute for Medical Systems Biology, University of Ulm, Germany
| | - Hans A Kestler
- Institute for Medical Systems Biology, University of Ulm, Germany
| | - Julius M Vahl
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Augsburg, Germany
| | - Emma V King
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK; Department of Otorhinolaryngology, Head & Neck Surgery, Poole Hospital, Poole, UK
| | - Christian H Ottensmeier
- Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, UK
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| |
Collapse
|
12
|
Park Y, Jang MJ, Ryu DY, Lim B, Pathak RK, Pang MG, Kim JM. Integrative transcriptomic profiling uncovers immune and functional responses to bisphenol a across multiple tissues in male mice. Anim Cells Syst (Seoul) 2024; 28:519-535. [PMID: 39464840 PMCID: PMC11504166 DOI: 10.1080/19768354.2024.2419473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Bisphenol A (BPA), an endocrine-disrupting substance commonly found in plastics and receipts, is associated with adverse effects, including endocrine disorders, reduced fertility, and metabolic issues. To gain insights into its effects on biological systems, we observed the adverse effects of BPA in male Institute of Cancer Research (ICR) mice exposed to BPA at the lowest observed adverse effect level for 6 weeks, in comparison with the control groups. We constructed a comprehensive transcriptome profile using 20 different tissues to analyze the changes in the whole-body systems. This involved employing differential gene expression, tissue-specific gene, and gene co-expression network analyses. The study revealed that BPA exposure led to significant differences in the transcriptome in the thymus, suggesting activation of T-cell differentiation and maturation in response to BPA treatment. Furthermore, various tissues exhibited immune response activation, potentially due to the migration of immune cells from the thymus. BPA exposure also caused immune-related functional changes in the colon, liver, and kidney, as well as abnormal signaling responses in the sperm. The transcriptome analysis serves as a valuable resource for understanding the functional impact of BPA, providing profound insights into the effects of BPA exposure and emphasizing the need for further research on potential associated health risks.
Collapse
Affiliation(s)
- Yejee Park
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Min-Jae Jang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Rajesh Kumar Pathak
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
13
|
Deep D, Gudjonson H, Brown CC, Rose SA, Sharma R, Paucar Iza YA, Hong S, Hemmers S, Schizas M, Wang ZM, Chen Y, Wesemann DR, Pascual V, Pe’er D, Rudensky AY. Precursor central memory versus effector cell fate and naïve CD4+ T cell heterogeneity. J Exp Med 2024; 221:e20231193. [PMID: 39321257 PMCID: PMC11448869 DOI: 10.1084/jem.20231193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Upon antigenic stimulation, naïve CD4+ T cells can give rise to phenotypically distinct effector T helper cells and long-lived memory T cells. We computationally reconstructed the in vivo trajectory of CD4+ T cell differentiation during a type I inflammatory immune response and identified two distinct differentiation paths for effector and precursor central memory T cells arising directly from naïve CD4+ T cells. Unexpectedly, our studies revealed heterogeneity among naïve CD4+ T cells, which are typically considered homogeneous save for their diverse T cell receptor usage. Specifically, a previously unappreciated population of naïve CD4+ T cells sensing environmental type I IFN exhibited distinct activation thresholds, suggesting that naïve CD4+ T cell differentiation potential may be influenced by environmental cues. This population was expanded in human viral infection and type I IFN response-lined autoimmunity. Understanding the relevance of naïve T cell heterogeneity to beneficial and maladaptive T cell responses may have therapeutic implications for adoptive T cell therapies in cancer immunotherapy and vaccination.
Collapse
Affiliation(s)
- Deeksha Deep
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, The Rockefeller University and Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Herman Gudjonson
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chrysothemis C. Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A. Rose
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yoselin A. Paucar Iza
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Seunghee Hong
- Drukier Institute for Children’s Health at Weill Cornell Medicine, New York, NY, USA
| | - Saskia Hemmers
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Michail Schizas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhong-Min Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School in Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Yuezhou Chen
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Virginia Pascual
- Drukier Institute for Children’s Health at Weill Cornell Medicine, New York, NY, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alexander Y. Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
14
|
Kammann T, Cai C, Sekine T, Mouchtaridi E, Boulouis C, Nilsén V, Ballesteros OR, Müller TR, Gao Y, Raineri EJM, Mily A, Adamo S, Constantz C, Niessl J, Weigel W, Kokkinou E, Stamper C, Marchalot A, Bassett J, Ferreira S, Rødahl I, Wild N, Brownlie D, Tibbitt C, Mak JYW, Fairlie DP, Leeansyah E, Michaelsson J, Marquardt N, Mjösberg J, Jorns C, Buggert M, Sandberg JK. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci Immunol 2024; 9:eadn2362. [PMID: 39241054 DOI: 10.1126/sciimmunol.adn2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103+ resident MAIT cells presented an immunoregulatory CD39highCD27low profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality. Both intestinal CD39high and hepatic CD56+ adaptations accumulated with donor age. CD56+ MAIT cells displayed limited T cell receptor-repertoire breadth, elevated MR1 binding, and a transcriptional profile skewed toward innate activation pathways. Furthermore, CD56 was dynamically up-regulated to a persistent steady-state equilibrium after exposure to antigen or IL-7. In summary, we demonstrate functional heterogeneity and tissue site adaptation in resident MAIT cells across human barrier tissues with distinct regulatory and effector signatures.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elli Mouchtaridi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vera Nilsén
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisa J M Raineri
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Constantz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Bassett
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ferreira
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Chris Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jakob Michaelsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- ME Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Ansari AW, Jayakumar MN, Ahmad F, Venkatachalam T, Salameh L, Unnikannan H, Raheed T, Mohammed AK, Mahboub B, Al-Ramadi BK, Hamid Q, Steinhoff M, Hamoudi R. Azithromycin targets the CD27 pathway to modulate CD27hi T-lymphocyte expansion and type-1 effector phenotype. Front Immunol 2024; 15:1447625. [PMID: 39211048 PMCID: PMC11357905 DOI: 10.3389/fimmu.2024.1447625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Macrolide antibiotic azithromycin is widely used in clinical practice to treat respiratory tract infections and inflammatory diseases. However, its mechanism of action is not fully understood. Given the involvement of the CD27 pathway in the pathophysiology of various T-lymphocyte-mediated inflammatory, autoimmune, and lymphoproliferative diseases, we examined the impact of AZM on CD27 regulation and potential consequences on CD4+ and CD8+ T-cell phenotypes. Using cellular immunology approaches on healthy donors' peripheral blood mononuclear cells, we demonstrate AZM-mediated downregulation of surface CD27 expression as well as its extracellular release as soluble CD27. Notably, AZM-exposed CD27high (hi) cells were defective in their ability to expand compared to CD27intermediate (Int) and CD27low (lo) subsets. The defective CD27hi subset expansion was found to be associated with impaired cell proliferation and cell division. At the molecular level, the CD27hi subset exhibited lower mTOR activity than other subsets. Functionally, AZM treatment resulted in marked depletion of helper CD4+ (Th1) and cytotoxic CD8+ T-lymphocyte (Tc1)-associated CXCR3+CD27hi effector cells and inhibition of inflammatory cytokine IFN-γ production. These findings provide mechanistic insights on immunomodulatory features of AZM on T-lymphocyte by altering the CD27 pathway. From a clinical perspective, this study also sheds light on potential clinical benefits observed in patients on prophylactic AZM regimens against various respiratory diseases and opens avenues for future adjunct therapy against Th1- and Tc1-dominated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Department of Pulmonary Medicine, Rashid Hospital, Dubai, United Arab Emirates
| | - Hema Unnikannan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Khader Mohammed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Department of Pulmonary Medicine, Rashid Hospital, Dubai, United Arab Emirates
| | - Basel K. Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Puppala ER, Wu L, Fan X, Cao X. CD27 signaling inhibits tumor growth and metastasis via CD8 + T cell-independent mechanisms in the B16-F10 melanoma model. Cancer Immunol Immunother 2024; 73:198. [PMID: 39105866 PMCID: PMC11303370 DOI: 10.1007/s00262-024-03780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
CD27 belongs to the tumor necrosis factor receptor superfamily and acts as a co-stimulatory molecule, modulating T and B cell responses. CD27 stimulation enhances T cell survival and effector functions, thus providing opportunities to develop therapeutic strategies. The current study aims to investigate the role of endogenous CD27 signaling in tumor growth and metastasis. CD8 + T cell-specific CD27 knockout (CD8Cre-CD27fl) mice were developed, while global CD27 knockout (KO) mice were also used in our studies. Flow cytometry analyses confirmed that CD27 was deleted specifically from CD8 + T cells without affecting CD4 + T cells, B cells, and HSPCs in the CD8Cre-CD27fl mice, while CD27 was deleted from all cell types in global CD27 KO mice. Tumor growth and metastasis studies were performed by injecting B16-F10 melanoma cells subcutaneously (right flank) or intravenously into the mice. We have found that global CD27 KO mice succumbed to significantly accelerated tumor growth compared to WT controls. In addition, global CD27 KO mice showed a significantly higher burden of metastatic tumor nests in the lungs compared to WT controls. However, there was no significant difference in tumor growth curves, survival, metastatic tumor nest counts between the CD8Cre-CD27fl mice and WT controls. These results suggest that endogenous CD27 signaling inhibits tumor growth and metastasis via CD8 + T cell-independent mechanisms in this commonly used melanoma model, presumably through stimulating antitumor activities of other types of immune cells.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Long Wu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
17
|
Moysi E, Sharma AA, O’Dell S, Georgakis S, Del Rio Estrada PM, Torres-Ruiz F, Navarro MG, Villalobos YAL, Rios SA, Reyes-Teran G, Beddall MH, Ko SH, Belinky F, Orfanakis M, de Leval L, Enriquez AB, Buckner CM, Moir S, Doria-Rose N, Boritz E, Mascola JR, Sekaly RP, Koup RA, Petrovas C. Neutralization activity in chronic HIV infection is characterized by a distinct programming of follicular helper CD4 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605954. [PMID: 39131331 PMCID: PMC11312598 DOI: 10.1101/2024.07.31.605954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A subset of people living with HIV (PLWH) can produce broadly neutralizing antibodies (bNAbs) against HIV, but the lymph node (LN) dynamics that promote the generation of these antibodies are poorly understood. Here, we explored LN-associated histological, immunological, and virological mechanisms of bNAb generation in a cohort of anti-retroviral therapy (ART)-naïve PLWH. We found that participants who produce bNAbs, termed neutralizers, have a superior LN-associated B cell follicle architecture compared with PLWH who do not. The latter was associated with a significantly higher in situ prevalence of Bcl-6hi follicular helper CD4 T cells (TFH), expressing a molecular program that favors their differentiation and stemness, and significantly reduced IL-10 follicular suppressor CD4 T cells. Furthermore, our data reveal possible molecular targets mediating TFH- B cell interactions in neutralizers. Together, we identify cellular and molecular mechanisms that contribute to the development of bNAbs in PLWH.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ashish A. Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sijy O’Dell
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Mauricio González Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico, Subdireccion de Otorrinolaringologia, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”
| | - Yara Andrea Luna Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Santiago Avila Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Margaret H. Beddall
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Sung-Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana B. Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Nicole Doria-Rose
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Eli Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- ModeX Therapeutics, Weston, MA, USA
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Koup
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Schnell A. Stem-like T cells in cancer and autoimmunity. Immunol Rev 2024; 325:9-22. [PMID: 38804499 DOI: 10.1111/imr.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem-like T cells are characterized by their ability to self-renew, survive long-term, and give rise to a heterogeneous pool of effector and memory T cells. Recent advances in single-cell RNA-sequencing (scRNA-seq) and lineage tracing technologies revealed an important role for stem-like T cells in both autoimmunity and cancer. In cancer, stem-like T cells constitute an important arm of the anti-tumor immune response by giving rise to effector T cells that mediate tumor control. In contrast, in autoimmunity stem-like T cells perform an unfavorable role by forming a reservoir of long-lived autoreactive cells that replenish the pathogenic, effector T-cell pool and thereby driving disease pathology. This review provides background on the discovery of stem-like T cells and their function in cancer and autoimmunity. Moreover, the influence of the microbiota and metabolism on the stem-like T-cell pool is summarized. Lastly, the implications of our knowledge about stem-like T cells for clinical treatment strategies for cancer and autoimmunity will be discussed.
Collapse
Affiliation(s)
- Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Activating FcγRs on monocytes are necessary for optimal Mayaro virus clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604823. [PMID: 39149309 PMCID: PMC11326306 DOI: 10.1101/2024.07.23.604823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with more virus in joint-associated tissues. Viral clearance was associated with anti-MAYV cell surface binding rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes through chronic timepoints. Single cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents monocytes from being potential targets of infection.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Murray CH, Javanbakht M, Cho GD, Gorbach PM, Fulcher JA, Cooper ZD. Changes in Immune-Related Biomarkers and Endocannabinoids as a Function of Frequency of Cannabis Use in People Living With and Without HIV. Cannabis Cannabinoid Res 2024; 9:e897-e906. [PMID: 37093248 PMCID: PMC11295663 DOI: 10.1089/can.2022.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Cannabis use is common among people living with HIV (PLWH). Some observational studies of PLWH have linked cannabis use to lower immune markers; however, this is yet to be confirmed. In addition, whether HIV affects the endogenous cannabinoid system has not been studied. Our objective was to examine changes in immune-related biomarkers and endocannabinoids as a function of cannabis use frequency in people living with and without HIV. Materials and Methods: Data were obtained from a longitudinal study of men who have sex with men living in Los Angeles with, or at risk for, HIV. By design, half were PLWH. Those eligible for the parent study were willing and able to return for follow-up every 6 months. Those eligible for inclusion in this study reported varying levels of current cannabis use at follow-up. Specifically, one visit corresponded to a period of daily use and another to a period of infrequent use (weekly, monthly, or less than monthly). Banked serum from all eligible participants was analyzed for immune-related biomarkers, endocannabinoids, and paracannabinoids. Results: The analysis included 36 men, 19 of whom were PLWH. PLWH reported greater lifetime methamphetamine or amphetamine use (68% vs. 0%) and current cigarette use (55% vs. 20%) than people without HIV. Serum levels of HIV-related immune biomarkers including tumor necrosis factor receptor 2 (TNFR2; p=0.013) and CD27 (p=0.004) were greater in PLWH, alongside lower anandamide (AEA) (F1,34=5.337, p=0.027) and oleoylethanolamide (OEA) (F1,34=8.222, p=0.007) levels relative to people without HIV. Frequency of cannabis use did not impact the serum analytes in our study. Conclusions: Higher levels of TNFR2 and CD27 and lower levels of AEA and OEA in PLWH underscore the role of the TNF/TNFR superfamily in HIV, while highlighting a new role for the enzymatic activity of fatty acid amide hydrolase (the enzyme that hydrolyzes AEA and OEA) in HIV. Findings that cannabis frequency did not impact the immune phenotype may not generalize to other populations of PLWH. Additional work is required to further clarify the relationship between immune markers and endocannabinoids as a function of cannabis use frequency in PLWH. ClinicalTrials.gov ID: NCT01201083.
Collapse
Affiliation(s)
- Conor H. Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Marjan Javanbakht
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Grace D. Cho
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pamina M. Gorbach
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ziva D. Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
22
|
Gao Q, Ji Z, Wang L, Owzar K, Li QJ, Chan C, Xie J. SifiNet: a robust and accurate method to identify feature gene sets and annotate cells. Nucleic Acids Res 2024; 52:e46. [PMID: 38647069 PMCID: PMC11109959 DOI: 10.1093/nar/gkae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024] Open
Abstract
SifiNet is a robust and accurate computational pipeline for identifying distinct gene sets, extracting and annotating cellular subpopulations, and elucidating intrinsic relationships among these subpopulations. Uniquely, SifiNet bypasses the cell clustering stage, commonly integrated into other cellular annotation pipelines, thereby circumventing potential inaccuracies in clustering that may compromise subsequent analyses. Consequently, SifiNet has demonstrated superior performance in multiple experimental datasets compared with other state-of-the-art methods. SifiNet can analyze both single-cell RNA and ATAC sequencing data, thereby rendering comprehensive multi-omic cellular profiles. It is conveniently available as an open-source R package.
Collapse
Affiliation(s)
- Qi Gao
- Department of Biostatistics and Bioinformatics, Duke University, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University, USA
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, USA
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University, USA
- Department of Mathematics, Duke University, USA
| |
Collapse
|
23
|
Kang S, Jin S, Mao X, He B, Wu C. CD4 +T and CD8 +T Cells in Uterus Exhibit Both Selective Dysfunction and Residency Signatures. J Immunol Res 2024; 2024:5582151. [PMID: 38690552 PMCID: PMC11057950 DOI: 10.1155/2024/5582151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αβT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αβT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.
Collapse
Affiliation(s)
- Shuangpeng Kang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Shuiping Jin
- Clinical Research Center of Clifford Hospital, Guangzhou, China
| | - Xueying Mao
- Clinical Research Center of Clifford Hospital, Guangzhou, China
| | - BinSheng He
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Changyou Wu
- Clinical Research Center of Clifford Hospital, Guangzhou, China
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Gao Q, Ji Z, Wang L, Owzar K, Li QJ, Chan C, Xie J. SifiNet: A robust and accurate method to identify feature gene sets and annotate cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.541352. [PMID: 37577619 PMCID: PMC10418061 DOI: 10.1101/2023.05.24.541352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SifiNet is a robust and accurate computational pipeline for identifying distinct gene sets, extracting and annotating cellular subpopulations, and elucidating intrinsic relationships among these subpopulations. Uniquely, SifiNet bypasses the cell clustering stage, commonly integrated into other cellular annotation pipelines, thereby circumventing potential inaccuracies in clustering that may compromise subsequent analyses. Consequently, SifiNet has demonstrated superior performance in multiple experimental datasets compared with other state-of-the-art methods. SifiNet can analyze both single-cell RNA and ATAC sequencing data, thereby rendering comprehensive multiomic cellular profiles. It is conveniently available as an open-source R package.
Collapse
|
25
|
Goldberg L, Haas ER, Urak R, Vyas V, Pathak KV, Garcia-Mansfield K, Pirrotte P, Singhal J, Figarola JL, Aldoss I, Forman SJ, Wang X. Immunometabolic Adaptation of CD19-Targeted CAR T Cells in the Central Nervous System Microenvironment of Patients Promotes Memory Development. Cancer Res 2024; 84:1048-1064. [PMID: 38315779 PMCID: PMC10984768 DOI: 10.1158/0008-5472.can-23-2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Metabolic reprogramming is a hallmark of T-cell activation, and metabolic fitness is fundamental for T-cell-mediated antitumor immunity. Insights into the metabolic plasticity of chimeric antigen receptor (CAR) T cells in patients could help identify approaches to improve their efficacy in treating cancer. Here, we investigated the spatiotemporal immunometabolic adaptation of CD19-targeted CAR T cells using clinical samples from CAR T-cell-treated patients. Context-dependent immunometabolic adaptation of CAR T cells demonstrated the link between their metabolism, activation, differentiation, function, and local microenvironment. Specifically, compared with the peripheral blood, low lipid availability, high IL15, and low TGFβ in the central nervous system microenvironment promoted immunometabolic adaptation of CAR T cells, including upregulation of a lipolytic signature and memory properties. Pharmacologic inhibition of lipolysis in cerebrospinal fluid led to decreased CAR T-cell survival. Furthermore, manufacturing CAR T cells in cerebrospinal fluid enhanced their metabolic fitness and antileukemic activity. Overall, this study elucidates spatiotemporal immunometabolic rewiring of CAR T cells in patients and demonstrates that these adaptations can be exploited to maximize the therapeutic efficacy of CAR T cells. SIGNIFICANCE The spatiotemporal immunometabolic landscape of CD19-targeted CAR T cells from patients reveals metabolic adaptations in specific microenvironments that can be exploited to maximize the therapeutic efficacy of CAR T cells.
Collapse
Affiliation(s)
- Lior Goldberg
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Eric R. Haas
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Ionic Cytometry Solutions, Cambridge, MA 02141, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Vibhuti Vyas
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Khyatiben V. Pathak
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Krystine Garcia-Mansfield
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jyotsana Singhal
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - James L. Figarola
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
26
|
Huang RR, Chen Z, Kroeger N, Pantuck A, Said J, Kluger HM, Shuch B, Ye H. CD70 is Consistently Expressed in Primary and Metastatic Clear Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2024; 22:347-353. [PMID: 38195301 DOI: 10.1016/j.clgc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND CD70 is commonly overexpressed in renal cell carcinoma and is minimally expressed in normal human tissue, making it a potential therapeutic target for patients with advanced renal cell carcinoma. The expression frequency of CD70 in metastatic renal cell carcinoma is not well established. MATERIALS AND METHODS We assessed CD70 immunohistochemistry in 391 primary renal tumors and 72 metastatic renal cell carcinomas on a tissue microarray including 26 sets of paired primary and metastatic tumors. RESULTS CD70 was frequently overexpressed in clear cell carcinoma, with a significantly lower expression rate in papillary renal cell carcinoma (P < .0001). No expression of CD70 was detected in other types of renal tumors and normal renal parenchyma. In clear cell renal cell carcinoma, CD70 expression was significantly correlated with hypoxia pathway proteins, corroborating with a recent study suggesting that CD70 is a downstream target gene of hypoxia-inducible factor. While higher expression levels were observed in males and non-Caucasians, CD70 expression was not associated with tumor grade, sarcomatoid differentiation, stage, or cancer-specific survival. Further, analysis of 26 paired primary and metastatic tumors from same individuals revealed a concordance rate of 85%. CONCLUSION Our findings validated CD70 as a promising therapeutic target for patients with metastatic clear cell renal cell carcinoma. The utility of primary tumor tissue as surrogate samples for metastatic clear cell carcinoma awaits future CD70-targeted clinical trials.
Collapse
Affiliation(s)
- Rong Rong Huang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Zhengshan Chen
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA; Pathology, Kaiser Permanente Riverside Medical Center, Riverside, CA
| | - Nils Kroeger
- Department of Urology, University of Greifswald, M-V, Germany
| | - Allan Pantuck
- Department of Urology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | | | - Brian Shuch
- Department of Urology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA
| | - Huihui Ye
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA; Department of Urology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
27
|
Wang X, Luo K, Xu Q, Chi L, Guo Y, Jia C, Quan L. Prognostic marker CD27 and its micro-environmental in multiple myeloma. BMC Cancer 2024; 24:352. [PMID: 38504180 PMCID: PMC10949675 DOI: 10.1186/s12885-024-11945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The Cluster of Differentiation 27 (CD27) is aberrantly expressed in multiple myeloma (MM) -derived. This expression facilitates the interaction between tumor and immune cells within TME via the CD27-CD70 pathway, resulting in immune evasion and subsequent tumor progression. The objective of this study is to investigate the correlation between CD27 expression and the prognosis of MM, and to elucidate its potential relationship with the immune microenvironment. METHODS In this research, CD27 expression in T cells within the 82 newly diagnosed MM microenvironment was assessed via flow cytometry. We then examined the association between CD27 expression levels and patient survival. Subsequent a series of bioinformatics and in vitro experiments were conducted to reveal the role of CD27 in MM. RESULTS Clinical evidence suggests that elevated CD27 expression in T cells within the bone marrow serves as a negative prognostic marker for MM survival. Data analysis from the GEO database has demonstrated a strong association between MM-derived CD27 and the immune response, as well as the hematopoietic system. Importantly, patients with elevated levels of CD27 expression were also found to have an increased presence of MDSCs and macrophages in the bone marrow microenvironment. Furthermore, the PERK-ATF4 signaling pathway has been implicated in mediating the effects of CD27 in MM. CONCLUSIONS We revealed that CD27 expression levels serve as an indicative marker for the prognosis of MM patients. The CD27- PERK-ATF4 is a promising target for the treatment of MM.
Collapse
Affiliation(s)
- Xinya Wang
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Keyang Luo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Qiuting Xu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Liqun Chi
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Yiwei Guo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China.
| | - Lina Quan
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
28
|
Jaeger-Ruckstuhl CA, Lo Y, Fulton E, Waltner OG, Shabaneh TB, Simon S, Muthuraman PV, Correnti CE, Newsom OJ, Engstrom IA, Kanaan SB, Bhise SS, Peralta JMC, Ruff R, Price JP, Stull SM, Stevens AR, Bugos G, Kluesner MG, Voillet V, Muhunthan V, Morrish F, Olson JM, Gottardo R, Sarthy JF, Henikoff S, Sullivan LB, Furlan SN, Riddell SR. Signaling via a CD27-TRAF2-SHP-1 axis during naive T cell activation promotes memory-associated gene regulatory networks. Immunity 2024; 57:287-302.e12. [PMID: 38354704 PMCID: PMC10967230 DOI: 10.1016/j.immuni.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.
Collapse
Affiliation(s)
- Carla A Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Yun Lo
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Elena Fulton
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Olivia G Waltner
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tamer B Shabaneh
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sylvain Simon
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pranav V Muthuraman
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Oliver J Newsom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ian A Engstrom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sami B Kanaan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shruti S Bhise
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jobelle M C Peralta
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Jason P Price
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Sylvia M Stull
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew R Stevens
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Grace Bugos
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitchell G Kluesner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vishaka Muhunthan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Fionnuala Morrish
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James M Olson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Raphaël Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Swiss Institute of Bioinformatics, University of Lausanne and Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jay F Sarthy
- Seattle Children's Hospital, Seattle, WA 98105, USA; Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Scott N Furlan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Stanley R Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Ulutekin C, Galli E, Schreiner B, Khademi M, Callegari I, Piehl F, Sanderson N, Kirschenbaum D, Mundt S, Filippi M, Furlan R, Olsson T, Derfuss T, Ingelfinger F, Becher B. B cell depletion attenuates CD27 signaling of T helper cells in multiple sclerosis. Cell Rep Med 2024; 5:101351. [PMID: 38134930 PMCID: PMC10829729 DOI: 10.1016/j.xcrm.2023.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Whereas T cells are likely the main drivers of disease development, the striking efficacy of B cell-depleting therapies (BCDTs) underscore B cells' involvement in disease progression. How B cells contribute to multiple sclerosis (MS) pathogenesis-and consequently the precise mechanism of action of BCDTs-remains elusive. Here, we analyze the impact of BCDTs on the immune landscape in patients with MS using high-dimensional single-cell immunophenotyping. Algorithm-guided analysis reveals a decrease in circulating T follicular helper-like (Tfh-like) cells alongside increases in CD27 expression in memory T helper cells and Tfh-like cells. Elevated CD27 indicates disrupted CD27/CD70 signaling, as sustained CD27 activation in T cells leads to its cleavage. Immunohistological analysis shows CD70-expressing B cells at MS lesion sites. These results suggest that the efficacy of BCDTs may partly hinge upon the disruption of Th cell and B cell interactions.
Collapse
Affiliation(s)
- Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Ilaria Callegari
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Nicholas Sanderson
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina n. 60 - 20132, Italy; Vita-Salute San Raffaele University, Milan, Via Olgettina n. 60 - 20132, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina n. 60 - 20132, Milan, Italy
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Tobias Derfuss
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Elias Junior E, Gubert VT, Bonin-Jacob CM, Puga MAM, Gouveia CG, Sichinel AH, Tozetti IA. CD57 T cells associated with immunosenescence in adults living with HIV or AIDS. Immunology 2024; 171:146-153. [PMID: 37880915 DOI: 10.1111/imm.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Despite the advancement of human immunodeficiency virus (HIV)-related discoveries, new HIV infections still persist. With the advent of antiretroviral therapy, prognosis has migrated from acute to chronic HIV infection and inflammation, with the possibility of increased immune aging. We aimed to assess such immunosenescence by analysing CD27 and CD57 expression on the surface of T cells. This cross-sectional study was conducted between 2017 and 2018 on people living with HIV/AIDS (PLWHA) who attended an outpatient clinic of the Infectious Diseases Service of a university hospital and a geriatric reference service in Brazil. A standardized interview was conducted, and venous peripheral blood was collected for flow cytometry analysis. To assess immunosenescence, we compared CD27 and CD57 expression on the surface of T cells between adult and elderly individuals without HIV and adult PLWHA. All results for cells in terminal senescent stages in adult PLWHA more closely resembled those of elderly than adult participants without HIV (p > 0.05). The presence of CD27+ cells did not differ statistically among the three study groups when comparing immunological responders (IR) and immunological non-responders (INR); for the entire CD4+ T-cell population (including CD4 + CD8+ and CD4 + CD8- cells), the median count (25-75th) was higher in the INR (79.6%) than the IR (68.0%) group. HIV-infected individuals possessed a higher number of T lymphocytes with a molecular phenotype associated with immunosenescence, a lower proportion of T cells in the early stages of senescence (median 25-75th: 27.0%), and a higher proportion of T cells in the intermediate and final stages of senescence (median 25-75th: 16.1%) than adults without HIV (median 25-75th: 42.0% and 18.4%, respectively). Considering the higher number of senescent T lymphocytes, we observed in our PLWHA population-especially in the INR group (CD8CD57+ cells: 39.3% INR vs. 23.4% IR; CD4CD57+ cells: 44.0% INR vs. 27.7% IR)-may indicate a similar mortality risk phenotype from immune-preventable diseases.
Collapse
Affiliation(s)
- Erivaldo Elias Junior
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
- São Julião Hospital, Campo Grande, Mato Grosso do Sul, Brazil
| | - Vanessa T Gubert
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Camila M Bonin-Jacob
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marco Antonio M Puga
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | - Inês A Tozetti
- Postgraduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
31
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Yang T, Chen R, Zhang M, Jing R, Geng J, Wei G, Luo Y, Xiao P, Hong R, Feng J, Fu S, Zhao H, Cui J, Huang S, Huang H, Hu Y. Relapsed/Refractory Peripheral T-Cell Lymphoma-Associated Hemophagocytic Lymphohistiocytosis With UNC13D and CD27 Germline Mutations. Cell Transplant 2024; 33:9636897231221887. [PMID: 38183241 PMCID: PMC10771736 DOI: 10.1177/09636897231221887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe hyperinflammatory disease characterized by familial and acquired forms. Here, we present the case of a 26-year-old male patient with relapsed/refractory peripheral T-cell lymphoma and concurrent HLH. Whole-exon sequencing revealed germline mutations associated with HLH, including those in critical genes such as CD27 and UNC13D and other germline heterozygous variants (NOTCH2, NOTCH3, IL2RA, TYK2, AGL, CFD, and F13A1). CD107a analyses consistently demonstrated impaired degranulation of cytotoxic T-lymphocytes and natural killer (NK) cells. Examination of the patient's family pedigree revealed that his father and mother harbored UNC13D and CD27 mutations, respectively; his brother carried the same CD27 heterozygous mutation. However, none of them manifested the disease. Despite the missense mutation of CD27 (c.779C>T; p.Pro260Leu) lacking previous documentation in databases, comprehensive analysis suggested non-pathogenic mutations in the CD27 variant, indicating minimal impact on T- and NK-cell functions. These results ultimately supported the option of hematopoietic stem cell transplantation (HSCT) as a successful curative therapeutic approach. As of this report, the patient has remained free of lymphoma and quiescent HLH 15.2 months post-HSCT. This study underscores the efficacy of genetic tests in identifying significant mutations and confirming their etiologies, providing an early basis for treatment decisions and the selection of suitable transplant donors.
Collapse
Affiliation(s)
- Tingting Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Rongrong Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ruirui Jing
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jia Geng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Pingnan Xiao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Simao Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
33
|
Yu S, Wang K, Cao C, Zhang B, Chen Y, Wu C, Li C, Tang J, Luo W. Tissue-resident memory T cells exhibit phenotypically and functionally heterogeneous in human physiological and pathological nasal mucosa. Clin Immunol 2024; 258:109860. [PMID: 38065369 DOI: 10.1016/j.clim.2023.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Pathogens commonly enter mucosal barrier tissues and tissue-resident memory T cells (TRM) are essential for preventing mucosal lesions. However, the immunological properties of TRM cells in nasal mucosa are poorly known. In comparison with control tissues, decreasing CD103+ TRM cells were observed in Chronic rhinosinusitis with nasal polyps (CRSwNPs) and sinonasal inverted papilloma (SNIP), which presented high capability to produce effector cytokines. In CRSwNPs, we found that CD103+ TRM cells with higher cytokine and Granzyme B coexpressed high PD-1, CD103- TRM cells expressed higher IL-10. Homogenates isolated from CRSwNPs induced CD103 expression on peripheral T cells which could be inhibited by blocking TGF-β. The frequencies of CD103+ TRM cells in CRSwNPs were extremely negatively correlated with neutrophil infiltration. CD103+ TRM cells from Staphylococcus aureus positive CRSwNPs had a stronger response to SEB. Taken together, two phenotypically and functionally distinct subsets of TRM cells exist in nasal tissues and play critical roles in the progress of CRSwNPs and SNIPs.
Collapse
Affiliation(s)
- Sifei Yu
- Institute of translational medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China
| | - Kai Wang
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China
| | - Chen Cao
- Department of Otolaryngology, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | - Beiying Zhang
- Institute of translational medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China
| | - Youmou Chen
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China; The General Hospital of Western Theater Command, No. 270, Rongdu Avenue, Chengdu 610083, PR China
| | - Changyou Wu
- Clifford Hospital, Jinan University, No.3 Hongfu Road, Guangzhou 511495, PR China
| | - Chunwei Li
- Department of Otolaryngology, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | - Jun Tang
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China.
| | - Wei Luo
- Institute of translational medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China.
| |
Collapse
|
34
|
Zhang L, Du F, Jin Q, Sun L, Wang B, Tan Z, Meng X, Huang B, Zhan Y, Su W, Song R, Wu C, Chen L, Chen X, Ding X. Identification and Characterization of CD8 + CD27 + CXCR3 - T Cell Dysregulation and Progression-Associated Biomarkers in Systemic Lupus Erythematosus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300123. [PMID: 37875396 PMCID: PMC10724430 DOI: 10.1002/advs.202300123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/04/2023] [Indexed: 10/26/2023]
Abstract
Systemic Lupus Erythematosus (SLE) etiopathogenesis highlights the contributions of overproduction of CD4+ T cells and loss of immune tolerance. However, the involvement of CD8+ T cells in SLE pathology and disease progression remains unclear. Here, the comprehensive immune cell dysregulation in total 263 clinical peripheral blood samples composed of active SLE (aSLE), remission SLE (rSLE) and healthy controls (HCs) is investigated via mass cytometry, flow cytometry and single-cell RNA sequencing. This is observed that CD8+ CD27+ CXCR3- T cells are increased in rSLE compare to aSLE. Meanwhile, the effector function of CD8+ CD27+ CXCR3- T cells are overactive in aSLE compare to HCs and rSLE, and are positively associated with clinical SLE activity. In addition, the response of peripheral blood mononuclear cells (PBMCs) is monitored to interleukin-2 stimulation in aSLE and rSLE to construct dynamic network biomarker (DNB) model. It is demonstrated that DNB score-related parameters can faithfully predict the remission of aSLE and the flares of rSLE. The abundance and functional dysregulation of CD8+ CD27+ CXCR3- T cells can be potential biomarkers for SLE prognosis and concomitant diagnosis. The DNB score with accurate prediction to SLE disease progression can provide clinical treatment suggestions especially for drug dosage determination.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of RheumatologyShanghai Jiao Tong University School of Medicine Affiliated Renji Hospital and School of Biomedical EngineeringShanghai200030China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200001China
| | - Fang Du
- Department of RheumatologyShanghai Jiao Tong University School of Medicine Affiliated Renji Hospital and School of Biomedical EngineeringShanghai200030China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200001China
| | - Qiqi Jin
- Key Laboratory of Systems BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Li Sun
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Boqian Wang
- Department of RheumatologyShanghai Jiao Tong University School of Medicine Affiliated Renji Hospital and School of Biomedical EngineeringShanghai200030China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200001China
| | - Ziyang Tan
- Science for Life LaboratoryDepartment of Women's and Children's HealthKarolinska InstitutetSolna17121Sweden
| | - Xinyu Meng
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200001China
| | - Baozhen Huang
- Department of Chemical PathologyLi Ka Shing Institute of Health SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong999077China
| | - Yifan Zhan
- Drug DiscoveryShanghai Huaota Biopharmaceutical Co. Ltd.Shanghai200131China
| | - Wenqiong Su
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200001China
| | - Rui Song
- Department of RheumatologyShanghai Jiao Tong University School of Medicine Affiliated Renji Hospital and School of Biomedical EngineeringShanghai200030China
- Nantong First People's HospitalAffiliated Hospital 2 of Nantong UniversityNantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Chunmei Wu
- Department of RheumatologyShanghai Jiao Tong University School of Medicine Affiliated Renji Hospital and School of Biomedical EngineeringShanghai200030China
| | - Luonan Chen
- Key Laboratory of Systems BiologyCenter for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesChinese Academy of SciencesHangzhou310024China
| | - Xiaoxiang Chen
- Department of RheumatologyShanghai Jiao Tong University School of Medicine Affiliated Renji Hospital and School of Biomedical EngineeringShanghai200030China
| | - Xianting Ding
- Department of RheumatologyShanghai Jiao Tong University School of Medicine Affiliated Renji Hospital and School of Biomedical EngineeringShanghai200030China
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200001China
| |
Collapse
|
35
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
36
|
van der Sluis TC, van Haften FJ, van Duikeren S, Pardieck IN, de Graaf JF, Vleeshouwers W, van der Maaden K, Melief CJM, van der Burg SH, Arens R. Delayed vaccine-induced CD8 + T cell expansion by topoisomerase I inhibition mediates enhanced CD70-dependent tumor eradication. J Immunother Cancer 2023; 11:e007158. [PMID: 38030302 PMCID: PMC10689370 DOI: 10.1136/jitc-2023-007158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.
Collapse
Affiliation(s)
| | | | - Suzanne van Duikeren
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris N Pardieck
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ward Vleeshouwers
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen van der Maaden
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Lee SY, Lee DH, Sun W, Cervantes-Contreras F, Basom RS, Wu F, Liu S, Rai R, Mirzaei HR, O'Steen S, Green DJ, Shadman M, Till BG. CD8 + chimeric antigen receptor T cells manufactured in absence of CD4 + cells exhibit hypofunctional phenotype. J Immunother Cancer 2023; 11:e007803. [PMID: 38251688 PMCID: PMC10660840 DOI: 10.1136/jitc-2023-007803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Cell culture conditions during manufacturing can impact the clinical efficacy of chimeric antigen receptor (CAR) T cell products. Production methods have not been standardized because the optimal approach remains unknown. Separate CD4+ and CD8+ cultures offer a potential advantage but complicate manufacturing and may affect cell expansion and function. In a phase 1/2 clinical trial, we observed poor expansion of separate CD8+ cell cultures and hypothesized that coculture of CD4+ cells and CD8+ cells at a defined ratio at culture initiation would enhance CD8+ cell expansion and simplify manufacturing. METHODS We generated CAR T cells either as separate CD4+ and CD8+ cells, or as combined cultures mixed in defined CD4:CD8 ratios at culture initiation. We assessed CAR T cell expansion, phenotype, function, gene expression, and in vivo activity of CAR T cells and compared these between separately expanded or mixed CAR T cell cultures. RESULTS We found that the coculture of CD8+ CAR T cells with CD4+ cells markedly improves CD8+ cell expansion, and further discovered that CD8+ cells cultured in isolation exhibit a hypofunctional phenotype and transcriptional signature compared with those in mixed cultures with CD4+ cells. Cocultured CAR T cells also confer superior antitumor activity in vivo compared with separately expanded cells. The positive impact of CD4+ cells on CD8+ cells was mediated through both cytokines and direct cell contact, including CD40L-CD40 and CD70-CD27 interactions. CONCLUSIONS Our data indicate that CD4+ cell help during cell culture maintains robust CD8+ CAR T cell function, with implications for clinical cell manufacturing.
Collapse
Affiliation(s)
- Sang Yun Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Dong Hoon Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Wei Sun
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Ryan S Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Si Liu
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Richa Rai
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hamid R Mirzaei
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shyril O'Steen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Damian J Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Mazyar Shadman
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brian G Till
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
38
|
Lessomo FYN, Mandizadza OO, Mukuka C, Wang ZQ. A comprehensive review on immune checkpoint inhibitors induced cardiotoxicity characteristics and associated factors. Eur J Med Res 2023; 28:495. [PMID: 37941006 PMCID: PMC10631013 DOI: 10.1186/s40001-023-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Newly approved cancer drugs called ICIs have shown remarkable success in improving patient survival rates, but they also have the potential for inflammatory and immune-related side effects, including those affecting the cardiovascular system. Research has been conducted to understand the development of these toxicities and identify risk factors. This review focuses on the characteristics of ICI-induced cardiotoxicity and discusses the reported risk factors. It is important for cardio-oncologists to understand the basic concepts of these drugs to better understand how cardiotoxicities occur. It might be hard to find reports, where all patients treated with ICIs had developed cardiac toxicity, because there could be other existing and variable factors that influence the likelihood or risk of developing cardiotoxicity during treatment. Various clinical parameters have been explored as potential risk factors, and further investigation is needed through large-scale studies.
Collapse
Affiliation(s)
| | | | | | - Zhi-Quan Wang
- Cardiology Department, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
39
|
Li Z, Zhao L, Zhang Y, Zhu L, Mu W, Ge T, Jin J, Tan J, Cheng J, Wang J, Wang N, Zhou X, Chen L, Chang Z, Liu C, Bian Z, Liu B, Ye L, Lan Y, Huang L, Zhou J. Functional diversification and dynamics of CAR-T cells in patients with B-ALL. Cell Rep 2023; 42:113263. [PMID: 37851569 DOI: 10.1016/j.celrep.2023.113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Understanding of cellular evolution and molecular programs of chimeric antigen receptor-engineered (CAR)-T cells post-infusion is pivotal for developing better treatment strategies. Here, we construct a longitudinal high-precision single-cell transcriptomic landscape of 7,578 CAR-T cells from 26 patients with B cell acute lymphoblastic leukemia (B-ALL) post-infusion. We molecularly identify eight CAR-T cell subtypes, including three cytotoxic subtypes with distinct kinetics and three dual-identity subtypes with non-T cell characteristics. Remarkably, long-term remission is coincident with the dominance of cytotoxic subtypes, while leukemia progression is correlated with the emergence of subtypes with B cell transcriptional profiles, which have dysfunctional features and might predict relapse. We further validate in vitro that the generation of B-featured CAR-T cells is induced by excessive tumor antigen stimulation or suppressed TCR signaling, while it is relieved by exogenous IL-12. Moreover, we define transcriptional hallmarks of CAR-T cell subtypes and reveal their molecular changes along computationally inferred cellular evolution in vivo. Collectively, these results decipher functional diversification and dynamics of peripheral CAR-T cells post-infusion.
Collapse
Affiliation(s)
- Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| | - Lei Zhao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuanyuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhilin Chang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 432826, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
40
|
Scott TJ, Hansen TJ, McArthur E, Hodges E. Cross-tissue patterns of DNA hypomethylation reveal genetically distinct histories of cell development. BMC Genomics 2023; 24:623. [PMID: 37858046 PMCID: PMC10588161 DOI: 10.1186/s12864-023-09622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
Collapse
Affiliation(s)
- Timothy J Scott
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
41
|
Tang K, Zhang Y, Li X, Zhang C, Jia X, Hu H, Chen L, Zhuang R, Zhang Y, Jin B, Ma Y. HLA-E-restricted Hantaan virus-specific CD8 + T cell responses enhance the control of infection in hemorrhagic fever with renal syndrome. BIOSAFETY AND HEALTH 2023; 5:289-299. [PMID: 40078905 PMCID: PMC11895001 DOI: 10.1016/j.bsheal.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 03/14/2025] Open
Abstract
Infection with the Hantaan virus (HTNV) may result in severe hemorrhagic fever with renal syndrome (HFRS). The functions of HLA-E-restricted CD8+ T lymphocytes in virus control and vaccine development have recently received increased attention. The purpose of this research is to discover HLA-E-restricted CD8+ T cell epitopes on HTNV as well as the features of these epitope-specific CD8+ T cells in HFRS patients. To anticipate HLA-E-restricted HTNV epitopes, the NetMHCpan servers were utilized. The K562/HLA-E cell binding test and the enzyme-linked immunospot assay were used to confirm epitope binding to HLA-E. The number and features of HLA-E-restricted epitope-specific CD8+ T lymphocytes in HFRS patients were investigated using tetramer staining, intracellular cytokine labeling, proliferation, and cytotoxicity assays. Six HTNV-derived HLA-E-restricted CD8+ T cell epitopes were found in this study. In mild/moderate HFRS patients, the frequency of HLA-E-restricted epitope-specific CD8+ T cells was greater than in severe/critical patients. CD38+HLA-DR+ HLA-E-restricted CD8+ T cells were identified. Meanwhile, CD45RA+CCR7- effector memory-re-expressing CD45RA T cells with early and intermediate maturation and differentiation characteristics predominated. Notably, CD8+ T cells from milder HFRS patients produced more interferon-γ, interleukin-2, and granzyme B, had a stronger proliferative potential, and were inversely linked with the amount of plasma HTNV virus load. Furthermore, HLA-E-restricted epitope-specific CD8+ T cells demonstrated improved cytotoxic activity in vitro during the acute stage of HFRS. Taken together, the findings demonstrate the protective effects of HLA-E-restricted CD8+ T cells during HTNV infection, suggesting that HLA-E-targeted vaccines against HTNV might be developed for HLA-diverse populations.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xinyu Li
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | | | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
42
|
Grassi F, Salina G. The P2X7 Receptor in Autoimmunity. Int J Mol Sci 2023; 24:14116. [PMID: 37762419 PMCID: PMC10531565 DOI: 10.3390/ijms241814116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel that, upon intense stimulation, can progress to the opening of a pore permeable to molecules up to 900 Da. Apart from its broad expression in cells of the innate and adaptive immune systems, it is expressed in multiple cell types in different tissues. The dual gating property of P2X7R is instrumental in determining cellular responses, which depend on the expression level of the receptor, timing of stimulation, and microenvironmental cues, thus often complicating the interpretation of experimental data in comprehensive settings. Here we review the existing literature on P2X7R activity in autoimmunity, pinpointing the different functions in cells involved in the immunopathological processes that can make it difficult to model as a druggable target.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
43
|
Zhao L, Chen X, Wu H, He Q, Ding L, Yang B. Strategies to synergize PD-1/PD-L1 targeted cancer immunotherapies to enhance antitumor responses in ovarian cancer. Biochem Pharmacol 2023; 215:115724. [PMID: 37524205 DOI: 10.1016/j.bcp.2023.115724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Anti-programmed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) antibodies have developed rapidly but exhibited modest activity in ovarian cancer (OC), achieving a clinical response rate ranging from 5.9% to 19%. Current evidence indicate that the establishment of an integrated cancer-immunity cycle is a prerequisite for anti-PD-1/PD-L1 antibodies. Any impairment in this cycle, including lack of cancer antigens release, impaired antigen-presenting, decreased T cell priming and activation, less T cells that are trafficked or infiltrated in tumor microenvironment (TME), and low tumor recognition and killings, will lead to decreased infiltrated cytotoxic T cells to tumor bed and treatment failure. Therefore, combinatorial strategies aiming to modify cancer-immunity cycle and reprogram tumor immune microenvironment are of great interest. By far, various strategies have been studied to enhance responsiveness to PD-1/PD-L1 inhibitors in OC. Platinum-based chemotherapy increases neoantigens release; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) improve the function of antigen-presenting cells and promote the trafficking of T cells into tumors; epigenetic drugs help to complete the immune cycle by affecting multiple steps; immunotherapies like anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies reactivate T cells, and other treatment strategies like radiotherapy helps to increase the expression of tumor antigens. In this review, we will summarize the preclinical studies by analyzing their contribution in modifying the cancer immunity cycle and remodeling tumor environment, and we will also summarize recent progress in clinical trials and discuss some perspectives to improve these treatment strategies.
Collapse
Affiliation(s)
- Lin Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Slight-Webb S, Thomas K, Smith M, Wagner CA, Macwana S, Bylinska A, Donato M, Dvorak M, Chang SE, Kuo A, Cheung P, Kalesinskas L, Ganesan A, Dermadi D, Guthridge CJ, DeJager W, Wright C, Foecke MH, Merrill JT, Chakravarty E, Arriens C, Maecker HT, Khatri P, Utz PJ, James JA, Guthridge JM. Ancestry-based differences in the immune phenotype are associated with lupus activity. JCI Insight 2023; 8:e169584. [PMID: 37606045 PMCID: PMC10543734 DOI: 10.1172/jci.insight.169584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) affects 1 in 537 Black women, which is >2-fold more than White women. Black patients develop the disease at a younger age, have more severe symptoms, and have a greater chance of early mortality. We used a multiomics approach to uncover ancestry-associated immune alterations in patients with SLE and healthy controls that may contribute biologically to disease disparities. Cell composition, signaling, epigenetics, and proteomics were evaluated by mass cytometry; droplet-based single-cell transcriptomics and proteomics; and bead-based multiplex soluble mediator levels in plasma. We observed altered whole blood frequencies and enhanced activity in CD8+ T cells, B cells, monocytes, and DCs in Black patients with more active disease. Epigenetic modifications in CD8+ T cells (H3K27ac) could distinguish disease activity level in Black patients and differentiate Black from White patient samples. TLR3/4/7/8/9-related gene expression was elevated in immune cells from Black patients with SLE, and TLR7/8/9 and IFN-α phospho-signaling and cytokine responses were heightened even in immune cells from healthy Black control patients compared with White individuals. TLR stimulation of healthy immune cells recapitulated the ancestry-associated SLE immunophenotypes. This multiomic resource defines ancestry-associated immune phenotypes that differ between Black and White patients with SLE, which may influence the course and severity of SLE and other diseases.
Collapse
Affiliation(s)
- Samantha Slight-Webb
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kevin Thomas
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Miles Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Catriona A. Wagner
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Susan Macwana
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Aleksandra Bylinska
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | | | - Alex Kuo
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Peggie Cheung
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Laurynas Kalesinskas
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Denis Dermadi
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Carla J. Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Wade DeJager
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Christian Wright
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Mariko H. Foecke
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Joan T. Merrill
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Eliza Chakravarty
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Cristina Arriens
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection
- Center for Biomedical Informatics Research, Department of Medicine; and
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Judith A. James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
45
|
Grimsholm O. CD27 on human memory B cells-more than just a surface marker. Clin Exp Immunol 2023; 213:164-172. [PMID: 36508329 PMCID: PMC10361737 DOI: 10.1093/cei/uxac114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 07/23/2023] Open
Abstract
Immunological memory protects the human body from re-infection with an earlier recognized pathogen. This memory comprises the durable serum antibody titres provided by long-lived plasma cells and the memory T and B cells with help from other cells. Memory B cells are the main precursor cells for new plasma cells during a secondary infection. Their formation starts very early in life, and they continue to form and undergo refinements throughout our lifetime. While the heterogeneity of the human memory B-cell pool is still poorly understood, specific cellular surface markers define most of the cell subpopulations. CD27 is one of the most commonly used markers to define human memory B cells. In addition, there are molecular markers, such as somatic mutations in the immunoglobulin heavy and light chains and isotype switching to, for example, IgG. Although not every memory B cell undergoes somatic hypermutation or isotype switching, most of them express these molecular traits in adulthood. In this review, I will focus on the most recent knowledge regarding CD27+ human memory B cells in health and disease, and describe how Ig sequencing can be used as a tool to decipher the evolutionary pathways of these cells.
Collapse
Affiliation(s)
- Ola Grimsholm
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
46
|
Melo V, Nelemans LC, Vlaming M, Lourens HJ, Wiersma VR, Bilemjian V, Huls G, de Bruyn M, Bremer E. EGFR-selective activation of CD27 co-stimulatory signaling by a bispecific antibody enhances anti-tumor activity of T cells. Front Immunol 2023; 14:1191866. [PMID: 37545491 PMCID: PMC10399592 DOI: 10.3389/fimmu.2023.1191866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
A higher density of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment, particularly cytotoxic CD8+ T cells, is associated with improved clinical outcome in various cancers. However, local inhibitory factors can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from various cancer types express the co-stimulatory Tumor Necrosis Factor receptor CD27, making it a potential target for co-stimulation and re-activation of tumor-infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical responses remain limited. This is likely because current monoclonal antibodies fail to effectively activate CD27 signaling, as this receptor requires higher-order receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR, that targets both CD27 and the tumor antigen, epidermal growth factor receptor (EGFR). By targeting EGFR, which is commonly expressed on carcinomas, CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27. The design of CD27xEGFR includes an Fc-silent domain, which is designed to minimize potential toxicity by reducing Fc gamma receptor-mediated binding and activation of immune cells. CD27xEGFR bound to both of its targets simultaneously and triggered EGFR-restricted co-stimulation of T cells as measured by T cell proliferation, T cell activation markers, cytotoxicity and IFN-γ release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of artificial antigen-presenting carcinoma cell line models, leading to Effector-to-Target ratio-dependent elimination of cancer cells. Taken together, we present the in vitro characterization of a novel bispecific antibody that re-activates T cell immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.
Collapse
Affiliation(s)
- Vinicio Melo
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Levi Collin Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn Vlaming
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Valerie R. Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vrouyr Bilemjian
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics & Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
47
|
Jiang B, Li Q, Zhang Z, Huang Y, Wu Y, Li X, Huang M, Huang Y, Jian J. Involvement of CD27 in innate and adaptive immunities of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108923. [PMID: 37394017 DOI: 10.1016/j.fsi.2023.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
CD27 is a member of the TNF-receptor superfamily and plays various roles in immunities. However, the detailed information and mechanism of CD27 in bony fish immunity remain unclear. Therefore, in this research, certain interesting roles of CD27 in Nile tilapia (On-CD27) were determined. On-CD27 was largely expressed in the immune organs, head kidney, and spleen, and was sharply induced during bacterial infection. The in vitro tests suggested On-CD27 was involved in regulating inflammatory responses, activating immune-related signal pathways, and inducing apoptosis and pyroptosis progress. The scRNA data and in vivo experiments indicated that On-CD27 is mainly expressed in CD4+ T cells and involved in both innate and adaptive immunities. The present data provide a theoretical principle for further research on the mechanisms of CD27 in the innate and adaptive immunities of fish.
Collapse
Affiliation(s)
- Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yiqin Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, China; Guangdong Provincial Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
48
|
Ahuja SK, Manoharan MS, Lee GC, McKinnon LR, Meunier JA, Steri M, Harper N, Fiorillo E, Smith AM, Restrepo MI, Branum AP, Bottomley MJ, Orrù V, Jimenez F, Carrillo A, Pandranki L, Winter CA, Winter LA, Gaitan AA, Moreira AG, Walter EA, Silvestri G, King CL, Zheng YT, Zheng HY, Kimani J, Blake Ball T, Plummer FA, Fowke KR, Harden PN, Wood KJ, Ferris MT, Lund JM, Heise MT, Garrett N, Canady KR, Abdool Karim SS, Little SJ, Gianella S, Smith DM, Letendre S, Richman DD, Cucca F, Trinh H, Sanchez-Reilly S, Hecht JM, Cadena Zuluaga JA, Anzueto A, Pugh JA, Agan BK, Root-Bernstein R, Clark RA, Okulicz JF, He W. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun 2023; 14:3286. [PMID: 37311745 PMCID: PMC10264401 DOI: 10.1038/s41467-023-38238-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
Collapse
Affiliation(s)
- Sunil K Ahuja
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Muthu Saravanan Manoharan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Grace C Lee
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Justin A Meunier
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Nathan Harper
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Alisha M Smith
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Marcos I Restrepo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anne P Branum
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Matthew J Bottomley
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Fabio Jimenez
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Andrew Carrillo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Caitlyn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lauryn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alvaro A Gaitan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Alvaro G Moreira
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elizabeth A Walter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guido Silvestri
- Department of Pathology, Emory University School of Medicine & Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Paul N Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kristen R Canady
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Susan J Little
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sara Gianella
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Davey M Smith
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Scott Letendre
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
| | - Douglas D Richman
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, 07100, Italy
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joan M Hecht
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jose A Cadena Zuluaga
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jacqueline A Pugh
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | | | - Robert A Clark
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jason F Okulicz
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Medicine, Infectious Diseases Service, Brooke Army Medical Center, San Antonio, TX, 78234, USA
| | - Weijing He
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| |
Collapse
|
49
|
McKenzie C, El-Kholy M, Parekh F, Robson M, Lamb K, Allen C, Sillibourne J, Cordoba S, Thomas S, Pule M. Novel Fas-TNFR chimeras that prevent Fas ligand-mediated kill and signal synergistically to enhance CAR T cell efficacy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:603-621. [PMID: 37200859 PMCID: PMC10185706 DOI: 10.1016/j.omtn.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
The hostile tumor microenvironment limits the efficacy of adoptive cell therapies. Activation of the Fas death receptor initiates apoptosis and disrupting these receptors could be key to increasing CAR T cell efficacy. We screened a library of Fas-TNFR proteins identifying several novel chimeras that not only prevented Fas ligand-mediated kill, but also enhanced CAR T cell efficacy by signaling synergistically with the CAR. Upon binding Fas ligand, Fas-CD40 activated the NF-κB pathway, inducing greatest proliferation and IFN-γ release out of all Fas-TNFRs tested. Fas-CD40 induced profound transcriptional modifications, particularly genes relating to the cell cycle, metabolism, and chemokine signaling. Co-expression of Fas-CD40 with either 4-1BB- or CD28-containing CARs increased in vitro efficacy by augmenting CAR T cell proliferation and cancer target cytotoxicity, and enhanced tumor killing and overall mouse survival in vivo. Functional activity of the Fas-TNFRs were dependent on the co-stimulatory domain within the CAR, highlighting crosstalk between signaling pathways. Furthermore, we show that a major source for Fas-TNFR activation derives from CAR T cells themselves via activation-induced Fas ligand upregulation, highlighting a universal role of Fas-TNFRs in augmenting CAR T cell responses. We have identified Fas-CD40 as the optimal chimera for overcoming Fas ligand-mediated kill and enhancing CAR T cell efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Pule
- Autolus Therapeutics, London W12 7FP, UK
- Department of Haematology, UCL Cancer Institute, University College, 72 Huntley Street, London WC1E 6DD, UK
- Corresponding author Martin Pule, Autolus Therapeutics, London W12 7FP, UK.
| |
Collapse
|
50
|
Chang HF, Schirra C, Pattu V, Krause E, Becherer U. Lytic granule exocytosis at immune synapses: lessons from neuronal synapses. Front Immunol 2023; 14:1177670. [PMID: 37275872 PMCID: PMC10233144 DOI: 10.3389/fimmu.2023.1177670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.
Collapse
|