1
|
Thilakan J, Goel SK, Arya N. In-situ collagen mineralization modulates metastatic properties of breast cancer cells. J Biosci Bioeng 2025; 139:123-132. [PMID: 39580239 DOI: 10.1016/j.jbiosc.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 11/25/2024]
Abstract
Bone metastasis is the leading cause of morbidity and mortality in advanced-stage breast cancer patients. While most studies focus on the cellular and genetic factors associated with breast cancer metastasis, the role of the extracellular matrix (ECM) of bone in breast cancer metastasis remains elusive. In this study, we recapitulated the bone microenvironment using in-situ mineralized collagen type-I hydrogels and utilized them to understand breast cancer metastasis. Our results indicated successful mineralization of collagen type-I based hydrogels in the presence of serum proteins, which increased as a function of time. There was no difference in the adhesion of breast cancer cells seeded on collagen and mineralized collagen surfaces. However, there was a marked reduction in cell proliferation, down-regulation of various metastatic markers, and decreased migratory phenotype with a concomitant increase in cleaved caspase-3 on mineralized collagen compared to collagen hydrogels. In conclusion, our results suggest an inverse relationship between bone mineralization and the metastatic propensity of breast cancer cells. We further speculate the role of other factors in the skeletal ecosystem for mediating preferential homing of breast cancer cells to the bone microenvironment.
Collapse
Affiliation(s)
- Jaya Thilakan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal 462020, Madhya Pradesh, India; Department of Genetics, UTD, Barkatullah University Bhopal, Bhopal 462026, Madhya Pradesh, India
| | - Sudhir Kumar Goel
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal 462020, Madhya Pradesh, India; Department of Biochemistry, T. S. Misra Medical College and Hospital, Amousi, Lucknow 226008, Uttar Pradesh, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal 462020, Madhya Pradesh, India.
| |
Collapse
|
2
|
Cohen D, Fernandez D, Lázaro-Diéguez F, Überheide B, Müsch A. Borg5 restricts contractility and motility in epithelial MDCK cells. J Cell Sci 2024; 137:jcs261705. [PMID: 39503295 PMCID: PMC11698036 DOI: 10.1242/jcs.261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The Borg (or Cdc42EP) family consists of septin-binding proteins that are known to promote septin-dependent stress fibers and acto-myosin contractility. We show here that epithelial Borg5 (also known as Cdc42EP1) instead limits contractility, cell-cell adhesion tension and motility, as is required for the acquisition of columnar, isotropic cell morphology in mature MDCK monolayers. Borg5 depletion inhibited the development of the lateral F-actin cortex and stimulated microtubule-dependent leading-edge lamellae as well as radial stress fibers and, independently of the basal F-actin phenotype, caused anisotropy of apical surfaces within compacted monolayers. We determined that Borg5 limits colocalization of septin proteins with microtubules, and that like septin 2, Borg5 interacts with the rod-domain of myosin IIA (herein referring to the MYH9 heavy chain). The interaction of myosin IIA with Borg5 was reduced in the presence of septins. Because septins also mediate myosin activation, we propose that Borg5 limits contractility in MDCK cells in part by counteracting septin-associated myosin activity.
Collapse
Affiliation(s)
- David Cohen
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dawn Fernandez
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Beatrix Überheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Müsch
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. Cell Signal 2024; 125:111501. [PMID: 39505287 DOI: 10.1016/j.cellsig.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling. METHODS We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo. RESULTS Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo. CONCLUSION Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
4
|
Hurtado-Monzón EG, Valencia-Mayoral P, Silva-Olivares A, Bañuelos C, Velázquez-Guadarrama N, Betanzos A. The Helicobacter pylori infection alters the intercellular junctions on the pancreas of gerbils (Meriones unguiculatus). World J Microbiol Biotechnol 2024; 40:273. [PMID: 39030443 PMCID: PMC11271430 DOI: 10.1007/s11274-024-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, β-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.
Collapse
Affiliation(s)
- Edgar G Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, CINVESTAV-IPN, Ciudad de Mexico, México
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México.
| |
Collapse
|
5
|
Ma B, Xu Y, Gao H, Yang Y, Pan Y, You C. CLIP170 inhibits the metastasis and EMT of papillary thyroid cancer through the TGF-β pathway. Med Oncol 2024; 41:137. [PMID: 38705933 DOI: 10.1007/s12032-024-02355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 05/07/2024]
Abstract
Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-β (TGF-β) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-β pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-β inhibitor LY2157299 effectively countered TGF-β activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.
Collapse
Affiliation(s)
- Binyuan Ma
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yaxin Xu
- Laboratory Medicine Center, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hongwei Gao
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yinggui Yang
- Department of Laboratory, Gansu Third People's Hospital, Lanzhou, 730000, China
| | - Yunyan Pan
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China.
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Huang YT, Hsu YT, Wu PY, Yeh YM, Lin PC, Hsu KF, Shen MR. Tight junction protein cingulin variant is associated with cancer susceptibility by overexpressed IQGAP1 and Rac1-dependent epithelial-mesenchymal transition. J Exp Clin Cancer Res 2024; 43:65. [PMID: 38424547 PMCID: PMC10905802 DOI: 10.1186/s13046-024-02987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chan Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Pan YR, Lai JCY, Huang WK, Peng PH, Jung SM, Lin SH, Chen CP, Wu CE, Hung TH, Yu AL, Wu KJ, Yeh CN. PLK1 and its substrate MISP facilitate intrahepatic cholangiocarcinoma progression by promoting lymphatic invasion and impairing E-cadherin adherens junctions. Cancer Gene Ther 2024; 31:322-333. [PMID: 38057358 PMCID: PMC10874889 DOI: 10.1038/s41417-023-00705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a subtype of CCA and has a high mortality rate and a relatively poor prognosis. However, studies focusing on increased cell motility and loss of epithelial integrity during iCCA progression remain relatively scarce. We collected seven fresh tumor samples from four patients to perform RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) to determine the transcriptome profile and chromatin accessibility of iCCA. The increased expression of cell cycle regulators, including PLK1 and its substrate MISP, was identified. Ninety-one iCCA patients were used to validate the clinical significance of PLK1 and MISP. The upregulation of PLK1 and MISP was determined in iCCA tissues. Increased expression of PLK1 and MISP was significantly correlated with tumor number, N stage, and lymphatic invasion in an iCCA cohort. Knockdown of PLK1 or MISP reduced trans-lymphatic endothelial migration and wound healing and affected focal adhesions in vitro. In cell‒cell junctions, MISP localized to adherens junctions and suppressed E-cadherin dimerization. PLK1 disrupted adherens junctions in a myosin-dependent manner. Furthermore, PLK1 and MISP promoted cell proliferation in vitro and tumorigenesis in vivo. In iCCA, PLK1 and MISP promote aggressiveness by increasing lymphatic invasion, tumor growth, and motility through the repression of E-cadherin adherens junctions.
Collapse
Affiliation(s)
- Yi-Ru Pan
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Joseph Chieh-Yu Lai
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
- Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Sheng-Hsuan Lin
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chiao-Ping Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, CA, 92103, USA
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, 333, Taiwan.
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
- School of Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Morris HT, Bamlet WR, Razidlo GL, Machesky LM. FSCN1 and epithelial mesenchymal transformation transcription factor expression in human pancreatic intraepithelial neoplasia and ductal adenocarcinoma. Pathol Res Pract 2023; 251:154836. [PMID: 37832352 DOI: 10.1016/j.prp.2023.154836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND The actin regulatory protein fascin (FSCN1) and epithelial mesenchymal transition (EMT) transcription factor (TF) SLUG/SNAI2 have been shown to be expressed in PDAC and its precursor lesions (pancreatic intraepithelial neoplasia (PanIN), graded 1-3) in in vitro and murine in vivo studies. Our aim was to investigate the expression of FSCN1 and EMT-TFs and their association with survival in human PanIN and PDAC. METHODS Expression was investigated in silico using TCGA PanCancer Atlas data (177 PDAC samples with mRNA data) and immunohistochemical staining of a tissue microarray (TMA) (59 PDAC patients). RESULTS High FSCN1 expression was associated with poorer overall survival (p = 0.02) in the TCGA data. EMT-TF expression was not associated with survival, however FSCN1 expression correlated with that of the EMT-TFs SLUG/SNAI2 (rho = 0.49, p < 0.001) and TWIST1 (rho = 0.52, p < 0.001). TMA IHC showed low expression of SNAI2 and TWIST1 in normal ductal epithelium, while FSCN1 was not expressed. SNAI2 increased slightly in PanIN1-2, then decreased in higher grade lesions. TWIST1 increased in PanIN2-3 and was retained in PDAC. FSCN1 was increasingly expressed from PanIN2 onwards. SNAI2 and TWIST1 expression positively correlated in all grades of PanIN and PDAC (rho = 0.52, p < 0.001). FSCN1 correlated positively with SNAI2 in PanIN1 (rho = 0.56, p < 0.01). CONCLUSIONS Increased expression of EMT-TFs in low-grade PanIN followed by FSCN1 in PanIN3 and PDAC suggests EMT-TFs may trigger FSCN1 expression and are potential early diagnostic markers. FSCN1 expression correlated with overall survival in PDAC and may have value as a prognostic marker.
Collapse
Affiliation(s)
- Hayley T Morris
- Department of Pathology, University Hospital Crosshouse, Kilmarnock KA2 0BE, United Kingdom; School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - William R Bamlet
- Division of Clinical Trials & Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura M Machesky
- School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
9
|
Srivastava K, Lines KE, Jach D, Crnogorac-Jurcevic T. S100PBP is regulated by mutated KRAS and plays a tumour suppressor role in pancreatic cancer. Oncogene 2023; 42:3422-3434. [PMID: 37794133 PMCID: PMC10638088 DOI: 10.1038/s41388-023-02851-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
We have previously shown that expression of S100PBP, an S100P binding partner, gradually decreases during progression of pancreatic ductal adenocarcinomas (PDAC). Here, we show that loss of S100PBP leads to oncogenic transformation of pancreatic cells; after deregulation of S100PBP expression, both in silico and in vitro analyses highlighted alterations of genes known to modulate cytoskeleton, cell motility and survival. Overexpression of S100P reduced S100PBP expression, while co-immunoprecipitation indicated the interaction of S100P with S100PBP-p53-ubiquitin protein complex, likely causing S100PBP degradation. The doxycycline-induced KrasG12D activation resulted in decreased S100PBP levels, while low-dose treatment with HDAC inhibitor MS-275 rescued its expression in both human and mouse PDAC cell lines. This indicates KrasG12D as an upstream epigenetic regulator of S100PBP. Finally, analysis of TCGA PanCancer Atlas PDAC datasets demonstrated poor prognosis in patients with high S100P and low S100PBP expression, suggesting that S100PBP is a novel tumour suppressor gene with potential clinical utility.
Collapse
Affiliation(s)
- K Srivastava
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
- In-Vitro Pharmacology, UCB Pharmaceuticals Ltd, 216 Bath Road, Slough, Berkshire, SL1 3WE, UK.
| | - K E Lines
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - D Jach
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - T Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
10
|
Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One 2022; 17:e0279746. [PMID: 36584207 PMCID: PMC9803305 DOI: 10.1371/journal.pone.0279746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is highly metastatic and of poor prognosis. Metastasis involves coordinated actin filament dynamics mediated by cofilin and associated proteins. Activated androgen receptor (AR) is believed to contribute to TNBC tumorigenesis. Our current work studied roles of activated AR and cofilin phospho-regulation during migration of three AR+ TNBC cell lines to determine if altered cofilin regulation can explain their migratory differences. Untreated or AR agonist-treated BT549, MDA-MB-453, and SUM159PT cells were compared to cells silenced for cofilin (KD) or AR expression/function (bicalutamide). Cofilin-1 was found to be the only ADF/cofilin isoform expressed in each TNBC line. Despite a significant increase in cofilin kinase caused by androgens, the ratio of cofilin:p-cofilin (1:1) did not change in SUM159PT cells. BT549 and MDA-MB-453 cells contain high p-cofilin levels which underwent androgen-induced dephosphorylation through increased cofilin phosphatase expression, but surprisingly maintain a leading-edge with high p-cofilin/total cofilin not found in SUM159PT cells. Androgens enhanced cell polarization in all lines, stimulated wound healing and transwell migration rates and increased N/E-cadherin mRNA ratios while reducing cell adhesion in BT549 and MDA-MB-453 cells. Cofilin KD negated androgen effects in MDA-MB-453 except for cell adhesion, while in BT549 cells it abrogated androgen-reduced cell adhesion. In SUM159PT cells, cofilin KD with and without androgens had similar effects in almost all processes studied. AR dependency of the processes were confirmed. In conclusion, cofilin regulation downstream of active AR is dependent on which actin-mediated process is being examined in addition to being cell line-specific. Although MDA-MB-453 cells demonstrated some control of cofilin through an AR-dependent mechanism, other AR-dependent pathways need to be further studied. Non-cofilin-dependent mechanisms that modulate migration of SUM159PT cells need to be investigated. Categorizing TNBC behavior as AR responsive and/or cofilin dependent can inform on decisions for therapeutic treatment.
Collapse
Affiliation(s)
- Lubna Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: ,
| | - Ahmad Alzghoul
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sydney Alderfer
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Jiangyu Sun
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
11
|
Benefits from Adjuvant Chemotherapy in Patients with Resected Non-Small Cell Lung Cancer: Possibility of Stratification by Gene Amplification of ACTN4 According to Evaluation of Metastatic Ability. Cancers (Basel) 2022; 14:cancers14184363. [PMID: 36139525 PMCID: PMC9497297 DOI: 10.3390/cancers14184363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Surgical treatment is the best curative treatment option for patients with non-small cell lung cancer (NSCLC), but some patients have recurrence beyond the surgical margin even after receiving curative surgery. Therefore, therapies with anti-cancer agents also play an important role perioperatively. In this paper, we review the current status of adjuvant chemotherapy in NSCLC and describe promising perioperative therapies, including molecularly targeted therapies and immune checkpoint inhibitors. Previously reported biomarkers of adjuvant chemotherapy for NSCLC are discussed along with their limitations. Adjuvant chemotherapy after resective surgery was most effective in patients with metastatic lesions located just outside the surgical margin; in addition, these metastatic lesions were the most sensitive to adjuvant chemotherapy. Thus, the first step in predicting patients who have sensitivity to adjuvant therapies is to perform a qualified evaluation of metastatic ability using markers such as actinin-4 (ACTN4). In this review, we discuss the potential use of biomarkers in patient stratification for effective adjuvant chemotherapy and, in particular, the use of ACTN4 as a possible biomarker for NSCLC.
Collapse
|
12
|
Krzysiek-Maczka G, Targosz A, Wrobel T, Paw M, Szczyrk U, Opila J, Strzalka M, Wierdak M, Major P, Brzozowski T, Czyz J, Ptak-Belowska A. Time-extended exposure of gastric epithelial cells to secretome of Helicobacter pylori-activated fibroblasts induces reprogramming of gastric epithelium towards pre-cancerogenic and pro-invasive phenotype. Am J Cancer Res 2022; 12:1337-1371. [PMID: 35411238 PMCID: PMC8984895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023] Open
Abstract
Despite of the improvement in gastric cancer (GC) therapies patients still suffer from cancer recurrence and metastasis. Recently, the high ratio of these events combined with increased chemoresistance has been related to the asymptomatic Helicobacter pylori (Hp) infections. The limited efficiency of GC treatment strategies is also increasingly attributed to the activity of tumor stroma with the key role of cancer-associated fibroblasts (CAFs). In order to investigate the influence of Hp infection within stromal gastric tissue on cancer initiation and progression, we have exposed normal gastric epithelial cells to long-term influence of Hp-activated gastric fibroblast secretome. We have referred obtained results to this secretome influence on cancer cell lines. The invasive properties of cells were checked by time-lapse video microscopy and basement membrane assays. The expression of invasion-related factors was checked by RT-PCR, Western Blot, immunofluorescence and Elisa. Hp-activated gastric fibroblast secretome induced EMT type 3-related shifts of RGM1 cell phenotype; in particular it augmented their motility, cytoskeletal plasticity and invasiveness. These effects were accompanied by Snail1/Twist activation, the up-regulation of cytokeratin19/FAP/TNC/Integrin-β1 and MMPs, and by the induction of cMethigh/pEGFRhigh phenotype. Mechanistic studies suggest that this microevolution next to TGFβ relies also on c-Met/EGFR signaling interplay and engages HGF-Integrin-Ras-dependent Twist activation leading to MMP and TNC upregulation with subsequent positive auto- and paracrine feedback loops intensifying this process. Similar shifts were detected in cancer cells exposed to this secretome. Collectively, we show that the secretome of Hp-infected fibroblasts induces reprogramming/microevolution of epithelial and cancer cells towards type 3 EMT-related invasive phenotype in a manner reciprocally reliant next to TGFβ on cMet/Integrin-β1/p-EGFR-dependent axis. Apparently, the phenotypical plasticity of Hp-activated fibroblast reprogrammed gastric epithelial cells determines their susceptibility to the pro-invasive signaling, which results in re-organization of gastric niches and provides the cues for GC promotion/progression.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Aneta Targosz
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Tomasz Wrobel
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Milena Paw
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Urszula Szczyrk
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Janusz Opila
- Department of Applied Computer Sciences, The Faculty of Management, AGH University of Science and Technology30-059 Cracow, Poland
| | - Malgorzata Strzalka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Mateusz Wierdak
- Clinic of General, Oncological and Metabolic Surgery, 2nd Department of General Surgery, The Faculty of Medicine, Jagiellonian University Medical College30-688 Cracow, Poland
| | - Piotr Major
- Clinic of General, Oncological and Metabolic Surgery, 2nd Department of General Surgery, The Faculty of Medicine, Jagiellonian University Medical College30-688 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Jarosław Czyz
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| |
Collapse
|
13
|
Tanno B, Babini G, Leonardi S, De Stefano I, Merla C, Novelli F, Antonelli F, Casciati A, Tanori M, Pasquali E, Giardullo P, Pazzaglia S, Mancuso M. miRNA-Signature of Irradiated Ptch1+/- Mouse Lens is Dependent on Genetic Background. Radiat Res 2022; 197:22-35. [PMID: 33857324 DOI: 10.1667/rade-20-00245.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
One harmful long-term effect of ionizing radiation is cataract development. Recent studies have been focused on elucidating the mechanistic pathways involved in this pathogenesis. Since accumulating evidence has established a role of microRNAs in ocular diseases, including cataract, the goal of this work was to determine the microRNA signature of the mouse lens, at short time periods postirradiation, to understand the mechanisms related to radio-induced cataractogenesis. To evaluate the differences in the microRNA profiles, 10-week-old Patched1 heterozygous (Ptch1+/-) mice, bred onto two different genetic backgrounds (CD1 and C57Bl/6J), received whole-body 2 Gy γ-ray irradiation, and 24 h later lenses were collected. Next-generation sequencing and bioinformatics analysis revealed that genetic background markedly influenced the list of the deregulated microRNAs and the mainly predicted perturbed biological functions of 2 Gy irradiated Ptch1+/- mouse lenses. We identified a subset of microRNAs with a contra-regulated expression between strains, with a key role in regulating Toll-like receptor (TLR)-signaling pathways. Furthermore, a detailed analysis of miRNome data showed a completely different DNA damage response in mouse lenses 24 h postirradiation, mainly mediated by a marked upregulation of p53 signaling in Ptch1+/-/C57Bl/6J lenses that was not detected on a CD1 background. We propose a strict interplay between p53 and TLR signaling in Ptch1+/-/C57Bl/6J lenses shortly after irradiation that could explain both the resistance of this strain to developing lens opacities and the susceptibility of CD1 background to radiation-induced cataractogenesis through activation of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - C Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
14
|
Silveyra E, Bologna-Molina R, Gónzalez-Gónzalez R, Arocena M. The Tissue Architecture of Oral Squamous Cell Carcinoma Visualized by Staining Patterns of Wheat Germ Agglutinin and Structural Proteins Using Confocal Microscopy. Cells 2021; 10:2466. [PMID: 34572115 PMCID: PMC8465371 DOI: 10.3390/cells10092466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Tissue architecture and cell morphology suffer profound alterations during oral cancer and are important markers for its progression and outcome. For precise visualization of tissue architecture in oral cancer, we used confocal microscopy to examine the staining pattern of wheat germ agglutinin, a lectin that binds membrane glycoproteins, and the staining patterns of structural proteins. MATERIALS AND METHODS Paraffin sections of oral squamous cell carcinoma were stained with fluorescently labeled wheat germ agglutinin and with antibodies against structural proteins, which were revealed by immunohistochemistry with tyramide signal amplification. RESULTS Membrane localization of wheat germ agglutinin was markedly decreased in the basal layers and in regions of tumor invasion, accompanied by cytoplasmic redistribution of E-cadherin, β-actin and syndecan-1. Wheat germ agglutinin staining clearly identified tumor clusters within the surrounding stroma, and tumor cells with elongated morphology. CONCLUSIONS Our results suggest that the wheat germ agglutinin staining pattern is indicative of the degree of cell cohesion in oral squamous cell carcinoma, which decreases in basal layers and invasive tumor clusters with more migratory morphologies. Wheat germ agglutinin staining in combination with confocal microscopy could constitute, therefore, a valuable tool for the study of tissue architecture in oral cancer.
Collapse
Affiliation(s)
- Estefania Silveyra
- Molecular Pathology, School of Dentistry Universidad de la República (UDELAR), Las Heras 1925, Montevideo 14600, Uruguay;
| | - Ronell Bologna-Molina
- Molecular Pathology, School of Dentistry Universidad de la República (UDELAR), Las Heras 1925, Montevideo 14600, Uruguay;
| | - Rogelio Gónzalez-Gónzalez
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34070, Mexico;
| | - Miguel Arocena
- Biochemistry and Biophysics, School of Dentistry Universidad de la República (UDELAR), Las Heras 1925, Montevideo 14600, Uruguay
- Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| |
Collapse
|
15
|
Amack JD. Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development. Cell Commun Signal 2021; 19:79. [PMID: 34294089 PMCID: PMC8296657 DOI: 10.1186/s12964-021-00761-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to a process in which epithelial cells lose apical-basal polarity and loosen cell-cell junctions to take on mesenchymal cell morphologies and invasive properties that facilitate migration through extracellular matrix. EMT-and the reverse mesenchymal-epithelial transition (MET)-are evolutionarily conserved processes that are used throughout embryonic development to drive tissue morphogenesis. During adult life, EMT is activated to close wounds after injury, but also can be used by cancers to promote metastasis. EMT is controlled by several mechanisms that depend on context. In response to cell-cell signaling and/or interactions with the local environment, cells undergoing EMT make rapid changes in kinase and adaptor proteins, adhesion and extracellular matrix molecules, and gene expression. Many of these changes modulate localization, activity, or expression of cytoskeletal proteins that mediate cell shape changes and cell motility. Since cellular changes during EMT are highly dynamic and context-dependent, it is ideal to analyze this process in situ in living organisms. Embryonic development of model organisms is amenable to live time-lapse microscopy, which provides an opportunity to watch EMT as it happens. Here, with a focus on functions of the actin cytoskeleton, I review recent examples of how live in vivo imaging of embryonic development has led to new insights into mechanisms of EMT. At the same time, I highlight specific developmental processes in model embryos-gastrulation in fly and mouse embryos, and neural crest cell development in zebrafish and frog embryos-that provide in vivo platforms for visualizing cellular dynamics during EMT. In addition, I introduce Kupffer's vesicle in the zebrafish embryo as a new model system to investigate EMT and MET. I discuss how these systems have provided insights into the dynamics of adherens junction remodeling, planar cell polarity signaling, cadherin functions, and cytoskeletal organization during EMT, which are not only important for understanding development, but also cancer progression. These findings shed light on mechanisms of actin cytoskeletal dynamics during EMT, and feature live in vivo imaging strategies that can be exploited in future work to identify new mechanisms of EMT and MET. Video Abstract.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA. .,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, USA.
| |
Collapse
|
16
|
Schrecker C, Behrens S, Schönherr R, Ackermann A, Pauli D, Plotz G, Zeuzem S, Brieger A. SPTAN1 Expression Predicts Treatment and Survival Outcomes in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13143638. [PMID: 34298848 PMCID: PMC8305611 DOI: 10.3390/cancers13143638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a common and deadly form of cancer. Non-erythroid spectrin αII (SPTAN1), a protein of the cytoskeleton, is thought to be involved in CRC development and progression. In this study, we explore whether measuring SPTAN1 levels in resected CRC specimens might help to predict patient survival outcomes and response to chemotherapy. Indeed, we find that higher SPTAN1 protein and mRNA levels in CRC specimens associate with longer patient survival times. Using cell culture experiments, we then show that cells with lower SPTAN1 levels are less susceptible to FOLFOX chemotherapy, a standard treatment regimen for patients with CRC. Overall, our study underscores the importance of cytoskeletal proteins in shaping tumour biology and treatment responses and nominates SPTAN1 as a biomarker to improve patient stratification and refine therapeutic decisions in CRC. Abstract Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality. In a cohort of 189 patients with CRC, we recently showed that expression of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1) was lower in advanced metastatic tumours. The aim of the present study was to clarify the association of intratumoural SPTAN1 expression levels with treatment and survival outcomes in patients with CRC. The analysis was based on histologic assessment of SPTAN1 protein levels in our own CRC cohort, and transcriptome data of 573 CRC cases from The Cancer Genome Atlas (TCGA). We first establish that high intratumoural levels of SPTAN1 protein and mRNA associate with favourable survival outcomes in patients with CRC. Next, a response prediction signature applied to the TCGA data reveals a possible link between high SPTAN1 transcript levels and improved patient responses to FOLFOX chemotherapy. Complementary in vitro experiments confirm that SPTAN1 knockdown strains of the colon cancer cell lines HT-29, HCT116 mlh1-2 and Caco-2 are less responsive to FOLFOX chemotherapy compared with SPTAN1-proficient control strains. Taken together, we identify SPTAN1 as a novel prognostic biomarker in CRC and show that SPTAN1 expression levels may predict patient responses to chemotherapy. These investigations illustrate how an affordable, histology-based diagnostic test could directly impact therapeutic decision-making at the bedside.
Collapse
Affiliation(s)
- Christopher Schrecker
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| | - Sophia Behrens
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Rebecca Schönherr
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Faculty of Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Anne Ackermann
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Daniel Pauli
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Guido Plotz
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Stefan Zeuzem
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Angela Brieger
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| |
Collapse
|
17
|
Wu Y, Aegerter P, Nipper M, Ramjit L, Liu J, Wang P. Hippo Signaling Pathway in Pancreas Development. Front Cell Dev Biol 2021; 9:663906. [PMID: 34079799 PMCID: PMC8165189 DOI: 10.3389/fcell.2021.663906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is a vital regulator of pancreatic development and homeostasis, directing cell fate decisions, morphogenesis, and adult pancreatic cellular plasticity. Through loss-of-function research, Hippo signaling has been found to play key roles in maintaining the proper balance between progenitor cell renewal, proliferation, and differentiation in pancreatic organogenesis. Other studies suggest that overactivation of YAP, a downstream effector of the pathway, promotes ductal cell development and suppresses endocrine cell fate specification via repression of Ngn3. After birth, disruptions in Hippo signaling have been found to lead to de-differentiation of acinar cells and pancreatitis-like phenotype. Further, Hippo signaling directs pancreatic morphogenesis by ensuring proper cell polarization and branching. Despite these findings, the mechanisms through which Hippo governs cell differentiation and pancreatic architecture are yet to be fully understood. Here, we review recent studies of Hippo functions in pancreatic development, including its crosstalk with NOTCH, WNT/β-catenin, and PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pauline Aegerter
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Michael Nipper
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Logan Ramjit
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Jun Liu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pei Wang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
18
|
Datta A, Deng S, Gopal V, Yap KCH, Halim CE, Lye ML, Ong MS, Tan TZ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers (Basel) 2021; 13:1882. [PMID: 33919917 PMCID: PMC8070945 DOI: 10.3390/cancers13081882] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, a vital cellular process during metastasis is the transformation of epithelial cells towards motile mesenchymal cells called the epithelial to mesenchymal transition (EMT). The cytoskeleton is an active network of three intracellular filaments: actin cytoskeleton, microtubules, and intermediate filaments. These filaments play a central role in the structural design and cell behavior and are necessary for EMT. During EMT, epithelial cells undergo a cellular transformation as manifested by cell elongation, migration, and invasion, coordinated by actin cytoskeleton reorganization. The actin cytoskeleton is an extremely dynamic structure, controlled by a balance of assembly and disassembly of actin filaments. Actin-binding proteins regulate the process of actin polymerization and depolymerization. Microtubule reorganization also plays an important role in cell migration and polarization. Intermediate filaments are rearranged, switching to a vimentin-rich network, and this protein is used as a marker for a mesenchymal cell. Hence, targeting EMT by regulating the activities of their key components may be a potential solution to metastasis. This review summarizes the research done on the physiological functions of the cytoskeleton, its role in the EMT process, and its effect on multidrug-resistant (MDR) cancer cells-highlight some future perspectives in cancer therapy by targeting cytoskeleton.
Collapse
Affiliation(s)
- Arpita Datta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Kenneth Chun-Hong Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mun Leng Lye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
19
|
Sripathi SR, Hu MW, Liu MM, Wan J, Cheng J, Duan Y, Mertz JL, Wahlin KJ, Maruotti J, Berlinicke CA, Qian J, Zack DJ. Transcriptome Landscape of Epithelial to Mesenchymal Transition of Human Stem Cell-Derived RPE. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33792620 PMCID: PMC8024778 DOI: 10.1167/iovs.62.4.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/21/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose RPE injury often induces epithelial to mesenchymal transition (EMT). Although RPE-EMT has been implicated in a variety of retinal diseases, including proliferative vitroretinopathy, neovascular and atrophic AMD, and diabetic retinopathy, it is not well-understood at the molecular level. To contribute to our understanding of EMT in human RPE, we performed a time-course transcriptomic analysis of human stem cell-derived RPE (hRPE) monolayers induced to undergo EMT using 2 independent, yet complementary, model systems. Methods EMT of human stem cell-derived RPE monolayers was induced by either enzymatic dissociation or modulation of TGF-β signaling. Transcriptomic analysis of cells at different stages of EMT was performed by RNA-sequencing, and select findings were confirmed by reverse transcription quantitative PCR and immunostaining. An ingenuity pathway analysis (IPA) was performed to identify signaling pathways and regulatory networks associated with EMT. Results Proteocollagenolytic enzymatic dissociation and cotreatment with TGF-β and TNF-α both induce EMT in human stem cell-derived RPE monolayers, leading to an increased expression of mesenchymal factors and a decreased expression of RPE differentiation-associated factors. Ingenuity pathway analysis identified the upstream regulators of the RPE-EMT regulatory networks and identified master switches and nodes during RPE-EMT. Of particular interest was the identification of widespread dysregulation of axon guidance molecules during RPE-EMT progression. Conclusions The temporal transcriptome profiles described here provide a comprehensive resource of the dynamic signaling events and the associated biological pathways that underlie RPE-EMT onset. The pathways defined by these studies may help to identify targets for the development of novel therapeutic targets for the treatment of retinal disease.
Collapse
Affiliation(s)
- Srinivasa R. Sripathi
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Ming-Wen Hu
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Melissa M. Liu
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jie Cheng
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Yukan Duan
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Joseph L. Mertz
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, LA Jolla, California, United States
| | | | - Cynthia A. Berlinicke
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Jiang Qian
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
| | - Donald J. Zack
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, The Johns Hopkins University School of Medicine Baltimore, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, Department of Genetic Medicine, Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
20
|
Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, Wunderlich S, Martin U, Wray GA, McDole K, Lancaster MA. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 2021; 184:2084-2102.e19. [PMID: 33765444 PMCID: PMC8054913 DOI: 10.1016/j.cell.2021.02.050] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion. Human brain organoids are expanded relative to nonhuman apes prior to neurogenesis Ape neural progenitors go through a newly identified transition morphotype state Delayed morphological transition with shorter cell cycles underlie human expansion ZEB2 is as an evolutionary regulator of this transition
Collapse
Affiliation(s)
- Silvia Benito-Kwiecinski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefano L Giandomenico
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Erlend S Riis
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Paula Freire-Pritchett
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Gregory A Wray
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC 27708, USA
| | - Kate McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
21
|
Zhong FJ, Sun B, Cao MM, Xu C, Li YM, Yang LY. STMN2 mediates nuclear translocation of Smad2/3 and enhances TGFβ signaling by destabilizing microtubules to promote epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2021; 506:128-141. [PMID: 33705863 DOI: 10.1016/j.canlet.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Metastasis remains the major obstacle of improving the survival of patients with hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) is critical to cancer metastasis. Successful induction of EMT requires dramatic cytoskeleton rearrangement. However, the significance of microtubule (MT), one of the core components of cell cytoskeleton, in this process remains largely unknown. Here we revealed that STMN2, an important MT dynamics regulator, is barely expressed in normal live tissues but markedly up-regulated in HCCs, especially in those with early recurrence. High STMN2 expression correlates with aggressive clinicopathological features and predicts poor prognosis of HCC patients. STMN2 overexpression in HCC cells promotes EMT, invasion and metastasis in vitro and in vivo, whereas STMN2 knockdown has opposite results. Mechanistically, STMN2 modulates MTs disassembly, disrupts MT-Smad complex, and facilitates release from MT network, phosphorylation and nuclear translocation of Smad2/3 even independent of TGFβ stimulation, thereby enhancing TGFβ signaling. Collectively, STMN2 orchestrates MT disassembly to facilitate EMT via TGF-β signaling, providing a novel insight into the mechanisms underlying cancer metastasis. STMN2 is a promising prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Fang-Jing Zhong
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Sun
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mo-Mo Cao
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cong Xu
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Ming Li
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
22
|
Kar S, Katti DR, Katti KS. Evaluation of quasi-static and dynamic nanomechanical properties of bone-metastatic breast cancer cells using a nanoclay cancer testbed. Sci Rep 2021; 11:3096. [PMID: 33542384 PMCID: PMC7862348 DOI: 10.1038/s41598-021-82664-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, there has been increasing interest in investigating the mechanical properties of individual cells to delineate disease mechanisms. Reorganization of cytoskeleton facilitates the colonization of metastatic breast cancer at bone marrow space, leading to bone metastasis. Here, we report evaluation of mechanical properties of two breast cancer cells with different metastatic ability at the site of bone metastases, using quasi-static and dynamic nanoindentation methods. Our results showed that the significant reduction in elastic modulus along with increased liquid-like behavior of bone metastasized MCF-7 cells was induced by depolymerization and reorganization of F-actin to the adherens junctions, whereas bone metastasized MDA-MB-231 cells showed insignificant changes in elastic modulus and F-actin reorganization over time, compared to their respective as-received counterparts. Taken together, our data demonstrate evolution of breast cancer cell mechanics at bone metastases.
Collapse
Affiliation(s)
- Sumanta Kar
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - Dinesh R Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - Kalpana S Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
23
|
Matarrese P, Vona R, Ascione B, Paggi MG, Mileo AM. Physical Interaction between HPV16E7 and the Actin-Binding Protein Gelsolin Regulates Epithelial-Mesenchymal Transition via HIPPO-YAP Axis. Cancers (Basel) 2021; 13:cancers13020353. [PMID: 33477952 PMCID: PMC7836002 DOI: 10.3390/cancers13020353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16) exhibits a strong oncogenic potential mainly in cervical, anogenital and oropharyngeal cancers. The E6 and E7 viral oncoproteins, acting via specific interactions with host cellular targets, are required for cell transformation and maintenance of the transformed phenotype as well. We previously demonstrated that HPV16E7 interacts with the actin-binding protein gelsolin, involved in cytoskeletal F-actin dynamics. Herein, we provide evidence that the E7/gelsolin interaction promotes the cytoskeleton rearrangement leading to epithelial-mesenchymal transition-linked morphological and transcriptional changes. E7-mediated cytoskeletal actin remodeling induces the HIPPO pathway by promoting the cytoplasmic retention of inactive P-YAP. These results suggest that YAP could play a role in the "de-differentiation" process underlying the acquisition of a more aggressive phenotype in HPV16-transformed cells. A deeper comprehension of the multifaceted mechanisms elicited by the HPV infection is vital for providing novel strategies to block the biological and clinical features of virus-related cancers.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Barbara Ascione
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.M.); (R.V.); (B.A.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS—Regina Elena National Cancer Institute Rome, 00144 Rome, Italy
- Correspondence: (M.G.P.); (A.M.M.); Tel.: +39-0652662550 (M.G.P. & A.M.M.)
| |
Collapse
|
24
|
He Y, Chen L, Chen K, Sun Y. Immunohistochemical analysis of HNF4A and β-catenin expression to predict low-grade dysplasia in the colitis-neoplastic sequence. Acta Biochim Biophys Sin (Shanghai) 2021; 53:94-101. [PMID: 33300557 DOI: 10.1093/abbs/gmaa147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Animal studies indicated that P1 promoter-driven hepatocyte nuclear factor 4 alpha (HFN4A) prevents carcinogenesis in colitis. But the function of total HNF4A protein has not been fully investigated, and it was assumed to be involved in the colitis-neoplastic sequence. The aim of this study was to determine the clinical value of total P1-/P2-driven HNF4A combined with β-catenin in the colitis-neoplastic sequence. A total of 69 samples, including 4 normal colon tissues, 16 sporadic colorectal cancer (CRC) tissues, 35 inflammatory bowel disease (IBD) tissues, and 14 IBD-associated low-grade dysplasia tissues, were collected to assess P1-/P2-driven HNF4A and β-catenin expressions by immunohistochemical assay. In addition, a colonic epithelial cell line Caco2 with stable P1-/P2-driven HNF4A knockdown was constructed. β-Catenin expression and skeleton structure were determined in the transfected cells by western blot analysis and immunofluorescence assay respectively. Increased expression of nuclear P1-/P2-driven HNF4A was observed in the colitis-associated colorectal neoplasm and sporadic CRC samples, compared with that in colitis samples. The parallel alterations between cytoplasmic β-catenin and nuclear P1-/P2-driven HNF4A were also verified. Silencing of P1-/P2-driven HNF4A expression in Caco2 cells decreased β-catenin expression and F-actin formation. Our results confirmed the elevated expressions of nuclear P1-/P2-driven HNF4A and cytoplasmic β-catenin in the colitis-neoplastic sequence, and both of them may be used as potential biomarkers to predict low-grade dysplasia.
Collapse
Affiliation(s)
- Yiping He
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lezong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke Chen
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200025, China
| |
Collapse
|
25
|
Zhang D, Wan L, Yang F, Liu W, Liu L, He S, Xie N. VWCE Functions as a Tumor Suppressor in Breast Cancer Cells. Front Oncol 2020; 10:586342. [PMID: 33194737 PMCID: PMC7643001 DOI: 10.3389/fonc.2020.586342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer remains a leading cause of cancer-related death, for which the majority of deaths result from metastases. Von Willebrand factor C and EGF domain (VWCE) is a member of the Von Willebrand factor (VWF) gene family; however, its function, regulatory mechanism, and clinical value in breast cancer remain unclear. In the present study, we sought to elucidate the role of VWCE in breast cancer metastasis. We examined the expression of VWCE in breast cancer tissues and normal control tissues of 50 breast cancer patients. We found that VWCE expression was downregulated in breast cancer cells and tissues compared to normal breast epithelial cells or the adjacent normal tissues. To explore the role of VWCE in human breast cancer development, we introduced a VWCE-overexpressing or control lentiviral vector into the breast cancer MDA-MB-453 and MDA-MB-231 lines in vitro. The overexpression of VWCE inhibited the proliferation, migration, invasion, and chemoresistance of the breast cancer cell lines. More importantly, the forced expression of VWCE suppressed tumor formation and metastasis in nude mice. iTRAQ-based quantitative proteomic analysis revealed that VWCE overexpression induced a 10-fold decrease in the level of WD-repeat domain 1 (WDR1) protein expression. Rescue experiments further verified that WDR1 was a downstream molecule of VWCE, and WDR1 overexpression reversed the above effects of VWCE overexpression on tumor growth. Therefore, VWCE may represent a novel tumor suppressor, for which its deregulation promotes breast cancer progression via the upregulation of WDR1.
Collapse
Affiliation(s)
- Dan Zhang
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lili Wan
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fan Yang
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenlan Liu
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Litao Liu
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shengnan He
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Health Science Center, Biobank Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Whitby S, Zhou W, Dimitriadis E. Alterations in Epithelial Cell Polarity During Endometrial Receptivity: A Systematic Review. Front Endocrinol (Lausanne) 2020; 11:596324. [PMID: 33193109 PMCID: PMC7652731 DOI: 10.3389/fendo.2020.596324] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal endometrial receptivity is one of the major causes of embryo implantation failure and infertility. The plasma membrane transformation (PMT) describes the collective morphological and molecular alterations occurring to the endometrial luminal epithelium across the mid-secretory phase of the menstrual cycle to facilitate implantation. Dysregulation of this process directly affects endometrial receptivity and implantation. Multiple parallels between these alterations to confer endometrial receptivity in women have been drawn to those seen during the epithelial-mesenchymal transition (EMT) in tumorigenesis. Understanding these similarities and differences will improve our knowledge of implantation biology, and may provide novel therapeutic targets to manage implantation failure. Methods A systematic review was performed using the Medline (Ovid), Embase, and Web of Science databases without additional limits. The search terms used were "(plasma membrane* or cell membrane*) and transformation*" and "endometrium or endometrial." Research studies on the PMT or its regulation in women, discussing either the endometrial epithelium, decidualized stroma, or both, were eligible for inclusion. Results A total of 198 articles were identified. Data were extracted from 15 studies that matched the inclusion criteria. Collectively, these included studies confirmed the alterations occurring to the endometrial luminal epithelium during the PMT are similar to those seen during the EMT. Such similarities included alterations to the actin cytoskeleton remodeling of adherens junctions, integrin expression and epithelial-stromal communication. These were also some differences between these processes, such as the regulation of tight junctions and mucins, which need to be further researched. Conclusions This review raised the prospect of shared and distinct mechanisms existing in PMT and EMT. Further investigation into similarities between the PMT in the endometrium and the EMT in tumorigenesis may provide new mechanistic insights into PMT and new targets for the management of implantation failure and infertility.
Collapse
Affiliation(s)
- Sarah Whitby
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Ahuja N, Ashok C, Natua S, Pant D, Cherian A, Pandkar MR, Yadav P, Vishnu NSS, Mishra J, Samaiya A, Shukla S. Hypoxia-induced TGF-β-RBFOX2-ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer 2020; 2:zcaa021. [PMID: 33089214 PMCID: PMC7116222 DOI: 10.1093/narcan/zcaa021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypoxic microenvironment heralds epithelial-mesenchymal transition (EMT), invasion and metastasis in solid tumors. Deregulation of alternative splicing (AS) of several cancer-associated genes has been instrumental in hypoxia-induced EMT. Our study in breast cancer unveils a previously unreported mechanism underlying hypoxia-mediated AS of hMENA, a crucial cytoskeleton remodeler during EMT. We report that the hypoxia-driven depletion of splicing regulator ESRP1 leads to skipping of hMENA exon 11a producing a pro-metastatic isoform, hMENAΔ11a. The transcriptional repression of ESRP1 is mediated by SLUG, which gets stimulated via hypoxia-driven TGF-β signaling. Interestingly, RBFOX2, an otherwise RNA-binding protein, is also found to transcriptionally repress ESRP1 while interacting with SLUG. Similar to SLUG, RBFOX2 gets upregulated under hypoxia via TGF-β signaling. Notably, we found that the exosomal delivery of TGF-β contributes to the elevation of TGF-β signaling under hypoxia. Moreover, our results show that in addition to hMENA, hypoxia-induced TGF-β signaling contributes to global changes in AS of genes associated with EMT. Overall, our findings reveal a new paradigm of hypoxia-driven AS regulation of hMENA and insinuate important implications in therapeutics targeting EMT.
Collapse
Affiliation(s)
- Neha Ahuja
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Cheemala Ashok
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Anna Cherian
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Pooja Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Narayanan S S Vishnu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Jharna Mishra
- Department of Pathology, Bansal Hospital, Bhopal, Madhya Pradesh 462016, India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh 462016, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
28
|
Lucchetti D, Perelli L, Colella F, Ricciardi-Tenore C, Scoarughi GL, Barbato G, Boninsegna A, De Maria R, Sgambato A. Low-intensity pulsed ultrasound affects growth, differentiation, migration, and epithelial-to-mesenchymal transition of colorectal cancer cells. J Cell Physiol 2020; 235:5363-5377. [PMID: 31967331 DOI: 10.1002/jcp.29423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Ultrasound (US) offers potentially important opportunities from a therapeutic point of view. Thus, the study of the biological effects of US on cancer cells is important to understand the consequences of these changes on the malignant phenotype. This study aimed to investigate the effects of low-intensity ultrasound (LIPUS) on the phenotype of colorectal cancer cell lines. Cell proliferation was evaluated by viability test and by evaluation of pERK expression, while cell motility using the scratch test. Cell differentiation was evaluated assessing alkaline phosphatase activity. Epithelial mesenchymal transition was assessed by analyzing the expression of Vimentin and E-Cadherin. Release and uptake of extracellular vesicles (EVs) were evaluated by flow cytometry. LIPUS effects on the organization of cytoskeleton were analyzed by confocal microscopy and by evaluation of Rho GTPase expression. No alterations in vitality and clonogenicity were observed when the intermediate (0.4 MPa) and the lowest (0.035 MPa) acoustic intensities were administered while the treatment with high intensity (1 MPa) induced a reduction of both cell viability and clonogenicity in both cell lines in a frequency-dependent manner. LIPUS promoted the differentiation of colon cancer cells, affected epithelial-to-mesenchymal transition, promoted the closure of a wound as well as increased the release of EVs compared with untreated cells. LIPUS-induced increase in cell motility was likely due to a Rho GTPase-dependent mechanism. Overall, the results obtained warrant further studies on the potential combined effect of LIPUS with differentiating agents and on their potential use in a clinical setting.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luigi Perelli
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Filomena Colella
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | | | - Alma Boninsegna
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.,Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
29
|
Amiri A, Hastert F, Stühn L, Dietz C. Structural analysis of healthy and cancerous epithelial-type breast cells by nanomechanical spectroscopy allows us to obtain peculiarities of the skeleton and junctions. NANOSCALE ADVANCES 2019; 1:4853-4862. [PMID: 36133137 PMCID: PMC9418382 DOI: 10.1039/c9na00021f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/24/2019] [Indexed: 06/16/2023]
Abstract
The transition of healthy epithelial cells to carcinoma is associated with an alteration in the structure and organization of the cytoskeleton of the cells. A comparison of the mechanical properties of cancerous and healthy cells indicated a higher deformability of the cancer cells based on averaging the mechanical properties of single cells. However, the exact reason for softening of the cancerous cells compared to their counterparts remains unclear. Here, we focused on nanomechanical spectroscopy of healthy and cancerous ductal epithelial-type breast cells by means of atomic force microscopy with high lateral and depth precision. As a result, based on atomic force microscopy measurements formation of significantly fewer microtubules in cancerous cells which was observed in our study is most likely one of the main causes for the overall change in mechanical properties without any phenotypic shift. Strikingly, in a confluent layer of invasive ductal carcinoma cells, we observed the formation of cell-cell junctions that have the potential for signal transduction among neighboring cells such as desmosomes and adherens junctions. This increases the possibility of cancerous cell collaboration in malignancy, infiltration or metastasis phenomena.
Collapse
Affiliation(s)
- Anahid Amiri
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| | - Florian Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Lukas Stühn
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| |
Collapse
|
30
|
Díaz-Coránguez M, Liu X, Antonetti DA. Tight Junctions in Cell Proliferation. Int J Mol Sci 2019; 20:E5972. [PMID: 31783547 PMCID: PMC6928848 DOI: 10.3390/ijms20235972] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.
Collapse
Affiliation(s)
| | | | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA; (M.D.-C.); (X.L.)
| |
Collapse
|
31
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
32
|
Chin VL, Lim CL. Epithelial-mesenchymal plasticity-engaging stemness in an interplay of phenotypes. Stem Cell Investig 2019; 6:25. [PMID: 31559312 DOI: 10.21037/sci.2019.08.08] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Cancer is a genetic disease which results in a functional imbalance between tumour-repressive and oncogenic signals. The WHO highlights the burden of this indomitable disease, listing it as the second leading cause of death globally. The major cause of cancer-related death is rarely the effect of the primary tumour itself, but rather, the devastating spread of cancer cells in metastases. Epithelial-mesenchymal plasticity (EMP)-termed as the ability of cells to maintain its plasticity and transit between epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states-plays a fundamental role in cancer metastasis. These cell transitions allow them migrate from the primary tumour and invade the secondary site. EMP is associated with migration, invasion, colonisation, self-renewal and drug resistance. This review briefly elucidates the mechanism of EMP and the association between cancer stem cells (CSCs) and circulating tumour cells (CTCs), biomarkers and signalling pathways involved in EMP as well as drug resistance and therapeutic targeting.
Collapse
Affiliation(s)
- Vi Ley Chin
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Whitelaw JA, Lilla S, Paul NR, Fort L, Zanivan S, Machesky LM. CYRI/ Fam49 Proteins Represent a New Class of Rac1 Interactors. Commun Integr Biol 2019; 12:112-118. [PMID: 31413787 PMCID: PMC6682259 DOI: 10.1080/19420889.2019.1643665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
Fam49 proteins, now referred to as CYRI (CYFIP-related Rac Interactor), are evolutionarily conserved across many phyla. Their closest relative by amino acid sequence is CYFIP, as both proteins contain a domain of unknown function DUF1394. We recently showed that CYRI and the DUF1394 can mediate binding to Rac1 and evidence is building to suggest that CYRI plays important roles in cell migration, chemotaxis and pathogen entry into cells. Here we discuss how CYRI proteins fit into the current framework of the control of actin dynamics by positive and negative feedback loops containing Rac1, the Scar/WAVE Complex, the Arp2/3 Complex and branched actin. We also provide data regarding the interaction between Rac1 and CYRI in an unbiassed mass spectrometry screen for interactors of an active mutant of Rac1.
Collapse
Affiliation(s)
| | - Sergio Lilla
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Nikki R. Paul
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Loic Fort
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sara Zanivan
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Laura M. Machesky
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
Siar CH, Ng KH. Epithelial-to-mesenchymal transition in ameloblastoma: focus on morphologically evident mesenchymal phenotypic transition. Pathology 2019; 51:494-501. [PMID: 31262562 DOI: 10.1016/j.pathol.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 01/06/2023]
Abstract
The ameloblastoma is the most common and clinically significant odontogenic epithelial neoplasm known for its locally-invasive behaviour and high recurrence risk. Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells lose their epithelial characteristics and gain mesenchymal properties. EMT induction via transcription repression has been investigated in ameloblastoma. However, morphologically evident mesenchymal phenotypic transition remains ill-defined. To determine this, 24 unicystic (UA), 34 solid/multicystic (SA) and 18 recurrent ameloblastoma (RA) were immunohistochemically examined for three EMT-related mesenchymal markers, alpha smooth muscle actin (α-SMA), osteonectin and neuronal cadherin (N-cadherin). All three factors were heterogeneously detected in ameloblastoma samples (α-SMA, n=71/76, 93.4%; osteonectin, n=72/76, 94.7%; N-cadherin, n=24/76, 31.6%). In the tumoural parenchyma, immunoreactive cells were not morphologically distinct from their non-reactive cellular counterparts. Rather, α-SMA and osteonectin predominantly labelled the cytoplasm of central polyhedral > peripheral columnar/cuboidal tumour cells. N-cadherin demonstrated weak-to-moderate circumferential membranous staining in both neoplastic cell types and cytoplasmic expression in spindle-celled epithelium of desmoplastic amelobastoma. For all tumour subsets, α-SMA and osteonectin scored significantly higher in the stroma > parenchyma whilst α-SMA was overexpressed along the tumour invasive front > centre (p<0.05). Stromal N-cadherin scored higher in SA > UA and RA > UA (p<0.05). Other clinicopathological parameters showed no significant associations. Taken together, acquisition of mesenchymal traits without morphologically evident mesenchymal alteration suggests partial EMT in ameloblastoma. Stromal upregulation of these proteins in SA and RA implicates a role in local invasiveness.
Collapse
Affiliation(s)
- Chong Huat Siar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Kok Han Ng
- formerly Unit of Stomatology, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM. Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer 2019; 19:376. [PMID: 31014286 PMCID: PMC6480622 DOI: 10.1186/s12885-019-5587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/05/2019] [Indexed: 01/30/2023] Open
Abstract
Background Previous work in our laboratory demonstrated that antiprogestin mifepristone impairs the growth and adhesion of highly metastatic cancer cells, and causes changes in their cellular morphology. In this study, we further assess the anti-metastatic properties of mifepristone, by studying whether cytostatic doses of the drug can inhibit the migration and invasion of various cancer cell lines using a double fluorescence cytochemical labeling approach. Methods Cell lines representing cancers of the ovary (SKOV-3), breast (MDA-MB-231), glia (U87MG), or prostate (LNCaP) were treated with cytostatic concentrations of mifepristone. Wound healing and Boyden chamber assays were utilized to study cellular migration. To study cellular invasion, the Boyden chamber assay was prepared by adding a layer of extracellular matrix over the polycarbonate membrane. We enhanced the assays with the addition of double fluorescence cytochemical staining for fibrillar actin (F-actin) and DNA to observe the patterns of cytoskeletal distribution and nuclear positioning while cells migrate and invade. Results When exposed to cytostatic concentrations of mifepristone, all cancer cells lines demonstrated a decrease in both migration and invasion capacities measured using standard approaches. Double fluorescence cytochemical labeling validated that mifepristone-treated cancer cells exhibit reduced migration and invasion, and allowed to unveil a distinct migration pattern among the different cell lines, different arrays of nuclear localization during migration, and apparent redistribution of F-actin to the nucleus. Conclusion This study reports that antiprogestin mifepristone inhibits migration and invasion of highly metastatic cancer cell lines, and that double fluorescence cytochemical labeling increases the value of well-known approaches to study cell movement. Electronic supplementary material The online version of this article (10.1186/s12885-019-5587-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina J Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - BreeAnn N Brandhagen
- Present address: Research Acceleration Office, 2001 Campus Delivery, University Services Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alicia A Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada.
| |
Collapse
|
36
|
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev 2018; 10:1695-1711. [PMID: 30406572 PMCID: PMC6297082 DOI: 10.1007/s12551-018-0466-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanosensing is increasingly recognised as important for tumour progression. Tumours become stiff and the forces that normally balance in the healthy organism break down and become imbalanced, leading to increases in migration, invasion and metastatic dissemination. Here, we review recent advances in our understanding of how extracellular matrix properties, such as stiffness, viscoelasticity and architecture control cell behaviour. In addition, we discuss how the tumour microenvironment can be modelled in vitro, capturing these mechanical aspects, to better understand and develop therapies against tumour spread. We argue that by gaining a better understanding of the microenvironment and the mechanical forces that govern tumour dynamics, we can make advances in combatting cancer dormancy, recurrence and metastasis.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
37
|
Kaishang Z, Xue P, Shaozhong Z, Yingying F, Yan Z, Chanjun S, Zhenzhen L, Xiangnan L. Elevated expression of Twinfilin-1 is correlated with inferior prognosis of lung adenocarcinoma. Life Sci 2018; 215:159-169. [PMID: 30391462 DOI: 10.1016/j.lfs.2018.10.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
AIM Twinfilin-1 (TWF1) has been implicated in cell motility, invasion and migration. However, its exact role in lung cancer progression is still unclear. In the present study, we explored clinical and prognostic relevance of Twinfilin-1 (TWF1) levels for non-small cell lung carcinoma (NSCLC). MAIN METHODS The Cancer Genome Atlas (TCGA) dataset was analyzed for possible association between TWF1 expressions in NSCLC tissues and patient prognosis. The meta-analysis data was validated in our clinical study through techniques of immunoblotting, expression analysis and immunohistochemistry. KEY FINDINGS Lung adenocarcinoma (LUAD) as well as lung squamous cell carcinoma (LUSC) showed significantly elevated expression of TWF1 compared to normal lung tissues. Univariate Cox regression analysis showed high expression of TWF1 to be independent prognostic indicator involved in overall survival (hazard ratio: 1.636; 95% CI: 1.223-2.189) and recurrence-free survival (hazard ratio: 1.551; 95% CI: 1.158-2.077) in LUAD, but not in LUSC. Similar trend was found in our clinical study. LUAD tissues reflected TWF1 overexpression to be positively correlated with grade of tumor, size and lymph node metastasis. Enhanced TWF1 expression was identified to be an independent predictor for the disadvantageous prognosis of LUAD through simultaneously both univariate as well as multivariate Cox regression analyses (both p < 0.05). Kaplan-Meier survival graphs further corroborated that poor disease prediction in the patients with LUAD was indicated through high TWF1 expression (p = 0.028). SIGNIFICANCE Robustness and poor prognosis in LUAD correlated with TWF1 levels thus making it a suitable therapeutic target against LUAD.
Collapse
Affiliation(s)
- Zhang Kaishang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pan Xue
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Shaozhong
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Yingying
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhang Yan
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Chanjun
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Zhenzhen
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Li Xiangnan
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
38
|
Yuan B, Zhang R, Hu J, Liu Z, Yang C, Zhang T, Zhang C. WDR1 Promotes Cell Growth and Migration and Contributes to Malignant Phenotypes of Non-small Cell Lung Cancer through ADF/cofilin-mediated Actin Dynamics. Int J Biol Sci 2018; 14:1067-1080. [PMID: 29989053 PMCID: PMC6036740 DOI: 10.7150/ijbs.23845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
The characteristic of carcinoma is cell migration and invasion, which involve in strong actin dynamics. Regulations of actin dynamics have been implicated in cancer cell migration and tumor progression. WDR1 (WD-repeat domain 1) is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, strongly accelerating ADF/cofilin-mediated actin disassembly. The role of WDR1 in non-small cell lung cancer (NSCLC) progression has been unknown. Here, we show that the expression levels of WDR1 are increased in human NSCLC tissues compared with adjacent non-tumor tissues, and high WDR1 level correlates with poor prognosis in NSCLC patients. Knockdown of WDR1 in NSCLC cells significantly inhibits cell migration, invasion, EMT process and tumor cell growth in vitro and in vivo. Otherwise, overexpression of WDR1 promotes NSCLC cell proliferation and migration. Mechanically, our data suggested WDR1 regulated tumor cells proliferation and migration might through actin cytoskeleton-mediated regulation of YAP, and we demonstrated that WDR1 contributes to NSCLC progression through ADF/cofilin-mediated actin disassembly. Our findings implicate that the ADF/cofilin-WDR1-actin axis as an activator of malignant phenotype that will be a promising therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Chao Yang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | - Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province 210029, P.R. China
| |
Collapse
|
39
|
Bertier L, Hebbrecht T, Mettepenningen E, De Wit N, Zwaenepoel O, Verhelle A, Gettemans J. Nanobodies targeting cortactin proline rich, helical and actin binding regions downregulate invadopodium formation and matrix degradation in SCC-61 cancer cells. Biomed Pharmacother 2018; 102:230-241. [DOI: 10.1016/j.biopha.2018.03.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/19/2023] Open
|
40
|
Peng JM, Bera R, Chiou CY, Yu MC, Chen TC, Chen CW, Wang TR, Chiang WL, Chai SP, Wei Y, Wang H, Hung MC, Hsieh SY. Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice. Hepatology 2018; 67:2226-2243. [PMID: 29171033 DOI: 10.1002/hep.29678] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 11/19/2017] [Indexed: 01/11/2023]
Abstract
UNLABELLED High invasiveness is a hallmark of human hepatocellular carcinoma (HCC). Large tumors predict invasion and metastasis. Epithelial-mesenchymal transition (EMT) is crucial for cancer invasion and metastasis. However, the mechanisms whereby large tumors tend to undergo EMT remain unclear. We conducted a subgenome-wide screen and identified KLHL23 as an HCC invasion suppressor by inhibiting EMT. KLHL23 binds to actin and suppresses actin polymerization. KLHL23 silencing induced filopodium and lamellipodium formation. Moreover, EMT was suppressed by KLHL23 through its action on actin dynamics. Traditionally, actin cytoskeleton remodeling is downstream of EMT reprogramming. It is therefore intriguing to ask why and how KLHL23 inversely regulates EMT. Activation of actin cytoskeleton remodeling by either KLHL23 silencing or treatment with actin cytoskeleton modulators augmented cellular hypoxic responses in a cell-density-dependent manner, resulting in hypoxia-inducible factor (HIF) and Notch signals and subsequent EMT. Environmental hypoxia did not induce EMT unless actin cytoskeleton remodeling was simultaneously activated and only when cells were at high density. The resulting EMT was reversed by either adenosine 5'-triphosphate supplementation or actin polymerization inhibitors. Down-regulation of KLHL23 was associated with invasion, metastasis, and poor prognosis of HCC and pancreatic cancer. Correlations of tumor size with EMT and inverse association of expression of KLHL23 with HIF/Notch signals were further validated in patient-derived xenograft HCCs in mice. CONCLUSION Simultaneously activation of actin cytoskeleton remodeling by intrinsic (such as KLHL23 down-regulation) or microenvironment cues is crucial for cell-density-dependent and hypoxia-mediated EMT, providing a mechanistic link between large tumor size and invasion/metastasis. Our findings provide a means of developing the prevention and treatment strategies for tumor invasion and metastasis. (Hepatology 2018;67:2226-2243).
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Rabindranath Bera
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chih-Yung Chiou
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tse-Chin Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chia-Wei Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Rui Wang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wan-Ling Chiang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shin-Pei Chai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mien-Chie Hung
- Center for Molecular Medicine and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
41
|
The Rho GTPase Rnd1 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma and is a favorable anti-metastasis target. Cell Death Dis 2018; 9:486. [PMID: 29706627 PMCID: PMC5924761 DOI: 10.1038/s41419-018-0517-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Rnd1, a member of Rho GTPases, was found to be downregulated in human malignancies and downregulation of Rnd1 promotes tumor invasion via various mechanisms. However, the role of Rnd1 in hepatocellular carcinoma (HCC) progression remains unclear. In this study, our results demonstrated that Rnd1 was downregulated in HCC cells and in human HCC tissues. Low expression of Rnd1 was associated with aggressive clinic-pathologic characteristics, such as vascular invasion, and poor prognosis in patients who underwent curative surgery for HCC. Overexpression of Rnd1-suppressed cell growth, migration, invasion, and EMT processes in vitro and in vivo. Furthermore, Rnd1 blocked HCC progression by restricting EMT process through inhibition of the Raf/MEK/ERK cascade, and this was correlated with a reduction in RhoA activity. Combination of Rnd1 overexpression with sorafenib, a Raf signaling pathway inhibitor, showed a more potent inhibition on HCC metastasis. Moreover, epigenetic inhibitors (5-Aza and SAHA) increased the expression of Rnd1, and potentiated sorafenib-induced toxicity in HCC cells. In a conclusion, Rnd1-suppressed EMT-mediated metastasis of HCC by reducing the activity of the RhoA/Raf/MEK/ERK signaling pathway, functioning as a favorable anti-metastasis target for HCC patients. Rnd1 overexpression in combination with sorafenib may result in enhanced anti-metastasis efficacy in HCC.
Collapse
|
42
|
Baudier J, Jenkins ZA, Robertson SP. The filamin-B–refilin axis – spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci 2018; 131:131/8/jcs213959. [DOI: 10.1242/jcs.213959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
During development, cycles of spatiotemporal remodeling of higher-order networks of actin filaments contribute to control cell fate specification and differentiation. Programs for controlling these dynamics are hard-wired into actin-regulatory proteins. The filamin family of actin-binding proteins exert crucial mechanotransduction and signaling functions in tissue morphogenesis. Filamin-B (FLNB) is a key player in chondrocyte progenitor differentiation for endochondral ossification. Biallelic loss-of-function mutations or gain-of-function mutations in FLNB cause two groups of skeletal disorders that can be attributed to either the loss of repressive function on TGF-β signaling or a disruption in mechanosensory properties, respectively. In this Review, we highlight a unique family of vertebrate-specific short-lived filamin-binding proteins, the refilins (refilin-A and refilin-B), that modulate filamin-dependent actin crosslinking properties. Refilins are downstream TGF-β effectors in epithelial cells. Double knockout of both refilin-A and refilin-B in mice results in precocious ossification of some axial skeletal elements, leading to malformations that are similar to those seen in FLNB-deficient mice. Based on these findings, we present a model summarizing the role of refilins in regulating the mechanosensory functions of FLNB during skeletal development. We also discuss the possible contribution of refilins to FLNB-related skeletal pathologies that are associated with gain-of-function mutations.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284 Marseille Cedex 07, France
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Campus de Luminy-Case 907, 13288 Marseille Cedex 9, France
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
43
|
Huang X, Chen Y, Xiao J, Huang Z, He L, Xu D, Peng J. Identification of differentially expressed circular RNAs during TGF-ß1-induced endothelial-to-mesenchymal transition in rat coronary artery endothelial cells. Anatol J Cardiol 2018; 19. [PMID: 29521313 PMCID: PMC5864769 DOI: 10.14744/anatoljcardiol.2018.95142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Although differentially expressed circRNAs have been proposed to be closely associated with epithelial-mesenchymal transition (EMT), the roles of circRNAs remain unclear in endothelial-to-mesenchymal transition (EndMT), which is a subcategory of EMT. Herein, we characterized the expression and potential function of circRNAs during TGF-ß1-induced EndMT in rat coronary artery endothelial cells (CAEC). METHODS High-throughput RNA sequencing was performed for unbiasedly profiling the expression of circRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed using online forecasting databases. Real-time quantitative polymerase chain reaction (RT-qPCR) was used for confirming the circRNA expression obtained from the sequencing data. RESULTS Among the candidated circRNAs, 102 circRNAs were differentially expressed, among which 66 circRNAs and 36 circRNAs were up-regulated and down-regulated, respectively, in TGF-ß1-treated rat CAEC. GO analysis findings revealed that numerous differentially expressed circRNAs were closely associated with the biological process. KEGG signaling pathway analysis suggested that the abnormal expression of circRNAs had been implicated in regulating the dynamics endothelial cell junctions. Furthermore, we also found that three EndMT-related circRNAs, chr5:90817794|90827570, chr8:71336875|71337745, and chr6:22033342|22038870, were significantly up-regulated in TGF-ß1-treated rat CAEC. CONCLUSION The findings of this study reveal a comprehensive expression and potential functions of differentially expressed circRNAs during TGF-ß1-induced EndMT. These findings provide mechanistic insights into the role of circRNAs in EndMT-related cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Xingfu Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Yanjia Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Junhui Xiao
- Department of Cardiology, Huadu District People’s Hospital, Southern Medical University; Guangzhou-China
| | - Zheng Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Liwei He
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Jian Peng
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
- Address for correspondence: Jian Peng, MD, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515-China Phone: +86-020-62787090 Fax: +86-020-62787093 E-mail:
| |
Collapse
|
44
|
The Role of Actin Dynamics and Actin-Binding Proteins Expression in Epithelial-to-Mesenchymal Transition and Its Association with Cancer Progression and Evaluation of Possible Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4578373. [PMID: 29581975 PMCID: PMC5822767 DOI: 10.1155/2018/4578373] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Metastasis causes death of 90% of cancer patients, so it is the most significant issue associated with cancer disease. Thus, it is no surprise that many researchers are trying to develop drugs targeting or preventing them. The secondary tumour site formation is closely related to phenomena like epithelial-to-mesenchymal and its reverse, mesenchymal-to-epithelial transition. The change of the cells' phenotype to mesenchymal involves the acquisition of migratory potential. Cancer cells movement is possible due to the development of invasive structures like invadopodia, lamellipodia, and filopodia. These changes are dependent on the reorganization of the actin cytoskeleton. In turn, the polymerization and depolymerization of actin are controlled by actin-binding proteins. In many tumour cells, the actin and actin-associated proteins are accumulated in the cell nucleus, suggesting that it may also affect the progression of cancer by regulating gene expression. Once the cancer cell reaches a new habitat it again acquires epithelial features and thus proliferative activity. Targeting of epithelial-to-mesenchymal or/and mesenchymal-to-epithelial transitions through regulation of their main components expression may be a potential solution to the problem of metastasis. This work focuses on the role of these processes in tumour progression and the assessment of therapeutic potential of agents targeting them.
Collapse
|
45
|
Puls TJ, Tan X, Whittington CF, Voytik-Harbin SL. 3D collagen fibrillar microstructure guides pancreatic cancer cell phenotype and serves as a critical design parameter for phenotypic models of EMT. PLoS One 2017; 12:e0188870. [PMID: 29190794 PMCID: PMC5708668 DOI: 10.1371/journal.pone.0188870] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer, one of the deadliest cancers, is characterized by high rates of metastasis and intense desmoplasia, both of which are associated with changes in fibrillar type I collagen composition and microstructure. Epithelial to mesenchymal transition (EMT), a critical step of metastasis, also involves a change in extracellular matrix (ECM) context as cells detach from basement membrane (BM) and engage interstitial matrix (IM). The objective of this work was to develop and apply an in-vitro three-dimensional (3D) tumor-ECM model to define how ECM composition and biophysical properties modulate pancreatic cancer EMT. Three established pancreatic ductal adenocarcinoma (PDAC) lines were embedded within 3D matrices prepared with type I collagen Oligomer (IM) at various fibril densities to control matrix stiffness or Oligomer and Matrigel combined at various ratios while maintaining constant matrix stiffness. Evaluation of cell morphology and protein expression at both the cellular- and population-levels revealed a spectrum of matrix-driven EMT phenotypes that were dependent on ECM composition and architecture as well as initial PDAC phenotype. In general, exposure to fibrillar IM was sufficient to drive EMT, with cells displaying spindle-shaped morphology and mesenchymal markers, and non-fibrillar BM promoted more epithelial behavior. When cultured within low density Oligomer, only a subpopulation of epithelial BxPC-3 cells displayed EMT while mesenchymal MiaPaCa-2 cells displayed more uniform spindle-shaped morphologies and mesenchymal marker expression. Interestingly, as IM fibril density increased, associated changes in spatial constraints and matrix stiffness resulted in all PDAC lines growing as tight clusters; however mesenchymal marker expression was maintained. Collectively, the comparison of these results to other in-vitro tumor models highlights the role of IM fibril microstructure in guiding EMT heterogeneity and showcases the potential of standardized 3D matrices such as Oligomer to serve as robust platforms for mechanistic study of metastasis and creation of predictive drug screening models.
Collapse
Affiliation(s)
- T. J. Puls
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaohong Tan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Catherine F. Whittington
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Oncology, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Sherry L. Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
47
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
48
|
Tsai CH, Li CH, Cheng YW, Lee CC, Liao PL, Lin CH, Huang SH, Kang JJ. The inhibition of lung cancer cell migration by AhR-regulated autophagy. Sci Rep 2017; 7:41927. [PMID: 28195146 PMCID: PMC5307309 DOI: 10.1038/srep41927] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in multiple organs and tissues. Whereas AhR mediates the metabolism of xenobiotic and endogenous compounds, its novel function in cancer epithelial-mesenchymal transition (EMT) remains controversial. Autophagy also participates in tumour progression through its functions in cell homeostasis and facilitates adaptation to EMT progression. In the present study, we found that AhR-regulated autophagy positively modulates EMT in non-small cell lung cancer cells. The motility of A549, H1299, and CL1-5 cells were correlated with different AhR expression levels. Invasive potential and cell morphology also changed when AhR protein expression was altered. Moreover, AhR levels exerted a contrasting effect on autophagy potential. Autophagy was higher in CL1-5 and H1299 cells with lower AhR levels than in A549 cells. Both AhR overexpression and autophagy inhibition decreased CL1-5 metastasis in vivo. Furthermore, AhR promoted BNIP3 ubiquitination for proteasomal degradation. AhR silencing in A549 cells also reduced BNIP3 ubiquitination. Taken together, these results provide a novel insight into the cross-linking between AhR and autophagy, we addressed the mechanistic BNIP3 modulation by endogenous AhR, which affect cancer cell EMT progression.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Lin Liao
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsuan Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
49
|
Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, Cataldo I, Rusev BC, Lawlor RT, Diodoro MG, Milella M, Grazi GL, Bissell MJ, Scarpa A, Nisticò P. The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome. Oncoimmunology 2016; 5:e1221556. [PMID: 28123868 PMCID: PMC5213039 DOI: 10.1080/2162402x.2016.1221556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease in need of prognostic markers to address therapeutic choices. We have previously shown that alternative splicing of the actin regulator, hMENA, generates hMENA11a, and hMENAΔv6 isoforms with opposite roles in cell invasion. We examined the expression pattern of hMENA isoforms by immunohistochemistry, using anti-pan hMENA and specific anti-hMENA11a antibodies, in 285 PDACs, 15 PanINs, 10 pancreatitis, and normal pancreas. Pan hMENA immunostaining, absent in normal pancreas and low-grade PanINs, was weak in PanIN-3 and had higher levels in virtually all PDACs with 64% of cases showing strong staining. Conversely, the anti-invasive hMENA11a isoform only showed strong staining in 26% of PDAC. The absence of hMENA11a in a subset (34%) of pan-hMENA-positive tumors significantly correlated with poor outcome. The functional effects of hMENA isoforms were analyzed by loss and gain of function experiments in TGF-β1-treated PDAC cell lines. hMENA11a knock-down in PDAC cell lines affected cell-cell adhesion but not invasion. TGF-β1 cooperated with β-catenin signaling to upregulate hMENA and hMENAΔv6 expression but not hMENA11a In the absence of hMENA11a, the hMENA/hMENAΔv6 up-regulation is crucial for SMAD2-mediated TGF-β1 signaling and TGF-β1-induced EMT. Since the hMENA isoform expression pattern correlates with patient outcome, the data suggest that hMENA splicing and related pathways are novel key players in pancreatic tumor microenvironment and may represent promising targets for the development of new prognostic and therapeutic tools in PDAC.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Pierluigi Iapicca
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Trono
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Sperduti
- Biostatistics and Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Fassan
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Ivana Cataldo
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Borislav C. Rusev
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | | | - Michele Milella
- Medical Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Gian Luca Grazi
- Hepato-pancreato-biliary Surgery Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Mina J. Bissell
- Lawrence Berkeley National Laboratory, University of California, CA, USA
| | - Aldo Scarpa
- ARC-NET Research Center, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Paola Nisticò
- Tumour Immunology and Immunotherapy Unit, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
50
|
Albertsen HM, Ward K. Genes Linked to Endometriosis by GWAS Are Integral to Cytoskeleton Regulation and Suggests That Mesothelial Barrier Homeostasis Is a Factor in the Pathogenesis of Endometriosis. Reprod Sci 2016; 24:803-811. [PMID: 27470151 DOI: 10.1177/1933719116660847] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endometriosis, defined by the presence of ectopic endometrial lesions, is a common disease in reproductive-age women that profoundly affects patients' quality of life. Various pathogenic models have been proposed, but the origin of endometriosis remains elusive. In this article, we propose that the mesothelial barrier, which protects the underlying stroma from endometrial transplants present in retrograde menstrual fluid, can be compromised by activation of the epithelial to mesenchymal transition (EMT) repair mechanism that lead to temporary loss of barrier integrity. Absent of the mesothelial barrier, endometrial cells can more readily adhere to the underlying peritoneal stroma and establish endometrial lesions. The hypothesis is based on the clinical and experimental observations that correlate the location of endometrial lesions with areas of mesothelial damage, together with genetic evidence that 4 genes associated with endometriosis are direct regulators of the actin-cytoskeleton, which coordinates mesothelial barrier integrity. It supports past observations that implicate the peritoneum in the pathogenesis of endometriosis and unifies previously disparate theories that endometriosis may be triggered by infection, mechanical damage, and inflammation since each of these mechanisms can induce EMT in the mesothelium. If the hypothesis is correct, inhibition of EMT in the mesothelial barrier provides a novel paradigm for the prevention and treatment of endometriosis.
Collapse
Affiliation(s)
| | - Kenneth Ward
- 1 Juneau Biosciences, LLC, Salt Lake City, UT, USA
| |
Collapse
|